

Towards a Modular and Accessible Modelica Compiler Backend

Jens Frenkel+, Günter Kunze+, Peter Fritzson*, Martin Sjölund*, Adrian Pop*, Willi Braun#
+Dresden University of Technology, Institute of Mobile Machinery and Processing Machines

*PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

#FH Bielefeld, University of Applied Sciences
{jens.frenkel, guenter.kunze}@tu-dresden.de,{peter.fritzson,martin.sjolund,adrian.pop}@liu.se,

willi.braun@fh-bielefeld.de

Abstract

Modelica is well suited for modelling complex physical
systems due to the acausal description it is using. The
causalisation of the model is carried out prior to each
simulation. A significant part of the causalisation pro-
cess is the symbolic manipulation and optimisation of
the model. Despite the growing interest in Modelica,
the capabilities of symbolic manipulation and optimisa-
tion are not fully utilized. This paper presents an ap-
proach to increase the customisability, access, and re-
use of symbolic optimisation by a more modular and
flexible design concept. An overview of the common
symbolic manipulation and optimisation algorithms of
a typical Modelica compiler is presented as well as a
general modular design concept for a Modelica compil-
er backend. The modularisation concept will be imple-
mented in a future version of the OpenModelica com-
piler.

Keywords: Compiler Backend; Optimisation; Interfac-
es.

1 Introduction

Modelica is a multi-domain object-oriented equation
based modelling language. It is mostly used for model-
ling and simulation of complex physical systems but
other tasks like symbolic analysis of the equation sys-
tem behind the model are possible as well. To accom-
plish those tasks a Modelica Compiler or Interpreter is
needed. All Modelica compilers known to the authors
are divided into a frontend and a backend. The frontend
is used to extract the system of equations behind the
object-oriented Modelica Model. This task is typically
called flattening and forms a challenge on its own [1].

 The Backend is the part of the compiler which per-
forms symbolic manipulation of the equation systems
and generates code suitable for (efficient) execution or
interpretation. These symbolic manipulations are de-

pendent on the specific analysis task and the type of the
equation system. To prepare a model for numerically
stable simulation of a higher index system, for exam-
ple, the backend could perform an index reduction in
combination with a matching algorithm to assign all the
equations and perform some symbolic optimisation in
order to improve the runtime performance.

Because of the complexity of Modelica the typically
implemented symbolic manipulation algorithms are
generally applicable for all kinds of equation systems.
On the one hand this is an advantage because the user
does not need to deal with the tasks of symbolic ma-
nipulation to get the desired results. On the other hand
it is a disadvantage for the advanced user or library
developer because there is normally only restricted ac-
cess to the symbolic manipulation algorithms.

To overcome these limitations the authors designed
a concept for a modular Modelica compiler backend
which to a large extent has been realised in the new re-
organised implementation of the Open Source
OpenModelica Compiler from OpenModelica version
1.6, excluding external APIs and phase reordering flex-
ibility. The concept will include an interface for exter-
nal tools, for example for symbolic optimisation, and a
safe and task-dependent method to implement manipu-
lation algorithms for equation systems.

The next chapter introduces the reader into the
common symbolic manipulation process for Modelica
Compilers. Chapter three presents an overview of ad-
vanced symbolic manipulation algorithms which may
speed up the simulation. The options for the user to
access and customisation of symbolic manipulation
algorithms are discussed within chapter four.

After concluding the previous chapters, chapter five
presents the concept of the new modular compiler
backend. Chapter six continues with the basic concept
for its implementation and chapter seven presents inter-
faces of the modular compiler backend in more detail.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

232

2 Common Symbolic Manipulation
in Modelica Compiler Backends

Simulation itself is the most common usage of Modeli-
ca Models. The following section gives a general over-
view on the tasks of the backend of the Modelica com-
piler and applies to almost all implementations, see also
Figure 1.

 The output of the frontend is usually a flat repre-
sentation of the Modelica model containing all varia-
bles with their properties, equations and algorithms.
The first step of the backend is to analyse the flat mod-
el representation and extract additional information.
Extracted information could for example be the candi-
dates for states, implicit discrete variables and the vari-
ables with time-dependency. Candidates for states are
differentiated variables and variables with the property
stateSelect equal to StateSelect.prefer or
StateSelect.always.

