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Abstract
A new Modelica library is presented that is used to 
model safe hierarchical state machines in combina-
tion with any Modelica model, e.g., controllers, logi-
cal blocks, and physical systems described by diffe-
rential-algebraic equations. It has been designed to 
simplify usage, improve safety aspects and to har-
monize with the design of the new Modeli-
ca_EmbeddedSystems library. Furthermore, new 
blocks are introduced to define actions in a visual 
way, and not textually. The library is inspired by Sta-
techarts, Sequential Function Charts, Safe State Ma-
chines (SSM) and Mode-Automata. It has been de-
signed so that only small extensions to Modelica 3.1 
are needed. The algorithms are sketched that are 
used to guarantee consistent graphs that give a li-
mited number of event iterations. Furthermore, it is 
shown how a symbolic verifier can be used to guar-
antee additional properties of state machines. 

Keywords: ModeGraph; Statechart, Sequential 
Function Charts, Mode-Automata, Safe State Ma-
chines; NuSMV; reactive systems, hybrid systems.

1 Introduction
In this article the open source Modelica_StateGraph2
library is presented. This is version 2 of the existing 
Modelica.StateGraph library (Otter et. al. 2005). It is 
planned to replace Modelica.StateGraph in one of the 
next releases of the Modelica Standard Library with 
Modelica_StateGraph2. Besides the basic Step and 
Transition mechanism, all other parts have been re-
designed and significantly improved based on the 
experience with the experimental ModeGraph library
(Malmheden et. al. 2008). Note, below the name

“StateGraph” is often used as abbreviation for the 
full name “Modelica_StateGraph2”.

The StateGraph library is inspired by Statecharts 
(Harel 1987), Sequential Function Charts (SFC), 
Safe State Machines (SSM) (André 2003), and 
Mode-Automata (Maraninchi and Rémond 2002). 
The primary purpose of the library is to provide sup-
port for modeling of reactive and of hybrid systems 
and to verify certain properties of such systems.

Reactive systems react to stimuli from their envi-
ronment, see, e.g. (Benveniste et. al. 2003). In com-
bination with the Modelica_EmbeddedSystems li-
brary (Elmqvist et. al. 2009), the StateGraph library 
can be used to model such systems and it will be 
possible to use StateGraph models in production 
code of embedded systems.

Hybrid systems combine closely continuous-time 
models and discrete event systems, see, e.g. (Lynch
2002). The StateGraph library is implemented with 
the Modelica language and therefore every Modelica 
model, i.e., models consisting of differential, alge-
braic and discrete equations, as well as functions, can 
be conveniently and naturally combined with state 
diagrams constructed with the StateGraph library.

2 Using Modelica_StateGraph2
In this section an overview is given of how to use the 
library by several small examples.

2.1 StateGraph Elements

A StateGraph graph is constructed by three elements: 
Step, Transition, and Parallel that will now be dis-
cussed in some detail.

Step
A Step is the graphical representation of a state and 
is said to be either active or not active. A StateGraph
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model is comprised of one or more steps that may or 
may not change their states during execution. A Sta-
teGraph model must have one initial step. An initial 
step is defined by setting parameter initialStep at one 
step to true. The initial step is visualized by a small 
arrow pointing to this step, see Step s1 in Figure 1.

Transition
To define a possible change of states, a Transition is 
connected to the output of the preceding Step and to 
the input of the succeeding 
Step, see, e.g., Figure 1, 
where Transition t1 defines 
the transition from Step s1 to 
Step s2. Note: A Transition 
has exactly one preceding 
and one succeeding Step. A 
Transition is said to be 
enabled if the preceding step 
is active. An enabled transi-
tion is said to be fireable 
when the Boolean condition 
defined in the parameter 
menu of the transition is eva-
luated to true. This condition 
is also called “Transition 
condition” and is displayed in 
the icon of the Transition. When parameter 
“use_conditionPort” is set, the Transition condition 
is alternatively defined by a Boolean signal that is 
connected to the enabled “conditionPort”. A fireable 
transition will fire immediately. In Figure 1, t1 fires
when s1 is active and time is greater than one. 

The firing of a transition can optionally also be 
delayed for a certain period of time. See, e.g., t2 in
Figure 1, that is delayed for one second before it may 
fire, given that the condition remains true and the 
preceding Step remains active during the entire delay 
time. The evolution of a graph over time can be vi-
sualized by diagram animation: Active steps and 
Boolean variables that are true are marked in green
here, see, e.g., Figure 1.

Parallel
Subgraphs can be aggregated into superstates by us-
ing the Parallel component. This component acts 
both as a composite step (having just one branch) 
and as a step that has parallel branches. The Parallel 
component, often referred to as “p” in the following 
figures, allows the user to place any StateGraph ele-
ment inside it, especially Steps, Transitions, and Pa-
rallel components. 

A Parallel component has always an entry port, 
see Figure 2, and it may have optionally an exit port. 
All branches in a Parallel Component must start at 
the entry port and at least one must terminate at the 

exit port, provided the exit 
port is enabled via parameter 
“use_outPort”. If a Parallel 
component shall be entered 
from the outside via a Transi-
tion, parameter “use_inPort” 
must be set to true, to enable 
an input port. If a Parallel 
Component shall be left via a 
transition to an outside step, 
parameter “use_outPort” must 
be set to true, to enable the
output and the exit port. A 
Parallel component may be 
used as initial step, by setting 
parameter initialStep to true. 
This property is again visua-
lized by a small arrow point-
ing to the Parallel component, 
see Figure 2.

