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Abstract 

Modelica is well suited for modelling complex physical 
systems due to the acausal description it is using. The 
causalisation of the model is carried out prior to each 
simulation. A significant part of the causalisation pro-
cess is the symbolic manipulation and optimisation of 
the model. Despite the growing interest in Modelica, 
the capabilities of symbolic manipulation and optimisa-
tion are not fully utilized. This paper presents an ap-
proach to increase the customisability, access, and re-
use of symbolic optimisation by a more modular and 
flexible design concept. An overview of the common 
symbolic manipulation and optimisation algorithms of 
a typical Modelica compiler is presented as well as a 
general modular design concept for a Modelica compil-
er backend. The modularisation concept will be imple-
mented in a future version of the OpenModelica com-
piler.  
 
Keywords: Compiler Backend; Optimisation; Interfac-
es. 

1 Introduction 

Modelica is a multi-domain object-oriented equation 
based modelling language. It is mostly used for model-
ling and simulation of complex physical systems but 
other tasks like symbolic analysis of the equation sys-
tem behind the model are possible as well. To accom-
plish those tasks a Modelica Compiler or Interpreter is 
needed. All Modelica compilers known to the authors 
are divided into a frontend and a backend. The frontend 
is used to extract the system of equations behind the 
object-oriented Modelica Model. This task is typically 
called flattening and forms a challenge on its own [1]. 

 The Backend is the part of the compiler which per-
forms symbolic manipulation of the equation systems 
and generates code suitable for (efficient) execution or 
interpretation. These symbolic manipulations are de-

pendent on the specific analysis task and the type of the 
equation system. To prepare a model for numerically 
stable simulation of a higher index system, for exam-
ple, the backend could perform an index reduction in 
combination with a matching algorithm to assign all the 
equations and perform some symbolic optimisation in 
order to improve the runtime performance.  

Because of the complexity of Modelica the typically 
implemented symbolic manipulation algorithms are 
generally applicable for all kinds of equation systems. 
On the one hand this is an advantage because the user 
does not need to deal with the tasks of symbolic ma-
nipulation to get the desired results. On the other hand 
it is a disadvantage for the advanced user or library 
developer because there is normally only restricted ac-
cess to the symbolic manipulation algorithms.  

To overcome these limitations the authors designed 
a concept for a modular Modelica compiler backend 
which to a large extent has been realised in the new re-
organised implementation of the Open Source 
OpenModelica Compiler from OpenModelica version 
1.6, excluding external APIs and phase reordering flex-
ibility. The concept will include an interface for exter-
nal tools, for example for symbolic optimisation, and a 
safe and task-dependent method to implement manipu-
lation algorithms for equation systems. 

The next chapter introduces the reader into the 
common symbolic manipulation process for Modelica 
Compilers. Chapter three presents an overview of ad-
vanced symbolic manipulation algorithms which may 
speed up the simulation. The options for the user to 
access and customisation of symbolic manipulation 
algorithms are discussed within chapter four.  

After concluding the previous chapters, chapter five 
presents the concept of the new modular compiler 
backend. Chapter six continues with the basic concept 
for its implementation and chapter seven presents inter-
faces of the modular compiler backend in more detail.  
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2 Common Symbolic Manipulation 
in Modelica Compiler Backends 

Simulation itself is the most common usage of Modeli-
ca Models. The following section gives a general over-
view on the tasks of the backend of the Modelica com-
piler and applies to almost all implementations, see also 
Figure 1. 

 The output of the frontend is usually a flat repre-
sentation of the Modelica model containing all varia-
bles with their properties, equations and algorithms. 
The first step of the backend is to analyse the flat mod-
el representation and extract additional information. 
Extracted information could for example be the candi-
dates for states, implicit discrete variables and the vari-
ables with time-dependency. Candidates for states are 
differentiated variables and variables with the property 
stateSelect equal to StateSelect.prefer or 
StateSelect.always.  

With the change of Modelica 3.2 the derivative op-
erator “der” may have an expression as its argument. 
With the ambition of an efficient code generation all 
such expressions have to be symbolically differentiated 
with respect to the time dependent variables. Only if it 
is not possible to perform the symbolic differentiation 
an additional variable should be introduced.  

The next steps of the symbolic optimisation are to 
remove simple equations and equations with no time 
dependency. Simple equations are of the form “a=b”, 
“a=-b” also called “alias equations”. Alias equations 
appear quite often because of the connect-equations 
concept. Equations with no time dependency are com-
posed of constant or parameter variables and variables 
calculated based on constants or parameters.   

