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Abstract
This paper deals with a first implementation of the so-
called motor calculus within Modelica. The motor calculus
can be used to describe the dynamical behaviour of spatial
multibody systems in an efficient way. This method rep-
resents an alternative approach to modelling of multibody
systems. In the paper, some fundamentals of motor calculus
are summarized. Furthermore, a simple implementation of
motor algebra by special additional Modelica code within
some components of the Modelica Multibody Standard Li-
brary is presented. This approach fully corresponds with
the paradigm of object-oriented modelling. However, the
present realisation is not equation-based in its full sense be-
cause of the missing possibility of operator overloading (at
least in the available Modelica simulator environment). In-
stead of this, some functions are used carrying out the nec-
essary calculations. Using this implementation, some ex-
amples are given to prove the applicability and correctness
of the implemented approach.

Keywords Motor calculus, Screw theory, Rigid multi-
body system, Modelica

1. Introduction
The notion of motor, composed of the words moment and
rotor, was coined by CLIFFORD in 1873 in his algebra of bi-
quaternions [4]. But Clifford did apply his concept neither
to the modelling of motion of a single rigid body nor to
the modelling of spatial multibody systems. The approach
of motor calculus to 3D mechanics was suggested by VON
MISES in 1924 [11, 12]. In the first part [11], VON MISES
introduces the dual motor product. He indicates the role of
the dual motor product as a measure of the instantaneous
change of a motor associated to a rigid body by the action
of a second motor. In the second part [12], VON MISES
applied the motor calculus in the derivation of a general
form of the equations of motion of a rigid body. Due to
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this work, translations and rotations, velocities and angular
velocities, forces and torques, etc. can be described by
motor calculus (or motor algebra). Hence, this approach is
well suited to investigate the behaviour of spatial multibody
systems.

One of the authors studied motor calculus in his Diploma
thesis [22] initiated and supervised by Prof. K. Reinschke
from the Technical University Dresden (one of the former
institutes of R. VON MISES). Recent publications dealing
with this subject can rarely be found (exept e.g. for [8, 18]).
In the context of the modelling language for heterogenous
systems Modelica (see e.g. [5, 13, 19]), the motor calculus
has not been taken into account up to now.

Within the Modelica community, spatial multibody sys-
tems are usually modelled using the Modelica Multibody
Standard Library (see [14] or [15]). Meanwhile, many re-
searchers apply this library to model different kinds of –
partially very complex – multibody systems [2, 9, 10, 16,
20]. This library has proven to be a well suited resource
to modelling such systems. However, applying the motor
calculus, the equations of motion for a rigid body become
more concise and clearer, e.g.

ṗ = f

(p – momentum motor, f – force motor). Despite the formal
equivalence to Newton’s Second Law for a point mass, this
equation fully describes the three-dimensional mechanics
of a rigid body.

The motivation to follow up the motor calculus in the
Modelica context is to investigate the possible simplifica-
tion of handling spatial mechanical systems. A test realisa-
tion within the Modelica Multibody Standard Library has
been carried out by implementing special additional Mod-
elica code within some components of this library. These
modifications take advantage of the built-in feature of in-
heritance. Hence, it is possible to compare both approaches
e. g. with respect to numerical correctness.

In the following section, some fundamentals of motor
calculus are shortly sketched. Some of the most important
mathematical operations are defined. The test implemen-
tation is presented in section 3. It fully corresponds with
the paradigm of object-oriented modelling (see e.g. [3]).
In modelling and simulation, one usually distinguishes be-
tween equations and assignments. In this context, the test
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implementation is not completely equation-based because
some special mathematical operations had to be realised by
functions. Some examples in section 4 show the principal
applicability of the motor calculus approach.

2. Fundamentals of Motor Calculus
A motor

h =
(

g
ho

)
is an ordered pair of vectors, ho and g, that define a vector
field

h(r) = ho + g × r (1)

in the three-dimensional Euclidean space. In this definition,
r is the position vector of any point in space, while the
vectors h and g are called the moment and the resultant
vector of the motor, respectively. Accordingly, ho stands
for the moment of the motor at the originO of the reference
coordinate system.

