
A New Formalism for Modeling of Reactive and Hybrid Systems

Martin Otter1, Martin Malmheden2, Hilding Elmqvist2, Sven Erik Mattsson2, Charlotta Johnsson3

1German Aerospace Centre (DLR), Institute for Robotics and Mechatronics, Germany
2 Dassault Systèmes, Lund, Sweden (Dynasim)

3 Department of Automatic Control, Lund University, Sweden
Martin.Otter@dlr.de, Martin.Malmheden@3ds.com, Hilding.Elmqvist@3ds.com,

SvenErik.Mattsson@3ds.com, Charlotta.Johnsson@control.lth.se

Abstract
A new Modelica library is presented that is used to
model safe hierarchical state machines in combina-
tion with any Modelica model, e.g., controllers, logi-
cal blocks, and physical systems described by diffe-
rential-algebraic equations. It has been designed to
simplify usage, improve safety aspects and to har-
monize with the design of the new Modeli-
ca_EmbeddedSystems library. Furthermore, new
blocks are introduced to define actions in a visual
way, and not textually. The library is inspired by Sta-
techarts, Sequential Function Charts, Safe State Ma-
chines (SSM) and Mode-Automata. It has been de-
signed so that only small extensions to Modelica 3.1
are needed. The algorithms are sketched that are
used to guarantee consistent graphs that give a li-
mited number of event iterations. Furthermore, it is
shown how a symbolic verifier can be used to guar-
antee additional properties of state machines.

Keywords: ModeGraph; Statechart, Sequential
Function Charts, Mode-Automata, Safe State Ma-
chines; NuSMV; reactive systems, hybrid systems.

1 Introduction
In this article the open source Modelica_StateGraph2
library is presented. This is version 2 of the existing
Modelica.StateGraph library (Otter et. al. 2005). It is
planned to replace Modelica.StateGraph in one of the
next releases of the Modelica Standard Library with
Modelica_StateGraph2. Besides the basic Step and
Transition mechanism, all other parts have been re-
designed and significantly improved based on the
experience with the experimental ModeGraph library
(Malmheden et. al. 2008). Note, below the name

“StateGraph” is often used as abbreviation for the
full name “Modelica_StateGraph2”.

The StateGraph library is inspired by Statecharts
(Harel 1987), Sequential Function Charts (SFC),
Safe State Machines (SSM) (André 2003), and
Mode-Automata (Maraninchi and Rémond 2002).
The primary purpose of the library is to provide sup-
port for modeling of reactive and of hybrid systems
and to verify certain properties of such systems.

Reactive systems react to stimuli from their envi-
ronment, see, e.g. (Benveniste et. al. 2003). In com-
bination with the Modelica_EmbeddedSystems li-
brary (Elmqvist et. al. 2009), the StateGraph library
can be used to model such systems and it will be
possible to use StateGraph models in production
code of embedded systems.

Hybrid systems combine closely continuous-time
models and discrete event systems, see, e.g. (Lynch
2002). The StateGraph library is implemented with
the Modelica language and therefore every Modelica
model, i.e., models consisting of differential, alge-
braic and discrete equations, as well as functions, can
be conveniently and naturally combined with state
diagrams constructed with the StateGraph library.

2 Using Modelica_StateGraph2
In this section an overview is given of how to use the
library by several small examples.

2.1 StateGraph Elements

A StateGraph graph is constructed by three elements:
Step, Transition, and Parallel that will now be dis-
cussed in some detail.

Step
A Step is the graphical representation of a state and
is said to be either active or not active. A StateGraph

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 364 DOI: 10.3384/ecp09430108

model is comprised of one or more steps that may or
may not change their states during execution. A Sta-
teGraph model must have one initial step. An initial
step is defined by setting parameter initialStep at one
step to true. The initial step is visualized by a small
arrow pointing to this step, see Step s1 in Figure 1.

Transition
To define a possible change of states, a Transition is
connected to the output of the preceding Step and to
the input of the succeeding
Step, see, e.g., Figure 1,
where Transition t1 defines
the transition from Step s1 to
Step s2. Note: A Transition
has exactly one preceding
and one succeeding Step. A
Transition is said to be
enabled if the preceding step
is active. An enabled transi-
tion is said to be fireable
when the Boolean condition
defined in the parameter
menu of the transition is eva-
luated to true. This condition
is also called “Transition
condition” and is displayed in
the icon of the Transition. When parameter
“use_conditionPort” is set, the Transition condition
is alternatively defined by a Boolean signal that is
connected to the enabled “conditionPort”. A fireable
transition will fire immediately. In Figure 1, t1 fires
when s1 is active and time is greater than one.

The firing of a transition can optionally also be
delayed for a certain period of time. See, e.g., t2 in
Figure 1, that is delayed for one second before it may
fire, given that the condition remains true and the
preceding Step remains active during the entire delay
time. The evolution of a graph over time can be vi-
sualized by diagram animation: Active steps and
Boolean variables that are true are marked in green
here, see, e.g., Figure 1.

Parallel
Subgraphs can be aggregated into superstates by us-
ing the Parallel component. This component acts
both as a composite step (having just one branch)
and as a step that has parallel branches. The Parallel
component, often referred to as “p” in the following
figures, allows the user to place any StateGraph ele-
ment inside it, especially Steps, Transitions, and Pa-
rallel components.

A Parallel component has always an entry port,
see Figure 2, and it may have optionally an exit port.
All branches in a Parallel Component must start at
the entry port and at least one must terminate at the

exit port, provided the exit
port is enabled via parameter
“use_outPort”. If a Parallel
component shall be entered
from the outside via a Transi-
tion, parameter “use_inPort”
must be set to true, to enable
an input port. If a Parallel
Component shall be left via a
transition to an outside step,
parameter “use_outPort” must
be set to true, to enable the
output and the exit port. A
Parallel component may be
used as initial step, by setting
parameter initialStep to true.
This property is again visua-
lized by a small arrow point-
ing to the Parallel component,
see Figure 2.

