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Abstract: The UK target to significantly reduce CO2 emissions from housing has been challenged by the fact 
that 80% of the UK housing stock existing in 2030 has already been built. Energy-efficiency technologies for 
existing housing are developed in attempt to meet this target, e.g. fabric upgrades, ventilation systems, etc, but 
the interrelationship between the technical and social aspects of using these technologies is not fully understood. 
From the household perspective, a clear financial case in addition to other intangible benefits should exist to 
create high demand for these technologies. On the other hand, many technological interventions are still in the 
development stage and according to the technology diffusion theory there will be a d elay in adopting these 
technologies on the expected scale. This study will use system dynamics modelling to investigate the 
relationship between the supply and demand of energy-efficiency technologies for existing housing. A dynamic 
hypothesis will be set to analyse the interrelationships among the controlling variables of technologies 
development over a p eriod of time. This paper introduces the main structure of the study and discusses the 
technique adopted to model the identified dynamic hypothesis.  
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1. Introduction 
The housing industry in the UK is experiencing its transition period from traditional to energy 
efficient. The call for energy efficient houses has been intensified in the light of the high 
demand for energy. The growth of energy prices increases the pressure on hous eholders to 
find solutions to the energy bills, and on t he industry to develop more energy efficient 
technologies for houses. The introduction of UK targets to reduce CO2 emissions has also a 
great effect on both the householders and developers. In the UK, approximately 26% of CO2 
emissions are attributable to the domestic sector[1]. At least 70% of the UK housing stock that 
will be present in 2050 have been already constructed before year 2005[2]. Therefore, 
modifications to the existing housing are essential to meet the targets of the UK Climate 
Change Bill. However, it is not only energy efficiency technologies that will achieve the CO2 
emissions target, but the changes to occupants’ behaviour will also have a great influence to 
accommodate these modifications.  
 
Despite the growing development in Energy Efficiency technological interventions, the 
uptake of these technologies is not great enough to show that there is a significant reduction in 
energy consumption and CO2 emissions. Among the reasons for this market failure might be 
that the costs and benefits of refurbishment options are often complex to determine[3]. 
Achieving the target of CO2 emissions will require large investments in the stages of energy 
generation, transmission, conversion and end-use, together with measures to control demand. 
Oreszczyn and Lowe[4] indicated that this necessitates the need for research to help formulate 
and evaluate policy, to measure progress, and to help industry to deliver.  
 
2. Methodology 
A previous study, ‘TARBASE’[5], investigated a number of technologies in the field of end 
use technology, building fabric and energy supply technologies to achieve reductions in CO2 
emissions. Three intervention sets were identified with their effect on CO2 emissions 
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attributable to two selected dwelling types, namely; ‘comprehensive’, ‘complete’, and 
‘limited’ intervention sets. A Whole Life Cost (WLC) approach has been conducted to 
investigate the cost implications for the uptake of these intervention sets by householders. The 
study concluded that there is no clear financial case over a 25 year horizon for householders 
to invest in the proposed interventions. The results also revealed the need for new policy 
approaches to overcome the financial and non-financial hurdles for a mass uptake of Energy 
efficiency technologies[6]. This paper builds on the results of TARBASE and investigates in a 
wider context the development and diffusion of energy efficiency technologies for housing. 
Variables affecting different policies to reduce CO2 emissions such as subsidy, rising energy 
price, R&D investment from the industry, etc. are considered. Technology diffusion theory 
reveals that technological development and implementation includes a long delay to be fully 
diffused. In addition, effective implementation of technological innovations requires an 
understanding of the complexity underpinning the process and the inherent uncertainty about 
the actual performance of low energy housing[4]. The adoption of innovative technologies also 
requires reliable performance indicators to be employed to ascertain the condition of such 
processes. Models that simulate the implementation of new technologies need to consider the 
effect of experimentation, iteration and refinement of activities that are reliant on volatile 
information[7, 8]. These models should consider that many variables are time dependent and/or 
carry a high level of uncertainty. It is understood for example that the efficiency of new 
technologies is expected to rise by further development and experience in use. In addition, it 
must be stressed that the emissions savings are only realized when behavioural change 
accompanies the technological deployment.  
 