For every motor, an infinite number of points exists, for
which the moment of the motor h is parallel to the resultant
vector g. All these points exhibit the same moment hn and
lie on a straight line N given by

rn(λ) =
g × ho

|g|2
+ λg , λ ∈ R.

Geometrical Interpretation A very strong goal of the
motor calculus is the fact that motors and all operations
with motors (that will be defined later on) can be inter-
preted as geometrical objects or constructions. Hence, all
motors can be seen as abstract objects that do not depend
on the choice of a reference frame. R. VON MISES empha-
sises this fact by giving the definition of motors in terms
of geometrical objects describing them. Here, just an inter-
pretation of the foregoing definition is given.

α

G1

G2

g

hn

N

with tan α = |g|

Figure 1. Geometrical interpretation of motors

For every pair of straight lines (G1 and G2) defined in
Euclidean space, there exists a straight line N connecting
them and being orthogonal to both of them (see Fig. 1). For
a pair of non-parallel lines, N is uniquely defined. Oth-
erwise, there exists an infinite number of such connect-
ing lines that are parallel to each other. Now, every or-
dered pair of straight lines (G1, G2) can be mapped to a

motor (see Fig. 1). In this case, N is denoted as motor
axis, according to VON MISES. The oriented segment of
the axis N between the intersection with G1 and the inter-
section with G2 can be interpreted as the moment hn of
the motor on its axis. The smaller one of both angles in-
cluded by the lines G1 and G2 is understood as a meassure
for the orientation and is simultaneously interpreted as the
length of the resultant vector g. The tangent of this angle α
is equal to the length of the resultant vector, while the di-
rection of the resultant vector is defined in such a manner
that G1 can be transferred into G2 by a mathematically pos-
itive screw motion across the resultant vector. The mapping
from an ordered pair of straight lines to a motor is not a one-
to-one mapping because all ordered pairs of straight lines
that can be transferred into each other by a screw motion
across N define the same motor.

2.1 Motor Calculus
In the following, some computational rules of motor calcu-
lus are recalled.

Let h, h1, and h2 be three motors given by

h =
(

g
ho

)
, h1 =

(
g1

ho1

)
, h2 =

(
g2

ho2

)
.

Then, according to VON MISES, the following mathemati-
cal operations can be defined:

2.1.1 Addition
The addition of motors is performed component-wise ac-
cording to

h1 + h2 =
(

g1 + g2

ho1 + ho2

)
.

The neutral element of the addition is the zero motor

0 =
(

0
0

)
.

2.1.2 Multiplication
For the multiplication of motors the following three cases
can be distinguished:

Multiplication with a scalar The scalar multiplication is
defined component-wise

αh =
(
αg
αho

)
, α ∈ R.

Inner product The result of the inner product of two
motors is a scalar. Thus, the product corresponds to the
scalar product of the vector calculus. The definition is

(h1, h2) = (g1,ho2) + (g2,ho1) , (2)

while (g,h) is the scalar product of two vectors. Using
matrix notation, the equation

(h1, h2) =
(
gT

1 hT
o1

)
Γ
(

g2

ho2

)
holds, where Γ is a well chosen matrix according to

Γ =
(

0 I3

I3 0

)
and I3 denotes the (3× 3) identity matrix.
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Outer product The outer product of two motors results in
another motor, which is composed as follows:

h1 × h2 =
(

g1 × g2

g1 × ho2 + ho1 × g2

)
. (3)

The outer product is also referred to as motorial product or
as dual motor product [6]. In terms of vectors and vector
dyads, the product can be written as

h1 × h2 =
(

0 G1

G1 Ho1

)
Γ
(

g2

ho2

)
,

where G1 and Ho1 are the cross product matrices1 of the
vectors g1 and ho1, respectively.

2.1.3 Motor dyads
In analogy to the vector calculus, VON MISES declared
dyads for the motor calculus by linear vector functions
mapping motors to motors. Referred to a concrete coordi-
nate system, such a dyad can be represented as a (6 × 6)
matrix.