A Parallel component may be suspended and sub-
sequently resumed. In Figure 3, Transition T6 fires
whenever the input signal u is true, suspending the
Parallel component p and the enclosed Steps s2, s3,

Figure 3: Parallel component with 2 parallel branches
that is suspended whenever the input u is true.

Figure 1: Model
with two steps and
two transitions

Figure 2: A Parallel
component with a
small sub-system.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 365

s4 and s5 for two seconds. When Transition T7 fires,
p is re-activated in the same state as when it was
suspended.

As mentioned before, inPorts and outPorts of a
Parallel component are optional and can be set by the
user. If the parallel component has an inPort, then
the entry port constitutes the connection between the
Transition connected to the inPort and the first Steps
to be activated in the Parallel component. If the Pa-
rallel component is configured to have an outPort, an
exit port shows up on the bottom of the Parallel
component, see Figure 3.

The Parallel component allows the entry port to
branch out into several parallel paths. These
branches are not allowed to interact, see Figure 3.
When all Steps connected to the exit port are active,
the Parallel component is said to be available and
may exit when the Transition connected to the out-
Port fires. In Figure 3 Transition T5 fires when both
Step s2 and s5 have been active together for one
second and thereby deactivates the Parallel compo-
nent p. Note, in Statecharts parallel branches must be
synchronized via transition conditions, which is in-
convenient. In SFC, all branches are synchronized.
In StateGraph, only branches that are connected to
the exit port are synchronized, which is more flexible
as the SFC approach.

No component contained within the Parallel
component may be connected to any other compo-
nent “outside” of the Parallel component. This rule is
used to protect the user from making mistakes that
could lead to unexpected results and states of the
graph that are not well-defined. Consider for exam-
ple the graph in Figure 4Figure at T=7. Especially,
note that the Parallel component p is never properly

Figure 4: Wrong graph since components in the Paral-
lel component may not be connected to “outside” ones.

terminated through either an outPort or a suspend
port. If the graph would be allowed to execute, the
consequence would be an increasing number of ac-
tive Steps. Such a situation is reported as an error.
The details about the algorithm to accomplish this
are given in appendix A2.

In order to graphically organize large graphs in
different levels of hierarchy and with encapsulation
of variables, StateGraph also contains a component
PartialParallel. It is similar to the normal Parallel
component but introduces a new hierarchy once the
user inherits from it. A number of large subsystems
can thus be abstracted into composite steps to im-
prove organization and overview of the subsystems.
Figure 5 shows a component built from a PartialPa-
rallel component. As the diagram and the icon layer
of the PartialParallel component does not need to be
the same size, the user can benefit from collecting
large subsystems in smaller closed Parallel compo-
nents to improve overview and modularization of the
full system.

Figure 5: Composite derived from PartialParallel
component and its subsystem.

2.2 Graphical Action Blocks

An important practical aspect of state machines is the
ability to assign values and expressions to variables
depending on the state of the machine. In State-
Graph, a number of graphical components, see Fig-
ure 6, have been added to facilitate usage in a safe
and intuitive way. Since these are just input/output
blocks and will also be useful in another context, it is
planned to add them to the Modelica Standard Li-
brary under “Modelica.Blocks”. Some of these
blocks will be explained in this section.

There are a number of standard blocks with
common operations/displays of the three basic types
(Boolean, Integer, Real) using vector input connec-
tors which enables them to be connected to an arbi-
trary number of sources. Resizing a vector port and

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 366

connecting to the next free ele-
ment is performed automatically
when connecting to the connector,
see Appendix A4. So this is much
more convenient than with the
Modelica.Blocks.
Logical, Modelica.StateGraph or
ModeGraph libraries. A vector of
input connectors is visualized as
an ellipse, see, e.g., the violet
connector on the left side
of the “and” block in the
figure to the right where
“y = u[1] and u[2]and ...”.

A MultiSwitch block selects
one of n expressions depending
on an array of Boolean inputs.
The index of the first input in the
Boolean array that is true defines
the index of the expression in the
expression array to be used as the
scalar output y. In Figure 7, the
MultiSwitch component will out-
put the value y = 1 if Step s1 is
active, and will output y = 2 if s2
is active as the expression array is
defined as {1,2}. If none of the
Boolean array inputs is true, the
“else” value will be used instead
that is defined in the parameter
menu of the MultiSwitch compo-
nent and is displayed below the

icon. Consider Figure 7 when Step s3 is active – this
will set the output of component “multiSwitch” to
the “else” value “3”. Alternatively, in the parameter
menu of the MultiSwitch component it can be de-
fined to keep its previous value, i.e. y = pre(y). If
this option would be selected for Figure 7, then mul-
tiSwitch.y = 2 when Step s3 is active.

Figure 7: Example of MultiSwitch component for
Integer numbers that depends on different steps.

The MultiSwitch block is inspired by “Modes” from
Mode Automata (Maraninchi and Rémond 2002):
Variable multiSwitch.y has always a unique value,
and this value depends on the expressions that are
associated with mutually exclusive active steps. The
advantages of MultiSwitch are that (1) the definition
is performed in a purely graphical way, (2) it can
also be used for mutually non-exclusive active
steps1, and (3) it can be implemented in Modelica in
a very simple way. The drawback is that the expres-
sions in the MultiSwitch block might no longer be so
easy associated with Steps, compared to the alterna-
tive where the expressions are defined directly in the
respective Steps. This latter approach would, howev-
er, require non-trivial extensions to the Modelica
language.