A Parallel component may be suspended and sub-
sequently resumed. In Figure 3, Transition T6 fires 
whenever the input signal u is true, suspending the 
Parallel component p and the enclosed Steps s2, s3, 

Figure 3: Parallel component with 2 parallel branches 
that is suspended whenever the input u is true.

Figure 1: Model 
with two steps and 
two transitions

Figure 2: A Parallel 
component with a 
small sub-system.
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s4 and s5 for two seconds. When Transition T7 fires, 
p is re-activated in the same state as when it was 
suspended.

As mentioned before, inPorts and outPorts of a
Parallel component are optional and can be set by the 
user. If the parallel component has an inPort, then 
the entry port constitutes the connection between the 
Transition connected to the inPort and the first Steps 
to be activated in the Parallel component. If the Pa-
rallel component is configured to have an outPort, an 
exit port shows up on the bottom of the Parallel 
component, see Figure 3.

The Parallel component allows the entry port to 
branch out into several parallel paths. These 
branches are not allowed to interact, see Figure 3. 
When all Steps connected to the exit port are active, 
the Parallel component is said to be available and 
may exit when the Transition connected to the out-
Port fires. In Figure 3 Transition T5 fires when both 
Step s2 and s5 have been active together for one 
second and thereby deactivates the Parallel compo-
nent p. Note, in Statecharts parallel branches must be 
synchronized via transition conditions, which is in-
convenient. In SFC, all branches are synchronized. 
In StateGraph, only branches that are connected to 
the exit port are synchronized, which is more flexible 
as the SFC approach.

No component contained within the Parallel 
component may be connected to any other compo-
nent “outside” of the Parallel component. This rule is 
used to protect the user from making mistakes that 
could lead to unexpected results and states of the 
graph that are not well-defined. Consider for exam-
ple the graph in Figure 4Figure at T=7. Especially, 
note that the Parallel component p is never properly

Figure 4: Wrong graph since components in the Paral-
lel component may not be connected to “outside” ones.

terminated through either an outPort or a suspend 
port. If the graph would be allowed to execute, the 
consequence would be an increasing number of ac-
tive Steps. Such a situation is reported as an error. 
The details about the algorithm to accomplish this 
are given in appendix A2.

In order to graphically organize large graphs in 
different levels of hierarchy and with encapsulation 
of variables, StateGraph also contains a component 
PartialParallel. It is similar to the normal Parallel 
component but introduces a new hierarchy once the 
user inherits from it. A number of large subsystems 
can thus be abstracted into composite steps to im-
prove organization and overview of the subsystems. 
Figure 5 shows a component built from a PartialPa-
rallel component. As the diagram and the icon layer 
of the PartialParallel component does not need to be 
the same size, the user can benefit from collecting 
large subsystems in smaller closed Parallel compo-
nents to improve overview and modularization of the 
full system.

Figure 5: Composite derived from PartialParallel
component and its subsystem.

2.2 Graphical Action Blocks

An important practical aspect of state machines is the 
ability to assign values and expressions to variables 
depending on the state of the machine. In State-
Graph, a number of graphical components, see Fig-
ure 6, have been added to facilitate usage in a safe 
and intuitive way. Since these are just input/output 
blocks and will also be useful in another context, it is 
planned to add them to the Modelica Standard Li-
brary under “Modelica.Blocks”. Some of these 
blocks will be explained in this section.

There are a number of standard blocks with 
common operations/displays of the three basic types 
(Boolean, Integer, Real) using vector input connec-
tors which enables them to be connected to an arbi-
trary number of sources. Resizing a vector port and 
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connecting to the next free ele-
ment is performed automatically 
when connecting to the connector, 
see Appendix A4. So this is much 
more convenient than with the 
Modelica.Blocks.
Logical, Modelica.StateGraph or 
ModeGraph libraries. A vector of 
input connectors is visualized as 
an ellipse, see, e.g., the violet 
connector on the left side 
of the “and” block in the 
figure to the right where 
“y = u[1] and u[2]and ...”.

A MultiSwitch block selects 
one of n expressions depending 
on an array of Boolean inputs. 
The index of the first input in the 
Boolean array that is true defines 
the index of the expression in the 
expression array to be used as the 
scalar output y. In Figure 7, the 
MultiSwitch component will out-
put the value y = 1 if Step s1 is 
active, and will output y = 2 if s2 
is active as the expression array is 
defined as {1,2}. If none of the 
Boolean array inputs is true, the
“else” value will be used instead 
that is defined in the parameter 
menu of the MultiSwitch compo-
nent and is displayed below the 

icon. Consider Figure 7 when Step s3 is active – this 
will set the output of component “multiSwitch” to
the “else” value “3”. Alternatively, in the parameter 
menu of the MultiSwitch component it can be de-
fined to keep its previous value, i.e. y = pre(y). If 
this option would be selected for Figure 7, then mul-
tiSwitch.y = 2 when Step s3 is active.

Figure 7: Example of MultiSwitch component for 
Integer numbers that depends on different steps.

