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Abstract

We propose a model-based diagnosis framework in
which Modelica models of faulted behavior are used in
combination with a Bayesian approach. The fault aug-
mented models are automatically generated through
a process developed as part of our Fault Augmented
Model Extension (FAME) work. Fault diagnosis using
a Bayesian approach is based on computing a set of
probability density functions, a process that is usually
intractable for any reasonably complex system. We use
Approximate Bayesian Computation (ABC) to bound
the numerical and computational complexity. The ba-
sic idea is to use fault augmented Modelica models to
create probability distributions of possible outcomes
and then compare those distributions against actual ob-
servations to perform parameter estimation. The detec-
tion of faults is treated as a model selection problem
and the inference of their severity levels is treated as
parameter estimation. The diagnostic precision of this
approach is evaluated on a Modelica vehicle drive line
model.

Keywords: fault models; diagnosis; machine learn-
ing; model translation;bayesian methods

1 Introduction

Modelica [6] is an object-oriented, declarative, multi-
domain modeling language for component-oriented
modeling of complex systems. It is used to execute
numerical simulations to determine the behavior of a
system. This approach frees the designer to efficiently
explore a wide set of designs to see which meets
customer requirements, without needing to physically
construct the systems.

In addition to predicting behaviors through numer-
ical simulations of Modelica models, we propose to
use the same simulation models for diagnosis. Mod-
elica’s focus on simulation would seem to make it a

poor choice for diagnosis. After all, diagnosis is the in-
verse of simulation. Simulation predicts the behavior
of a system given a (correct) model. Diagnosis must
infer how the model has changed (i.e., faulted) from
observed behavior.

Most model-based diagnosis algorithms [4, 10] per-
form inference on declarative models. Although Mod-
elica supports the writing of declarative models, too
many Modelica models (including many in the MSL)
contain imperative constructs making direct appli-
cation of existing model-based diagnosis algorithms
problematic. RODON [2] is a Modelica inspired ap-
proach to modeling, but Modelica models first have to
be re-written by hand in qualitative declarative form.
We know of no system identification or FDI technique
that applies for DAE models with boolean constraints
(as Modelica models translate into). Our approach, on
the other hand, applies on Modelica models directly
no matter what types of constraints they contain.

This paper presents a framework for model-based
diagnosis in which Modelica tools play a fundamen-
tal inference role in a Bayesian approach. Numerical
simulations of Modelica models are used to build sta-
tistical models for the behavior of a system for all of
its fault-operating modes; statistical models that help
determine a diagnosis solution based on observations.

The simulation of a system under different fault-
operating modes is enabled by fault-augmented Mod-
elica libraries. As part of our Fault Augmented Model
Extension (FAME) work, we have developed an ap-
proach [5] for automatic model construction of Mod-
elica fault models. Our model fault-augmentation ap-
proach is based on analyzing Modelica libraries for
fault susceptibility and on modifying them to enable
simulation of faulty components. FAME provides the
set of possible faulted behaviors for each component
(e.g., a resistor might be open, shorted, or resistance
shifted by some undetermined amount). FAME can
use as input statistical models from reliability analy-
sis that determine the fault activations and the amount
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of change in the values of the parameters.
Consider a grossly simplified vehicle model il-

lustrated in the Modelica model of Figure 1. The
brake may be working normally (Nominal state) or
may be having friction related faults (Slipping or
Sticking). The severity of these fault modes is
modeled in Modelica by a parameter called amount∈
[0,1] where a value of 0 indicates no fault (i.e.,
Nominal state) and a value of 1 indicates total failure.
The part will likely be unusable (and hence considered
faulty) for values far less than 1.

When the brake absolute angular velocity ω is not
zero, the frictional torque applied by the brake is a
function of a velocity dependent friction coefficient
µ(ω), the normal force fn, and of a geometry constant
cgeo, which takes into account the geometry of the de-
vice and the assumptions on the friction distributions:

τ = cgeo×µ(ω)× fn.

Our approach can be used to estimate such parameters
in addition to performing diagnostics. For this exer-
cise, we assume that the only unknown parameter is
the amount but we could just as easily estimate the
other parameters such as cgeo and fn from the observed
data.