The RisingEdge, FallingEdge and ChangingEdge
components can be used to generate “pulse” signals
depending on the rising, falling or changing values
of Boolean signals. An example is shown in Figure 8
where the Boolean indicator lamp is turned on when
Step s2 becomes active and is turned off when Tran-
sition t3 fires and Step s3 becomes inactive. Two
variants are shown to utilize the “rising” property of
a Boolean signal: The Boolean connectors at steps
and transitions can be activated via parameters
“use_activePort” and “use_firePort”, respectively. If
s2 becomes active, rising = true and therefore multi-
Switch.y = true. If transition t3 fires, t3.firePort=true
and therefore multiSwitch.y = false.

Figure 8: Two variants to control a Boolean
indicator by a MultiSwitch component.

1 If an MultiSwitch block is connected to steps of different
branches of a Parallel component, a priority is present: If
several inputs are true, then the one has highest priority
that is connected to the lowest index of the vector of input
connectors (= connection line “closest” to the icon name).

Figure 6: Blocks
to define actions
graphically.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 367

2.3 Safe StateGraph models

In this section it will be discussed in which sense
“StateGraph” models are “safe”.

Only valid graph structures are accepted
Contrary to Modelica.StateGraph (version 1 of the
library which is distributed with the Modelica Stan-
dard Library since 2004), only valid graph structures
are accepted for the Modelica_StateGraph2 library.
For example, the model of Figure 4 leads to an error.
In order that this was possible, Modelica 3.1 had to
be enhanced slightly. Details are given in section A2.

One variable is defined by one equation
In all state machine formalisms problems are present
when assignments to the same variables are per-
formed in branches that are executed in parallel. As
an example, in the next figure such a situation in Sta-
teflow (StateFlow 2009) is shown:

The two substates “fill1” and “fill2” are executed in
parallel. In both states the variable “openValve” is
set as entry action. The question is whether open-
Valve will have value 0 or 1 after execution of the
steps. Stateflow changes this non-deterministic be-
havior to a formally deterministic one by defining an
execution sequence of the states that depends on
their graphical position. The grey number on the
right of the states shows in which order the states are
executed. In the figure above this means that “open-
Valve=0” after leaving the two states. If the second
state “fill2” is changed a little bit graphically

“openValve=1” after “fill1” and “fill2” have been
executed. This is a critical situation because (a)
slight changes in the graphical positioning of states
might change the simulation result and (b) if the pa-
rallel execution of actions depends on the evaluation
order, errors are difficult to detect.

In StateGraph such a situation is not possible.
The reason is that StateGraph is implemented in
Modelica and a very basic feature of Modelica is that
every declared unknown variable must be defined by
exactly one equation. This is sometimes called “sin-

gle assignment rule”. It is therefore not possible to
assign the same variable twice in a model. The above
situation would be described in StateGraph instead
with a MultiSwitch action block “openValve” as
shown in Figure 9. Here, everything is well defined:
There are two input connections to the openValve
block. If both become true at the same time instant,
the connection with the “lowest” index (i.e., the up-
per signal in the figure) has highest priority. There-
fore, openValve gets the value true, once the Parallel
component is entered.

Figure 9: Assignment of variables with forced priority
due to Modelicas single assignment rule.

Upper bound on number of model evaluations
At an event instant, an event
iteration occurs, due to the
Modelica semantics (= whenev-
er a new event occurs, the model
is re-evaluated). This means that
Transitions keep firing along a
connected graph, as long as the
firing conditions are true. The
question therefore arises,
whether infinite event looping is
possible? A simple example of
this kind is shown in Figure 10.
Here, all Transition conditions
are true and therefore all Transi-
tions fire forever. This is no va-
lid StateGraph model and will
result in an error.

In order to avoid a situation
as in Figure 10, it is required that
a StateGraph model has at least one delayed Transi-
tion per loop, see Appendix 0. This means that one
of T1, T2, or T3, must be a delayed Transition, oth-
erwise an error occurs. Since event iteration stops at
a delayed Transition, infinite event looping cannot
occur. This also means that at one time instant every
Transition can fire at most once and therefore the

Figure 10: Wrong
graph that gives rise
to infinite looping.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 368

number of model evaluations at an event instant is
bounded by the number of Transition components.

It is still possible that infinite event looping oc-
curs due to model errors in other parts of the model.
For example, if a user introduces an equation of the
form “J = pre(J) + 1” outside of a when-clause, event
iteration does not stop. Although this situation is not
completely satisfactory, it helps already a lot if a tool
points out potential problems of a StateGraph model,
in case delayed transitions are missing.

3 Application Examples
In this section some involved application examples
are shown to demonstrate the usage of the State-
Graph library. These and other examples are availa-
ble in the library under “Examples.Applications”.

3.1 Harels wristwatch

When presenting the Statecharts formalism in (Harel
1987), David Harel identified and described the be-
havior of his Citizen Quartz
Multi-Alarm III wristwatch
(see schematic figure to the
right) using the new visual
formalism as a case study to
proof his new formalism to be flexible enough to
describe the intricate structure of the wristwatch be-
havior in a comprehensible and clean way. As the
wristwatch example serves as a challenging bench-
mark for the capabilities of a graphical formalism, it

has been included as an application example in the
StateGraph library to demonstrate that the library is
flexible enough to realize this example in a good
way. It also serves as a template for other human
interfaces. For example, an automotive cruise control
has several switches and some of them have different
levels. There are different influences if in cruise
mode or not.

The wristwatch display is comprised of a number
of different display modes showing the current time
(displayed in either 12h or 24h mode), time setting
(also in either 12h/24h mode), date/date setting (day,
month, day of week, year etc.), alarm setting, chime
setting, and a stopwatch display. The stopwatch can
be turned on, off, stalled when running to show lap
time and reset when stopped. The chime functionali-
ty is triggered each time the clock reaches a whole
hour that makes the chime beep for two seconds.
Furthermore, the wristwatch has two concurrently
running alarms that sound when the time hits their
respective configured time, display back-light for
improved illumination, alarm test functionality and
low battery warning.

