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Abstract

We present a fast and flexible algorithm for the simulation and ren-
dering of ocean waves. The method is designed to support effi-
cient view frustum culling and various simple wave effects such
as choppy waves, capillary waves, wave refraction, round waves,
and wave-land interaction, which makes the model suitable in, e.g.,
computer games. The waves are numerically robust, and the exe-
cution time of the generated waves can be controlled dynamically.
Finally, experimental results illustrate the interactive performance
and the visual quality of the generated waves.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords. water, waves, animation, culling, graphics, simulation

1 Introduction

Simulation of realistic water waves is a computationally challeng-
ing problem [Semtner 2000; Hinsinger et al. 2002; Iglesias 2004].
There are many different types of waves, e.g., the tides, seis-
mic tsunami waves, internal waves (waves below the water sur-
face), object interaction waves, gravitational waves, and capillary
waves [Peachey 1986]. The latter two are also called wind waves,
and it is the generation of plausible wind waves in real-time that is
in focus here.

Some previously proposed wave generating methods for computer
graphics applications have been based on the summation of sine
waves, such as Gerstner’s and/or Biesel’s wave models [Fournier
and Reeves 1986; Cieutat et al. 2001; Hinsinger et al. 2002]. Ad-
ditional details to the water surface can be added by using noise
functions [Thon et al. 2000]. Wave refraction can be simulated with
wave tracing [Ts’o and Barsky 1987; Gonzato and Sac 1997].

Other approaches rely on fast Fourier transforms [Tessendorf 2004;
Hu et al. 2004], and solving the Navier Stokes equations for
physically-based simulation of fluids [Kass 1991; Stam 1999; Fos-
ter and Fedkiw 2001; Mihalef et al. 2004]. Realistic simulation of
fluids, however, can be extremely time consuming, and therefore
inappropriate for interactive computer graphics applications. Nev-
ertheless, Stam has proposed a fast and useful algorithm that solves
the Navier—Stokes equations and produces complex fluid-like flows
in real-time [Stam 1999; Stam 2003].

Several other methods are based on a combination of summing sine
waves, spectral approaches, and other techniques [Thon et al. 2000;
He et al. 2005]. Some approaches also use the modern programma-
bility features of GPUs [Schneider and Westermann 2001; Isidoro
et al. 2002; Kryachko 2005; Baboud and Décoret 2006]. We refer
to the survey by Iglesias [2004] for a broader presentation of related
work than the one given here.

Our solution is based on oriented Wave Train Boxes (WTBs), which
are responsible for generating waves over spatially limited sea ar-
eas. The basic shapes of the waves are computed using Gerstner’s
equations [Tessendorf 2004], but by using several extensions and
tracing wave rays inside the WTBs in the wind direction, simple
forms of some natural wave effects are achieved, e.g., wave—land
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Figure 1. Animage of waves generated with the proposed method.

collisions, wave refraction, capillary waves, and round waves. In
Figure 1, an example image of the generated waves is shown. The
computational complexity of our approach is linear in the number
of water surface points.

The main contribution of this paper is a simple and flexible wave
model for the fast generation of plausible water surfaces with
the following advantages: (1) The generated waves are frame-
independent, which means the water surface is re-calculated from
its rest position each frame. This is both memory friendly and nu-
merically robust. (2) Wave trains are spatially limited, and mutually
independent, which means that View Frustum Culling (VFC) can be
used to speed-up the calculations. (3) The complexity of the water
surfaces can be interactively controlled, since the computations are
arranged in layers with the most basic features applied first. Fur-
thermore, the water surface is generated as a combination of an ar-
bitrary number of independently processed simple wave trains, so
the most important can be selected according to a given time bud-
get. (4) The model supports a simple and fast method for affecting
the waves near land (wave refraction). (5) Land obstacles are de-
tected, and in the water area behind them, the waves are canceled
out. (6) The method produces plausible waves at interactive rates,
see benchmarks in Section 3.

