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Abstract

We address a contrastive study between the well
known Multi-Layer Perceptron (MLP) and Radial
Basis Function (RBF) neural networks and a SOM
based supervised architecture in a number of data
classification tasks. Well known databases like
Breast Cancer, Parkinson and Iris were used to
evaluate the three architectures by constructing
confusion matrices. The results are encouraging
and indicate that the SOM based supervised ar-
chitecture generally achieves results as good as the
MLP and slightly higher on some measures than
the RBF network.

1 Introduction

The use of classifer systems in many areas is in-
creasing gradually. Recent advances in the field
of artificial intelligence have led to the emergence
of expert systems and Decision Support Systems
(DSSs) for economics, linguistics, management sci-
ence, mathematical modelling, psychology, etc. Ar-
tificial Neural Networks (ANNs) have been utilized
for improving the classification tasks because of its
property called black-box learning. In fact, they
are one of the popular methods for classification
problems [13] [12].

Compared to most traditional classification ap-
proaches, ANNs are nonlinear, nonparametric, and
adaptive. They can theoretically approximate any
fundamental relationship with arbitrary accuracy.
They are ideally suitable for problems where obser-
vations are easy to obtain but the data structure or
underlying relationship is unknown.

Although there are different types of learning
techniques, this paper proposes the study of su-
pervised learning. The learning system may label
(classification) a set of vectors choosing one be-
tween several categories (classes). There are sev-
eral types of classifiers that have been used with
different degrees of accuracy [28] [21] [20].

Some of our related work in the field of the di-
agnosis has been developed basically by means of
Artificial Neural Networks (ANNs) [9] [10].

The aim of this paper is to test a SOM based su-
pervised architecture ANN and compare it in clas-
sification tasks with two other ANNs known as the
Multi-Layer Perceptron (MLP) and the Radial Ba-
sis Function (RBF) network.

We have compared the SOM based supervised
architecture with the MLP and the RBF networks
as the MLP and RBF neural networks are the two
most widely used within the field of task classifica-
tion. Moreover, the MLP is purely supervised while
the RBF is also a hybrid network with a part of un-
supervised learning. Certain similar characteristics
of the SOM based supervised architecture and the
RBF will allow allow the acquisition of good mea-
sures of the efficiency of our network.

The remaining part of the paper is organized as
follows: First we give a brief description of the net-
works MLP, RBF and a longer description of the
SOM Based Supervised Architecture; Then we pro-
ceed by describing the design of our proposal and
the training of the ANNs by the available data;
Then we continue by describing the subsequent
testing carried out in order to analyse the results;
Finally we draw the relevant conclusions.
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Input data

Figure 1: The architecture of the MLP network (in-
put layer, hidden layer and output layer). The in-
put layer represents the input data (the input data
is described in section 4.1). The usage of a hidden
layer enables the representation of data sets that
are not linearly separable. The output layer rep-
resents the classification result and it contains as
many outputs as the problem has classes, although
here only one neuron is shown. The weights and
the threshold of the MLP are calculated during an
adaptation process.

2 Supervised Architectures

2.1 Multilayer Perceptron

In this study we have used a Multi-Layer Percep-
tron (MLP) network [24] [11][5]. A typical MLP
consists of three layers of neurons: an input layer
that receives external inputs, one hidden layer, and
an output layer which generates the classification
results (see figure 1). Note that unlike other layers,
no computation is involved in the input layer. The
principle of the network is that when data are pre-
sented at the input layer, the network neurons run
calculations in the consecutive layers until an out-
put value is obtained at each of the output neurons.
This output will indicate the appropriate class for
the input data.

Each neuron (see figure 2) in the input and the
hidden layers is connected to all neurons in the next
layer by weighted connections. The neurons of the
hidden layers (see figure 2) compute weighted sums
of their inputs and adds a threshold. The result-
ing sums are used to calculate the activity of the
neurons by applying a sigmoid activation function.