Subsequently follows the matching algorithm which 
is one of the main phases of the backend. This algo-
rithm has to find an equation for each variable the 
equation is solved for. If the system should be solved as 
an explicit ordinary differential equation (ODE) sys-
tem, but is a higher index system, the matching algo-
rithm works together with an index reduction algo-
rithm.  

To get the block lower triangular form (BLT-Form) 
Tarjan’s algorithm [10] is performed. This algorithm 
sorts the equations in the order they have to be solved. 

 The next step is the symbolic transformation and 
the collection of additional information, for example 
the occurring of zero crossings. Within the symbolic 
transformation phase the information from the match-
ing algorithm is used to solve certain equations symbol-
ically. This has to be done for single equations as well 
as for linear or nonlinear equation systems. To solve 
certain equations symbolically means to solve an equa-
tion or a system of equations for the desired variable or 
variables or provide all information to use an applicable 
numerical solver.  

The last part of the backend after the whole symbol-
ic manipulation process is concerned with code genera-
tion.  

 

3 Advanced User Supported Symbol-
ic Manipulation 

In addition to the methods mentioned in Section 2 there 
are specialised symbolic manipulation algorithms 
which may speed up the simulation. These include al-
gorithms like: 
 dummy derivative with dynamic state selection 
 tearing 
 inline integration 
 function inlining. 

All to the author’s known Modelica compilers do not 
use these algorithms automatically, apart from tearing. 
Normally the users have to set special compiler flags or 
adjustments or use specific keywords, for example an-
notations for code generation.   

The Dummy Derivative method [3] is a commonly 
used index reduction algorithm for higher index differ-
ential algebraic equations (DAE) systems. Using the 
Dummy Derivatives method may for some systems 
result in a singular Jacobian. A well-known example is 
the description of a planar pendulum described using 
the Cartesian coordinates. 

To overcome these mathematical difficulties dy-
namic state selection could be used. The basic idea of 

Figure 1: Common symbolic manipula-
tion process for Modelica models. 
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dynamic state selection is to change the section of state 
variables at run-time for higher performance and nu-
merically stable simulation, see [4] and [5].  

Large algebraic equation systems are typical of 
Modelica models. The tearing algorithm is a method to 
reduce the size of large algebraic equation systems by 
dividing strongly connected components in the BLT 
graph into smaller sub-systems of equations which 
could be solved more efficiently.  

The basic concept of tearing is to make an assump-
tion about one or several variables to be known. With 
this assumption the matching algorithm is continued. 
The torn equation systems are divided into several re-
duced algebraic equation systems and a set of explicit 
assignments. In case of a linear algebraic equation sys-
tem the relaxation algorithm or a solver for nonlinear 
systems, for example the Newton Iteration method, can 
be used to solve the algebraic system. Detailed infor-
mation on the tearing algorithm can be found in Cellier 
and Kofmann [6].  

For simulations with strong requirements on execu-
tion time like hardware in the loop simulation, it may 
be beneficial to merge the integration method and the 
equation system. This method is called inline integra-
tion and yields an equation system where the numerical 
solver is eliminated as an explicit software component. 
Inline integration is for minimising call overhead and 
enabling additional symbolic manipulations for exam-
ple removing the division of the time step on both sides 
of an equation. For further information about inline 
integration [6] and [7] are recommended. 

The Modelica Specification 3.2 provides within 
chapter 17.3 annotations for code generation. The anno-
tations: 
 Evaluate, 
 Inline and 
 LateInline 

are useful for symbolic optimisation. For example the 
Modelica MultiBody Library uses these annotations. 
Performing the specialised symbolic manipulation al-
gorithms the common symbolic manipulation process 
from Figure 1 is expanded to the advanced symbolic 
manipulation process shown in Figure 2. For some op-
timisation methods, for example inline integration, it is 
useful to run the matching and sorting algorithm re-
peatedly. Hence the graph presented in Figure 2 has in 
this case a loop within the second optimisation and 
matching algorithm stage.  
 
 

  

4 Access to and Customisation of 
Symbolic Manipulation 

Letting the user or library developers provide the com-
piler with specific information on how the symbolic 
manipulation algorithms should optimise the equation 
system can be achieved through several options: 
1. Usage of specific keywords introduced into the lan-

guage 
2. Usage of optional compiler flags/settings 
3. Exporting the systems of equations in a symbolic 

standardized and easy to use format and perform the 
optimisation with another tool 

4. Development of a new Modelica compiler 

However, none of the above mentioned options are 
practical in case a special optimisation is needed. The 
reasons are:  

 Option 1 requires a long term standardisation pro-
cess for the new methods. 

 Option 2 is tool-specific, and therewith restricted. 
 For Option 3 there is no standardized and easy to 

use format available yet nor does the common com-
piler support an export or import of the system of 
equations. Even if there is a support for export 
available the user would have to provide a code 
writer for the target format. 