The MultiSwitch block is inspired by “Modes” from 
Mode Automata (Maraninchi and Rémond 2002): 
Variable multiSwitch.y has always a unique value, 
and this value depends on the expressions that are 
associated with mutually exclusive active steps. The 
advantages of MultiSwitch are that (1) the definition 
is performed in a purely graphical way, (2) it can 
also be used for mutually non-exclusive active 
steps1, and (3) it can be implemented in Modelica in 
a very simple way. The drawback is that the expres-
sions in the MultiSwitch block might no longer be so 
easy associated with Steps, compared to the alterna-
tive where the expressions are defined directly in the 
respective Steps. This latter approach would, howev-
er, require non-trivial extensions to the Modelica 
language.

The RisingEdge, FallingEdge and ChangingEdge 
components can be used to generate “pulse” signals 
depending on the rising, falling or changing values 
of Boolean signals. An example is shown in Figure 8
where the Boolean indicator lamp is turned on when 
Step s2 becomes active and is turned off when Tran-
sition t3 fires and Step s3 becomes inactive. Two 
variants are shown to utilize the “rising” property of 
a Boolean signal: The Boolean connectors at steps 
and transitions can be activated via parameters 
“use_activePort” and “use_firePort”, respectively. If 
s2 becomes active, rising = true and therefore multi-
Switch.y = true. If transition t3 fires, t3.firePort=true 
and therefore multiSwitch.y = false.

Figure 8: Two variants to control a Boolean
indicator by a MultiSwitch component.

                                                     
1 If an MultiSwitch block is connected to steps of different 
branches of a Parallel component, a priority is present: If 
several inputs are true, then the one has highest priority 
that is connected to the lowest index of the vector of input 
connectors (= connection line “closest” to the icon name).

Figure 6: Blocks 
to define actions 
graphically.
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2.3 Safe StateGraph models

In this section it will be discussed in which sense 
“StateGraph” models are “safe”. 

Only valid graph structures are accepted
Contrary to Modelica.StateGraph (version 1 of the 
library which is distributed with the Modelica Stan-
dard Library since 2004), only valid graph structures 
are accepted for the Modelica_StateGraph2 library. 
For example, the model of Figure 4 leads to an error. 
In order that this was possible, Modelica 3.1 had to 
be enhanced slightly. Details are given in section A2.

One variable is defined by one equation
In all state machine formalisms problems are present 
when assignments to the same variables are per-
formed in branches that are executed in parallel. As 
an example, in the next figure such a situation in Sta-
teflow (StateFlow 2009) is shown:

The two substates “fill1” and “fill2” are executed in 
parallel. In both states the variable “openValve” is 
set as entry action. The question is whether open-
Valve will have value 0 or 1 after execution of the 
steps. Stateflow changes this non-deterministic be-
havior to a formally deterministic one by defining an 
execution sequence of the states that depends on 
their graphical position. The grey number on the 
right of the states shows in which order the states are 
executed. In the figure above this means that “open-
Valve=0” after leaving the two states. If the second 
state “fill2” is changed a little bit graphically

“openValve=1” after “fill1” and “fill2” have been 
executed. This is a critical situation because (a) 
slight changes in the graphical positioning of states 
might change the simulation result and (b) if the pa-
rallel execution of actions depends on the evaluation 
order, errors are difficult to detect.

In StateGraph such a situation is not possible. 
The reason is that StateGraph is implemented in 
Modelica and a very basic feature of Modelica is that 
every declared unknown variable must be defined by 
exactly one equation. This is sometimes called “sin-

gle assignment rule”. It is therefore not possible to 
assign the same variable twice in a model. The above 
situation would be described in StateGraph instead 
with a MultiSwitch action block “openValve” as 
shown in Figure 9. Here, everything is well defined:
There are two input connections to the openValve 
block. If both become true at the same time instant, 
the connection with the “lowest” index (i.e., the up-
per signal in the figure) has highest priority. There-
fore, openValve gets the value true, once the Parallel 
component is entered.

Figure 9: Assignment of variables with forced priority 
due to Modelicas single assignment rule.

Upper bound on number of model evaluations
At an event instant, an event
iteration occurs, due to the 
Modelica semantics (= whenev-
er a new event occurs, the model 
is re-evaluated). This means that 
Transitions keep firing along a
connected graph, as long as the 
firing conditions are true. The 
question therefore arises, 
whether infinite event looping is 
possible? A simple example of 
this kind is shown in Figure 10.
Here, all Transition conditions 
are true and therefore all Transi-
tions fire forever. This is no va-
lid StateGraph model and will 
result in an error.

In order to avoid a situation 
as in Figure 10, it is required that 
a StateGraph model has at least one delayed Transi-
tion per loop, see Appendix 0. This means that one 
of T1, T2, or T3, must be a delayed Transition, oth-
erwise an error occurs. Since event iteration stops at 
a delayed Transition, infinite event looping cannot 
occur. This also means that at one time instant every 
Transition can fire at most once and therefore the 

Figure 10: Wrong 
graph that gives rise 
to infinite looping.
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number of model evaluations at an event instant is 
bounded by the number of Transition components.

It is still possible that infinite event looping oc-
curs due to model errors in other parts of the model. 
For example, if a user introduces an equation of the 
form “J = pre(J) + 1” outside of a when-clause, event 
iteration does not stop. Although this situation is not 
completely satisfactory, it helps already a lot if a tool 
points out potential problems of a StateGraph model, 
in case delayed transitions are missing. 

3 Application Examples
In this section some involved application examples 
are shown to demonstrate the usage of the State-
Graph library. These and other examples are availa-
ble in the library under “Examples.Applications”.