This process is defined as follows:

Neuron j

Activation
function

¢

Transfer
function

Activation

Threshold| %

Figure 2: A neuron in the hidden or the output
layer in the MLP. In the experimentation section
the number of hidden neurons of the MLP will be
established.
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where v; is the linear combination of inputs
Z1,%2, ..., Tp, and the threshold 0; , wj; is the con-
nection weight between the input x; and the neuron
j, and f; is the activation function of the j;, neu-
ron, and y; is the output. The sigmoid function is a
common choice of activation function. It is defined
as:

J0) =1 2)

A single neuron in the MLP is able to linearly
separate its input space into two subspaces by a
hyperplane defined by the weights and the treshold.
The weights define the direction of this hyperplane
whereas the threshold term 6; offsets it from origo.

The MLP network uses the backpropagation al-
gorithm [25], which is a gradient descent method,
for the adaptation of the weights (the backpropa-
gation training parameters are showed in Table 1).
This algorithm runs as follows:

All the weight vectors w are initialized with small
random values from a pseudorandom sequence gen-
erator. Then and until the convergence (i.e. when
the error E is below a preset value) we repeat the
three basic steps:

e The weight vectors w; are updated by

w(t+1) = w(t) + Aw(t) (3)
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e where

Aw(t) = —hIE(t)/Ow (4)

e Compute the error E(t+1).

where t is the iteration number, w is the weight
vector, and h is the learning rate.

The backpropagation MLP is a supervised ANN.
This means the network is presented with input ex-
amples as well as the corresponding desired output.
The backpropagation algorithm adapts the weights
and the thresholds of the neurons in a way that
minimizes the error function F

1 n
E= §Z(dp _yp)2 (5)
p=1

where ¥, is the actual output and d, the desired
output for input pattern p.

The minimization of E can be accomplished by
gradient descent, i.e. the weights are adjusted to
change the value of E in the direction of its nega-
tive gradient. The exact updating rules can be cal-
culated by applying derivatives and the chain rule
(for the weights between the input and the hidden
layer).

2.2 Radial Basis Function Network

In this section, the basic concepts of the Radial
Basis Function (RBF) network are described. Ra-
dial Basis Function Networks are a type of ANN
where the hidden layer is composed of radial-basis
functions which are similar to normal distribution
curves.

The RBF neural network [3] is generally com-
posed of three layers: input layer, hidden layer and
output layer. The input layer feeds the input data
to each of the neurons of the hidden layer. The
hidden layer differs greatly from other neural net-
works in that each neuron represents a data cluster
with a given radius and which is centred at a par-
ticular point in the input space. Each neuron in
the hidden layer calculates the distance from the
input vector to its own center. The calculated dis-
tance is transformed via some basis function and
the result is the output from the neuron. The out-
put from the neuron is multiplied by a constant or
weighting value and fed into the output layer. The

output layer consists of as many classes or outputs
as the problem has. It acts to sum the outputs of
the previous layer and to yield a final output value
[18] [7]. A generic architecture of an RBF network
with p input and n hidden neurons is illustrated in
figure 3, where z; are data points, o(||x — z¢||) are
the RBFs, ! are the centres of the basis functions,
and w; are the weights. A very common RBF is
the Gaussian RBF:

|z — 2|2

2
207

),i=1,2,.. N
(6)

The activity F(X) of the output neuron is given
by:

¢(l|lz = 2'[]) = exp(~

N
F(X)=ijso(llx—ﬂfi|\) (7)

The learning process used in the RBF network is
done in two phases thus calculating the parameters
of the hidden layer and output layer (note that the
input layer does not perform calculations at all). In
this way, we can speed up the learning process con-
siderably compared to the MLP backpropagation.
First of all, for the hidden layer, we calculate the
number of centres of the basis functions or centroids
(figure 3 and 4), using the K-means algorithm. The
number of these centroids depend on each case the
problem addressed. Table 2 and the explanation
in the experimental section help to understand this
process. In the second phase we proceed to the
training of the output neurons which is an easy
task since we know the values. The calculation is
then done by simply applying the equation 7.

2.3 SOM Based Supervised Archi-
tecture

This section proposes a ”Supervised SOM Based
Architecture” (see Figure 5). The hidden layer of
an ANN is one of the most complex parts to design
in an artificial neural network. Here we propose
to use a Self-Organizing Map (SOM) as a hidden
layer. Some previous works where similar models
are implemented are [27] [6] [23].