The mapping can be described in the following manner:

T ◦ h1 =
(

T 11 T 12

T 21 T 22

)
Γ
(

g1

ho1

)
=
(

T 11ho1 + T 12g1

T 21ho1 + T 22g1

)
. (4)

For multiple applications of different linear vector func-
tions, it is useful to introduce the product of two motor
dyads as

T1 ◦ T2 = T1ΓT2. (5)

The neutral element of the dyadic multiplication in motor
calculus is the identity motor dyad G that can be repre-
sented in every frame as

G =
(

0 I3

I3 0

)
.

Now, all calculation rules for the motor calculus can be
derived readily, some of which are presented here for any
arbitrarily chosen motors h1, h2, h3 and α ∈ R:

(h1, h2) = (h2, h1)

h1 × h2 = −h2 × h1

(h1, (h2 + h3)) = (h1, h2) + (h1, h3)

h1 × (h2 + h3) = h1 × h2 + h1 × h3

(αh1, h2) = α (h1, h2)

αh1 × h2 = α(h1 × h2)

(h1, (h2 × h3)) = (h2, (h3 × h1)) = (h3, (h1 × h2))

1 The cross product matrix A for a vector a =

a1

a2

a3

 is given by

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

.

Remark: Due to the definition of addition and scalar mul-
tiplication, motors span a vector space over the field of
real numbers. Moreover, by the introduction of the outer
product, motors form a Lie-Algebra2 since all the follow-
ing conditions are fulfilled:

1. The bilinearity of the motorial product is given, i. e. for
all real α and β, the motors h1, h2, and h3 satisfy the
equations

(αh1 + βh2)× h3 = αh1 × h3 + βh2 × h3

and

h1 × (αh2 + βh3) = αh1 × h2 + βh1 × h3.

2. The motorial multiplication is skew commutative, i. e.

h1 × h2 = −h2 × h1.

3. The Jacobian Identity holds, i. e. for arbitrarily chosen
motors h1, h2, and h3, the equation

h1 × (h2 × h3) + h2 × (h3 × h1)+

h3 × (h1 × h2) = 0

is true.

2.1.4 Coordinate transformations
For concrete calculations with motors, it is necessary to
introduce a coordinate system, also called frame, in which
the components of the motor are given. Considering two
different frames F1 and F2, it may be of interest how to
transform the components of a motor h given in frame F1

into the components referred to frame F2 and vice versa.
So let vector r12 denote the position vector of the origin
of F2 declared in frame F1. Furthermore, let the rotation
from frameF1 to frameF2 be given by the direction cosine
matrix A. Then, the transformation is performed by the
equation

[h]F2
=
[(

0 A
A −AR12

)
◦ h

]
F1

.

Here, the matrix R12 is the cross product matrix of the
vector r12

2.1.5 Differentiation with respect to real-valued
parameters

Consider a motor h that depends on a real parameter t
(e. g. the time). Then, the first derivative of this motor with
respect to t can be computed component-wise:

dh

dt
=

(
dg
dt

dho

dt

)
.

2 Named after the mathematician SOPHUS LIE (∗1842, †1899).
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2.1.6 Differentiation in moving frames
The temporal change of a motor seen from two different
frames will, in general, lead to differing results if one
frame, say F1, moves relatively to the other frame, say F0.
The relative motion of the origin of frame F1 measured in
frame F0 shall be given by the velocity vector vo, while
the angular velocity vector of frame F1 with respect to
frame F0 is denoted by ω. Then, the equation

ḣ =
o
h +

(
ω
vo

)
× h (6)

holds for the derivation with respect to time observed in
frame F0. In Equ. (6),

o
h denotes the derivation w. r. t. time

of the motor h observed in frame F1.

2.2 Applications of Motor Calculus
The most important application of motor calculus is the de-
scription and analysis of the static and dynamic behaviour
of rigid bodies subject to external forces and torques. Fol-
lowing the ideas of VON MISES, the next paragraphs will
give an overview, how to describe the rigid body move-
ments in the three-dimensional space in a very effective
way using the motor calculus.

