
Discrete-time models for control applications with FMI
Rüdiger Franke1 Sven Erik Mattsson2 Martin Otter3 Karl Wernersson2 Hans Olsson2

Lennart Ochel4 Torsten Blochwitz5
1ABB, ruediger.franke@de.abb.com, 3 DLR, martin.otter@dlr.de,

2 Dassault Systémes, {svenerik.mattsson, karl.wernersson, hans.olsson}@3ds.com,
4 Uni Linköping, lennart.ochel@liu.se, 5 ESI ITI, torsten.blochwitz@esi-group.com

Abstract

The paper proposes an extension of FMI 2.0 for the rig-
orous treatment of discrete-time models. This includes
the introduction of discrete-time states, the declaration
of clocks in the model description and an extension of
the calling interface for the external activation of clocks
by an importing environment.
The synchronous discrete-time extension enables for the
first time the synchronization of FMUs with the environ-
ment and with other FMUs. It specializes the existing
generic event mechanism of FMI 2.0 and maps to syn-
chronous features of Modelica.
Discrete-time FMUs are needed for the generation of
controller code from functional models. This paper out-
lines different use cases, including a simple PI control-
ler, feed forward control with a nonlinear inverse model
and nonlinear model predictive control.
The FMI change proposal FCP-001 and the Modelica
change proposal MCP-0024 describe the proposed ex-
tensions in more detail. Test implementations exist in the
simulation tools Dymola and OpenModelica and in the
importing optimization solver HQP. The use cases given
in this paper served for further refinement of the change
proposals and the test implementations.

Keywords: Modelica, Synchonous modeling, Inline Inte-
gration, Model-based Control, Nonlinear Inverse
Model, Feed Forward Control, NMPC.

1 Introduction

Control systems are composed of interconnected control
blocks that must synchronize with each other and with
real time. This requires precise time event handling and
discrete states.
Modelica 3.3 extends the scope from a language primar-
ily intended for physical systems modeling to modeling
of complete systems. In particular, new synchronous
language primitives were introduced for increased cor-
rectness of control systems implementation (Elmqvist et
al, 2012).

Version 2.0 of the FMI standard omitted precise time
event handling. The design was considered complicated
at the time of the release of FMI 2.0 since several aspects
have to be considered (Blochwitz et al, 2012):

• The synchronous features of Modelica 3.3
should be supported.

• FMI should also be useable by tools that do not
support synchronous time event handling.

• The time event handling is to be defined in a
way that allows backward compatible exten-
sions.

This paper discusses the progress made recently. The
work resulted in a new version of the FMI change pro-
posal FCP-001 (Otter et al, 2016) and in the Modelica
change proposal MCP-0024 (Franke, 2016). This paper
summarizes the change proposals, provides use cases
and investigates examples using test implementations in
the simulation tools Dymola and OpenModelica and in
the optimization solver HQP (Franke and Arnold, 1997).

2 Synchronous Modelica

Modelica has always supported continuous-time varia-
bles and discrete-time variables defined as piecewise
continuous and piecewise constant functions of time, re-
spectively. Both may change discontinuously at time in-
stants, so called events. Events are treated at runtime.

The synchronous features of Modelica 3.3 introduce a
new Clock type. Clock variables c(tk) are special discrete
variables that are active (are ticking) at particular time
instants, see Figure 1.

Figure 1: Clock variable c and clocked variable r

time t
t0

 t1
 t3

r(tk)

t2

c(tk)

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

507

A clocked discrete-time variable r(tk) is associated with
exactly one clock. This enables the partitioning of a
model into sub-models for each clock at translation time.
A clock defined for one variable of a partition automati-
cally propagates to all other variables of this partition.
This enables generic discrete-time models with inferred
sample times.

A clocked discrete-time variable only has a value when
the clock ticks. Continuous-time variables may be con-
verted to clocked variables with the sample operator. A
clocked variable may be converted to a continuous-time
variable with the hold operator.

A clocked partition is mathematically defined as:

 𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝑡𝑡𝑘𝑘), 𝑘𝑘 = 0,1,2, … , 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1,
 𝑥𝑥−1 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1)

 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝑡𝑡𝑘𝑘), 𝑘𝑘 = 0,1,2, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 (2)

Here 𝑥𝑥𝑘𝑘 are discrete-time states, 𝑢𝑢𝑘𝑘 are inputs, 𝑦𝑦𝑘𝑘 are
outputs, k is the k-th tick of the associated clock and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
is the final tick. The discrete-time states are defined with
difference equations as function 𝑓𝑓𝑘𝑘 of the previous val-
ues 𝑥𝑥𝑘𝑘−1 and the inputs 𝑢𝑢𝑘𝑘.