In [23], Piela represents a very exciting research
where a modern approach to imputation is being
discussed. It is said that many traditional methods
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Figure 3: The architecture of the RBF network (in-
put layer, hidden layer and output layer). The in-
put layer represents the input data (the input data
is described in the experiment section). The out-
put neuron activity is reflected by equation 7. As
in the case of the MLP the output layer of the RBF
network consists of as many neurons as the prob-
lem has classes, although here only one neuron is
shown.

of imputation use some kind of classification trying
to get observations with missing values into as ho-
mogenous groups as possible. SOM is an iterative
method for classification and can thus also be used
in finding the imputation classes. Therefore, im-
putations are made within clusters in several ways
which can be based on both traditional and neu-
ral methods. The main emphasis of this approach
is to aid methodological development of knowledge
discovery, data analysis, and modelling in general.
The SOM based architecture discussed in this pa-
per consists of two layers (actually two separate
but connected neural networks), i.e. a hidden layer
and an output layer. The hidden layer consists of
a Self-Organizing Map (SOM) [15] which is fully
connected with forward connections to the output
layer. The output layer consists of a grid of neurons
that are adapted by the delta rule to get an activity
that converges to the provided desired output.

2.3.1 The Hidden Layer

The hidden layer consists of a version of the SOM
that works as follows. It consists of an I x J grid
of a fixed number of neurons and a fixed topology.
Each neuron n;; is associated with a weight vector
w;; € R™. All the elements of the weight vectors

Figure 4: The radial basis functions have a local
character since they are functions that reach a level
close to their maximum when the input pattern
X(n) is close to the centre of the neuron. When the
pattern moves away from the centre, the function
value is tending to the minimum value. The out-
puts of the radial basis neural networks are there-
fore a Gaussian linear combination, where each of
the terms in the linear combination is activated for
a particular portion of space defined by the input
patterns.

are initialized by real numbers randomly selected
from a uniform distribution between 0 and 1, after
which all the weight vectors are normalized, i.e.
turned into unit vectors.

At time t each neuron n;; receives an input vector
z(t) € R™.

The net input s;; is calculated using the standard
cosine metric

_ () - wi(t)
[|z(@)[][wi; O
The activity y;; in the neuron n;; is calculated by

using the softmax function [4]

(si5(t)™ _ )

maXyy (Suv(t))

si;(t) (8)

Yij(t) =

where u and v ranges over the rows and the columns
of the neural network and m is the softmax expo-
nent.

The neuron ¢ associated with the weight vector
w.(t) most similar to the input vector x(¢), i.e. the
neuron with the strongest activation, is selected:

¢ = arg max, {|z(¢) - we(t)[} (10)
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Figure 5: Supervised SOM Based Architecture. For
simplicity reasons, the output layer is shown with
only one neuron as in the case of the MLP and
the RBF networks. However, in reality we use as
many neurons in the output layer as the problem
has classes. For example, one of the databases in
our experiments section, the iris database, has 3
classes and in that case the output layer therefore
has three neurons.

The weights w;;;, are adapted by

wijk(t+1) = wizk(t) + a(t)Gije(t) [zx(t) — wijr(t)]
(11)
where 0 < a(t) < 1 is the adaptation strength with
a(t) — 0 when t — oo.
The neighbourhood function is:

lre—rijll

Gijelt) =~ 270

(12)

where r. € R? and rij € R? are location vectors
of neurons ¢ and n;;, G is a Gaussian function
decreasing with time. ¢ is the neighbourhood
radius which at time ¢ is updated by multiplying
o at time t — 1 with 0.99 as it is showed in table 3.

All weights w; ;(t) are normalized after each adap-
tation.

2.3.2 The Output Layer

The output layer consists of an I x J grid of a
fixed number of neurons and a fixed topology.
Each neuron n;; is associated with a weight vector
wi; € R™. All the elements of the weight vector
are initialized by real numbers randomly selected
from a uniform distribution between 0 and 1, after

which the weight vector is normalized, i.e. turned
into unit vectors.

At time t each neuron n;; receives an input vector
x(t) € R™.