The wristwatch is operated by four buttons A, B,
C and D. Button A switches between the different
modes where time and date can be set, alarms and
chime can be set and turned on/off and the stopwatch
can be run, paused and reset. When in a time-, date-,
alarm- or chime-setting mode, button C can be used
to flip through between different quantities that the
current time/alarm/chime-setting can be incremented
with the currently chosen quantity using button D.

Figure 11: Top level of the StateGraph that defines Harels wristwatch.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 369

When updating the time or an alarm time, button B
can be used to immediately return to displaying ei-
ther time or the current setting of the current alarm.

There are in total six concurrently running sub-
systems (Main – containing all the display and set-
ting behavior, Alarm 1 Status, Alarm 2 Status,
Chime Status, Back-Light and Power Status) that
independently of each other react to the user input
and the current time. There is also interaction be-
tween the Main subsystem and the Alarms/Chime
Status to make it possible to concurrently guard the
status of each functionality depending on the current
time but also provide means to update their setting
using only the given four buttons. The Main view of
the StateGraph implementation of the wristwatch can
be seen in Figure 11.

3.2 Controlled tank system

As another application example, the control of a tank
system is present in the StateGraph library. This ex-
ample is based on a similar system from (Dressler
2004), which in turn is based on an example model
of Karl Erik Årzén from the JGraphCharts manual.
The top level view is shown in Figure 12: On the
right side a two-tank system is present which is
modeled with the Modelica.Fluid library (Franke et.
al. 2009): It consists of an infinite reservoir of water,
“reservoir”, that flows via two tanks, “tank1,

Figure 12: Two tank system controlled by 3 buttons.

tank2”, to the environment, “ambient”. The flow can
be controlled by three valves, “valve1, valve2,
valve3”. There are three buttons, “start”, “stop”,
“shut”, to control the operation. The actual level of a
tank is measured in an ideal way by accessing va-

riables tank1.level and tank2.level. All variables are
communicated via an ideal bus “bus” to the tank
controller. The basic operation is to fill and empty
the two tanks:

1. Valve 1 is opened and tank 1 is filled.
2. When tank 1 reaches its fill level limit, valve 1 is

closed.
3. After a waiting time, valve 2 is opened and the

fluid flows from tank 1 into tank 2.
4. When tank 1 is empty, valve 2 is closed.
5. After a waiting time, valve 3 is opened and the

fluid flows out of tank 2
6. When tank 2 is empty, valve 3 is closed

The above "normal" operation can be influenced by
three buttons:

 Button “start” starts the above process. When this
button is pressed after a "stop" or "shut" opera-
tion, the process operation continues.

 Button “stop” stops the above process by closing
all valves immediately. Then, the controller waits
for further input (either "start" or "shut").

 Button “shut” is used to shutdown the process, by
emptying both tanks at once. When this is
achieved, the process goes back to its start confi-
guration. Clicking on "start", restarts the process.

The tank controller is hierarchically modeled with
two Parallel components and some logical blocks:

Figure 13: Top level view of tank controller logic.

The “MakeProduct” Parallel component is the initial
step and performs the “normal” operation. When the
“stop” button is pressed, the suspend transition T8
fires, the “MakeProduct” step is suspended and the
graph goes in to step “stopStep1”. Note, the transi-
tion condition of T8 is “bus.stop”, i.e., this transition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 370

fires when variable stop from the bus is true. When
“start” is pressed again, the “MakeProduct” step is
resumed at the place where it was suspended. When
“shut” is pressed, the Parallel component “ShutStep”
is entered to shut down the tank system. Here it is
still possible to press the “stop” button and then
again continue with “shut”.

4 Formal definition of StateGraph
In section 2.1 an informal introduction to the State-
Graph formalism was given. In this section, a precise
mathematical description of StateGraph models will
be presented. The formal definition describes the
structure of a StateGraph model and its interpretation
algorithm (= semantics).

4.1 Structure of a StateGraph model

A StateGraph model, , is described by a 4-tuple:

 = < Vc, G, T, gI >

where

 Vc is a set of Boolean expressions. Boolean ex-
pressions are used as conditions of transitions.
They are either external inputs or the outputs of
Modelica models. A Modelica model consists of a
set of differential, algebraic and discrete equa-
tions, see (Modelica 2009, Appendix C).

 G is the set of Generalized Steps, G = {g1, g2, ,...}.
A Generalized Step gi  G can be active or not ac-
tive, signaled by the Boolean Active(gi). A Gene-
ralized Step gi  G is described by the 5-tuple
 < I, R, O, S, s >
where
 I is a vector of in (entry) ports I = [i1,i2,...],
 R is a vector of resume ports R = [r1,r2,...],
 O is a vector of out (exit) ports O = [o1,o2,...],
 S is a vector of suspend ports S = [s1,s2,...],
 s is a set of sub-graphs s = {γ1,γ2,...}
A Generalized Step gi that has only in and out
ports, < I, O >, is also called Step.
A Generalized Step gi where R, S or s is not an
empty set, is also called Parallel Step.
A sub-graph γi  s is described by a 5-tuple
< Vc, G, T, gI, gE > where Vc, G are a set of Boo-
lean expressions and a set of Generalized steps as
described above, T is the set of Transitions as de-
scribed below, gI  G is the initial generalized
step that is first activated when the sub-graph γi is
“normally” activated and gE  {, G} is the op-
tional exit generalized step that is the last active
step, before the sub-graph γi is de-activated.

 T is the set of transitions, T = t1, t2, t3, …. A
transition ti  T is defined by the 4-tuple
 ti = < pIR(ti), pOS(ti), Condition(ti), Delay(ti) >
where
pIR(ti) is a connected port of an in or resume vec-
tor of a succeeding generalized step gi  G.
pOS(ti) is a connected port of an out or suspend
vector of a preceding generalized step gi  G.
Condition(ti)  Vc is the fire condition associated
with ti

Delay(ti)  {, R+} is the optional delay time as-
sociated with ti. If present, the delay time is a
positive real number, Delay(ti) > 0.
There is the restriction, that every “loop” must
have at least one transition ti with Delay(ti) > 0 in
order to avoid infinite transition looping.

 gI is the initial generalized step, gI  G.