2.1 Clocked continuous-time models

A clocked partition may contain differential equations.
This allows the embedding of regular continuous-time
models from given Modelica libraries. The Modelica
translator brings the equations of a clocked partition to
the form of an ODE or semi-explicit index-1 DAE:

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓[𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)]

 0 = ℎ[𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)] (3)

The translator then applies a specified solver method to
convert continuous-time differential equations to dis-
crete-time difference equations. This mixed sym-
bolic/numeric approach is also known as inline integra-
tion (Elmqvist et al, 1995).

Basic solver methods are implicit Euler, explicit Euler
and semi-implicit Euler. Application of implicit Euler
results in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑖𝑖 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)

 0 = ℎ(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘) (4)

Explicit Euler avoids the implicit equation system for the
states 𝑥𝑥𝑘𝑘 in (4) for non-stiff models. It results in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑖𝑖 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)

 0 = ℎ(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1) (5)

The use of 𝑢𝑢𝑘𝑘−1 in (5) leads to the introduction of addi-
tional discrete-time states for the delay of inputs by one
sample period, even though this is typically not wanted.
Semi-implicit Euler avoids the delay of inputs and im-
plicit dependencies of states for non-stiff models. It re-
sults in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑖𝑖 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘)

 0 = ℎ(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘) (6)

Many more solver methods exist with specific ad-
vantages and drawbacks. The choice of the best solver
method depends on the model at hand. This is why it is
advantageous that inline integration embeds the most ap-
propriate solver method into an exported model.

Modelica 3.3 defines the operators previous(x) to ac-
cess 𝑥𝑥𝑘𝑘−1 and interval() to determine 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1.

The Modelica change proposal MCP-0024 introduces
the operator firstTick() to determine if 𝑘𝑘 = 0
(Franke, 2016).

3 FMI extension

FMI 2.0 defines a generic event mechanism that also co-
vers synchronous models. The drawbacks of this generic
mechanism are that discrete states are hidden in the FMU
and that the environment does not know any details
about the events. This makes it impossible to synchro-
nize events with the environment of an FMU. Thus, it is
not possible to re-import an exported FMU with syn-
chronous discrete-time features and achieve a determin-
istic behavior. Neither it is possible to exploit a discrete-
time FMU for advanced applications such as parameter
estimation or model predictive control, because the dis-
crete states are hidden.

It is proposed to extend FMI by the following:

1. Declare clocks in modelDescription.xml

2. Declare discrete-time states in modelDescrip-
tion.xml

3. Let the environment activate clocks in order to
enable synchronization with the environment
and with other FMUs.

This extension is optional. A model can always hide
event details according to FMI 2.0.

3.1 Extension of modelDescription.xml

The “TypeDefinitions” section is extended with a
“Clocks” subsection that contains one or more “Clock”
entries.

Discrete-time models for control applications with FMI

508 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

Figure 2: Kinds of Clock

Each Clock may be one of (see Figure 2):

• Periodic: the clock ticks periodically with an a
priori known interval specified in the model de-
scription XML file. A priori known values
make the sampling a structural model property
for increased correctness at runtime.

• Triggered: the clock is activated by a Boolean
condition in the model, e.g. for an interval that
depends on model variables.

• Inferred: the clock is activated from outside
the model, e.g. for a generic discrete-time
model with arbitrary sample interval. Synchro-
nous models do not require a parameter for the
sample time; the clock propagates with clocked
variables. Synchronous Modelica models use
the interval operator instead of a parameter.

The attributes of Periodic define the clock interval and
offset time. The basic clock interval is either specified
with a double valued baseInterval or with integer
valued intervalCounter and resolution. Both
definitions relate to each other with

 baseInterval = intervalCounter/resolution

Periodic clocks may be further refined with the attributes
subSampleFactor and shiftCounter. This re-
sults in the actual

 interval = baseInterval/subSampleFactor

that is delayed by

 offsetTime = interval*shiftCounter

The attributes of “ScalarVariable” are extended with two
new attributes:

• previous marks a discrete-time state, similar to
the derivative attribute of continuous-time
states. The value is an index to the variable
providing the previous value of the discrete-
time state.

• clockIndex associating a variable uniquely
with a clock in the “Clocks” section.