The activity y;; in the neuron n;; is calculated using
the standard cosine metric

__x(t) - wi; (1)

[ ()]s ()]
During the learning phase the weights w;j;, are
adapted by

Yij (t) (13)

wiji(t+ 1) = wiji(t) + By (t) [dij (1) — yi; ()] (14)

where (3 is the adaptation strength and d;;(t) is the
desired activity for the neuron n;;.

3 Experimentation

3.1 Methods

The databases used in this study are Breast Can-
cer, Parkinson and Iris. These databases are taken
from the University of California at Irvine (UCI)
machine learning repository [1] [17] [16] and are
used for training and testing in the experiments.
The main reason to use these particular datasets is
that they are well known to professionals of artifi-
cial intelligence.

We have used Matlab and in particular the Neu-
ral Network toolbox for our experimentation with
MLP and RBF. The reason for using matlab is due
to the wide scope of problems addressed and the ef-
fectiveness conducted with these [19] [26] [8]. The
SOM Based Supervised Architecture has been im-
plemented under Ikaros [2].

The method to evaluate the three methods is
to obtain some measures as classification accuracy,
sensitivity, specificity, positive predictive value,
negative predictive value and a confusion matrix.
A confusion matrix [14] contains information about
actual and predicted classifications done by a clas-
sification system.

Moreover, we have also evaluated the learning
process regarding how fast every method learns.

For the construction of the MLP architecture we
have proceeded as follows:
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Figure 6: Learning speed in the MLP is slow since
it uses the backpropagation method. Generally the
backpropagation method always provides a very
high precision. The drawbacks are the slowness in
learning as well as the risk of over fitting the data
learned.

a) Layer 1 corresponds directly to the input
vector, that is, all the parameters/fields of the
input record.

b) Layer 2 (the hidden layer). The number of
hidden neurons for this layer is the most elabo-
rated question in the network’s architecture. This
number represents a trade off between performance
and the risk of over fitting. In fact, the number
of neurons in a hidden layer will significantly
influence the ability of the network to generalize
from the training data to unknown examples [22].
By doing some experiments we discovered that:

e With a low number of neurons for this layer
the training and test sets performed badly;

e With a high number of neurons the training
set performed good. However there is a high
risk of over fitting;

e The optimal solution for this layer has been
found to be 24 neurons for Breast Cancer, 12
neurons for Parkinson and 5 neurons for Iris.

c¢) Layer 3 (the output layer) (Classification). It
has two outputs for Breast Cancer and Parkinson
and three outputs for Iris.

The learning algorithm used is backpropagation
with adaptive learning rate, constant momentum

Jand an optimized algorithm based on the gradient

descent method. The backpropagation training pa-

|rameters are showed in table 1.

Table 1: Backpropagation training parameters.

Parameters Value
Learning rate 0.01

Adaptive learning rate 0.1

Constant momentum 0.2

Epochs 100-1000-10000
Minimum performance gradient 6_110

The main parameter we must adjust in order to
get a good accuracy with an RBF network is the
maximum number of centres. This is a parameter
of the center selection algorithm, and is the maxi-
mum number of centers/RBFs that is chosen.

We followed the recommendation to set an up-
per limit between 60% and 70% for the proportion
between the number of RBFs and the number of
neurons in the input layer. The parameter spread,
which is the spread of radial basis functions, helps
to construct the hidden layer. The larger the spread
is, the smoother the function approximation will
be. Spread value represents a compromise between
a low value which means low accuracy and a high
value with over fitting risk and the possibility that
the network may not generalize well.

The RBF network training parameters are shown
in table 2.

Table 2: RBF network training parameters.

Parameters Value
Learning rate 0.01

Adaptive learning rate 0.1

Spread 0.8

Epochs 100-1000-10000
Minimum performance gradient 6_110

The SOM Based Supervised Architecture train-
ing parameters are showed in table 3.

Frequently, the complete data set is divided into
two subsets: the training set and the test set. Here,
the training set is used to determine the system
parameters, and the test set is used to evaluate
the diagnosis accuracy and the network general-
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Table 3: SOM Based Supervised Architecture.