Before that, some definitions have to be explained that
are essential for the succeeding subsections. To describe
the motion of a rigid body in three-dimensional space, one
chooses a reference point O of the body. The motion of
point O can be expressed w. r. t. a reference frame F by the
position vector ro (see Fig. 2). The origin of frame F is
denoted by O.

P

A

ω

F

B

r0

r

r

O

O

Figure 2. Definition of vectors at the rigid body

For the description of all other points of the rigid body,
it is suitable to introduce a body fixed frame, called body
frame B, with the origin located in the reference point O.
To distinguish the position vectors of both frames, the posi-
tion vectors of the inertial frame are underlined. The posi-
tion of an arbitrarily chosen point P of the body is therefore
given by

r = ro + r .

The motion of the rigid body is fully described by the
velocity of the reference point vo = ṙo and the angular
velocity ω the body frame B is rotating w. r. t. I.

2.2.1 Definition of physically motivated motors
The introduction of motor calculus is justified by the
comfortable applicability to mechanical rigid body issues
in three-dimensional space. As already described before,
some physical quantities for the description of rigid body
movements can be composed to motors. Hence, the motion
laws of rigid body mechanics can be written in a very com-
pact and clear form. This will be shown in the subsequent
paragraphs.

We introduce some motors, that are able to describe
the motion sequence of a rigid body as well as the acting
torques and forces in a physically meaningful manner.

The first motor is called the force motor f combining the
resulting force f and torque do (referred to the reference
point O) acting on the rigid body, i. e.

f =
(

f
do

)
.

For any rigid body, every single force f i and torque dj

can be assigned to a force motor according to

ff,i =
(

f i

ri × f i

)
and

fd,j =
(

0
dj

)
,

respectively. The resulting force motor can then be simply
calculated as the sum of all single force motors

f =
∑
(i)

ff,i +
∑
(j)

fd,j .

Please note that the overall torque do as well as the repre-
sentation of the motor depend upon the chosen reference
point O. Hence, the torque referred to any other point with
the position vector r is calculated by

d(r) = do + f × r .

That is exactly the relationship stated in Equ. (1). This
characteristic can be interpreted as a force screw (see e.g.
[1]), since there always exists an instantaneous line on
which the force and the torque vectors act parallel.

A second motor, the so-called velocity motor, is able to
describe the whole motion of a rigid body. It consists of the
velocity vector vo of the chosen reference point O and the
angular velocity vector ω representing the rotation of the
body w. r. t. an inertial frame:

v =
(

ω
vo

)
.

This motor is able to describe the velocity v of any point r
of the rigid body by the equation

v(r) = vo + ω × r .
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Two other important vectors in the description of dy-
namic mechanical systems are the momentum vector p and
the angular momentum vector lo. Both are combined in the
momentum motor p with

p =
(

p
lo

)
.

Similar to the force motor, the representation of momentum
motor depends upon the chosen reference point. Between
the angular momentum lo referred to O and the angular
momentum vector l(r) referred to any other point at posi-
tion r, the relationship

l(r) = lo + p× r .

holds. This statement can be proven by using the definition
of the vectors p and lo according to

p =
∫

ṙ dm = ṙo

∫
dm+ ω ×

∫
r dm

= mṙo −mrs × ω = mvo −mrs × ω

and

lo =
∫

r × ṙ dm

=
∫

r dm × ṙo +
∫

r × (ω × r) dm

= mrs × vo + Θoω ,

where m denotes the mass of the body and Θo the inertia
tensor w. r. t. the reference point O. The vector rs is the
position vector of the centre of mass referred to the body
frame given by rs =

∫
r dm∫
dm

.

2.2.2 Some fundamental laws of mechanics in terms
of motor calculus

With the definitions above, a relationship between the ve-
locity motor v and the momentum motor p can be derived
by introducing the inertia dyad M for the motor calculus:

p =
(
mI −mRs

mRs Θo

)
︸ ︷︷ ︸

M

◦ v . (7)

The new symbol Rs describes the cross product dyad of
the vector rs.