Finally, the “ModelStructure” section is extended with
a subsection “DiscreteStates”. It provides an ordered list
of all exposed discrete states with their indices in the
“ScalarVariable” list. Each entry of “DiscreteStates”
may declare the dependencies from known inputs, con-
tinuous-time states and other discrete-time states. The
dependencies are defined under the assumption that the
respective clock ticks.

3.2 Extension of the C calling API

The C calling API is extended with four new functions
that can be called during the event mode of an FMU.

A clock is activated by the environment for the current
time instant by the function fmi2SetClock, and the sta-
tus of a clock can be queried with the function
fmi2GetClock:

fmi2Status fmi2SetClock (
 fmi2Component c,
 const fmi2Integer clockIndex[],
 size_t nClockIndex,
 const fmi2Boolean tick[],
 const fmi2Boolean* subactive);

 Set the clock activation status by providing
the indices of the corresponding clocks
with respect to the xml element
“<TypeDefinitions><Clocks>” and val-
ues. A clock is activated at the current
time instant if tick[i] = fmi2True, oth-
erwise the clock is deactivated. The envi-
ronment may set subactive[i] =
fmi2True to only evaluate the output
equations (2) and replace the state equa-
tions (1) with
 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 (7)
This is similar to the treatment of clocked
continuous states at initial time, see (4),
(5) and (6). The argument subactive[i]
defaults to fmi2False if a NULL pointer is
passed.

fmi2Status fmi2GetClock (
 fmi2Component c,
 const fmi2Integer clockIndex[],
 size_t nClockIndex,
 fmi2Boolean tick[]);

 Query whether a set of clocks is active by
providing the indices of the corresponding
clocks with respect to the xml element
“<TypeDefinitions><Clocks>”.

A clock interval is set by the environment for the current
time instant by the function fmi2SetInterval, and it
can be queried with the function fmi2GetInterval:

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

509

fmi2Status fmi2SetInterval(
 fmi2Component c,
 const fmi2Integer clockIndex[],

 size_t nClockIndex,
 const fmi2Real interval[]);

 Set the interval value between the previ-
ous and the present tick of the clock.

fmi2Status fmi2GetInterval(
 fmi2Component c,
 const fmi2Integer clockIndex[],

 size_t nClockIndex,
 fmi2Real interval[]);
 Query the interval value for the provided

clocks (periodic or non-periodic). If the
clocks are non-periodic, the interval has
to be queried at every clock tick, to define
the follow-up clock tick.

3.3 Extension of importing environment

The importing environment parses the model description
XML file and activates periodic and inferred clocks dur-
ing simulation. It activates periodic clocks at sample in-
tervals specified in the model description XML file. It
activates inferred clocks as needed by the environment
(e.g. with an externally specified sample interval or if the
clock of a connected FMU ticks). The FMU itself acti-
vates Triggered clocks.

This extension does not change the overall calling se-
quence of C functions for model exchange. The environ-
ment calls the new API functions additionally during
event mode as follows:

0. Enter event mode:
FMI 2.0 enters the event mode either after ini-
tialization (call to function fmi2ExitIni-
tializationMode) or during simulation (call
to function fmi2EnterEventMode).

1. Activate clocks and set inferred intervals:
An FMU activates triggered clocks itself. The
environment may query the clock activation sta-
tus with the function fmi2GetClock. The en-
vironment sets the activation status of periodic
and inferred clocks by calling fmi2SetClock.
Moreover, the environment calls
fmi2SetInterval for inferred clocks. It may
query the clock interval, e.g. for triggered
clocks, with the function fmi2GetInterval.

2. Evaluate clocked equations:
The evaluation is triggered by fmi2GetXXX for
clocked variables during event mode or by

fmi2NewDiscreteStates. The FMU cop-
ies 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘−1 and evaluates the discrete-time
equations, updating 𝑥𝑥𝑘𝑘, if the corresponding
clock is active. The FMU resets the clock acti-
vation after one evaluation. This means that the
environment must activate the clock again if it
wants to re-evaluate clocked equations, for in-
stance to treat an algebraic loop (see below)

3. Leave event mode:
The functions fmi2NewDiscreteStates and
fmi2Reset leave event mode and deactivate
all clocks.

The environment might need to evaluate clocked dis-
crete-time equations multiple times at one time instant,
for instance to iteratively solve an algebraic loop among
multiple connected FMUs or to calculate partial deriva-
tives for optimization. The environment can either call
fmi2GetXXX within event mode, triggering the evalua-
tion of clocked equations if the respective clocks are ac-
tive. The FMU will update discrete-time states and de-
activate the clocks. The environment may reset discrete-
time states by calling fmi2SetXXX, re-activate clocks
and call fmi2GetXXX again for multiple evaluations.
This also applies to all kinds of clocks, including also
triggered clocks. Alternatively, the environment may en-
ter event mode multiple times and reset discrete-time
states for multiple evaluations.