2 Wave model

A water surface is represented by a uniformly sampled height field
which we call the water grid. For the generation of the waves, ori-
ented WTBs are associated with the water grid. A WTB is used to
handle the creation and simulation of a restricted rectangular area
of waves. Each WTB handles a set with one or more wave trains
traveling in roughly the same direction.

To create waves, a wind is associated with each WTB. Wind param-
eters are wind speed, direction vector, wind origin, life length, and
area defined by fetch and width. When a wind starts, the size of the
WTB grows during a build-up phase up to a maximum. Some prop-
erties of the wind directly define parts of the WTB, such as direc-
tion, width and origin point. The other properties help to build-up,
sustain and in the end kill the WTB.
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Figure 2: A WTB with six wave rays. The internal coordinate sys-
tem has its origin in the lower left corner when looking along w.
Action points are registered around obstacles in order to change
wave train parameters at those specific points.

Figure 3: Images generated from a WTB with a single wave train
(left), and a WTB with three wave trains (right). As expected, more
wave trains give a more irregular surface.

There are one or more wave trains per WTB, each with its own di-
rection, amplitude, wave length, and phase. The more wave trains
used, the more complex waves are generated. Example waves re-
sulting from a WTB with a single wave train and another with three
wave trains are shown in Figure 3.

A WTB also has a set of wave rays in order to gain control over the
wave train parameters locally. With this local control, the height of
a wave can be increased as it approaches land, and waves behind
an obstacle can be damped. However, when there are no land ob-
stacles inside a WTB, it is possible to iterate over the water grid
points in any order since each point’s location is then calculated
independently.

In Figure 2, the most important structural elements of a WTB are
shown. The direction vectors « and v define the internal coordi-
nate system of the WTB, with the origin always in the lower left
corner looking along u. The lengths of these vectors are the actual

Figure 4. Smoothening area along the side of a WTB.
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uniform lengths between the water grid points. Thus, the WTB has
as many wave rays as it spans over grid points in width. If some-
thing obstructs the surface, action points are registered as shown
in Figure 2. An action point indicates a change of the wave train
parameters will take place at that specific point.

Figure5: Dampening of waves due to wave ray land collisions.

The actual computation of the wave shape is based on Gerstner’s
wave model, which was suggested more than two hundred years
ago in oceanography (see e.g. [Tessendorf 2004; Fournier and
Reeves 1986]). This model is chosen because its inherent linear
time complexity in the number of computed water surface points,
but still, the computed wave shapes look plausible.

Waves are created by specifying a wind speed, . The maximum
wave height, H, of fully developed seas can then be approximated
by
2
H= ah—
g
where g is the gravitational constant, and « is a dimensionless con-
stant. This simple equation is the result of an early hypothesis sug-
gesting a direct relation between wind speed and wave height. A
reasonable approximation for fully developed wave heights can be
computed by using oo = 0.21 [Resio et al. 1999]*.

@

The animation of the water grid points is handled by Gerstner’s
parametric wave equations. The goal is to make a point p, =
(z0, z0) on the rest surface of the water (where yo = 0) to travel in
a stationary circular orbit. However, by displacing the point at time
t to
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the surface is perturbed into repeated trochoids, thereby also sup-
porting the generation of so called choppy waves, depending on the
relationship between & and A, where A is the amplitude. The wave
vector, k = (kz, k=) is the horizontal direction in which the wave
travels. The magnitude of k is related to the wave length )\, and is
given by k = 27 /. The frequency w is related to k and the water
depth D at p, according to

w = 4/ gk tanh(kD) 4)

This equation makes the waves slow down as the water depth de-
creases. However, when the water depth is large enough, we can

k.
p = pO—EAsm(k~p0—wt)

y = Acos(k-p,— wt)

LFournier and Reeves [1986] suggest another simple equation for deter-
mining the wave height given only the wind speed.