Referred to a concrete frame in u, v, and w, the dyad
can be written as a (6× 6) matrix of the following form

M =


m 0 0 0 mws −mvs

0 m 0 −mws 0 mus

0 0 m mvs −mus 0
0 −mws mvs Θuu Θuv Θuw

mws 0 −mus Θvu Θvv Θvw

−mvs mus 0 Θwu Θwv Θww

 ,

where us, vs, and ws are the coordinates of centre of mass.
Choosing the body frame parallel to the body’s principal
axes of inertia and selecting the centre of mass as the
reference point, M becomes a diagonal matrix.

With the help of the foregoing motor relations, the main
mechanical laws can be rewritten in terms of motors.

The first law describes the change of momentum and
angular momentum in the presence of external forces and
torques in a very efficient and short way, namely

ṗ = f .

Here, ṗ denotes the time derivative of the momentum mo-
tor p observed in an inertially fixed reference frame.

The unique simplicity and shortness of this equation is
doubtless a goal of this calculus, even more considering
that it formally takes exactly the form of Newton’s Sec-
ond Law for mass points. Unfortunately, this formula is not
very practical, since the derivation has to be done w. r. t.
the inertial frame. However, the momentum motor is much
easier to determine in a body fixed frame, because the iner-
tia dyad M is therein constant. So, a much more applicable
form for concrete calculations can be derived using (6) to
express the time derivation w. r. t. the body frame

o
p + v× p = f , (8)

where p, v, and f are referred to the origin of the body
frame.

Replacement of the momentum motor using Equ. (7)
yields the following relationship

M ◦ o
v + v× (M ◦ v) = f

if all components are given in the body frame.
The kinetic energy of a rigid body can be expressed by

means of motor calculus as follows:

T =
1
2

(v, p) with p = M ◦ v .

Again, this expression agrees formally with the equation
of the kinetic energy of a mass point, if therein the mass
is substituted by the inertia dyad M and the vectors are
substituted by their corresponding motors.

Similarly, the equation for the power performed by the
applied forces and torques is given by

P = (f, v)

so that the energy law for a rigid body results in

dT

dt
=

1
2
d

dt
(v,M ◦ v) = (f, v) .

3. Object-oriented Implementation
The test implementation presented here is based on the
Modelica Multibody Standard Library. Hence, it fully cor-
responds with the paradigm of object-oriented modelling.
Due to some limitations of the Modelica language, compro-
mises had to be made during implementation of the motor
calculus. Because of the necessarily used functions, the re-
alisation is not a completely equation-based formulation.
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3.1 Motor Library
The first step of the implementation towards a description
of rigid body motion by means of motor calculus is the
realisation of a general motor class. From the view of data
structure, motors are nothing more than a combination of
six scalars. According to the definition of motors provided
above, the first idea of arranging these scalars within the
motor class was to group them into two vectors of type
Real. The first vector would represent the resultant vector
and the second vector would be the moment vector of the
motor at the reference point:

record Motor "Motor"
Real[3] res "resultant vector";
Real[3] mom "moment vector at O";

end Motor;

Unfortunately, this approach, similar to the implementation
of the complex numbers in [7], prohibits the use of basic
mathematical operators on the newly defined data types. A
solution would be the overloading of these operators as it
is possible in C++ [17]. However, Modelica does still not
support this feature. Thus, an alternative implementation
has been chosen, where all six scalars are stored within one
vector:

type Motor = Real[6]
"Motor: [Resultant;Moment at r0]";

The reason for the chosen implementation was the ability to
keep at least the operators "+" and "−" as well as the mul-
tiplication with scalars for the motor calculus in its original
sense. Within the context of inheritance, no real special-
ization concerning the physical units of the quantities can
be made. Hence, the child classes of velocity motor, force
motor, and momentum motor have also a quite simple def-
inition, namely:

type V e l o c i t y M o t o r = Motor "Velocity motor";
type ForceMotor = Motor "Force motor";
type MomentumMotor = Motor "Momentum motor";