The environment might be interested in the dependen-
cies of model outputs from inputs and given discrete-
time states, independently of the state equations. This
can be achieved by passing subactive=fmi2True to
fmi2SetClock.

3.4 Relation to Simulink S-functions

The basic concept of the proposed FMI extension is well
known from other simulation technologies. The widely
used simulation tool Simulink, for example, supports an
arbitrary number of discrete sample times in an S-func-
tion, in addition to continuous-time equations. Lacking
an XML file, the sample times are defined in S-function
methods (C functions). The most important methods are
listed here and related to the proposed FMI extension.
mdlInitializeSizes(SimStruct *S)

This method declares the number of sample times with
 ssSetNumSampleTimes(S, n);

It corresponds to the number of Clock entries in the
model description XML file.
mdlInitializeSampleTimes(SimStruct *S)

This method initializes each sample time i = 0,…,n-1
with an interval and an offset time by calling
 ssSetSampleTime(S, i, interval);
 ssSetOffsetTime(S, i, offsetTime);

Discrete-time models for control applications with FMI

510 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

The argument interval may take the special values
CONTINUOUS_SAMPLE_TIME for a continuous-time
model and INHERITED_SAMPLE_TIME, corresponding
to an inferred sample time of this proposal.

Moreover, the argument interval may take the special
value VARIABLE_SAMPLE_TIME and the argument
offsetTime may take the special value
FIXED_IN_MINOR_STEP_OFFSET, relating discrete-
time sub-models to numerical integration steps of con-
tinuous-time sub-models. Such sampling can be imple-
mented with triggered clocks of this proposal, if the
FMU activates clocks itself during transitions between
continuous-time mode and event mode.

Simulink will activate any sample time from outside S-
functions in the case of sample hits and call the function
mdlUpdate(SimStruct *S, int_T tid)

A model must query the activation status and evaluate
the respective discrete-time equations.
 if (ssIsSampleHit(S, i, tid)) {
 // update discrete states that belong
 // to sample time i
 }

Discrete states are accessed with
 real_T *x = ssGetRealDiscStates(S);

This FMI proposal uses variable references to access dis-
crete states. It introduces optional previous values for
discrete-time states. Previous values allow the definition
of dependencies on 𝑥𝑥𝑘𝑘−1 in the model structure, see (1),
(2). The environment only sets the actual value 𝑥𝑥𝑘𝑘. An
FMU with previous values copies 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘−1 prior to the
evaluation of clocked equations.

4 Use Cases

This section lists use cases for control applications. A
chemical process model serves as an example.

4.1 Exemplary chemical process model

We consider a continuous stirred-tank reactor (CSTR)
with cooling jacket published by (Engell, Klatt, 1993).
This highly nonlinear model exhibits interesting proper-
ties, like nonminimum phase behavior and change of
steady-state gain at the main operating point. (Chen et
al, 1995) propose this example as a benchmark problem
for nonlinear control system design.

The following reaction describes the chemical process:

 𝐴𝐴
𝑘𝑘1→ 𝐵𝐵

𝑘𝑘2→ 𝐶𝐶

 2𝐴𝐴
𝑘𝑘3→ 𝐷𝐷 (8)

The reactor primarily transforms cyclopentadiene (sub-
stance A) to the product cyclopentenol (substance B).
An unwanted subsequent reaction transforms B to cyclo-
pentanediol (substance C). Another unwanted parallel
reaction transforms A to the by-product dicyclopentadi-
ene (substance D). The mathematical model contains the
component balances for A and B:

𝑑𝑑𝑐𝑐𝐴𝐴
𝑑𝑑𝑑𝑑

=
𝑉̇𝑉𝐹𝐹
𝑉𝑉𝑅𝑅
�𝑐𝑐𝐴𝐴,𝐹𝐹 − 𝑐𝑐𝐴𝐴� − 𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴 − 𝑘𝑘3(𝑇𝑇)𝑐𝑐𝐴𝐴2

𝑑𝑑𝑐𝑐𝐵𝐵
𝑑𝑑𝑑𝑑

= −
𝑉̇𝑉𝐹𝐹
𝑉𝑉𝑅𝑅
𝑐𝑐𝐵𝐵 + 𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴 − 𝑘𝑘2(𝑇𝑇)𝑐𝑐𝐵𝐵