With the change of Modelica 3.2 the derivative op-
erator “der” may have an expression as its argument.
With the ambition of an efficient code generation all
such expressions have to be symbolically differentiated
with respect to the time dependent variables. Only if it
is not possible to perform the symbolic differentiation
an additional variable should be introduced.

The next steps of the symbolic optimisation are to
remove simple equations and equations with no time
dependency. Simple equations are of the form “a=b”,
“a=-b” also called “alias equations”. Alias equations
appear quite often because of the connect-equations
concept. Equations with no time dependency are com-
posed of constant or parameter variables and variables
calculated based on constants or parameters.

Subsequently follows the matching algorithm which
is one of the main phases of the backend. This algo-
rithm has to find an equation for each variable the
equation is solved for. If the system should be solved as
an explicit ordinary differential equation (ODE) sys-
tem, but is a higher index system, the matching algo-
rithm works together with an index reduction algo-
rithm.

To get the block lower triangular form (BLT-Form)
Tarjan’s algorithm [10] is performed. This algorithm
sorts the equations in the order they have to be solved.

 The next step is the symbolic transformation and
the collection of additional information, for example
the occurring of zero crossings. Within the symbolic
transformation phase the information from the match-
ing algorithm is used to solve certain equations symbol-
ically. This has to be done for single equations as well
as for linear or nonlinear equation systems. To solve
certain equations symbolically means to solve an equa-
tion or a system of equations for the desired variable or
variables or provide all information to use an applicable
numerical solver.

The last part of the backend after the whole symbol-
ic manipulation process is concerned with code genera-
tion.

3 Advanced User Supported Symbol-
ic Manipulation

In addition to the methods mentioned in Section 2 there
are specialised symbolic manipulation algorithms
which may speed up the simulation. These include al-
gorithms like:
 dummy derivative with dynamic state selection
 tearing
 inline integration
 function inlining.

All to the author’s known Modelica compilers do not
use these algorithms automatically, apart from tearing.
Normally the users have to set special compiler flags or
adjustments or use specific keywords, for example an-
notations for code generation.

The Dummy Derivative method [3] is a commonly
used index reduction algorithm for higher index differ-
ential algebraic equations (DAE) systems. Using the
Dummy Derivatives method may for some systems
result in a singular Jacobian. A well-known example is
the description of a planar pendulum described using
the Cartesian coordinates.

To overcome these mathematical difficulties dy-
namic state selection could be used. The basic idea of

Figure 1: Common symbolic manipula-
tion process for Modelica models.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

233

dynamic state selection is to change the section of state
variables at run-time for higher performance and nu-
merically stable simulation, see [4] and [5].

Large algebraic equation systems are typical of
Modelica models. The tearing algorithm is a method to
reduce the size of large algebraic equation systems by
dividing strongly connected components in the BLT
graph into smaller sub-systems of equations which
could be solved more efficiently.

The basic concept of tearing is to make an assump-
tion about one or several variables to be known. With
this assumption the matching algorithm is continued.
The torn equation systems are divided into several re-
duced algebraic equation systems and a set of explicit
assignments. In case of a linear algebraic equation sys-
tem the relaxation algorithm or a solver for nonlinear
systems, for example the Newton Iteration method, can
be used to solve the algebraic system. Detailed infor-
mation on the tearing algorithm can be found in Cellier
and Kofmann [6].

For simulations with strong requirements on execu-
tion time like hardware in the loop simulation, it may
be beneficial to merge the integration method and the
equation system. This method is called inline integra-
tion and yields an equation system where the numerical
solver is eliminated as an explicit software component.
Inline integration is for minimising call overhead and
enabling additional symbolic manipulations for exam-
ple removing the division of the time step on both sides
of an equation. For further information about inline
integration [6] and [7] are recommended.