All the other calculation rules introduced in section 2.1
had to be implemented using Modelica functions. The first
function has been written to perform the inner product
between two motors according to Equ. (2):

f u n c t i o n dot "Inner product of motor calculus"
input Motor m1 "First motor";
input Motor m2 "Second motor";
output Real r3 "Resulting scalar";

a lgor i thm
r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3];

end dot;

Similarly, the outer product has been implemented as stated
in Equ. (3):

f u n c t i o n ’x’ "Outer product of motor calculus"
input Motor m1 "First motor";
input Motor m2 "Second motor";
output Motor m3 "Resulting motor";

a lgor i thm
m3 := v e c t o r([ c r o s s(m1[1:3],m2[1:3]);

c r o s s(m1[1:3],m2[4:6])
+ c r o s s(m1[4:6],m2[1:3])]);

end ’x’;

A function that returns the moment of the motor for any
position vector r has also been realised to simplify the
motor handling:

f u n c t i o n mom "Moment of the motor referred to
position vector r"

input Motor m "Motor";
input Modelica.SIunits.Position[3] r

"Position vector";
output Real[3] mom "Moment of the motor";

a lgor i thm
mom := m[4:6] + c r o s s(m[1:3],r);

end mom;

The foregoing reasons for the simple implementation of
the motor class apply for the implementation of the motor
dyads, too. Hence, a motor dyad given w. r. t. a given frame
can be expressed as a (6× 6) matrix:

type MotorDyad = Real[6,6] "Motor Dyad";

To apply a motor dyad to a motor, another function has
been created. Referring to Equ. (4), the function has been
defined by:

f u n c t i o n times "Application of a Motor Dyad on a
Motor"

input MotorDyad m1
"Motor dyad to be applied";

input Motor m2 "Input motor";
output Motor m3 "Output motor";

a lgor i thm
m3 := m1[:,1:3]*m2[4:6] + m1[:,4:6]*m2[1:3];

end times;

Finally, there exist two functions that are able to transform
the components of a motor from one frame to another and
vice versa (refer to section 2.1.4):

f u n c t i o n coordChange1 "Transforms motor from
frame a to frame b"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame b, resolved in

frame a";
input F.Orientation R "Orientation object of

frame b resolved in frame a";
input Motor m1 "Motor resolved in frame a";
output Motor m2 "Motor resolved in frame b";

a lgor i thm
m2 := v e c t o r([R.T*m1[1:3];R.T*mom(m1,r_0)]);

end coordChange1;

f u n c t i o n coordChange2 "Transforms motor from
frame b to frame a"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame b, resolved in

frame a";
input F.Orientation R "Orientation object of

frame b resolved in frame a";
input Motor m1 "Motor resolved in frame b";
output Motor m2 "Motor resolved in frame a";

a lgor i thm
m2 := v e c t o r([ t r a n s p o s e(R.T)*m1[1:3];

t r a n s p o s e(R.T)*m1[4:6]
+ c r o s s(r_0, t r a n s p o s e(R.T)*m1[1:3])]);

end coordChange2;
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3.2 Multibody Implementation
After implementing the most important operations of the
motor calculus, we were able to take advantage of the ef-
ficient description of the rigid body motion. Therefore, as
a first step, the existing implementation of a rigid body ob-
ject from the Modelica Multibody Standard Library was
adapted to the motor algebra. To simplify the implemen-
tation, all interfaces and all existing variables were kept.
Only some small changes had to be made within the so-
called Body class.