Figure 6: Waves with no phase shift (Ieft) and waves with a phase shift as a function of water depth (right).

ignore the depth and simply use
w = +/gk

Note that the equations 2 and 3 only create a wave with a very un-
realistic regular shape. Therefore, to create a plausible wave shape,
a set of IV such sine waves are used and added together according
to

®)

N-1
Ki oo
Po = D - Avsinki Py —wit + &) (6)
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As can be seen, each sine wave has its own wave vector, k;, ampli-
tude, A;, frequency w;, and a phase shift ®;.

To avoid waves that are abruptly ended at the sides of the WTBs,
a way to make the waves gradually disappearing into the water is
needed. Therefore, each WTB has a smoothening area along its
sides where the wave height is decreasing linearly, which is illus-
trated in Figure 4.

When the height of the water grid points inside the WTB is updated,
the internal coordinate system is traversed along the wave rays.
Since the rays are arbitrarily oriented, we have to detect which wa-
ter grid points are closest. Some precautions must be taken to avoid
neighboring rays updating the same grid points, or that no rays will
access some grid points, resulting in visual artifacts. Therefore, for
every internal grid point, the small quadrant area behind to the left
is scanned for actual surface grid points, marked as a pink square
in Figure 2. Because the internal grid of the WTB has the same
distance between points as the water grid, albeit oriented, there can
only be three possible outcomes for such a scan: zero, one or two
points inside. The height is summed up for all wave trains at these
points, and stored. If there is an action point, the parameters of the
wave trains are adjusted. If the wave is approaching land and the
depth is decreasing, the amplitude is increased slightly, but set to
zero as land peaks above the surface. After the obstacle, if it is wa-
ter behind it (from the wave direction point of view), the amplitude
is increased again gradually to the full amplitude.

By computing the position of the water grid points along the wind
direction, land collisions becomes trivial to detect, and the handling
of waves hitting a land obstacle becomes extremely efficient. The
land collision points can even be pre-computed as long as the WTBs
are stationary. In Figure 5, this way of detecting land collisions
and setting the wave amplitude to zero afterwards is shown. In
nature, however, the broken waves would pass along the sides of the
obstacle, grow along the crest and perhaps meet again depending on
the size of the obstacle. This phenomenon is called diffraction.
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Finally, note that some visual artifacts may arise during the wave
animation near land when the amplitude is too high or the slope
is low (like on a beach) because of land peeking through the bot-
tom of the waves. One possible solution to this could be to adjust
the parameters of the waves to make the trough of the wave stay
above land. For example, the water level can be raised somewhat to
simulate run-up, and decreasing the amplitude instead of increas-
ing it can also help. Some visual artifacts may also arise when
polygons of the water surface are coplanar with land polygons due
to z-fighting. Increasing the depth buffer resolution can alleviate
these artifacts, but can never remove the problem completely.

Figure 7: Example of waves starting to queue up towards land.

2.1 Wave effects

While updating the parts of the water grid covered by a WTB, sev-
eral effects adding more details and variations can be applied. For
example, a simple form of wave refraction can be achieved simply
by shifting the phase of the waves locally depending on the water
depth. In Figure 6, it is shown how the resulting waves look with
and without this type of refraction. In contrast to this, the usual way
to achieve wave refraction for Gerstner waves is to change the wave
frequency according to Equation 4. However, when the frequency is
changed, waves may easily start to queue up towards land as the an-
imation proceeds according to Figure 7. This is because the speed is
reduced to almost zero. Our approach keeps the propagation speed,
and focuses on bending the waves.

In reality, there are also a great number of water waves that make up
irregular patterns of waves with different heights. To model a seem-
ingly irregular height variation, we can simply change the height
value y along a wave in the v-direction of the WTBs by modifying
the amplitude according to the formula

A" = A — asin(t + u) sin(vf) (8)

where a is scale factor, and f determines how often a higher wave
will appear in the v-direction. Of course, some randomness can
also be added to Equation 8. However, the resulting waves look
more chaotic even without it, as can be seen in Figure 8.