2 FAME approach

We have developed faultable models for the models
in the Modelica Standard Library. A detailed descrip-
tion of FAME can be found in [5], while [8] describes
how it can be used in a design-tool chain to perform
reliability analysis. Here we summarize the essential
details of FAME for the purpose of diagnosis. Ev-
ery model class definition which contains faults is re-
placed with a new class definition, a Modelica model
class subsuming the original model class and adding
declarative behavior to allow simulation of the faults.

An encapsulated enumerated type is defined, listing
the various fault modes of the class, along with the
Nominal mode. A discrete mode parameter of this
new type is introduced, defining the mode in which an
instance of the class is operating. An if-equation sim-
ilar to Figure 2 is added, so that each operating mode
can define its own dynamics.

The set of equations which apply in each fault
mode is expressed in the appropriate branch of this
if-equation. The process also flattens the superclasses
of the model into the rewritten class, and introduces
two new externally visible parameters, mode and

Figure 2: Alternative dynamics are enabled for each
operating mode.

amount, as well as an enumerated type giving the
possible faults for this component, Modes.

Modelica models are augmented with two types
of faults: power faults and parametric faults. Power
faults model loss of power at the connection points and
is implemented through the addition of new compo-
nents abstractly called “dampers” that implement this
behavior. We show below how the Stick fault is im-
plemented at flange_a of the Brake component:

model Brake
...
Modelica.Mechanics.Rotational.

Interfaces.Flange_a flange_a;
FAME.Dampers.RotationalWithConnectEquations

_famefault_flange_a(amount=0.0);
...
end Brake

model RotationalWithConnectEquations
input Real amount(min=0.0, max=1.0);
encapsulated type Modes = enumeration(

Nominal,
Stick,
Broken);

parameter Modes mode = Modes.Nominal;
Modelica.Mechanics.Rotational.

Interfaces.Flange_a port_a;
Modelica.Mechanics.Rotational.

Interfaces.Flange_a port_b;
equation

...
elseif mode == Modes.Stick then
port_b.tau + port_a.tau =
(1/max(Constants.verySmall,1-amount)-1)

*der(port_a.phi);
port_b.phi = port_a.phi;

else
...

end if;

end RotationalWithConnectEquations;

We note that a new component called
_famefault_flange_a was added to the
Brake model; component that implements the
behavior corresponding to the Stick fault.
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Figure 1: Simple drive line.

Similarly, parametric faults are handled by intro-
ducing a new component that defines the pattern of
change for the parameter to which this component is
associated. For example in the case of the Brake
model, _famefault_mue_pos is an instance of
the newly added _famefaults_mue_pos compo-
nent that corresponds to the mue_pos parameter:

model Brake
model _famefaults_mue_pos
extends FAME.Parametric.

BaseParametricFault(amount=0.0);
type Modes = enumeration(

Nominal,
Slip);

parameter Modes mode=Modes.Nominal;
equation
if mode==Modes.Slip then
y = u*{{1,0},{0,1-amount}};
else
y = u;
end if;

end _famefaults_mue_pos;
...
_famefaults_mue_pos _famefault_mue_pos

(u=mue_pos,redeclare type
ParamType = Real[size(mue_pos,1),2]);

...
end Brake;

References to the original parameter are replaced
with an expression which references to this new vari-
able. For example, the parameter mue_pos is re-
placed in the fault-augmented version of the Brake
by _famefault_mue_pos.y.

We consider several other fault modes. Consider the
simple spring-damper system of Figure 3. Figure 4

Figure 3: Spring Damper example.

shows three simulation results for the Nominal,

Stick and Broken modes for inertia1. The un-
derlying intuition of our approach is to pre-compute
many simulations under many fault scenarios and
perform on-line diagnosis by identifying the pre-
computed simulation results which best matches the
observation. In the remainder of this paper we describe
how this intuition has been implemented.