Parameters Value
Learning rate 0.1

Learning rate Decay 0.99

Learning rate Minimum 0.01
Neighbourhood Radius (o) 15
Neighbourhood Decay 0.99
Neighbourhood Minimum 1

Adaptation Strength 0.35

Epochs 100-1000-10000
Minimum performance gradient e}lﬂ

o
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Figure 7: Learning speed in RBF is faster than in
the MLP. This is because the RBF network already
has some centroids defined due to predefined train-
ing which saves time.

ization. Cross-validation has been widely used to
assess the generalization of a network. The cross-
validation estimate of accuracy determining by the
overall number of correct classifications divided by
the total number of examples in the dataset.

1
Accey = = 3 8(1(Si,2:), i
CCcy n 5( (Szaxz)ayz)

z; €S

(15)

where n is the size of the dataset S, x; is the
example of S, y; is the target of x;, and S; is the
probable target of x; by the classifier. Therefore:

5(@',3‘)—{ (1) if i€ N(t)

otherwise (16)

Specifically, for this study we have applied a
five-fold cross-validation method for the perfor-
mance assessment of every network. The data has
been divided in five sets (S1, S2, S3, S4, S5) and

Squared Ermor

] ey
] I

f] p—

Figure 8: Learning speed in the SOM Based Super-
vised Architecture is similar as for the RBF net-
work and it is faster than the learning speed of the
MLP.

the five experiments performed were:

Experiment 1 - Training: S1, S2, S3, S4; Test: S5
Experiment 2 - Training: S1, S2, S3, S5; Test: S4
Experiment 3 - Training: S1, S2, S4, S5; Test: S3
Experiment 4 - Training: S1, S3, S4, S5; Test: S2
Experiment 5 - Training: S2, S3, S4, S5; Test: S1

The sets of data used for the process of construct-
ing the model (the training data) were of 565, 195
and 150 registers for Breast Cancer, Parkinson and
Iris respectively. The other set of data used to vali-
date the model (the test data) was of 113, 39 and 30
registers also for Breast Cancer, Parkinson and Iris
respectively. The test data are chosen randomly
from the initial data and the remaining data form
the training data. The method is called 5-fold cross
validation since this process has been performed
five times. The function approximation fits a func-
tion using the training set only. Then the function
approximation is asked to predict the output values
for the data in the testing set. The errors it makes
are accumulated to provide the mean absolute test
set error, which is used to evaluate the model. The
results are presented using confusion matrices.

3.2 Results

Table 4 shows the confusion matrix for all the
classifiers with a two classes problem: Breast
Cancer database. Classification accuracy, sensi-
tivity, specificity, positive predictive value and
negative predictive value can be defined (all the
equations 17-21 show 5 values for MLP, RBF and
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the SOM based architecture respectively) by using
the elements of the confusion matrix (table 4).

Table 4: Definition of the confusion matrix with
the value for every measure for the MLP, the RBF
and the SOM Based Supervised Architecture clas-
sifiers with the Breast Cancer database. It has two
classes: Possitive (P) and Negative (N). True posi-
tive (TP); False negative (FN); False positive (FP);
True negative (TN)

MLP RBF SOM
Act Predicted Predicted Predicted
P N P N P N
P 184 7 151 | 56 165 | 35
(TP) | (FN)
N 13 296 46 | 247 30 | 268
N | (FP) | (TN)
Classification accuracy(%) =
—— TPTN 4100 = 96%, 79.6%, 86.9% (17)
TPYFP+FNTTN = 96%, 79.6%, 86.9%
Sensitivity(%) =
—LP %100 = 96.3%, 72.9%, 82.5% (18)
TP+FN = 9D/, [£.970, 82.970
Speci ficity(%) =
TN __ %100 = 95.8%, 84.3%, 89.9% (19)
FP+TN = 09870, 8970, 89,970
Positive predictive value(%) =
—LL X100 = 93.4%, 76.6%, 84.6% (20)
TP+FP = 99270, {D.570, 52870
Negative predictive wvalue(%) =
T (21)

N
mxloo = 97.7%, 81.5%, 88.4%

Table 5 shows the confusion matrix for all the
classifiers with a two classes problem: Parkinson
database. Classification accuracy, sensitivity,
specificity, positive predictive value and negative
predictive value can be defined (all the equations
22-26 show 5 values for MLP, RBF and SOM re-
spectively) by using the elements of the confusion
matrix (table 5).