 (9)

with the reaction coefficients

 𝑘𝑘𝑖𝑖(𝑇𝑇) = 𝑘𝑘𝑖𝑖,0𝑒𝑒
𝐸𝐸𝑖𝑖
𝑇𝑇 , 𝑖𝑖 = 1,2,3 (10)

as well as the energy balances for the reactor and the
cooling jacket:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑉̇𝑉𝐹𝐹
𝑉𝑉𝑅𝑅

(𝑇𝑇𝐹𝐹 − 𝑇𝑇) +
𝑘𝑘𝑤𝑤𝐴𝐴𝑅𝑅
𝜌𝜌𝜌𝜌𝑝𝑝𝑉𝑉𝑅𝑅

(𝑇𝑇𝐾𝐾 − 𝑇𝑇)

 −
1
𝜌𝜌𝜌𝜌𝑝𝑝

[𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴𝐻𝐻1 + 𝑘𝑘2(𝑇𝑇)𝑐𝑐𝐵𝐵𝐻𝐻2 + 𝑘𝑘3(𝑇𝑇)𝑐𝑐𝐴𝐴2𝐻𝐻3]

𝑑𝑑𝑇𝑇𝐾𝐾
𝑑𝑑𝑑𝑑

=
1

𝑚𝑚𝐾𝐾𝐶𝐶𝑝𝑝,𝐾𝐾
�𝑄̇𝑄𝐾𝐾 + 𝑘𝑘𝑤𝑤𝐴𝐴𝑅𝑅(𝑇𝑇 − 𝑇𝑇𝐾𝐾)�

(11)

Table 1 lists the model parameters.

Table 1: Parameters of CSTR model

Na
me

Value Description

𝑘𝑘1,0 1.287 ℎ−1 Collision factor one
𝑘𝑘2,0 1.287 ℎ−1 Collision factor two
𝑘𝑘3,0 9.043 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ)−1 Collision factor three
𝐸𝐸1 −9758.3 𝐾𝐾 Activation energy one
𝐸𝐸2 −9758.3 𝐾𝐾 Activation energy two
𝐸𝐸3 −8560 𝐾𝐾 Activation energy three
𝐻𝐻1 4.2 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Reaction enthalpy one
𝐻𝐻2 −11.0 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Reaction enthalpy two
𝐻𝐻3 −41.85 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Reaction enthalpy three
𝜌𝜌 0.9342 𝑘𝑘𝑘𝑘/𝑙𝑙 Density reactant
𝐶𝐶𝑝𝑝 3.01 𝑘𝑘𝑘𝑘/(𝑘𝑘𝑘𝑘 𝐾𝐾) Heat capacity reactant
𝑘𝑘𝑤𝑤 1.12 𝑘𝑘𝑘𝑘/(𝑚𝑚2 𝐾𝐾) Heat transfer jacket
𝐴𝐴𝑅𝑅 0.215 𝑚𝑚2 Surface reactor
𝑉𝑉𝑅𝑅 0.01 𝑚𝑚3 Volume reactor
𝑚𝑚𝐾𝐾 5.0 𝑘𝑘𝑘𝑘 Mass cooling jacket
𝐶𝐶𝑝𝑝,𝐾𝐾 2.0 𝑘𝑘𝑘𝑘/(𝑘𝑘𝑘𝑘 𝐾𝐾) Heat capacity coolant

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

511

Table 2: Desired steady operating point

Name Value Description
𝑐𝑐𝐴𝐴,𝐹𝐹 5.10 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 Feed concentration
𝑇𝑇𝐹𝐹 104.9 °𝐶𝐶 Feed temperature

𝑉̇𝑉𝐹𝐹/𝑉𝑉𝑅𝑅 14.19 ℎ−1 Feed flow rate
𝑄𝑄𝐾𝐾 −1113.5 𝑘𝑘𝑘𝑘/ℎ Heat removal
𝑐𝑐𝐴𝐴 2.14 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 Concentration A
𝑐𝑐𝐵𝐵 1.09 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 Concentration B
𝑇𝑇 114.2 °𝐶𝐶 Reactor temperature
𝑇𝑇𝐾𝐾 112.9 °𝐶𝐶 Coolant temperature

Table 2 gives the desired operating point for optimal
yield. The following subsections use this CSTR model
to outline different use cases.