3.1 Harels wristwatch

When presenting the Statecharts formalism in (Harel 
1987), David Harel identified and described the be-
havior of his Citizen Quartz 
Multi-Alarm III wristwatch 
(see schematic figure to the 
right) using the new visual 
formalism as a case study to 
proof his new formalism to be flexible enough to 
describe the intricate structure of the wristwatch be-
havior in a comprehensible and clean way. As the 
wristwatch example serves as a challenging bench-
mark for the capabilities of a graphical formalism, it 

has been included as an application example in the 
StateGraph library to demonstrate that the library is 
flexible enough to realize this example in a good 
way. It also serves as a template for other human 
interfaces. For example, an automotive cruise control 
has several switches and some of them have different 
levels. There are different influences if in cruise 
mode or not.

The wristwatch display is comprised of a number 
of different display modes showing the current time 
(displayed in either 12h or 24h mode), time setting 
(also in either 12h/24h mode), date/date setting (day, 
month, day of week, year etc.), alarm setting, chime 
setting, and a stopwatch display. The stopwatch can 
be turned on, off, stalled when running to show lap 
time and reset when stopped. The chime functionali-
ty is triggered each time the clock reaches a whole 
hour that makes the chime beep for two seconds. 
Furthermore, the wristwatch has two concurrently 
running alarms that sound when the time hits their 
respective configured time, display back-light for 
improved illumination, alarm test functionality and 
low battery warning.

The wristwatch is operated by four buttons A, B, 
C and D. Button A switches between the different 
modes where time and date can be set, alarms and
chime can be set and turned on/off and the stopwatch 
can be run, paused and reset. When in a time-, date-, 
alarm- or chime-setting mode, button C can be used 
to flip through between different quantities that the 
current time/alarm/chime-setting can be incremented 
with the currently chosen quantity using button D. 

Figure 11: Top level of the StateGraph that defines Harels wristwatch.
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When updating the time or an alarm time, button B 
can be used to immediately return to displaying ei-
ther time or the current setting of the current alarm. 

There are in total six concurrently running sub-
systems (Main – containing all the display and set-
ting behavior, Alarm 1 Status, Alarm 2 Status, 
Chime Status, Back-Light and Power Status) that 
independently of each other react to the user input 
and the current time. There is also interaction be-
tween the Main subsystem and the Alarms/Chime 
Status to make it possible to concurrently guard the 
status of each functionality depending on the current 
time but also provide means to update their setting 
using only the given four buttons. The Main view of 
the StateGraph implementation of the wristwatch can 
be seen in Figure 11.

3.2 Controlled tank system

As another application example, the control of a tank 
system is present in the StateGraph library. This ex-
ample is based on a similar system from (Dressler
2004), which in turn is based on an example model 
of Karl Erik Årzén from the JGraphCharts manual. 
The top level view is shown in Figure 12: On the 
right side a two-tank system is present which is 
modeled with the Modelica.Fluid library (Franke et. 
al. 2009): It consists of an infinite reservoir of water, 
“reservoir”, that flows via two tanks, “tank1,

Figure 12: Two tank system controlled by 3 buttons.

tank2”, to the environment, “ambient”. The flow can 
be controlled by three valves, “valve1, valve2, 
valve3”. There are three buttons, “start”, “stop”, 
“shut”, to control the operation. The actual level of a 
tank is measured in an ideal way by accessing va-

riables tank1.level and tank2.level. All variables are 
communicated via an ideal bus “bus” to the tank 
controller. The basic operation is to fill and empty 
the two tanks: 

1. Valve 1 is opened and tank 1 is filled.
2. When tank 1 reaches its fill level limit, valve 1 is 

closed. 
3. After a waiting time, valve 2 is opened and the 

fluid flows from tank 1 into tank 2.
4. When tank 1 is empty, valve 2 is closed. 
5. After a waiting time, valve 3 is opened and the 

fluid flows out of tank 2
6. When tank 2 is empty, valve 3 is closed 

The above "normal" operation can be influenced by
three buttons: 

 Button “start” starts the above process. When this 
button is pressed after a "stop" or "shut" opera-
tion, the process operation continues. 

 Button “stop” stops the above process by closing 
all valves immediately. Then, the controller waits 
for further input (either "start" or "shut").

 Button “shut” is used to shutdown the process, by 
emptying both tanks at once. When this is 
achieved, the process goes back to its start confi-
guration. Clicking on "start", restarts the process. 

The tank controller is hierarchically modeled with 
two Parallel components and some logical blocks:

Figure 13: Top level view of tank controller logic.

The “MakeProduct” Parallel component is the initial 
step and performs the “normal” operation. When the 
“stop” button is pressed, the suspend transition T8 
fires, the “MakeProduct” step is suspended and the 
graph goes in to step “stopStep1”. Note, the transi-
tion condition of T8 is “bus.stop”, i.e., this transition 
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fires when variable stop from the bus is true. When 
“start” is pressed again, the “MakeProduct” step is 
resumed at the place where it was suspended. When 
“shut” is pressed, the Parallel component “ShutStep” 
is entered to shut down the tank system. Here it is 
still possible to press the “stop” button and then 
again continue with “shut”.

4 Formal definition of StateGraph
In section 2.1 an informal introduction to the State-
Graph formalism was given. In this section, a precise 
mathematical description of StateGraph models will 
be presented. The formal definition describes the 
structure of a StateGraph model and its interpretation 
algorithm (= semantics).