Classification accuracy(%) =

____TP4TN _ 0 0 0
TP+FP+FN+TNX1OO = 84.6%, 82.1%, 81.5%

(22)

Table 5: Definition of the confusion matrix with
the value for every measure for the MLP, RBF and
SOM classifiers with the Parkinson database. It has
two classes: Possitive (P) and Negative (N). True
positive (TP); False negative (FN); False positive
(FP); True negative (TN)

MLP RBF SOM
Actual | Predicted Predicted Predicted
P N P N P N
P 132 | 15 147 | 35 129 | 18
N 15 33 0 13 18 30
Sensitivity(%) =
—LP %100 = 89.8%, 80.8%, 87.8% (23)
TP1FN = 89.8%, 80.8%, 87.8%
Speci ficity(%) =
LN %100 = 68.8%, 100%, 62.5% (29)
FP+TN = 68.8%, 100%, 62.5%
Positive predictive value(%) =
L %100 = 89.8%, 100%, 87.8% (25)
TP+FP A 0, ©f-87
Negative predictive value(%) = (26)

%xwo — 68.8%, 27.1%, 62.5%

Table 6 shows the confusion matrix for all
the classifiers with a three classes problem: Iris
database. Since it is a different classification
problem from the two previous examples, with
three output, we only show the equation of Clas-
sification accuracy (with 3 values for MLP, RBF
and SOM respectively) by using the elements of
the confusion matrix (table 6).

Classification accuracy(%) =

___ TP4TN _ o - )
TPFFPFNTTN X100 = 91.7%, 73.3%, 87.6%

(27)

4 Conclusion

In this paper we have evaluated the performance of
the SOM based supervised architecture. To evalu-
ate the effectiveness of this ANN architecture, we
compare it with MLP and RBF networks in classifi-
cation tasks. The supervised SOM based architec-
ture has similar characteristics as the RBF network,
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Table 6: Definition of the confusion matrix with
the value for every measure for the MLP, RBF and
SOM classifiers with the Iris database. It has three
classes: Iris-virginica (A), Iris-versicolor (B) and
Iris-setosa (C)

MLP RBF SOM

Predicted Predicted Predicted

A|B|C|A|B|C|A|B]|C
Al41 |6 | 0|37 3 ]10(41| 7 |0
B|6 39|01 9 [42| 9|9 |43]| 0
C| 3|0 15045 |3]01] 0150

and could indeed be seen as an RBF network that
automatically finds a suitable number of and suit-
able locations of RBFs in its hidden layer. Thus a
fundamental aspect of this ANN architecture is the
use of a SOM as hidden layer. An important aspect
of the SOM based architecture is that it helps the
designer to get rid of the difficulty and cost of the
design of the hidden layers.

The results presented by these three methods
(MLP, RBF and SOM based supervised architec-
ture) achieve a high precision level of the confusion
matrix regarding the different measurement param-
eters (accuracy, sensitivity, specificity, positive pre-
dictive value and negative predictive value).

With the Breast Cancer database the accuracy
of the MLP, RBF and SOM based supervised ar-
chitecture were very good, especially MLP which
showed a high degree of certainty of 96%.

The SOM based architecture accomplish better
results than the RBF network. This can be ob-
served not only in the values of the classification
accuracy but also in the rest of them. In the case
of sensitivity there was a difference of around 10%
between the RBF network and the SOM based su-
pervised architecture.

These results as well as those with the Parkin-
son’s and the iris databases are very encouraging
because the SOM based supervised architecture is
usually better than the RBF and even if its accu-
racy is a bit lower than the MLP, it learns faster
than the latter.

Furthermore, some of the parameters with the
SOM based architecture reach very high accuracy
such as ” Classification accuracy”, ” Sensitivity” and
”Negative predictive value”.

The advantages of the supervised SOM archi-

tecture are based on both the accuracy, which is
not far behind that of the MLP, and especially
the faster learning. These benefits will be recom-
mended for use either in problems with a lot of data
or with many attributes, where data relationships
may be complex. A future line would be to ap-
ply this method in such problems as an iterative
process leading to features reduction in order to
simplify the dependency relationships.
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