 Option 4 is not possible for most of the users. 

In case an advanced user requires a symbolic manipula-
tion algorithm, the compiler has to fulfill the following 
requirements:  

Figure 2: Advanced symbolic manipula-
tion process for Modelica models. 
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 The export and import of the system of equations in 
a symbolic standardised and easy to use format. (A 
promising development is shown in [2].) 

 An increasing number of symbolic manipulation al-
gorithms. 

 The possibility to define and use a symbolic manip-
ulation algorithm in a safe and application-related 
way.  

5 Modular Compiler Backend  

To achieve the requirements of a more open and cus-
tomisable access to symbolic manipulation capabilities 
the backend of the compiler needs a more general de-
sign concept. Keeping the tasks presented in Section 2 
in mind the main tasks of the backend can be summa-
rized into five phases:  

 input phase 
 pre-optimisation phase 
 transformation phase 
 post-optimisation phase 
 output phase 

Based on these phases and the concept of transferring 
the system of equations represented by a data object 
from one phase to the next, an equation system pipeline 
is formed as shown in Figure 3.  

The transformation phase achieves a matching using 
index reduction methods and sorting the equations. Dif-
ferent modules for index reduction should be available 
as shown in Figure 3 within the left upper inner box 
“DAE-Handler for Index Reduction”.  

For some optimisation methods, for example inline 
integration, it is useful to run the matching and sorting 
algorithm repeatedly. Hence the pipeline presented in 
Figure 3 has a loop within the post-optimisation and 
transformation phase. 

The output phase transforms the system of equa-
tions into the desired target format. This phase is the 
combination from the symbolic transformation and the 
code generation from Figure 2. Supposable target for-
mats are a simulation executable or a functional 
mockup unit or if not a simulation is desired a XML, 
Matlab or Python file export. 

With a modularisation concept in mind each phase 
should be presented by one (input phase, transfor-
mation phase and output phase) or several (pre- and 
post-optimisation phases) modules. For a specific equa-
tion system the pipeline might be built from specific 
modules in a specific order. For another equation sys-
tem the pipeline might be built from other modules in a 
different order. More precisely, it will be possible to 
use application-oriented pipelines for different equation 

system. As mentioned above a Modelica model is rep-
resented in the backend as an equation system. This 
equation system could be composed of equations, algo-
rithms and sub-systems of equations. In case of a multi-
domain model it may be beneficial to use different op-
timisation modules for the different sub-systems pre-
sent in the model. The equation system pipeline frame 
work will allow the optimisation of different sub-
systems using different optimisation modules. The 
challenge is to define proper rules for the differentia-
tion of systems of equations.  

 
Figure 3: Data Flow in the Equation System Pipeline. 

The system of equations has to be represented by a data 
object. This data object should basically include: 
 the variables, 
 the equations and 
 the algorithms. 

In case of an efficient implementation and to use the 
same interface for the pre- and the post-optimisation 
modules as desired, it is beneficial to store additional 
information within the data object and to classify varia-
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bles, equations and algorithms into different groups. 
The additional information should be: 
 an incidence matrix for the equations/algorithms 

and variables, 
 the matching of variables and equations/algorithms 

solved for and 
 the order of the  equations/algorithms they have to 

be calculated in. 

6 Concept for Implementation 

To reduce the possibilities of introducing errors in de-
veloping the backend and support the developers in the 
most suitable way, three levels of complexity will be 
introduced by a class concept represented in Figure 4. 

The basic level is a library for manipulating sym-
bols and symbolic expressions, as shown in the inner-
most box called “Symbolic Math Library” of Figure 4.  
The Symbolic Math Library comprises the four mod-
ules: 
 Expression 
 Symbol 
 Simplify 
 Solve 

An expression consists of symbols, numbers and opera-
tors. In case of a non-scalar symbol an expression is 
used to point to the scalar elements of the symbol. 
Hence, the expression module and the symbol module 
use one another as shown in Figure 4. The two modules 
comprise functions to: 
 generate expressions/symbols, 
 transform them to other types, 
 manipulate , 
 get something, 
 traverse, 
 compare and 
 replace sub-expressions. 

The module “Simplify” performs symbolic simplifica-
tion of expressions and the module “Solve” implements 
functions to solve symbolical equations with the form 
“0=exp” for sub-expression.  
Based on this symbolic math library an equation system 
library presents the second level, which supports all 
operations to access and manipulate equations, algo-
rithms and equation systems.  The “Equation System 
Library” comprises the four modules:  
 Variable 
 Equation 
 Algorithm 
 EquationSystem 

This library provides functions to manipulate the sys-
tem of equations, traverse them or replace variables 

with other variables or expressions for example. Both 
libraries have to preserve the consistency of the system 
of equations.   