4.1 Structure of a StateGraph model

A StateGraph model, , is described by a 4-tuple:

 = < Vc, G, T, gI >

where

 Vc is a set of Boolean expressions. Boolean ex-
pressions are used as conditions of transitions. 
They are either external inputs or the outputs of 
Modelica models. A Modelica model consists of a 
set of differential, algebraic and discrete equa-
tions, see (Modelica 2009, Appendix C).

 G is the set of Generalized Steps, G = {g1, g2, ,...}.
A Generalized Step gi  G can be active or not ac-
tive, signaled by the Boolean Active(gi). A Gene-
ralized Step gi  G is described by the 5-tuple
   < I, R, O, S, s >
where
    I is a vector of in (entry) ports I = [i1,i2,...],
    R is a vector of resume ports R = [r1,r2,...],
    O is a vector of out (exit) ports O = [o1,o2,...],
    S is a vector of suspend ports S = [s1,s2,...],
    s is a set of sub-graphs s = {γ1,γ2,...}
A Generalized Step gi that has only in and out 
ports, < I, O >, is also called Step.
A Generalized Step gi where R, S or s is not an 
empty set, is also called Parallel Step.
A sub-graph γi  s is described by a 5-tuple
< Vc, G, T, gI, gE > where Vc, G are a set of Boo-
lean expressions and a set of Generalized steps as 
described above, T is the set of Transitions as de-
scribed below, gI  G is the initial generalized 
step that is first activated when the sub-graph γi is 
“normally” activated and gE  {, G} is the op-
tional exit generalized step that is the last active 
step, before the sub-graph γi is de-activated.

 T is the set of transitions, T = t1, t2, t3, …. A 
transition ti  T is defined by the 4-tuple
    ti = < pIR(ti), pOS(ti), Condition(ti), Delay(ti) >
where
pIR(ti) is a connected port of an in or resume vec-
tor of a succeeding generalized step gi  G.
pOS(ti) is a connected port of an out or suspend 
vector of a preceding generalized step gi  G.
Condition(ti)  Vc is the fire condition associated 
with ti

Delay(ti)  {, R+} is the optional delay time as-
sociated with ti. If present, the delay time is a 
positive real number, Delay(ti) > 0.
There is the restriction, that every “loop” must 
have at least one transition ti with Delay(ti) > 0 in 
order to avoid infinite transition looping.

 gI is the initial generalized step, gI  G.

4.2 Interpretation Algorithm

The dynamic behavior of a StateGraph  = < Vc, G, 
T, gI > is given by the interpretation algorithm pre-
sented below:

(1) The initial step gI is activated. If the initial step 
has sub-graphs γi  s, then all initial steps gI of 
these sub-graphs are activated as well. If an ini-
tial step gi  GI of a sub-graph has again sub-
graphs, then all initial steps of these sub-graphs 
are recursively activated.

(2) Active(gi) of all Generalized Steps, including all 
recursive sub-graphs, is set to true, if gi is active. 
Otherwise it is set to false. Models are solved us-
ing Active(gi) as inputs.

(3) The condition expressions of all transitions in T 
and in all recursive sub-graphs are evaluated (ei-
ther from external inputs or from outputs of 
models).

(4) All Transitions are determined where (a) the 
Transition condition is true and (b) the preceding 
Generalized Step is active and (c) all exit steps 
gE of all sub-graphs γi  s of the preceding Ge-
neralized Step are active, as well as of all exit 
steps of sub-graphs of exit steps recursively. For 
every such Generalized Step, at most one Transi-
tion can fire. For Transitions having the same 
preceding Generalized Step, the one connected 
to the out port or if both are connected to the 
same port vector, the one with the smallest vec-
tor index of the out or the suspend port respec-
tively is marked as “fires”.

(5) All Transitions that are marked as “fires” in (4) 
are firing, i.e., the respective preceding Genera-
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lized Step of a Transition is deactivated and the 
succeeding Generalized Step of the Transition is 
activated. If a transition has a non-zero delay-
time, it fires after the delay time, provided all 
conditions of (4) remain true during the delay 
time.
      Deactivating a Generalized Step that has sub-
graphs γi  s means, that all Generalized Steps 
in these sub-graphs and their recursive sub-
graphs are deactivated as well.
      Activating a Generalized Step that has sub-
graphs γi  s means that either (a) all initial 
steps gI of these sub-graphs and their recursive 
sub-graphs are activated, or (b) the Generalized 
Steps are activated that have been active when 
this step was deactivated the last time. Case (b) 
is used, if the last deactivation of this step was 
performed via a transition of a suspend port. 
Otherwise case (a) is used.
      Goto (2).

4.3 Example

The StateGraph given in Figure 3 can be presented 
by the 4-tuple .