4.2 Interpretation Algorithm

The dynamic behavior of a StateGraph  = < Vc, G,
T, gI > is given by the interpretation algorithm pre-
sented below:

(1) The initial step gI is activated. If the initial step
has sub-graphs γi  s, then all initial steps gI of
these sub-graphs are activated as well. If an ini-
tial step gi  GI of a sub-graph has again sub-
graphs, then all initial steps of these sub-graphs
are recursively activated.

(2) Active(gi) of all Generalized Steps, including all
recursive sub-graphs, is set to true, if gi is active.
Otherwise it is set to false. Models are solved us-
ing Active(gi) as inputs.

(3) The condition expressions of all transitions in T
and in all recursive sub-graphs are evaluated (ei-
ther from external inputs or from outputs of
models).

(4) All Transitions are determined where (a) the
Transition condition is true and (b) the preceding
Generalized Step is active and (c) all exit steps
gE of all sub-graphs γi  s of the preceding Ge-
neralized Step are active, as well as of all exit
steps of sub-graphs of exit steps recursively. For
every such Generalized Step, at most one Transi-
tion can fire. For Transitions having the same
preceding Generalized Step, the one connected
to the out port or if both are connected to the
same port vector, the one with the smallest vec-
tor index of the out or the suspend port respec-
tively is marked as “fires”.

(5) All Transitions that are marked as “fires” in (4)
are firing, i.e., the respective preceding Genera-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 371

lized Step of a Transition is deactivated and the
succeeding Generalized Step of the Transition is
activated. If a transition has a non-zero delay-
time, it fires after the delay time, provided all
conditions of (4) remain true during the delay
time.
 Deactivating a Generalized Step that has sub-
graphs γi  s means, that all Generalized Steps
in these sub-graphs and their recursive sub-
graphs are deactivated as well.
 Activating a Generalized Step that has sub-
graphs γi  s means that either (a) all initial
steps gI of these sub-graphs and their recursive
sub-graphs are activated, or (b) the Generalized
Steps are activated that have been active when
this step was deactivated the last time. Case (b)
is used, if the last deactivation of this step was
performed via a transition of a suspend port.
Otherwise case (a) is used.
 Goto (2).

4.3 Example

The StateGraph given in Figure 3 can be presented
by the 4-tuple .

 = < Vc, G, T, gI >

where

Vc = {true, u},
G = {s1, s6, p}

s1 = < i[1], o[1], , ,  >
s6 = < i[1], o[1], , , >
p = < i[1], o[1], s[1], r[1], {γ 1, γ2} >

T = {T1, T5, T6, T7}
T1 = < s1.o[1], p.i[1], true, Delay(T1)=1 >
T5 = < p.o[1], s1.i[1], true, Delay(T5)=1 >
T6 = < p.s[1], s6.i[1], u,  >
T7 = < s6.o[1], p.r[1], true, Delay(T7)=2 >

gI = s1
and a sub-graph can be represented by the 5-tuple
< Vc, G, T, gI, gE >:

Sub-graph γ1:
Vc = {},
G = {s2}

s2 = < i[1], o[1], , ,  >
T = {}
gI, = s2
gE = s2

Sub-graph γ2:
Vc = {true, time > 5},
G = {s3, s4, s5}

s3 = < i[2], o[1], , ,  >
s4 = < i[1], o[2], , ,  >

s5 = < i[1], o[1], , ,  >
T = {T2, T3, T4}

T2 = < s3.o[1], s4.i[1], true, Delay(T2)=1 >
T3 = < s4.o[2], s3.i[2], true, Delay(T3)=1 >
T4 = < s4.o[1], s5.i[1], true, Delay(T4)=1 >

gI, = s3
gE = s5

5 Verification of StateGraph models
Even if a state machine is checked to be structurally
correct, its behavior might be faulty and dangerous.
A typical example is if the behavior would deadlock,
i.e., that no further transitions can be performed.
Such behavior is related to the action and transition
logic, not only to the topology of the StateGraph it-
self. Dymola (Dymola 2009) has been experimental-
ly extended to extract all Boolean equations in order
to facilitate model checking with external tools. The
language used is SMV (Symbolic Model Verifica-
tion) and the tool used is NuSMV (NuSMV 2009).

Consider the example in Figure 14. It has four in-
dependent StateGraph models, two are modeling
some processes which compete on using two re-
sources. The allocations of the resources are done in
opposite order which means that there is a risk of
deadlock. Detecting such potential problems is in
general hard. Dymola produces code in SMV as
shown below:
freeA_inport_fire := release1A_fire |
release2A_fire;
next(pre_freeA_newActive) :=
 freeA_inport_fire | freeA_active & !
 freeA_outport_fire;

Relations are converted to unknown inputs. When-
clauses are converted to if (case) according to Mod-
elica specification. Condition for non-deadlock is
expressed using temporal logic according to the
Computational Tree Logic syntax, e.g.:
_Dymola_SMV(
"CTLSPEC AG (! pre_freeA_newActive ->
EF pre_freeA_newActive)");

The String argument to the special built-in function
_Dymola_SMV means “For All states such that
not pre_freeA_newActive (resource A not free) there
Exists eventually in the Future a state when
pre_freeA_newActive (resource A free)”

NuSMV uses a BDD (Binary Decision Diagram)
algorithm to verify the specification (NuSMV com-
mand check_ctlspec). If the specification is not al-
ways true, NuSMV presents a sequence of input
events that will show the failure, i.e., in this case
deadlock. Such a deadlocked situation is shown in
Figure 14 with active Steps marked green.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 372

Figure 14: Two processes trying to acquire two re-
sources ending up in a deadlock.