By using the library for symbols and expressions as 
well as the equation system library specific modules 
can be developed for each phase of the equation system 
pipeline within the third level in a safe and task-
oriented way. The upper box “Modules for Optimisa-
tion” in Figure 4 for example represents optimisation 
algorithms such as: 

 Tearing/Relaxation 
 InlineIntegration 
 Linearisation 
 Remove Simple Equation 

        Figure 4. Concept for Implementation. 
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The developer can use the library functions of the equa-
tion system library and deal with the tasks of the opti-
misation algorithm. 

The same principle holds for the box “DAE-Handler 
for Index Reduction” shown in Figure 4. For example 
to implement a classical handler for index reduction the 
developer can use the function to get the derivatives of 
the constrained equations and the function to replace 
equations. The classical handler for index reduction 
performs index reduction by taking the derivatives of 
the constrained equations. 

The two modules to perform the sorting of the equa-
tions in BLT-Form and the module for code writing use 
the functions of the Symbolic Math Library and the 
equation system library as well as all other modules 
within the third level of the backend. 

Furthermore, through the use of the library func-
tions the implementation of debugging functionality for 
the system of equations is simplified and less error-
prone because the information about the performed 
transformations would be added automatically by the 
library functions. 

7 Interfaces and User Modules 

With the possibility to export the system of equations 
during each phase the usability of the compiler for var-
ious analysis tasks can be significantly increased.  
The next level of usability can be reached with an im-
port of equation systems. This opens up the possibili-
ties to: 
 use the backend without the frontend,  
 use other optimisation tools via an intermediate file 

format or an interface and 
 store equation systems in different optimisation 

stages and run the optimisation algorithm again with 
improved optimisation modules. 

As shown in Figure 5 the export is feasible by one or 
more modules in the pre- or past-optimisation phase. In 
Figure 5 an export to an XML-file format is shown as 
one example. The import has to be realized in the input 
phase to enable a consistency check of the system of 
equations.  

Furthermore the presented design concept does not 
only include external interfaces as presented above. 
Additionally internal interfaces expand the usability of 
the compiler. With the advantages of the modularisa-
tion: 
 replacement of modules, 
 reusability of functions, 
 distribution of the implementation complexity, 
 limitation of complexity and  

 a comfortable way to implement symbolic manipu-
lation algorithms  

the barriers to design, implement and test new algo-
rithms for symbolic manipulation are reduced. Clearly, 
the symbolic simplification of a Modelica model is a 
difficult topic and it seems that only the Modelica 
compiler writers are able to provide such features. But, 
with a simplified access to the Modelica compiler de-
velopment the Modelica compiler writer community 
can increase. 

 A comfortable way to implement those algorithms 
can be supported with the presented class concept from 
Figure 4, a development environment and the possibil-
ity to test the implemented algorithms. With the use of 
MetaModelica [8] for the Modelica compiler develop-
ment it would be possible for an advanced Modelica 
user to implement his/her own modules. MetaModelica 
is an extension of the Modelica Language for Meta-
programming facilities. Because of the similarity of 
MetaModelica and Modelica the additional require-
ments are marginal. Using the OpenModelica Devel-

opment Environment (OMDev) the requirements men-
tioned above would also be fulfilled. 

By offering the possibility to load the modules for 
symbolic manipulation dynamically during compile 
time the user could combine the compiler backend with 

Figure 5: Interfaces for a modular Modelica compiler 
backend. 
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his/her own modules. With a standardized data object 
format it would furthermore be possible to implement 
new modules in a different language, e.g. C/C++.   

8 Conclusion 

With the possibility for the user to define and use 
his/her own symbolic manipulation algorithms the pos-
sibilities of using Modelica for many different kinds of 
applications beside simulation can be significantly in-
creased. 

 Users may on their own develop, analyse and get a 
deeper understanding of symbolic manipulation algo-
rithms and get better results for specific applications. 

 Furthermore, the user could e.g. get access to high-
er index equation system solvers without the challenge 
to implement his/her own compiler. 

 By giving the user a safe and easy option to extend 
and adapt the functionality of the compiler to their own 
needs, it would be possible to enhance the development 
of the compiler to a new quality and wider practicabil-
ity. This paper presents a contribution to an approach 
towards achieving this goal. 

The described concept is partly implemented in 
OpenModelica 1.6. The modularization has been 
achieved, but the external API with the XML interface 
is still mostly future work, and an internal API for flex-
ible phase ordering is also future work. 
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