 = < Vc, G, T, gI >

where

Vc = {true, u},
G = {s1, s6, p}

s1 = < i[1], o[1], , ,  >
s6 = < i[1], o[1], , , >
p  = < i[1], o[1], s[1], r[1], {γ 1, γ2} >

T = {T1, T5, T6, T7}
T1 = < s1.o[1], p.i[1], true, Delay(T1)=1 >
T5 = < p.o[1], s1.i[1], true, Delay(T5)=1 >
T6 = < p.s[1], s6.i[1], u,  >
T7 = < s6.o[1], p.r[1], true, Delay(T7)=2 >

gI = s1
and a sub-graph can be represented by the 5-tuple
< Vc, G, T, gI, gE >:

Sub-graph γ1:
Vc = {},
G = {s2}

s2 = < i[1], o[1], , ,  >
T = {}
gI, = s2
gE = s2

Sub-graph γ2:
Vc = {true, time > 5},
G = {s3, s4, s5}

s3 = < i[2], o[1], , ,  >
s4 = < i[1], o[2], , ,  >

s5 = < i[1], o[1], , ,  >
T = {T2, T3, T4}

T2 = < s3.o[1], s4.i[1], true, Delay(T2)=1 >
T3 = < s4.o[2], s3.i[2], true, Delay(T3)=1 >
T4 = < s4.o[1], s5.i[1], true, Delay(T4)=1 >

gI, = s3
gE = s5

5 Verification of StateGraph models
Even if a state machine is checked to be structurally 
correct, its behavior might be faulty and dangerous. 
A typical example is if the behavior would deadlock, 
i.e., that no further transitions can be performed. 
Such behavior is related to the action and transition 
logic, not only to the topology of the StateGraph it-
self. Dymola (Dymola 2009) has been experimental-
ly extended to extract all Boolean equations in order 
to facilitate model checking with external tools. The 
language used is SMV (Symbolic Model Verifica-
tion) and the tool used is NuSMV (NuSMV 2009).

Consider the example in Figure 14. It has four in-
dependent StateGraph models, two are modeling 
some processes which compete on using two re-
sources. The allocations of the resources are done in 
opposite order which means that there is a risk of 
deadlock. Detecting such potential problems is in 
general hard. Dymola produces code in SMV as 
shown below:
freeA_inport_fire := release1A_fire | 
release2A_fire;
next(pre_freeA_newActive) := 
  freeA_inport_fire | freeA_active &  ! 
  freeA_outport_fire;

Relations are converted to unknown inputs. When-
clauses are converted to if (case) according to Mod-
elica specification. Condition for non-deadlock is 
expressed using temporal logic according to the 
Computational Tree Logic syntax, e.g.:
_Dymola_SMV(
"CTLSPEC AG (! pre_freeA_newActive ->
EF pre_freeA_newActive)");

The String argument to the special built-in function 
_Dymola_SMV means “For All states such that 
not pre_freeA_newActive (resource A not free) there 
Exists eventually in the Future a state when 
pre_freeA_newActive (resource A free)”

NuSMV uses a BDD (Binary Decision Diagram) 
algorithm to verify the specification (NuSMV com-
mand check_ctlspec). If the specification is not al-
ways true, NuSMV presents a sequence of input 
events that will show the failure, i.e., in this case 
deadlock. Such a deadlocked situation is shown in 
Figure 14 with active Steps marked green.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 372



Figure 14: Two processes trying to acquire two re-
sources ending up in a deadlock.

6 Conclusion
A new library Modelica_StateGraph2 was presented 
to model safe hierarchical state machines in combi-
nation with any Modelica model, e.g., controllers, 
logical blocks, functions and physical systems de-
scribed by differential-algebraic equations. The li-
brary is designed to model the logic of reactive sys-
tems and to describe hybrid systems. The library is 
freely available from www.modelica.org/libraries, it 
is distributed in Dymola 7.3, and it is planned to in-
clude it in one of the next versions of the Modelica 
Standard Library. The work on the library will con-
tinue especially to take advantage of the features of 
the Modelica_EmbeddedSystems library (Elmqvist 
et. al. 2009):
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Appendix

A1 Mapping StateGraph to Modelica

In this section it is sketched how a StateGraph model 
is mapped to Modelica. This section is based on the 
implementation technique used in (Mosterman et. al. 
1998, Malmheden et. al. 2008, Otter et. al. 2005):
Steps, Transitions, and Parallel components are 
mapped to Boolean equations. These equations are 
handled as any other Modelica equations, e.g., for 
the code generation the equations are sorted and 
therefore the evaluation sequence of a StateGraph
model and/or of a hybrid system is automatically 
determined. Therefore, defining how the StateGraph
elements are mapped to Boolean equations defines 
automatically also the semantics of hybrid systems
built by StateGraph and other Modelica models. The 
mapping algorithm starts with a sketch of the used 
interfaces between the elements:

A Step component has a vector of connectors 
called “Step_in” in order to connect from transitions
to a step, and a vector of connectors called “Step_out 
to connect from a Step to Transitions.

A Transition component has a (scalar) connector 
called “Trans_in” to connect from a Step to a Transi-
tion and a (scalar) connector called “Trans_out” to 
connect from a Transition to a Step.

Only unary connections are allowed, i.e., exactly 
one connection must be made between one element 
of a vector of connectors and a scalar connector. The 
connector classes use pair-wise the same variables, 
but with different causalities (with exception of 
“node”), as shown in the next table:

connector
Step_out

connector
Trans_in

  output   input Boolean available
  input   output Boolean fire
  output   input Boolean checkLoop

Node    node

connector
Trans_out

connector
Step_in

  output   input Boolean fire
  output   input Boolean checkLoop
  input   output Boolean checkUnary

Node    node

record Node
   Boolean suspend;
   Boolean resume;
   function equalityConstraint
      input  Node node1;
      input  Node node2;
      output Real residue[0];
   algorithm
   end equalityConstraint;
end Node;

The meaning is the following: When an element of 
the “Step_out” vector at a Step is connected to the 
“Trans_in” connector of a Transition, then the sig-
nals “available, checkLoop” are computed in the 
Step and are communicated to the Transition. On the 
other hand, the signal “fire” is computed in the Tran-
sition and communicated to the Step. The meaning 
of “node” is explained in section A2.