6 Conclusion
A new library Modelica_StateGraph2 was presented
to model safe hierarchical state machines in combi-
nation with any Modelica model, e.g., controllers,
logical blocks, functions and physical systems de-
scribed by differential-algebraic equations. The li-
brary is designed to model the logic of reactive sys-
tems and to describe hybrid systems. The library is
freely available from www.modelica.org/libraries, it
is distributed in Dymola 7.3, and it is planned to in-
clude it in one of the next versions of the Modelica
Standard Library. The work on the library will con-
tinue especially to take advantage of the features of
the Modelica_EmbeddedSystems library (Elmqvist
et. al. 2009):

7 Acknowledgements
Partial financial support of DLR by BMBF (BMBF
Förderkennzeichen: 01IS07022F) for this work with-
in the ITEA project EUROSYSLIB
(www.itea2.org/public/project_leaflets/EUROSYSLI
B_profile_oct-07.pdf) is highly appreciated.The au-
thors also would like to thank Daniel Weil from Das-
sault Systèmes for fruitful discussions.

References
André, C. (2003): Semantics of S.S.M (Safe State Ma-

chine). I3S Laboratory – UMR 6070 University of
Nice-Sophia Antipolis / CNRS.
www.i3s.unice.fr/~map/WEBSPORTS/Documents/
2003a2005/SSMsemantics.pdf

Bauschat, M., Mönnich, W., Willemsen, D., and Looye,
G. (2001): Flight testing Robust Autoland Con-
trol Laws. In Proceedings of the AIAA Guidance,
Navigation and Control Conference, Montreal CA.

Benveniste A., Caspi P., Edwards S.A., Halbwachs N., Le
Guernic P., and Simone R. (2003): The Synchron-
ous Languages Twelve Years Later. Proc. of the
IEEE, Vol., 91, No. 1. Download:
www.irisa.fr/distribcom/benveniste/pub/synch_Proc
IEEE_2002.pdf

Dressler I. (2004): Code Generation From JGrafchart
to Modelica. Master thesis. Supervisor: Karl-Erik
Arzen, Department of Automatic Control, Lund In-
stitute of Technology, Lund, Sweden.
www.control.lth.se/documents/2004/5726.pdf

Dymola (2009). Dymola Version 7.3. Dassault Systèmes,
Lund, Sweden (Dynasim). www.dymola.com/.

Elmqvist H., Otter. M., Henriksson D., Thiele B.,
Mattssson, S.E. (2009): Modelica for Embedded
Systems. In Proc. of Modelica’2009 Conference,
Como, Italy.
www.modelica.org/events/modelica2009

Franke R., Casella F., Otter M., Proelss K., Sieleman M.,
Wetter M. (2009): Standardization of thermo-fluid
modeling in Modelica.Fluid 1.0. In Proc. of Modeli-
ca’2009 Conference, Como, Italy.
www.modelica.org/events/modelica2009

Harel, D. (1987): Statecharts: A Visual Formalism for
Complex Systems. Science of Computer Program-
ming 8, 231-274. Department of Applied Mathemat-
ics, The Weizmann Institute of Science, Rehovot,
Israel. www.inf.ed.ac.uk/teaching/courses/seoc1/-
2005_2006/resources/statecharts.pdf

Lynch N., Segala R., and Vaandrager F. (2002): Hybrid
I/O Automata. MIT Laboratory for Computer
Science, techreport, MIT-LCS-TR-827b. Download:
theory.lcs.mit.edu/tds/papers/Lynch/HIOA-final.ps

Malmheden M., Elmqvist H., Mattsson S.E., Henriksson
D., and Otter M. (2008): ModeGraph - A Modelica
Library for Embedded Control Based on Mode-
Automata. B. Bachmann (editor), in Proc. of Mod-
elica’2008 conference, Bielefeld, Germany.
www.modelica.org/events/modelica2008/Proceedin
gs/sessions/session3a3.pdf

Maraninchi, F. and Rémond, Y. (2002): Mode-
Automata: a New Domain-Specific Construct for
the Development of Safe Critical Systems. www-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 373

verimag.imag.fr/~maraninx/SCP2002.html

Modelica (2009). Modelica Language Specification 3.1.
www.modelica.org/documents/ModelicaSpec31.pdf

Mosterman P.J., Otter M., and Elmqvist H. (1998): Mod-
eling Petri Nets as Local Constraint Equations
for Hybrid Systems Using Modelica. In Proceed-
ings of SCS Summer Simulation Conference, pp.
314-319, Reno, Nevada, July.
www.modelica.org/publications/papers/scsc98fp.pdf

NuSMV (2009): A symbolic model checker.
nusmv.irst.itc.it.

Otter, M., Årzén, K.-E., Dressler, I. (2005): StateGraph -
A Modelica Library for Hierarchical State Ma-
chines. Proceedings of the 4th International Modeli-
ca Conference. TU-Hamburg-Harburg, Germany.
www.modelica.org/events/Conference2005/online_
proceedings/Session7/Session7b2.pdf

Stateflow (2009):
www.mathworks.com/products/stateflow

Appendix

A1 Mapping StateGraph to Modelica

In this section it is sketched how a StateGraph model
is mapped to Modelica. This section is based on the
implementation technique used in (Mosterman et. al.
1998, Malmheden et. al. 2008, Otter et. al. 2005):
Steps, Transitions, and Parallel components are
mapped to Boolean equations. These equations are
handled as any other Modelica equations, e.g., for
the code generation the equations are sorted and
therefore the evaluation sequence of a StateGraph
model and/or of a hybrid system is automatically
determined. Therefore, defining how the StateGraph
elements are mapped to Boolean equations defines
automatically also the semantics of hybrid systems
built by StateGraph and other Modelica models. The
mapping algorithm starts with a sketch of the used
interfaces between the elements:

A Step component has a vector of connectors
called “Step_in” in order to connect from transitions
to a step, and a vector of connectors called “Step_out
to connect from a Step to Transitions.