There are also capillary waves giving rise to fine grained details
on the water surface. Therefore, we add more details to the water



Figure9: A water surface without noise (left) and with noise (right).

surface by applying a noise function adjusting the height of each
water grid points slightly using the equation

y =y + bsin(rt) 9)
where b is the noise amplitude, and » € [0, 1] is a random value.
The effect of this noise function is shown in Figure 9. To avoid
a completely flat water surface in areas where no wave trains are

applied, the noise function must be applied directly to all visible
water grid points, independently of where the WTBs are located.

Figure 10: Round waves resulting from waves spreading outwards
from the water—-wind contact area.

Another effect that may arise can be referred to as round waves.
When a wind blows over a surface with a limited width, the arising
waves tend to spread outwards from the contact area. This effect
can easily be incorporated into our model by a function shifting the
phase of the waves in the v-direction of the WTB. For example,
using the formula

(v —0.5V)?
14
where V' is the width of the WTB, the phase shift becomes sym-

metric around the center of the WTB giving rise to the round waves
depicted in Figure 10.

P = (10)
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2.2 View frustum culling

The concept of WTBs is well-suited for view frustum culling. Each
WTB is a container for wave trains, and it defines a limited rectan-
gular area where these wave trains affect the water grid points. For
each WTB, we create an enclosing volume, an Oriented Bounding
Box (OBB). The dimensions of the OBB are defined by the rect-
angular area of the WTB together with the maximum wave height,
which is given by the sum of all the maximum heights of all in-
volved wave trains.

The actual visibility check is made by extracting the planes of the
view frustum each frame from the combined view and projection
transformation matrices A = MP, which is done very efficiently
by adding columns of A [Gribb and Hartmann 2001]. Then an
OBB-plane overlap test is executed for each plane of the frus-
tum, which can be computed very efficiently [Akenine-Méller and
Haines 2002].

However, we need to take precaution to avoid potential false culling
of overlapping WTBs. When two or more WTBs overlap, the max-
imum wave height inside the overlap area is the sum of the maxi-
mum wave height for each involved WTB. Therefore, when we de-
termine the height of the OBB, we take all overlapping WTBs into
account. Note that this computation can be done as a pre-process, if
the WTBs are placed at fixed locations in the virtual environment.

2.3 Interactive control

To be able to interactively control the frame rate, our approach
admits generating the waves using a computationally layered ap-
proach, where the most fundamental and important features are ap-
plied first. We start with conservative view frustum culling of the
WTBs. Then, for each remaining WTB, the positions of the af-
fected water grid points are computed, as they are passed by the
wave rays. Note that the actual computations of the positions of the
water grid points are made with the currently enabled wave trains
and the possible effects either turned on or off. Finally, the noise
effect may be added to the water grid.



If time permits, it would also be possible to make an additional
pass over all water grid points that fall inside any of the WTBs
to add other special effects, such as foam or spray, by considering
the roughness of the water around each water grid point. It would
also be possible to add new WTBs on the fly. However, then the
computation of overlapping WTBs, and land collision points, must
also be done on the fly, which otherwise are pre-computations.

2.4 Computational complexity

The performance of the algorithm is adaptive to the actual number
of water grid points computed per frame. Since a single water sur-
face point is processed in constant time, the worst case for the com-
putational complexity of the algorithm is given by O(kn), where k
is the number of WTBs, and n is the number of water grid points.

In the best case, the algorithm is in O(k), which occurs when all
WTBs, and thus all wave trains, are completely outside the view
frustum, and when the (global) noise effect is turned off. Therefore,
from a scene design point of view, it makes sense to define the size
of neighboring WTBs with efficient VFC in mind.