Different motivational frames might alter the appraisal of costs and benefits related to a 
specific pro-environmental behaviour. Understanding the needs satisfied by the purchase of 
an energy efficient technology would allow their costs to be compared to the cost of other 
purchases satisfying other needs[9]. It is more likely that only a part of the family budget 
currently allocated for household improvements would actually be spent on energy efficiency 
improvements, even for those informed individuals with strong pro-environmental attitudes. 
Additionally, there is no financial incentive associated with the investment if reduction in 
utility expenditure (at current energy process) is taken as the sole benefit. The deployment of 
deep cut intervention sets are likely to result in other benefits, such as improved comfort and 
increased asset value of the property. It is feasible that when all benefits are aggregated, 
financial incentives will appear for householders and this needs to be explored further[5, 9]. 
 
In conclusion, the emissions reduction targets required to address the climate change agenda 
are only likely to be met through a combination of demand and supply side interventions. 
Identifying technological solutions for achieving a reduction in UK domestic dwellings is 
complex. Assumptions have to be made regarding for instance construction, occupancy and 
occupant behaviour in order to define the baseline for assessment of technological 
interventions which themselves are often interdependent. This would suggest that stressing 
the ethical or environmental appeal of an energy saving technology will only have limited 
effect if the technology is perceived by the consumer as having a high capital cost. In 
response to the challenge posed by this complexity, a System Dynamics (SD) based model is 
proposed in this research. It can investigate policies that affect the development and diffusion 
of energy efficiency technologies related to the housing industry during its transition period, 
considering both the demand and supply sides. SD modelling can identify the causal structure 
underlying the behaviour of complex systems, simulate the behaviour of time dependent 
variables and assess the usefulness of different energy policies such as energy tax and R&D 
subsidy for diffusing energy efficiency technologies.  
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SD modelling involves the following steps[10]: 
 

1. Articulating the problem to be addressed 
2. Formulating a dynamic hypothesis or theory about the causes of the problem 
3. Formulating a simulation model to test the dynamic hypothesis 
4. Testing the model output to satisfy the purpose 
5. Designing and evaluating policies for improvement 

 
Based on the relevant literature and data available from TARBASE, the proposed SD model 
was developed as a hypothetical model. This paper discusses the first two steps of the model 
development. Further development, requiring additional data, will build a comprehensive SD 
model.  
 
2.1. Problem Articulation 
The problem in hand is not only about the typical process of technology diffusion, but also 
about the effect of the pressure to reduce CO2 emissions and the social and economical 
implications of using these technologies. Therefore, this step in modelling will identify the 
major controlling variables of technology diffusion and the effect of using these technologies 
on CO2 emissions. In addition, the reference mode of the system behaviour will be identified. 
Reference mode is the graphical representation of the system behaviour over a period of time. 
This can be based on historical or pre-defined/required behaviour. The optimum behaviour of 
the system occurs if the pattern of the demand for house upgrading follows the same pattern 
of the diffusion of the technological intervention sets. Therefore, the technology diffusion 
theory will help identifying the reference mode of the demand for house upgrading. The time 
period assumed for the study is to 2050, when the CO2 emissions reduction target is set.  
 
2.1.1. Technology Diffusion Theory 
Diffusion process is the methodology of adopting an innovation by members of a certain 
community. Rogers[11] categorizes the five stages of the diffusion of innovations as: 
knowledge (awareness), persuasion (interest), decision (evaluation), implementation (trial), 
and confirmation (adoption). Over the time of the diffusion process, new individuals adopt the 
innovation while others might reject it. Four factors were identified that influence adoption of 
an innovation, namely: 1) the type and need for innovation, 2) the communication channels 
used to spread information, 3) time period of diffusion, and 4) the nature of the community to 
whom innovation is introduced. Technology adoption rate always follows an S-curve that 
represents the length of time required for a certain percentage of community members to 
adopt the technology[11], as shown in Fig. 1. There are categories of adopters: innovators, 
early adopters, early majority, late majority, and laggards. This pattern of technology adoption 
will be used for the purpose of modelling as “reference mode of diffusion”, which for this 
research will be the reference mode of “demand for house upgrading”. The demand for house 
upgrading will be investigated from the perspective of householders, industry, and 
government. Individuals usually adopt an innovation if it has some attributes, namely: (1) the 
innovation has some relative advantage over an existing one, (2) the innovation is compatible 
with existing values and practices, (3) the innovation is not too complex, (4) the innovation 
has trialability (i.e. can be tested for a limited time without adoption), (5) the innovation 
offers observable results.  
 