Figure 4: Nominal, Stick and Broken operating
modes for the spring-damper system

3 Fault detection in the drivetrain
system

We demonstrate our proposed approach by detecting
faults in the drivetrain system shown in Figure 1. We
model five failure modes: brake slipping, brake stick-
ing, clutch slipping, clutch sticking, and spring stick-
ing. The failure mode of a stuck brake is modeled in
the FAME library as a dynamic damper component
that adds damping equal to the amount1. This has the
effect of increasing the relative friction in the flanges
which results in a loss of power. The failure mode of a
slipping brake is modeled as a decrease in the velocity
dependent friction coefficient by an amount equal to
the severity of the fault:

µ(ω) 7→ µ(ω)× (1−amount).
1Under normal operating conditions, the amount= 0 so the

system does not experience this additional damping.
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This has the effect of reducing the friction torque2.
The other failure modes are modeled in a similar man-
ner. Our aim is to infer from observed data whether
the system is exhibiting a fault mode — if so, we also
need to infer the severity of the fault (i.e., the value of
amount). We achieve this by using ideas developed
for Approximate Bayesian Computation (ABC).

4 Approximate Bayesian Computa-
tion

Modelica models are formal representations of (hy-
brid) differential equations (DAEs). Existing results
on fault diagnosis of DAEs are not able to cope with
such mathematical models in their generality. They ei-
ther focus on the structural aspect of the system, ig-
noring its dynamics [7], or they make simplifying as-
sumptions, such as linearity, on the DAE model [3].
Therefore more practical approaches for fault diagno-
sis must be employed.

In this section, we give an overview of the ABC
method, based on material from [9, 12, 1] — see those
references for more details. The typical tasks are to
estimate unknown model parameters and to do model
selection. Let M be a model parameterized by some
parameters Θ whose joint prior density is π(Θ). Given
data d generated by the model M, we are interested
in estimating the posterior probability π(Θ|d). From
Bayes rule, we know that

π(Θ|d) ∝ f (d|Θ)π(Θ),

where f (d|Θ) is the likelihood of the data given the
parameters. The prior probability of the parameters is
known so we need to compute the likelihood of the
data in order to estimate the posterior probability of the
parameters. A similar approach can be used for model
selection. Let M1 and M2 be two models and we would
like to infer which of them is more likely to have gen-
erated the given data d. Using the Bayesian analysis
framework, we compute the Bayes factor B12 to sum-
marize the evidence provided by the data for model M1
over model M2:

B12 =
P(M1|d)/P(M2|d)

P(M1)/P(M2)
,

where P(Mi) is the prior probability of model Mi and
P(Mi|d) is the posterior probability of the model Mi

given the data d. A value of B12 between 1 and 3

2Again, under normal operating condition, the amount= 0 so
the system does not experience this loss in torque.

suggests weak evidence in favor of M1, a value be-
tween 3 and 20 suggests positive evidence, a value
between 20 and 150 suggests strong evidence, and a
value greater than 150 suggests very strong evidence.
The prior probabilities of the models don’t depend on
the given data and can be pre-computed. So computing
the Bayes factor comes down to computing the ratio of
the posterior probabilities of the models given the data:

B12 ∝
P(M1|d)

P(M2|d)
∝

f (d|Θ1)

f (d|Θ2)
.

For any reasonably complex model, the likelihood
computation is intractable so ABC approaches like re-
jection are used to approximate it. In order to simplify
the problem computationally, it is common to define a
function fs : Rn→Rm that maps the given data d ∈Rn

to some representative statistic s ∈ Rm where m� n.
Then we define a distance metric dists : Rm×Rm→R
to measure closeness of two sets of statistics. Let d̂Mi

be simulated data generated from a model Mi.

4.1 Rejection Technique

If dists( fs(d), fs(d̂Mi)) < ε for some threshold ε then
the simulated data is accepted for the given observed
data d — otherwise, it is rejected. Now assume that
we generate N data sets simulated from the model Mi

as follows. For each of the N iterations, draw a param-
eter vector Θi from the prior distribution π(Θi) and
simulate data di

s from Mi. Assume that N̄ of those sim-
ulated data sets are accepted given a threshold ε . Then
we can approximate P(Mi|d) as N̄

N . The distribution of
the Θi for each of the accepted iteration approaches
π(Θi|d). The approximated values approach the true
values asymptotically as N→∞ and ε→ 0 if the statis-
tics are sufficient to describe the data. The downside
of this approach is that if ε is small then N needs to be
high in order to achieve a reasonable approximation.
In other words, it can be very computationally expen-
sive.