The first changes were the declaration of the following
physically motivated Motor and MotorDyad objects:

/ / Motor Dyads
/ / −−−−−−−−−−−
Real[3,3] I0 "Inertia dyad wrt. B";
MotorDyad I_mot "Motorial inertia dyad wrt. B";

/ / Motors
/ / −−−−−−
V e l o c i t y M o t o r vel_B "Velocity motor wrt. B";
MomentumMotor mom "Momentum motor wrt. B";
ForceMotor f_g "Gravity force motor wrt B";
ForceMotor f_a "Cut force motor wrt. B";

Afterwards, all declared motors and motor dyads had to
be defined using the following statements:

/ / f o r c e motors
/ / −−−−−−−−−−−−
f_g = v e c t o r([ m*frame_a.R.T*g_0;

c r o s s(r_CM, m*frame_a.R.T*g_0)]);
f_a = v e c t o r([frame_a.f; frame_a.t]);

/ / v e l o c i t y motor
/ / −−−−−−−−−−−−−−
vel_B = v e c t o r([ frame_a.R.w;

frame_a.R.T*der(frame_a.r_0)]);

/ / i n e r t i a m a t r i c e s
/ / −−−−−−−−−−−−−−−−
I0 = I + m*( d i ag o n a l(r_CM*r_CM*ones(3))

- [r_CM]* t r a n s p o s e([r_CM]));
I_mot = [ d i ag o n a l({m, m, m}), -skew(m*r_CM);

skew(m*r_CM) , I0];

/ / momentum motor
/ / −−−−−−−−−−−−−−
mom = v e c t o r(times(I_mot, vel_B));

Finally, the equations of motion originally implemented
according to

frame_a.f = m*(Frames.resolve2(frame_a.R,
a_0 - g_0)

+ c r o s s(z_a, r_CM)
+ c r o s s(w_a, c r o s s(w_a, r_CM)));

frame_a.t = I*z_a + c r o s s(w_a, I*w_a)
+ c r o s s(r_CM, frame_a.f);

have been replaced by the very clear and short Equ. (8):

f_a = der(mom) + ’x’(vel_B,mom) - f_g;

Because of the object-oriented structure of the Modelica
Standard Library, the changes had to be implemented only
once. All subclasses of the Body class, like BodyShape,
BodyBox, or BodyCylinder inherit the changes auto-
matically.

4. Examples and Verification
4.1 Movable Double Pendulum
As a first example, the movable double pendulum (Fig. 3)
was chosen to show the correctness of the implemented
body classes based on motor calculus. The pendulum con-

ts

M0

M1

M2

x

y

s

trolley
ϕ1

ϕ2

J1

J2

g

centre of mass
of body 2

Figure 3. Sketch of double pendulum

sists of a trolley with the mass M0 and two rigid bodies
with masses M1 and M2. The trolley is able to move hor-
izontally. The first body is suspended on the trolley by a
revolute joint. The second body is suspended on the first
body via a revolute joint, too. Both axes of rotation are par-
allel to the z-axis which lies perpendicular to the xy-plane
(see Fig. 3). The moments of inertia of both bodies around
the axis of rotation w. r. t. their particular centre of mass are
given by J1 and J2.

The pendulum moves from an initial deflection of
ϕ1(0) = 90 deg and ϕ2(0) = 0 deg due to the earth’s grav-
ity field. A viscous friction, acting in every joint, damps
the motion of the pendulum. As a reference, the same pen-
dulum system has been implemented using the Modelica
Standard Library. A sketch of the structure is shown in the
lower part of Fig. 5. The upper part of this figure shows the
pendulum using the modified Body objects adapted to the
motor calculus.

Fig. 4 shows the trajectory for the position s of the trol-
ley. Figs. 6 and 7 depict the time histories of the revolute
joint angles ϕ1 and ϕ2. In every diagram, the trajectory of
both systems, the double pendulum using the motor calcu-
lus and the double pendulum using the Modelica Standard
Library, were plotted together.

Figure 4. Trajectory of the trolley position s
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Figure 5. Implementation of double pendulum

Figure 6. Trajectory of the first pendulum angle ϕ1

Figure 7. Trajectory of the second pendulum angle ϕ2

Figure 8. Deviation of the most interesting coordinates
between the motor calculus and the Modelica Standard
Library implementation

Fig. 8 presents the deviation for all corresponding vari-
ables (residue_s, residue_phi1/2).

Apparently, the deviation of the position stays smaller
than 1.2 ·10−11m for the given simulation time of 10s. The
deviations of both pendulum angles are also very small.
They do not exceed 10−11rad. Hence, these differences can
be interpreted as numerical errors of the simulator, because
for simulations with a lower error tolerance, the deviations
decrease.