Various models have been developed in order to simulate the typical diffusion of 
technological innovations. For example, Veneris[12] developed a SD model which takes into 
account various diffusion patterns modelled via differential equations. The model did not 
consider that technology development is dynamic as there is always development or 

 

2588



improvement over the time of diffusion all along the S-curve. Therefore, the S-curve is 
actually made up of a series of S-curves of different sections of a population adopting 
different versions of technologies. It did not also simulate the effect of the pressure to reduce 
COR2R emissions and the social and economical implications of using these technologies 
 

 
Fig. 1. Innovation adoption rate (RogersP

[11]
P) 

 
The other main reference mode required for this model is for the rate of COR2R emissions 
reduction. The target set for the year 2050 will be used as a guidance reference mode in this 
model (further data is required to refine this mode in a more accurate rate). Fig. 2 suggests 
that the linear emissions reduction rate since 1970 was 7.5 M t(COR2R)/decade. This would 
achieve a 60% reduction in COR2R emissions from UK buildings by 2050. To achieve the 80% 
reduction adopted by the UK government in 2009, a faster rate of reduction (around 10 
Mt(COR2R)/decade) might be needed P

[4]
P. 

 

 
 
Fig. 2. Domestic and non-domestic carbon emissions to 1994 with trajectories to 40% of 1990 
emissions in 2050 (reported in Oreszczyn and Lowe P

[4]
P) 

 
2.2. 5BFormulation of the dynamic hypothesis 
A dynamic hypothesis is set to explain the behaviour of the system and the relationships 
among its variables that develop its reference mode. Four mapping tools were used to develop 
this hypothesis, which are: Subsystem diagram, Model boundary chart, Causal loop diagrams, 
and Stock and flow maps. As this paper aims only to introduce the hypothetical model, the 
Stock and flow maps will not be presented. 
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2.2.1. Subsystem diagram 
Fig. 3 classifies the architecture of the studied system into a number of subsystems. Each 
subsystem is mainly controlled by a certain variable, as illustrated by the variable name in 
each box of Fig. 3. The main control variables of each subsystem and the interactions between 
each other will be identified on the causal loop diagrams. For example, the actual proportion of 
dwellings using the intervention sets is used to measure technology diffusion. The other 
identified variables influence this measurement, namely; Rate of technology change, Unit 
energy consumption, R&D Investment, and CO2 emissions. A number of feedback loops have 
been identified that control the subsystems behaviour, namely; Technology change loop, R & 
D loop, Consumption loop, and Emission loop. These loops will be studied and simulated to 
show how the system behaves under different conditions and policies.  
 
 
 
 
 
 
 
 
 
 
Fig. 3. Model sub-systems 
 
2.2.2. Model boundary chart 
The chart identifies the scope of the model by classifying the variables into endogenous, 
exogenous, and excluded variables, as shown in Table 1. T his classification is essential to 
identify the model boundary in terms of the type of each variable and the relationships among 
variables.  
 
The current version of the model excludes the interest rate on saving/investing the cost of 
house upgrade assuming that they will balance the effect of inflation on all expenses. The 
variables considered for the selection of intervention sets are: energy price (economical 
factor) and CO2 emission (environmental factor) and R&D investment as financial support. 
Other variables influencing technological developments such as market impact or other new 
ways of house upgrading are excluded. The exogenous variables have great impact on t he 
endogenous structure but their behaviour will be included from one single relationship for the 
purpose of this model. 
 
2.2.3. Main Causal Loop Diagram (CLD) 
For each of the above subsystems, a CLD is developed. The main CLD for the adopted model 
(Fig. 4) shows how the variables are related to each other. The resulting reinforcing loops and 
balancing loops will be discussed next. 
 

Tech Change loop R & D loop 
Consumption loop 

Emissions loop 

Unit energy 
consumption 

Actual proportion 
of using the 

intervention sets 

R&D 
Investment 

CO2 
emissions 

Rate of 
technology 

change 
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Table 1. Model boundary chart 
Endogenous Exogenous Excluded 

• Actual use of intervention sets • Energy tax • Inflation rate 
• Average CO2 generation rate per 

until energy need 
• Other cost of house 

upgrade 
• Interest rate 

• Effect of technology on unit 
energy consumption 

• Reference energy price • Other factors to influence 
selection of sets 

• Average energy production price  • Government subsidy • Effect of competition on 
technology change rate 

• Average unit energy 
consumption 

• Intangible effects  

• Indicated house upgrade demand   
• Average energy demand   
• R& D investment   
• Effect of cost on house upgrade   
• Indicated unit energy cost   
• House value   
• Industry revenue   
• Technology change rate   
• Actual energy consumption   
• CO2 emissions   
 