4.2 Classification Technique (alternative ap-
proach)

For model selection, rather than computing the ratio
of posterior probabilities, we could use a classifica-
tion approach instead. Here we treat the model indica-
tor i as the response variable and the summary statis-
tics as the dependent variables. Any standard classifi-
cation technique such as multinomial logistic regres-
sion, random forest, neural network etc. can be used
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to train a model based on the simulation data.3 The
trained model is evaluated on the statistics fs(d) of the
observed data to directly estimate P(Mi|d). This ap-
proach may be needed for more complex diagnostic
tasks, but as the rejection approach performs so well,
we use it in our example.

5 Evaluating the approach
The first step in ABC is to generate a large number of
simulations. To constrain the problem appropriately,
we assume that the observed output of the system is
generated in response to a known input. For exam-
ple, the response of a dynamical system to a step in-
put (called a step response) is typically used to reason
about the system behavior and may be appropriate for
diagnosis as well. This choice is part of the feature se-
lection and needs to be made at the time of diagnostic
design. For each of the five fault modes, we generate
10,000 step-response simulations4 — we first sample
the amount from its prior distribution5 and then use
that value to perform the simulation. This was done
by parameterizing the variables in Modelica file — a
snippet of the Modelica model is shown below — the
string FAULT_AMOUNT is replaced with the sampled
value before running a simulation.

Brake brake(fnmax = 1600,
_famefault_mue_pos(mode = Modes.Slip,
amount=FAULT_AMOUNT);

The second step in ABC is to compare observed
data against the simulated data. For computational rea-
sons, we compare features computed from the simu-
lated and actual data rather than comparing the raw
data directly. For this exercise, we evaluate the step
response of the drive train system and compute the
following features of the absolute angular velocity of
the inertial load connected to the brake: (1) mean, (2)
maximum, (3) 25th percentile, (4) 50th percentile, (5)
75th percentile, (6) inter-quartile range, and (7) time
to go to zero. The values of these seven features can
be thought of as a vector of dimension seven. The
difference between the observed vector and the sim-
ulated vectors is used to compute an estimate of the

3Any technique that returns a normalized measure of classifi-
cation should be usable.

4For a more complex model, we may need to generate a higher
number of simulations.

5For this example, we sample amount from a uniform distri-
bution: amount ∼ U(0.003,0.5). In practice, the choice of this
distribution will depend on the belief of the designers about the
distribution of the fault amount - such a distribution may be learnt
from field performance data of similar systems. This is a typical
design choice in Bayesian analysis and a non-informative distribu-
tion such as a uniform distribution may be used if no other source
of information is available.

likelihood that the observed value was generated from
the simulated distribution. For more details, please see
[11].

In order to evaluate the effectiveness of our ap-
proach, we measure the diagnostic accuracy of detec-
tion the following 11 faults.

1. Brake Slipping fault mode with amount= 0.1

2. Brake Slipping fault mode with amount= 0.25

3. Brake Sticking fault mode with amount= 0.1

4. Brake Sticking fault mode with amount= 0.25

5. Clutch Slipping fault mode with amount= 0.1

6. Clutch Slipping fault mode with amount= 0.25

7. Clutch Sticking fault mode with amount= 0.1

8. Clutch Sticking fault mode with amount= 0.25

9. Spring Sticking fault mode with amount= 0.1

10. Spring Sticking fault mode with amount= 0.25

11. Nominal mode (i.e., with no fault mode or a fault
mode with a very small amount)

For each of these faults, we infer the fault model that
was most likely to have generated it and estimate the
amount. The analysis was done using the ABCTool-
box suite [11].

Results

We first show how each model fares against the ob-
served data and then put it all together to generate the
final diagnosis.