4.2 Functional Engineering

Modelica system models combine physical plant models
with control models. This enables the study the func-
tional behavior of a system with simulation. Having a
functional model available, the actual controller code
shall be generated automatically from the control mod-
els.

Figure 3 shows a system model with a CSTR and a PI
control for the coolant temperature. The PI controller
uses a clock and sample blocks from the Modelica_Syn-
chronous library (Otter et al, 2012). The clock also de-
fines the solver method ImplicitEuler to convert the con-
troller model to discrete time.

The control task is to hold the coolant temperature at the
desired operating point, in order to keep the desired con-
centration of product B.

Figure 3: Simulation results for the functional model
with plant and controller over 3000s

Figure 6 shows simulation results. The feed temperature
CSTR.TF is increased periodically by 5 K. This results
in higher reactor temperature and increased concentra-
tion CSTR.cB. The PI controller increases heat removal
to bring the reactor back to the desired operating point.

Overall the disturbance leads to large deviations of the
concentration of the product CSTR.cB from the desired
operating point of 1.09 mol/l. This is because the con-
troller sees the disturbance only indirectly if the coolant
temperature increases. Moreover the reference value of
the coolant temperature is not adjusted to the disturb-
ance.

Figure 4: Functional model of a plant with controller

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

controller plant

CSTR

TK

cA

V_flow

QK_flow

cB

TF

TF_ref

k=104.9

V_flow

k=14.19 PI

PI

T=10

TF TF

+
+1

+1

TK_ref

k=112.9

disturbance

period=2000

-
feedback sample

periodicClock

0.5 s
ImplicitEuler

sample1

0.0

hold

Discrete-time models for control applications with FMI

512 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

Figure 5: Functional model with advanced controller containing a nonlinear inverse plant model

Figure 6: Discrete-time plant model for nonlinear model predictive control

4.3 Nonlinear inverse models for control

Feed forward is a well-known strategy to increase dy-
namic control performance. Modelica can invert a phys-
ical plant model analytically to get an inverse model for
the feed forward path of a controller (Looye et al, 2005).

Figure 4 shows an advanced controller with nonlinear
inverse model. This increases controller performance for
disturbance rejection by converting feed temperature to
an appropriate set point for heat removal and reference
point for the coolant temperature TK_ref. Moreover, this
enhances the controller with an external set point for the
concentration of the product B.

Figure 7 shows simulation results. During the first 1000
s the controller adjusts the heat removal for the modified
reference cB_ref of 1.07 mol/l. Afterwards the disturb-
ance in the feed temperature is rejected considerably bet-
ter with feed forward control.

Figure 7: Simulation results for feed forward control
with inverse plant model over 3000s

controller

plant

CSTR

TK

cA

VF_flow

QK_flow

cB

TF

TF_ref

k=104.9

VF_flow

k=14.19

PI

PI

T=10

cB_ref

k=1.09 - 0.02

TF TF

+
+1

+1 disturbance

period=2000

invCSTR

TK

cA

VF_flow

QK_flow

cB

TF

forward forward

+
+1

+1

filter

PTn

1

f=0.01

-
feedback

periodicClock

0.5 s
ImplicitEuler

sample

sample1

0.0

hold

sample2
sample3

discrete-time plant model

CSTR

TK

cA

VF_flow

QK_flow

cB

TF

assignClock

periodicClock

20 s
ImplicitEuler

TF

VF_flow

QK_flow

cA

cB

TK

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

513

4.4 Discrete-time plant models for nonlinear
model predictive control

Nonlinear model predictive control (NMPC) treats an
optimal control problem for a given plant model at
runtime. The model is used as is, without analytical in-
version. This simplifies the treatment of multi-variable
constrained problems at the cost of increased computing
requirements for numerical optimization at runtime. A
model predictive controller takes the following steps
during each cycle (Franke et al, 2015):

1. Convert continuous-time physical model to dis-
crete-time model for control.

2. Calculate model sensitivities.

3. Formulate a large-scale nonlinear optimization
program spanning multiple time steps.

4. Solve the large-scale nonlinear optimization
program.

The synchronous features of Modelica and the discrete-
time extension of FMI enable to shift steps 1 and 2 from
the runtime to model translation time. Figure 5 shows
the CSTR model with clock and solver method assigned.