When input/output prefixes are used in a Modeli-
ca connector, then block diagram semantics applies 
for a connector (e.g., only one signal can be con-
nected to an input). Since connectors “Step_out” and 
“Trans_in” have both input and output variables, 
only unary connections are possible, as desired. The 
basic form of “Trans_out” and “Step_in” has either 
only “output” or “input” variables and therefore un-
ary connections are not guaranteed. For this reason, 
the dummy variable “checkUnary” is introduced 
with opposite input/output prefixes. Now, only unary 
connections are here possible too2.

A Transition is basically defined by the following 
equations, depending on the options that have been 
selected in the parameter menu:

Equations of a Transition component

Immediate transition:
fire = condition and trans_in.available;

Delayed transition:
enableFire = condition and

                                                     
2 The alternative to use an assert with cardinality is not 
possible, because the resume connector is conditional and 
then it cannot be referenced in an assert.
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             trans_in.available;
when enableFire then
   t_next = time + waitTime;
end when;
fire = enableFire and time >= t_next;

Propagation of signals (in both cases):
trans_in.fire  = fire;
trans_out.fire = fire;

Basically, the equations state that variable fire = true, 
if (1) the fire condition “condition” is true and (2) if 
the preceding step is active (trans_in.available 
=true). For a delayed transition, additionally a time 
delay is introduced. The “fire” variable is then re-
ported to the preceding and the succeeding steps.

A Step is basically defined by the following eq-
uations:

Equations of a Step component

Set active flag:
newActive =
  if node.resume then oldActive
  else anyTrue(step_in.fire) or (active 
       and not anyTrue(step_out.fire)) 

     and not node.suspend;
active = pre(newActive);
when node.suspend then
  oldActive = active;
end when;

Set available flag:
for i in 1:size(step_out,1) loop
  step_out[i].available = if i == 1
    then active and not node.suspend
    else step_out[i-1].available and not
         step_out[i-1].fire and not
         node.suspend;
end for;

The function anyTrue(..) returns true, if at least 
one element of the input vector is true. In a Step, the 
next value of “active” is computed (called: “newAc-
tive”). It is assigned in the next event iteration to the 
actual value, “active”, via “active=pre(newActive)”. 
The equations state, that the Step becomes active in 
the next iteration when one of the transitions con-
nected to the step_in connectors fire. The Step re-
mains active if it was active and no transition con-
nected to one of the step_out connectors fire.

If the Step is used inside one or more Parallel 
components, the state of the nearest enclosing Paral-
lel component is propagated via the record “node”. 
Details are given in section A2. At this stage it is 
sufficient to know that if node.suspend = true, then 
an enclosing Parallel component was suspended and 
if node.resume = true, then an enclosing Parallel 
component was entered via the resume port. If a Pa-
rallel component is suspended, the current value of 
“active” is saved in “oldActive”, and “newActive” is 

set to false. If a Parallel component is resumed, “ne-
wActive” is set to the saved value of “oldActive”.

The “active” flag of a Step is reported to the tran-
sitions connected to this Step in the following way:
If a step has only one outgoing transition:

step_out[1].available =
   active and not node.suspend

Therefore, the “available” flag propagated to the 
Transition is set to true, if the step is active and if an 
enclosing Parallel component is not suspended.

If a Step has several outgoing transitions, two or 
more might fire at the same time instant. The transi-
tion that is connected to the lowest index of the 
step_out connector vector is defined to have highest 
priority. For example, if a Step has two outgoing 
transitions, then the “available” flag of step_out[1] is 
set as previously. The “available” flag of step_out[2] 
is only set to true, if the transition that is connected 
to step_out[1] does not fire and no enclosing Parallel 
component is suspended.

The equations for a Parallel component are han-
dled similarly to a Step. For space reasons, they are 
not listed here.

A2 Guaranteeing graph properties and propaga-
tion of suspend/resume flags

In the previous section A1 it is
sketched how the basic elements 
are defined by Boolean equations 
and how only 1:1 connections can 
be made. Still some properties of 
a StateGraph are not yet guaran-
teed. For example, two initial 
steps might be defined in a sim-
ple StateGraph model (see Figure 
to the right). This gives perfectly 
legal Modelica code, but the si-
mulation would be wrong. We will now discuss how 
the basic graph properties are guaranteed and how 
the suspend/resume information of Parallel compo-
nents is propagated:

Record “node” in the connectors, see definition in 
section A1, is an “overdetermined record” due to 
function “equalityConstraint()”, see (Modelica 2009, 
section 9.4). The idea is the following: The overde-
termined record R in a connector has more variables 
than permitted by a “balanced model”. When two 
connectors c1 and c2 are connected, then the desired 
connection equations are c1.R = c2.R. If a loop of 
connected components is present, this might give too 
many equations (= more equations as unknowns). If 
this is the case, exactly for one connection set in a 
loop the equations “0 = R.equalityConstraints(c1.R, 
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c2.R)” have to be used instead of the desired equa-
tions “c1.R = c2.R”. For example, a transformation 
matrix has 9 redundant elements describing 3 inde-
pendent variables. In this case, the equalityCon-
straint(...) function has to return the 3 constraint equ-
ations between the 9 redundant variables.