3 Results

Our wave generation method has been implemented in C++ and
we have evaluated the performance by using some benchmark sce-
narios. The test equipment was an AMD64 3000+ 2.0 GHz CPU,
with 1 GB RAM and graphics hardware ATI19800 pro with 128 MB
RAM. No optical effects were used in the lighting calculation ex-
cept OpenGL’s own fixed-function pipeline with one light source.
All animation calculations are done on the CPU, and VFC is only
done for WTBs and not for the land and water geometries them-
selves. Some captured animations are available showing our wave
generation approach in action?,

Figure 11: Bird-eye view over the WTBsin the first scenario.

LOD | 64x64 | 128x128 | 256x256 | 512x512
WC 3.20ms | 12.2ms | 49.9ms 199 ms
WR 0.80ms | 2.80 ms 10.8ms | 44.0ms
FPS >75 42 13 4

Table 1: Wave Calculation (WC) and Water Rendering (WR) times
in thefirst scenario.

In the first scenario, there are two WTBSs, both of them covering
most of the water surface, see Figure 11. One of the WTBs in-
cludes one wave train, and the other two wave trains. The effects

2See http://www.idt.mdh.se/personal/tla/waves/
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Figure 12: Wreframe rendering of the waves in the first scenario
with water grid LOD 512x512.

used were basic Gerstner waves and depth-dependent wave refrac-
tion. The measurements were repeated for four different levels-of-
detail (LODs) of the water grid, see Figure 12 for an example. The
execution times are presented in Table 1. As can be seen, the time
to generate the waves increases linearly with the number of grid
points as expected.

Figure 13: Scenario 2 with seven WTBs inside the view frustum.

In the second scenario, seven WTBs, with one wave train in each,
were included to be able to examine how VFC affected the execu-
tion time. A fixed water grid of size 256x256 was used. Again, ba-
sic Gerstner waves and depth-dependent wave refraction were used.
When all seven WTBs were visible (see Figure 13) the water calcu-
lation time was 57.7 ms. With none of the WTBs visible, the water
calculation time decreased to 0.6 ms. In cases where one or more
WTBs were culled, a speed-up of 3-10 ms per WTB was observed
depending on their sizes. When the water grid size was increased
to 512x512 in the same scenario, the water calculation time was
232.2 ms with all WTBs inside the view frustum, and the gain per
culled WTB was between 20-40 ms.

Effect 256x256 | 512x512
Depth-dependent refr. | 1.2 ms 6 ms
Noise 3ms 13 ms
Irregular height 9.5 ms 39 ms
Round waves 0.5 ms 1.4 ms

Table 2: The execution times of the tested wave effects for two
LODs of the water grid.



The second scenario was also used to measure the computation time
for various parts of the algorithm. The measured parts were depth-
dependent refraction, noise, irregular height, and round waves. The
results from this experiment, with all seven WTBs inside the view
frustum, are shown in Table 2.

4 Conclusion and future work

Even though realistic physically-based simulation of ocean waves is
too complex for real-time graphics application, it is clear that sim-
pler solutions, with a plausible look and feel, can be incorporated
with success in, e.g., computer games or virtual reality applications.
The key features which make plausible wind waves possible in our
approach are the linear time complexity, flexible and independent
wave effects, and VFC of WTBs. We expect that an implemen-
tation of our approach based on, e.g., the SIMD SSE instruction
set and multiple core CPUs, would improve the performance by an
order of magnitude making the computation of water surfaces of
1024x1024 grid points feasible in real-time. Some computations
can also be moved to the GPU for further improvements.

Possible future work includes examining various approaches to add
plausible foam, spray and breaking waves in an additional pass over
the visible WTBs. Working with dynamically moving WTBs would
also be interesting, e.g., to achieve waves generated by boats in mo-
tion. Another possibility would be to further accelerate the wave
generation process by improving the VFC. For example, this in-
cludes examining ways to efficiently clip WTBs only partly inside
the frustum.
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