For a comparison even a third implementation within the
simulation system Matlab (refer to [21]) was consulted that
led to very similar results.

4.2 Fourfold Pendulum on Two Movable Sliders
The second example is a fourfold pendulum. It consists of
two trolleys and a chain of four rigid bodies between them.
Both trolleys are guided along straight tracks (see Fig. 10).
Hence, this example contains a closed kinematic loop. Sim-

M0

M1

M2

M3

M4

M5

x

y
s1

s2

ϕ1

ϕ2

ϕ3

ϕ4

J1

J2

J3

J4

g

Figure 10. Sketch of fourfold pendulum

ilar to the foregoing example, the pendulum moves from an
initial deflection due to the gravity field of the earth and is
damped by a viscous friction in every joint. The initial val-
ues for the pendulum angles are

ϕ1(0) = 45 deg, ϕ2(0) = −15 deg,

ϕ3(0) = 30 deg, ϕ4(0) = −37.5 deg.
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t = 0 t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8 t = 9

Figure 9. Sequence of configurations of the fourfold pendulum

As before, the pendulum system was implemented
twice. The first pendulum system works on the basis of the
modified Mechanical Multibody Library, while the second
one uses the Multibody Standard Library and serves as a
reference. Hence, the deviations to the modified model can
be calculated. They have the same order of magnitude as in
the example before and can thus be explained by numerical
errors.

For the rough illustration of the simulation results, Fig. 9
shows the configuration of the pendulum at ten different
time instances (the time interval is 1 s). The dashed lines
show the tracks of both trolleys. The bold plotted polygon
consists of four segments. It represents the idealized shape
of the chain.

In Fig. 11, the position of both trolleys are plotted
against the time.

Figure 11. Position of both trolleys for the motor calculus
implementation

4.3 Fourbar Mechanism
The last example is a so-called fourbar mechanism from
the Modelica Standard Library, that, again, sets up a closed
kinematic loop (see Fig. 12). However, in this example,
the rigid bodies do not perform planar motions any more

Figure 12. Sketch of fourbar mechanism

and, hence, the whole complexity of the three-dimensional
mechanics is necessary.

The fourbar mechanism moves under the influence of
the earth’s gravitational field. The initial condition of the
angular velocity of the first revolute joint (j1) is set to
300 deg

s . In opposit to the foregoing examples, this system
is completely undamped.

As in the paragraphs before, the example was imple-
mented twice in one model. One system has just been
kept in its original form while in the second system, all
BodyCylinder objects have been replaced by the mod-
ified BodyCylinder objects. The difference between
both implementations is shown in Fig. 13. The numerical

Figure 13. Deviation of the slider position between the
motor calculus and the Modelica Standard Library imple-
mentation
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results of the simulation show an increasing deviation with
advancing time. The reason for this fact may be the absence
of any damping elements. Indicated by this result, further
investigations on numerical accuracy seem to be necessary
for the future.

5. Summary and Outlook
The paper traces the idea of applying the so-called mo-
tor calculus within Modelica modelling language to handle
models of spatial multibody systems in an efficient way.
This method represents an alternative approach to mod-
elling such systems. This approach is characterized by a
clear and concise formulation of the equations of motion.

To get some experiences with possibilities and limits of
this approach, a first test implementation was carried out.
The Modelica Multibody Standard Library was used to im-
plement appropriate extensions within some selected sub-
models. This implementation allows a comparison of the
standard library implementation and the motor calculus im-
plementation by means of simple simulation tasks. Appro-
priate results are presented in the paper.

These results seem to encourage the idea of motor cal-
culus usage within Modelica. Nevertheless, there are open
challenges to be solved in the future. Operand overload-
ing would be a very helpful feature in this context. Fur-
thermore, efficient methods have to be adapted to compute
actual position and orientation of a rigid body from its ve-
locity motor. That’s why further investigations as well as
implementation work will still have to be carried out for
a full support of rigid-body motion equation by means of
motor calculus in Modelica.
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