The resulting exported FMU has the discrete-time states
𝑥𝑥 = (𝑐𝑐𝐴𝐴; 𝑐𝑐𝐵𝐵;𝑇𝑇;𝑇𝑇𝐾𝐾), the inputs 𝑢𝑢 = �𝑄̇𝑄𝐾𝐾;𝑇𝑇𝐹𝐹; 𝑉̇𝑉𝐹𝐹

𝑉𝑉𝑅𝑅
� and the

outputs 𝑦𝑦 = (𝑐𝑐𝐴𝐴; 𝑐𝑐𝐵𝐵;𝑇𝑇𝐾𝐾). The control task is formulated
as discrete-time optimal control problem over the time
horizon of 3000s with 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 150 intervals of length
20s. The optimization objective is to minimize quadratic
deviations of the concentration of substance B from the
desired operating point. A second objective term applies
a small penalty to control moves:

𝐽𝐽 = � (𝑐𝑐𝐵𝐵𝑘𝑘 − 1.07)2
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘=0

+ � �
𝑄̇𝑄𝐾𝐾𝑘𝑘+1 − 𝑄̇𝑄𝐾𝐾𝑘𝑘

107
�
2𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1

𝑘𝑘=0

→ min
𝑄̇𝑄𝐾𝐾𝑘𝑘

(12)

The manipulated extraction of heat is constrained by

−9000 𝑘𝑘𝑘𝑘/ℎ < 𝑄̇𝑄𝐾𝐾𝑘𝑘 < 0 𝑘𝑘𝑘𝑘/ℎ, 𝑘𝑘 = 0, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

(13)

The discrete-time state equations in the FMU define
further constraints:

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 𝑘𝑘 = 0, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

 𝑥𝑥0 = (2.14; 1.09; 114.2; 112.9) (14)

The solver HQP collects all states and the control in-
puts of all time intervals into one large vector of opti-
mization variables

𝑣𝑣 = (𝑥𝑥0,𝑢𝑢0, 𝑥𝑥1,𝑢𝑢1, … , 𝑥𝑥𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1,𝑢𝑢𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1,𝑥𝑥𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒).

(15)

This results in the large-scale mathematical program

𝐽𝐽(𝑣𝑣)
𝑣𝑣
→𝑚𝑚𝑚𝑚𝑚𝑚 𝐽𝐽:ℝ𝑛𝑛 → ℝ1

ℎ(𝑣𝑣) = 0 ℎ:ℝ𝑛𝑛 → ℝ𝑚𝑚𝑒𝑒

𝑔𝑔(𝑣𝑣) ≥ 0 𝑔𝑔:ℝ𝑛𝑛 → ℝ𝑚𝑚 (16)

with 𝑛𝑛 = dim(𝑣𝑣), 𝑚𝑚𝑒𝑒 = (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 + 1)dim (𝑥𝑥) and 𝑚𝑚 =
2𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒. HQP applies Sequential Quadratic Programming
(SQP) with a sparse Interior Point QP solver to the nu-
merical solution of the mathematical program.

Figure 8: Results of the optimal control problem over a
time horizon of 3000s

Figure 8 shows simulation results of the CSTR model for
the optimized control trajectory 0 𝑘𝑘𝑘𝑘/ℎ The optimal so-
lution exploits the full range between −9000 𝑘𝑘𝑘𝑘/ℎ and
0 𝑘𝑘𝑘𝑘/ℎ to arrive at the new reference value 𝑐𝑐𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟 =
1.07 𝑚𝑚𝑚𝑚𝑚𝑚/𝑙𝑙 significantly faster. It rejects the disturbance
for the feed temperature 𝑇𝑇𝐹𝐹 similar to the controller with
nonlinear inverse model.

5 Conclusions

Modelica 3.3 introduced synchronous features that ena-
ble the rigorous treatment of discrete-time models. The
Modelica_Synchronous library demonstrates the rele-
vance of these features for control (Otter et al, 2012).
The simulation tools Dymola and OpenModelica sup-
port Modelica_Synchronous so far.

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

Discrete-time models for control applications with FMI

514 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

This paper proposes an extension of FMI 2.0 to make
rigorous discrete-time models available for control ap-
plications. The extension is backwards compatible. It
specializes generic events towards clocks for discrete-
time models. Tools that do not support synchronous time
event handling can export the same model using generic
events as known from FMI 2.0. An importing tool should
parse the extensions of the XML file, in particular the
Clocks section, activate periodic clocks at the specified
intervals and activate inferred clocks on environment
needs. Alternatively, an importing tool might reject the
FMU if it finds inferred or periodic clocks in the Clocks
section. Triggered clocks are activated by the FMU itself
and need no support by the importing environment.