Brake Slipping model

When the eleven faulty behaviors are compared
against the simulations from the Brake Slipping model,
the marginal distribution of the model is nearly zero
for all but faults #1, #2 and #11. The graphs below
show the posterior density distributions of amount
for those three faults — as the graph shows, the in-
ference is correct and the estimate of the amount is
also very accurate. Of course, in order to make the fi-
nal diagnosis for a fault, the marginal density for this
model will need to be compared against the densities
for the other models.
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Observation 1 (Brake Slip with fault amount 0.1)
Observation 2 (Brake Slip with fault amount 0.25)
Observation 11 (Normal operation)

Brake Sticking model

When the eleven faulty observations are compared
against the simulations from the Brake Sticking model,
the marginal distribution of the model is nearly zero
for all but faults #3, #4, and #11. The graph be-
low shows the posterior probability distributions of
amount for those three faults — again, the inference
is correct and the estimate of the amount is also very
accurate.
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Clutch Slipping model

When the eleven faulty observations are compared
against the simulations from the Clutch Slipping
model, the marginal distribution of the model is nearly
zero for all but faults #5, and #6. The graph be-
low shows the posterior probability distributions of
amount for those two faults — while the distributions
are not as peaked as the ones for brakes, the inference
is still correct and the mode of the distribution is over
the correct value of amount.
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Clutch Sticking model

When the eleven faulty observations are compared
against the simulations from the Clutch Sticking
model, the marginal distribution of the model is nearly
zero for all but faults #3, #7, #8, #9, and #11. In
this case, the marginal distribution is non-zero for two
faults (#3 and #9) that do not correspond to the clutch
sticking failure mode. However, the overall diagno-
sis still turns out to be correct because the marginal
distribution numbers for the correct models are much
higher than these numbers (see Section 5). The graph
below shows the posterior probability distributions of
amount for faulty observations #7, #8, and #11 —
as in the other cases, the posterior distributions of
amount have very narrow peaks over the correct val-
ues.
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Spring Sticking model

When the eleven faulty observations are compared
against the simulations from the Spring Sticking
model, the marginal distribution of the model is nearly
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zero for all but faults #9, #10, and #11. The graphs
below show the posterior probability distributions of
amount for those faults — again, both the fault mode
inferences and the estimates of amount are correct.
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Final diagnosis

As mentioned previously, all the faulty observations
except #3, #9 and #11 are inferred to have a single
(and the correct) cause. While fault #11 (which corre-
sponds to the normal operation) has significant ambi-
guity regarding the cause, the inferred amount is al-
ways nearly zero in all those cases — this correctly in-
dicates the absence of any fault mode. In other words,
fault #11 is correctly associated with normal operation.
Fault #3 is inferred to have been generated by either
Brake Sticking or Clutch Sticking failure modes. Simi-
larly, fault #9 is inferred to have been generated by ei-
ther Clutch Sticking or Spring Sticking failure modes.
So for these two cases, we need to look at the ratios
of the respective posterior densities, i.e., compute the
Bayes factor in order to complete the diagnosis (see
Section 4 for more details).

Fault #3 For this fault, the marginal posterior density
of Brake Sticking model is 9.8×109 while that of
Clutch Sticking model is 1.7. So the Bayes factor
for Brake Sticking is 9.8×109

1.7 = 5.7× 109 which
is very strong evidence in favor of Brake Sticking
(i.e., the correct diagnosis).

Fault #9 For this fault, the marginal posterior density
of Clutch Sticking model is 3.6×103 while that of
Spring Sticking model is 2.9×108. So the Bayes
factor for Spring Sticking is 2.9×108

3.6×103 = 8× 104

which is very strong evidence in favor of Spring
Sticking (i.e., the correct diagnosis).

So the FAME based inference approach is able to make
the correct diagnosis for all the faults.

6 Final remarks

This paper has demonstrated that a straight-forward
application of machine learning techniques to simu-
lation can be used to accurately diagnose systems.
In fact, it can diagnose systems even if some of the
(non-faulted) parameters are unknown. This approach
has some inherent limitations: (1) the expansion to
multiple faults will require exponentially more pre-
computed simulations and therefore would only scale
to simple systems, (2) active diagnosis will require de-
riving features for many system variables which may
be impractical, (3) the features (i.e. sufficient statistics
of the signal) we use are somewhat determined by the
requirements of the system and must determined at the
outset, and (4) if the system can have a wide variety of
exogenous inputs, too many pre-computed simulations
will be required in order to diagnose for each possible
input stream.

The expansion to multiple faults can be ameliorated
somewhat by the fact that the simulations are done of-
fline and can be easily parallelized. This complexity
may be further managed if a reasonable assumption
can be made about an upper limit on the number of
simultaneous faults (thereby reducing the complexity
from exponential to polynomial).
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