The Modelica Specification 3.2 provides within
chapter 17.3 annotations for code generation. The anno-
tations:
 Evaluate,
 Inline and
 LateInline

are useful for symbolic optimisation. For example the
Modelica MultiBody Library uses these annotations.
Performing the specialised symbolic manipulation al-
gorithms the common symbolic manipulation process
from Figure 1 is expanded to the advanced symbolic
manipulation process shown in Figure 2. For some op-
timisation methods, for example inline integration, it is
useful to run the matching and sorting algorithm re-
peatedly. Hence the graph presented in Figure 2 has in
this case a loop within the second optimisation and
matching algorithm stage.

4 Access to and Customisation of
Symbolic Manipulation

Letting the user or library developers provide the com-
piler with specific information on how the symbolic
manipulation algorithms should optimise the equation
system can be achieved through several options:
1. Usage of specific keywords introduced into the lan-

guage
2. Usage of optional compiler flags/settings
3. Exporting the systems of equations in a symbolic

standardized and easy to use format and perform the
optimisation with another tool

4. Development of a new Modelica compiler

However, none of the above mentioned options are
practical in case a special optimisation is needed. The
reasons are:

 Option 1 requires a long term standardisation pro-
cess for the new methods.

 Option 2 is tool-specific, and therewith restricted.
 For Option 3 there is no standardized and easy to

use format available yet nor does the common com-
piler support an export or import of the system of
equations. Even if there is a support for export
available the user would have to provide a code
writer for the target format.

 Option 4 is not possible for most of the users.

In case an advanced user requires a symbolic manipula-
tion algorithm, the compiler has to fulfill the following
requirements:

Figure 2: Advanced symbolic manipula-
tion process for Modelica models.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

234

 The export and import of the system of equations in
a symbolic standardised and easy to use format. (A
promising development is shown in [2].)

 An increasing number of symbolic manipulation al-
gorithms.

 The possibility to define and use a symbolic manip-
ulation algorithm in a safe and application-related
way.

5 Modular Compiler Backend

To achieve the requirements of a more open and cus-
tomisable access to symbolic manipulation capabilities
the backend of the compiler needs a more general de-
sign concept. Keeping the tasks presented in Section 2
in mind the main tasks of the backend can be summa-
rized into five phases:

 input phase
 pre-optimisation phase
 transformation phase
 post-optimisation phase
 output phase

Based on these phases and the concept of transferring
the system of equations represented by a data object
from one phase to the next, an equation system pipeline
is formed as shown in Figure 3.

The transformation phase achieves a matching using
index reduction methods and sorting the equations. Dif-
ferent modules for index reduction should be available
as shown in Figure 3 within the left upper inner box
“DAE-Handler for Index Reduction”.

For some optimisation methods, for example inline
integration, it is useful to run the matching and sorting
algorithm repeatedly. Hence the pipeline presented in
Figure 3 has a loop within the post-optimisation and
transformation phase.

The output phase transforms the system of equa-
tions into the desired target format. This phase is the
combination from the symbolic transformation and the
code generation from Figure 2. Supposable target for-
mats are a simulation executable or a functional
mockup unit or if not a simulation is desired a XML,
Matlab or Python file export.

With a modularisation concept in mind each phase
should be presented by one (input phase, transfor-
mation phase and output phase) or several (pre- and
post-optimisation phases) modules. For a specific equa-
tion system the pipeline might be built from specific
modules in a specific order. For another equation sys-
tem the pipeline might be built from other modules in a
different order. More precisely, it will be possible to
use application-oriented pipelines for different equation

system. As mentioned above a Modelica model is rep-
resented in the backend as an equation system. This
equation system could be composed of equations, algo-
rithms and sub-systems of equations. In case of a multi-
domain model it may be beneficial to use different op-
timisation modules for the different sub-systems pre-
sent in the model. The equation system pipeline frame
work will allow the optimisation of different sub-
systems using different optimisation modules. The
challenge is to define proper rules for the differentia-
tion of systems of equations.

Figure 3: Data Flow in the Equation System Pipeline.

The system of equations has to be represented by a data
object. This data object should basically include:
 the variables,
 the equations and
 the algorithms.