Reference
energy price

Average energy
production price

Energy tax

Effect of technology on
unit energy consumption

Technology
change rate

Average unit energy
consumption

Unit energy cost

Effect of cost on
House upgrade

House value

Other costs for
house upgrade

R & D investment

Demand for
House upgrade

Average energy
demand

Actual proportion of
dwellings using

intervention sets A, B, C

Average CO2 emission
per unit energy need

CO2 emission

Actual energy
consumption

Government subsidy

+
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+
+

+
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-

+

-
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+ve loop
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Fig. 4. Main Causal Loop Diagram 
 
3. Results 
The model variables and the causal relationships among them are defined. Positive signs are 
given to parallel relationships, while negative signs are for inverse relationships. The structure 
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of system variables and relationships may create feedback loops. The polarity of a feedback 
loop (i.e., positive or negative) is identified by summing the polarities of the relationships 
among its variables. Loops with an odd number of negative relationships are negative. Loops 
with an even number of negative relationships are positive. Variables within positive loops 
will continue to increase indefinitely, therefore positive loops are self-reinforcing. Variables 
within negative loops will stabilize over time, therefore negative loops are self-balancing. 
Feedback loop structures, once identified, are translated into stock-flow diagrams to enable 
the SD simulation. The simulation part is beyond the scope of this paper. Clearly, the degree 
of details at which a CLD is defined strongly influences the success of this approach, and 
considerable care should be taken to develop it right. 
 
3.1.  Consumption loop (+ve loop) 
Improving average unit energy consumption by increasing the actual proportion of using 
intervention sets; [Average unit energy consumption – unit energy cost – Effect of cost on 
house upgrade – Demand for house upgrade – Actual proportion of using intervention sets 
A,B,C - Average unit energy consumption]. Energy efficiency improvement can be measured 
by the reduction in the Average unit energy consumption, which reduces the unit energy cost 
and subsequently the effect of cost on hous e upgrade, which leads to an increase in the 
demand for house upgrade. High demand for house upgrading will increase the use of 
intervention sets, which in turn decreases the average unit energy consumption. 
 
3.2. R&D loop (-ve loop) 
R&D Investment results in reducing the unit energy consumption; [Average unit energy 
consumption – unit energy cost – Effect of cost on house upgrade – House value – Demand 
for house upgrade - Actual proportion of using intervention sets A,B,C - Industry revenue – R 
& D investment – Technology change rate – Effect of technology on unit energy consumption 
- Average unit energy consumption]. R&D investment is increased by input from industry and 
government sources. The higher ratio of industry revenue from selling more intervention sets, 
the higher dedicated funds for R&D. This will lead to more advanced technologies that reduce 
the average unit consumption.  
 
3.3. Emissions loop (-ve loop) 
The increasing use of the technology intervention sets will reduce CO2 emissions; [Average 
unit energy consumption – unit energy cost – Effect of cost on house upgrade – Demand for 
house upgrade – Actual proportion of using intervention sets A,B,C – average CO2 emissions 
per unit energy need – CO2 emissions - Technology change rate – Effect of technology on 
unit energy consumption - Average unit energy consumption].  
 
3.4. Technology change loop (-ve loop) 
While the increase in the Average unit energy consumption might increase the actual energy 
consumption and the CO2 emissions, but this in turn will accelerate the rate of technology 
change; [Average unit energy consumption – Average energy demand – Actual energy 
consumption – CO2 emissions - Technology change rate – Effect of technology on uni t 
energy consumption - Average unit energy consumption].  
 
The double lines shown on some links indicate the expected delays in realising a significant 
effect of one variable on the other, such as effect of technology development on application 
(the average unit energy consumption). These delay relationships are important to understand 
the behaviour of the system and the estimated time to measure the effect of the technological 
intervention sets during the transition period. There are a number of variables (on the gray 
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arrows) which are modelled as exogenous inputs or policy variables based either on d ata 
series of reality or using some reasonable assumptions. By definition, these exogenous 
variables may influence the model behaviour but are not part of the main causal loops. 
 
4. Conclusions 
The diffusion of energy efficiency technologies for housing, considering both the demand and 
supply sides, has been investigated in this paper. Modelling the diffusion process using SD 
principles shows that various relationships within the process are developed that can help 
achieving the target of CO2 emissions. The developed CLD with negative feedback loop will 
have a systemic resistance to undesirable outcomes within the system. However, a positive 
feedback loop will cause instability to the system performance. Therefore, when 
implementing changes for variables in a positive feedback loop, all other variables should be 
monitored to ensure that undesirable outcomes are controlled. Further analysis is required to 
validate the system behaviour against the identified reference modes. 
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