A Transition component has a (scalar) connector
called “Trans_in” to connect from a Step to a Transi-
tion and a (scalar) connector called “Trans_out” to
connect from a Transition to a Step.

Only unary connections are allowed, i.e., exactly
one connection must be made between one element
of a vector of connectors and a scalar connector. The
connector classes use pair-wise the same variables,
but with different causalities (with exception of
“node”), as shown in the next table:

connector
Step_out

connector
Trans_in

 output input Boolean available
 input output Boolean fire
 output input Boolean checkLoop

Node node

connector
Trans_out

connector
Step_in

 output input Boolean fire
 output input Boolean checkLoop
 input output Boolean checkUnary

Node node

record Node
 Boolean suspend;
 Boolean resume;
 function equalityConstraint
 input Node node1;
 input Node node2;
 output Real residue[0];
 algorithm
 end equalityConstraint;
end Node;

The meaning is the following: When an element of
the “Step_out” vector at a Step is connected to the
“Trans_in” connector of a Transition, then the sig-
nals “available, checkLoop” are computed in the
Step and are communicated to the Transition. On the
other hand, the signal “fire” is computed in the Tran-
sition and communicated to the Step. The meaning
of “node” is explained in section A2.

When input/output prefixes are used in a Modeli-
ca connector, then block diagram semantics applies
for a connector (e.g., only one signal can be con-
nected to an input). Since connectors “Step_out” and
“Trans_in” have both input and output variables,
only unary connections are possible, as desired. The
basic form of “Trans_out” and “Step_in” has either
only “output” or “input” variables and therefore un-
ary connections are not guaranteed. For this reason,
the dummy variable “checkUnary” is introduced
with opposite input/output prefixes. Now, only unary
connections are here possible too2.

A Transition is basically defined by the following
equations, depending on the options that have been
selected in the parameter menu:

Equations of a Transition component

Immediate transition:
fire = condition and trans_in.available;

Delayed transition:
enableFire = condition and

2 The alternative to use an assert with cardinality is not
possible, because the resume connector is conditional and
then it cannot be referenced in an assert.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 374

 trans_in.available;
when enableFire then
 t_next = time + waitTime;
end when;
fire = enableFire and time >= t_next;

Propagation of signals (in both cases):
trans_in.fire = fire;
trans_out.fire = fire;

Basically, the equations state that variable fire = true,
if (1) the fire condition “condition” is true and (2) if
the preceding step is active (trans_in.available
=true). For a delayed transition, additionally a time
delay is introduced. The “fire” variable is then re-
ported to the preceding and the succeeding steps.

A Step is basically defined by the following eq-
uations:

Equations of a Step component

Set active flag:
newActive =
 if node.resume then oldActive
 else anyTrue(step_in.fire) or (active
 and not anyTrue(step_out.fire))

 and not node.suspend;
active = pre(newActive);
when node.suspend then
 oldActive = active;
end when;

Set available flag:
for i in 1:size(step_out,1) loop
 step_out[i].available = if i == 1
 then active and not node.suspend
 else step_out[i-1].available and not
 step_out[i-1].fire and not
 node.suspend;
end for;

The function anyTrue(..) returns true, if at least
one element of the input vector is true. In a Step, the
next value of “active” is computed (called: “newAc-
tive”). It is assigned in the next event iteration to the
actual value, “active”, via “active=pre(newActive)”.
The equations state, that the Step becomes active in
the next iteration when one of the transitions con-
nected to the step_in connectors fire. The Step re-
mains active if it was active and no transition con-
nected to one of the step_out connectors fire.

If the Step is used inside one or more Parallel
components, the state of the nearest enclosing Paral-
lel component is propagated via the record “node”.
Details are given in section A2. At this stage it is
sufficient to know that if node.suspend = true, then
an enclosing Parallel component was suspended and
if node.resume = true, then an enclosing Parallel
component was entered via the resume port. If a Pa-
rallel component is suspended, the current value of
“active” is saved in “oldActive”, and “newActive” is

set to false. If a Parallel component is resumed, “ne-
wActive” is set to the saved value of “oldActive”.

The “active” flag of a Step is reported to the tran-
sitions connected to this Step in the following way:
If a step has only one outgoing transition:

step_out[1].available =
 active and not node.suspend

Therefore, the “available” flag propagated to the
Transition is set to true, if the step is active and if an
enclosing Parallel component is not suspended.

If a Step has several outgoing transitions, two or
more might fire at the same time instant. The transi-
tion that is connected to the lowest index of the
step_out connector vector is defined to have highest
priority. For example, if a Step has two outgoing
transitions, then the “available” flag of step_out[1] is
set as previously. The “available” flag of step_out[2]
is only set to true, if the transition that is connected
to step_out[1] does not fire and no enclosing Parallel
component is suspended.

The equations for a Parallel component are han-
dled similarly to a Step. For space reasons, they are
not listed here.

A2 Guaranteeing graph properties and propaga-
tion of suspend/resume flags

In the previous section A1 it is
sketched how the basic elements
are defined by Boolean equations
and how only 1:1 connections can
be made. Still some properties of
a StateGraph are not yet guaran-
teed. For example, two initial
steps might be defined in a sim-
ple StateGraph model (see Figure
to the right). This gives perfectly
legal Modelica code, but the si-
mulation would be wrong. We will now discuss how
the basic graph properties are guaranteed and how
the suspend/resume information of Parallel compo-
nents is propagated:

Record “node” in the connectors, see definition in
section A1, is an “overdetermined record” due to
function “equalityConstraint()”, see (Modelica 2009,
section 9.4). The idea is the following: The overde-
termined record R in a connector has more variables
than permitted by a “balanced model”. When two
connectors c1 and c2 are connected, then the desired
connection equations are c1.R = c2.R. If a loop of
connected components is present, this might give too
many equations (= more equations as unknowns). If
this is the case, exactly for one connection set in a
loop the equations “0 = R.equalityConstraints(c1.R,

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 375

c2.R)” have to be used instead of the desired equa-
tions “c1.R = c2.R”. For example, a transformation
matrix has 9 redundant elements describing 3 inde-
pendent variables. In this case, the equalityCon-
straint(...) function has to return the 3 constraint equ-
ations between the 9 redundant variables.