The basic concept of activation of sample times by a tool
is well known from other simulation technologies, such
as Simulink S-functions. The proposed FMI extension
exploits the XML model description to associate clocks
with variables. This enables deterministic clock propa-
gation among multiple connected FMUs. The optional
specification of integer valued clock intervals further en-
hances clock inference for system level design.

FMI export with synchronous features was implemented
in the tools Dymola and OpenModelica. Import was im-
plemented in the optimization solver HQP. The paper
motivates the FMI extension with use cases for a highly
nonlinear chemical process model. The use cases include
functional engineering, nonlinear inverse models for
control and nonlinear model predictive control.

The synchronous features of Modelica also include the
automatic conversion of continuous-time models to dis-
crete-time models with inline integration. This mixed
symbolic/numeric approach simplifies model-based
control applications considerably, because it releases an
importing environment from the treatment of continu-
ous-time differential equations and sensitivity equations.
Run-time efficiency increases.

Discrete-time FMUs with inline integration are a work
in progress. Development versions of OpenModelica,
Dymola and HQP were used for the optimal control
problem in section 4.4. Dymola 2017 was used for the
nonlinear inverse model in section 4.3.

Discrete-time FMUs will serve for the investigation of
parallel algorithms for automatic differentiation and nu-
merical optimization in the PARADOM project.

Acknowledgements

This work was supported in parts by the Federal Minis-
try of Education and Research (BMBF) within the pro-
ject PARADOM (PARallel Algorithmic Differentiation
in OpenModelica) – BMBF funding code: 01IH15002E.

References

T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauß, H.
Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumer-
kel, H. Olsson, A. Viel: Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simula-
tion Models, 9th International Modelica Conference, Mu-
nich, 2012. http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

H. Chen, A. Kremling, F. Allgöwer: Nonlinear Predictive
Control of a Benchmark CSTR, Proceedings 3rd European
Control Conference ECC’95, Rome, 1995.

H. Elmqvist, M. Otter, S.E. Mattsson: Fundamentals of Syn-
chronous Control in Modelica, 9th International Modelica
Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/001/ecp12076001.pdf

H. Elmqvist, M. Otter, F. Cellier: Inline integration: A new
mixed symbolic/numeric approach for solving differential-
algebraic equation systems. In Proceedings ESM European
Simulation Multiconference, Prague, 1995.

S. Engell, K.-U. Klatt. Nonlinear control of a nonminimum
phase CSTR. In Americal Control Conference, Los Angeles,
1993.

R. Franke, E. Arnold: Applying new numerical algorithms to
the solution of discrete-time optimal control problems. In:
Computer Intensive Methods in Control and Signal Pro-
cessing: The Curse of Dimensionality, Birhäuser, Basel,
1997.

R. Franke, M. Walther, N. Worschech, W. Braun, B. Bach-
mann: Model-based control with FMI and a C++ runtime for
Modelica. Proceedings of 11th International Modelica Con-
ference, Paris 2015. https://www.modelica.org/events/modelica2015/pro-
ceedings/html/submissions/ecp15118339_FrankeWaltherWorschechBraunBach-
mann.pdf

R. Franke: Initialization of Clocked Discrete States, Modelica
Change Proposal MCP-0024 2016. https://svn.modelica.org/pro-
jects/MCP/public/MCP-0024_InitializationClockedStates/MCP-0024_Initializa-
tionClockedStates.docx

Functional Mock-up Interface for Model Exchange and Co-
Simulation, Version 2.0, July 2014.

G. Looye, M. Thümmel, M. Kurze, M. Otter, J. Bals: Nonlin-
ear Inverse Models for Control. Proceedings of 4th Interna-
tional Modelica Conference, Hamburg, 2005. https://www.mod-
elica.org/events/Conference2005/online_proceedings/Session3/Session3c3.pdf

Modelica Association: Modelica – A Unified Ob-ject-Ori-
ented Language for Systems Modeling. Language Specifi-
cation, Version 3.3. May 9, 2012.

M. Otter, S.E. Mattsson, R. Franke, H. Elmqvist, T.
Blochwitz: Discrete States and Time Events in FMI
(#353), FMI Change Proposal FCP-001, 2016.
https://svn.fmi-standard.org/fmi/trunk/FMI_ChangeProposals/FCP_001_Sam-
pledDataSystemsForModelExchange/FMI_Proposal_DiscreteS-
tates_TimeEvents.docx

M. Otter, B. Thiele, H. Elmqvist: A Library for Synchronous
Control Systems in Modelica, 9th International Modelica
Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/002/ecp12076002.pdf

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

515