In order that a translator can select which connec-
tion equations to use, built-in operators are provided 
to construct an undirected dependency graph of the 
connectors. For example, if a component has two 
connectors ca and cb, a definition of the form:

Connections.branch(ca.R, cb.R);

must be present in the component. This definition 
states that cb.R is equal to ca.R in this component. 
One connector must be defined as root of the graph. 
As a result, a set of undirected graphs is constructed. 
The translator has to arbitrarily cut a graph at con-
nection sets, so that a spanning tree is constructed. In 
the “tree”, connection equations of the form c1.R = 
c2.R are used. For all connectors that have been re-
moved to arrive at a “tree”, the connection equations 
0=R.equalityConstraint (c1.R, c2.R) are used.

In the StateGraph library, suspend and resume 
flags are stored in an overdetermined record “Node“. 
The Node.equalityConstraints(..) function returns a 
vector with size zero. Therefore, no equations are 
generated for connections that have been removed to 
arrive at a “tree”. When the root of a graph is appro-
priately selected, then the suspend/resume flags are 
just propagated to all components in this graph, even 
if loops are present (since the loops are cut, and no 
connection equations for node variables are intro-
duced at these cuts).

The operators available in Modelica 3.1 are not 
sufficient and two additional ones had to be intro-
duced: “Connections.uniqueRoot(R, message)” 
states that “R” is a unique root of the graph. If this 
operator is used, the corresponding graph must have 
exactly one such definition. The second argument 
“message” shall be reported in the error message, if 
more than one root is defined.

The usage of “uniqueRoot(..)” and of “branch(..)” 
are sketched in Figure 15: Roots are defined at the 
initial step (root1) and at the entry port of every 
branch of a Parallel component (root2, root3). Then 
“branches” are defined along the corresponding state 
machine structure. If any such connection graph has 
more then one root, the StateGraph graph is wrong. 
E.g., if two initial steps would be defined, or if a 
branch of a Parallel component would branch out 
into the “outer” loop, the connection graph would 
have two roots which would trigger an error.

With the new built-in operator “I = Connec-
tions.uniqueRootIndices(Ra, Rb, message)”, infor-

mation about the connection structure of a Parallel 
component can be obtained: Ra is a vector of roots 
and Rb is a vector of other overdetermined records. 
The function returns an Integer vector “I”. I[i], 
i=1:size(Rb,1), defines that there is a path from root 
I[i] to record Rb[i]: Ra[I[i]] → Rb[i]. It is an error if 
such a path does not exist. The remaining elements 
of vector I are the indices of Ra that do not have a 
path to an element of Rb. Due to the construction, 
the function returns an error, if there are no paths to 
all exit ports. So, every branch that ends at an exit 
port, must start at an entry port of the same Parallel 
component.

Figure 15: 3 virtual connection graphs to verify State-
Graph properties and to propagate resume/suspend flags.

Typical usage of this function:

  EntryPort entry  [nEntry];
  ExitPort  exit   [nExit];
  Integer   indices[nEntry];
equation
  Connections.uniqueRoot(entry, "...");
  indices = Connections.uniqueRootIndices
                     (entry, exit, "...");

Example: The function returns the following values 
for the graph in Figure 15:
nEntry=2, nExit=2,
indices[1] = 1, indices[2] = 2

The meaning is that there is a path from en-
try[indices[1]] (connected to Step s2) to exit[1] 
(connected to Step s3), and a path from en-
try[indices[2]] (connected to Step s4) to exit[2] 
(connected to Step s5).
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A3 Avoiding infinite transition loops

The basic semantics of a StateGraph graph is that at 
one time instant, during event iteration, all transi-
tions fire, until none of the transitions can fire any-
more. In order that no infinite looping can occur, 
there must be at least one delayed transition in 
“every loop”, since at a delayed transition the loop-
ing stops at the current time instant.

In order to verify this property, the Boolean flag 
“checkLoop” is propagated through the connection 
structure, see connectors in section A1. At delayed 
transitions and at steps that do not have an input 
transition, this flag is initialized. If there is no de-
layed transition in a loop, an algebraic system of 
Boolean unknowns occurs. Since this system of equ-
ations cannot be solved, an error is triggered. In the 
connectors, “checkLoop is defined with the new an-
notation “BooleanLoopMessage = string”. If the cor-
responding variable appears in an algebraic loop 
with Boolean unknowns, the BooleanLoopMessage 
is included in the error message, in order to get mea-
ningful error reporting.

A4 Automatic connection to next free index

When connecting a Step with a transition, the dimen-
sion of the vector of connectors Step.outPort has to 
be increased by one, say to dimension N, and then 
the connection has to be performed from 
Step.outPort[N] to the scalar transition input port. 
Performing this manually is very inconvenient and 
error prone. For this reason, in Modelica 3.1 (Mod-
elica 2009, section 17.6) the new annotation “con-
nectorSizing” was introduced, that is used for all 
vector connections in the StateGraph library. 

Example:

model Step
   parameter Integer nIn=0 annotation(
            Dialog(ConnectorSizing=true));
   StepIn inPort[nIn];
   ...
end Step;

When this model is used and a connection is made to 
vector “inPort”, then the tool increments the dimen-
sion nIn by one and performs the connection to this 
new index. Therefore, performing connections be-
tween Steps and Transitions is convenient for a user 
and only requires dragging a line between the cor-
responding connectors.
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