In order that a translator can select which connec-
tion equations to use, built-in operators are provided
to construct an undirected dependency graph of the
connectors. For example, if a component has two
connectors ca and cb, a definition of the form:

Connections.branch(ca.R, cb.R);

must be present in the component. This definition
states that cb.R is equal to ca.R in this component.
One connector must be defined as root of the graph.
As a result, a set of undirected graphs is constructed.
The translator has to arbitrarily cut a graph at con-
nection sets, so that a spanning tree is constructed. In
the “tree”, connection equations of the form c1.R =
c2.R are used. For all connectors that have been re-
moved to arrive at a “tree”, the connection equations
0=R.equalityConstraint (c1.R, c2.R) are used.

In the StateGraph library, suspend and resume
flags are stored in an overdetermined record “Node“.
The Node.equalityConstraints(..) function returns a
vector with size zero. Therefore, no equations are
generated for connections that have been removed to
arrive at a “tree”. When the root of a graph is appro-
priately selected, then the suspend/resume flags are
just propagated to all components in this graph, even
if loops are present (since the loops are cut, and no
connection equations for node variables are intro-
duced at these cuts).

The operators available in Modelica 3.1 are not
sufficient and two additional ones had to be intro-
duced: “Connections.uniqueRoot(R, message)”
states that “R” is a unique root of the graph. If this
operator is used, the corresponding graph must have
exactly one such definition. The second argument
“message” shall be reported in the error message, if
more than one root is defined.

The usage of “uniqueRoot(..)” and of “branch(..)”
are sketched in Figure 15: Roots are defined at the
initial step (root1) and at the entry port of every
branch of a Parallel component (root2, root3). Then
“branches” are defined along the corresponding state
machine structure. If any such connection graph has
more then one root, the StateGraph graph is wrong.
E.g., if two initial steps would be defined, or if a
branch of a Parallel component would branch out
into the “outer” loop, the connection graph would
have two roots which would trigger an error.

With the new built-in operator “I = Connec-
tions.uniqueRootIndices(Ra, Rb, message)”, infor-

mation about the connection structure of a Parallel
component can be obtained: Ra is a vector of roots
and Rb is a vector of other overdetermined records.
The function returns an Integer vector “I”. I[i],
i=1:size(Rb,1), defines that there is a path from root
I[i] to record Rb[i]: Ra[I[i]] → Rb[i]. It is an error if
such a path does not exist. The remaining elements
of vector I are the indices of Ra that do not have a
path to an element of Rb. Due to the construction,
the function returns an error, if there are no paths to
all exit ports. So, every branch that ends at an exit
port, must start at an entry port of the same Parallel
component.

Figure 15: 3 virtual connection graphs to verify State-
Graph properties and to propagate resume/suspend flags.

Typical usage of this function:

 EntryPort entry [nEntry];
 ExitPort exit [nExit];
 Integer indices[nEntry];
equation
 Connections.uniqueRoot(entry, "...");
 indices = Connections.uniqueRootIndices
 (entry, exit, "...");

Example: The function returns the following values
for the graph in Figure 15:
nEntry=2, nExit=2,
indices[1] = 1, indices[2] = 2

The meaning is that there is a path from en-
try[indices[1]] (connected to Step s2) to exit[1]
(connected to Step s3), and a path from en-
try[indices[2]] (connected to Step s4) to exit[2]
(connected to Step s5).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 376

A3 Avoiding infinite transition loops

The basic semantics of a StateGraph graph is that at
one time instant, during event iteration, all transi-
tions fire, until none of the transitions can fire any-
more. In order that no infinite looping can occur,
there must be at least one delayed transition in
“every loop”, since at a delayed transition the loop-
ing stops at the current time instant.

In order to verify this property, the Boolean flag
“checkLoop” is propagated through the connection
structure, see connectors in section A1. At delayed
transitions and at steps that do not have an input
transition, this flag is initialized. If there is no de-
layed transition in a loop, an algebraic system of
Boolean unknowns occurs. Since this system of equ-
ations cannot be solved, an error is triggered. In the
connectors, “checkLoop is defined with the new an-
notation “BooleanLoopMessage = string”. If the cor-
responding variable appears in an algebraic loop
with Boolean unknowns, the BooleanLoopMessage
is included in the error message, in order to get mea-
ningful error reporting.

A4 Automatic connection to next free index

When connecting a Step with a transition, the dimen-
sion of the vector of connectors Step.outPort has to
be increased by one, say to dimension N, and then
the connection has to be performed from
Step.outPort[N] to the scalar transition input port.
Performing this manually is very inconvenient and
error prone. For this reason, in Modelica 3.1 (Mod-
elica 2009, section 17.6) the new annotation “con-
nectorSizing” was introduced, that is used for all
vector connections in the StateGraph library.

Example:

model Step
 parameter Integer nIn=0 annotation(
 Dialog(ConnectorSizing=true));
 StepIn inPort[nIn];
 ...
end Step;

When this model is used and a connection is made to
vector “inPort”, then the tool increments the dimen-
sion nIn by one and performs the connection to this
new index. Therefore, performing connections be-
tween Steps and Transitions is convenient for a user
and only requires dragging a line between the cor-
responding connectors.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 377