In case of an efficient implementation and to use the
same interface for the pre- and the post-optimisation
modules as desired, it is beneficial to store additional
information within the data object and to classify varia-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

235

bles, equations and algorithms into different groups.
The additional information should be:
 an incidence matrix for the equations/algorithms

and variables,
 the matching of variables and equations/algorithms

solved for and
 the order of the equations/algorithms they have to

be calculated in.

6 Concept for Implementation

To reduce the possibilities of introducing errors in de-
veloping the backend and support the developers in the
most suitable way, three levels of complexity will be
introduced by a class concept represented in Figure 4.

The basic level is a library for manipulating sym-
bols and symbolic expressions, as shown in the inner-
most box called “Symbolic Math Library” of Figure 4.
The Symbolic Math Library comprises the four mod-
ules:
 Expression
 Symbol
 Simplify
 Solve

An expression consists of symbols, numbers and opera-
tors. In case of a non-scalar symbol an expression is
used to point to the scalar elements of the symbol.
Hence, the expression module and the symbol module
use one another as shown in Figure 4. The two modules
comprise functions to:
 generate expressions/symbols,
 transform them to other types,
 manipulate ,
 get something,
 traverse,
 compare and
 replace sub-expressions.

The module “Simplify” performs symbolic simplifica-
tion of expressions and the module “Solve” implements
functions to solve symbolical equations with the form
“0=exp” for sub-expression.
Based on this symbolic math library an equation system
library presents the second level, which supports all
operations to access and manipulate equations, algo-
rithms and equation systems. The “Equation System
Library” comprises the four modules:
 Variable
 Equation
 Algorithm
 EquationSystem

This library provides functions to manipulate the sys-
tem of equations, traverse them or replace variables

with other variables or expressions for example. Both
libraries have to preserve the consistency of the system
of equations.

By using the library for symbols and expressions as
well as the equation system library specific modules
can be developed for each phase of the equation system
pipeline within the third level in a safe and task-
oriented way. The upper box “Modules for Optimisa-
tion” in Figure 4 for example represents optimisation
algorithms such as:

 Tearing/Relaxation
 InlineIntegration
 Linearisation
 Remove Simple Equation

 Figure 4. Concept for Implementation.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

236

The developer can use the library functions of the equa-
tion system library and deal with the tasks of the opti-
misation algorithm.

The same principle holds for the box “DAE-Handler
for Index Reduction” shown in Figure 4. For example
to implement a classical handler for index reduction the
developer can use the function to get the derivatives of
the constrained equations and the function to replace
equations. The classical handler for index reduction
performs index reduction by taking the derivatives of
the constrained equations.

The two modules to perform the sorting of the equa-
tions in BLT-Form and the module for code writing use
the functions of the Symbolic Math Library and the
equation system library as well as all other modules
within the third level of the backend.

Furthermore, through the use of the library func-
tions the implementation of debugging functionality for
the system of equations is simplified and less error-
prone because the information about the performed
transformations would be added automatically by the
library functions.

7 Interfaces and User Modules

With the possibility to export the system of equations
during each phase the usability of the compiler for var-
ious analysis tasks can be significantly increased.
The next level of usability can be reached with an im-
port of equation systems. This opens up the possibili-
ties to:
 use the backend without the frontend,
 use other optimisation tools via an intermediate file

format or an interface and
 store equation systems in different optimisation

stages and run the optimisation algorithm again with
improved optimisation modules.

As shown in Figure 5 the export is feasible by one or
more modules in the pre- or past-optimisation phase. In
Figure 5 an export to an XML-file format is shown as
one example. The import has to be realized in the input
phase to enable a consistency check of the system of
equations.

Furthermore the presented design concept does not
only include external interfaces as presented above.
Additionally internal interfaces expand the usability of
the compiler. With the advantages of the modularisa-
tion:
 replacement of modules,
 reusability of functions,
 distribution of the implementation complexity,
 limitation of complexity and

 a comfortable way to implement symbolic manipu-
lation algorithms

the barriers to design, implement and test new algo-
rithms for symbolic manipulation are reduced. Clearly,
the symbolic simplification of a Modelica model is a
difficult topic and it seems that only the Modelica
compiler writers are able to provide such features. But,
with a simplified access to the Modelica compiler de-
velopment the Modelica compiler writer community
can increase.

 A comfortable way to implement those algorithms
can be supported with the presented class concept from
Figure 4, a development environment and the possibil-
ity to test the implemented algorithms. With the use of
MetaModelica [8] for the Modelica compiler develop-
ment it would be possible for an advanced Modelica
user to implement his/her own modules. MetaModelica
is an extension of the Modelica Language for Meta-
programming facilities. Because of the similarity of
MetaModelica and Modelica the additional require-
ments are marginal. Using the OpenModelica Devel-

opment Environment (OMDev) the requirements men-
tioned above would also be fulfilled.

By offering the possibility to load the modules for
symbolic manipulation dynamically during compile
time the user could combine the compiler backend with

Figure 5: Interfaces for a modular Modelica compiler
backend.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

237

his/her own modules. With a standardized data object
format it would furthermore be possible to implement
new modules in a different language, e.g. C/C++.

8 Conclusion

With the possibility for the user to define and use
his/her own symbolic manipulation algorithms the pos-
sibilities of using Modelica for many different kinds of
applications beside simulation can be significantly in-
creased.

 Users may on their own develop, analyse and get a
deeper understanding of symbolic manipulation algo-
rithms and get better results for specific applications.

 Furthermore, the user could e.g. get access to high-
er index equation system solvers without the challenge
to implement his/her own compiler.

 By giving the user a safe and easy option to extend
and adapt the functionality of the compiler to their own
needs, it would be possible to enhance the development
of the compiler to a new quality and wider practicabil-
ity. This paper presents a contribution to an approach
towards achieving this goal.

The described concept is partly implemented in
OpenModelica 1.6. The modularization has been
achieved, but the external API with the XML interface
is still mostly future work, and an internal API for flex-
ible phase ordering is also future work.

References
[1] Peter Fritzson: Principles of Object-Oriented

Modelling and Simulation with Modelica 2.1,
Page 57ff, Wiley IEEE Press, 2004.

[2] Roberto Parrotto, Johan Åkesson, and Frances-
co Casella: An XML representation of DAE
systems obtained from continuous-time Model-
ica models, EOOLT 2010.

[3] S. E. Mattsson and G. Söderlind: Index Reduc-
tion in Differential Algebraic Equations Using

Dummy Derivatives, SIAM Journal on Scien-
tific Computing, Vol. 14. No. 3, pp. 677-692,
1993

[4] S.E. Mattsson, H. Olsson and H. Elmqvist: Dy-
namic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,

[5] P. Kunkel and V. Mehrmann: Index reduction
for differential-algebraic equations by minimal
extension, ZAMM, vol. 84, pp. 579–597, 2004.

[6] F. E. Cellier, E. Kofman: Continuous System
Simulation, Springer, 2006.

[7] Bonvini, Donida, Leva: Modelica as a design
tool for hardware-in-the-loop simulation, Pro-
ceedings 7th Modelica Conference, Como, Ita-
ly, Sep. 20-22, 2009

[8] A. Pop and P. Fritzson: MetaModelica: A Uni-
fied Equation-Based Semantical and Mathe-
matical Modelling Language. In Proceedings of
Joint Modular Languages Conference 2006
(JMLC2006) LNCS Springer Verlag. Jesus
College, Oxford, England, Sept 13-15, 2006.

[9] P. Fritzson, A. Pop, D. Broman, P. Aronsson:
Formal Semantics Based Translator Generation
and Tool Development in Practice. In Proceed-
ings of 20th Australian Software Engineering
Conference (ASWEC 2009), Gold Coast,
Queensland, Australia, April 14 – 17, 2009.

[10] R.E. Tarjan: Depth First Search and Linear
Graph Algorithms, SIAM Journal of Comput-
ting, 1, pp. 146-160, 1972.

[11] H. Lundvall and P. Fritzson: Event Handling in
the OpenModelica Compiler and Run-time
System. In Proceedings of the 46th Conference
on Simulation and Modelling of the Scandina-
vian Simulation Society (SIMS2005), Trond-
heim, Norway, October 13-14, 2005. An ex-
tended version in Linköping University Press,
www.ep.liu.se.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

238

