
Improving Interoperability of FMI-supporting Tools
with Reference FMUs

Christian Bertsch1 Award Mukbil2 Andreas Junghanns3
1Corporate Research, Robert Bosch GmbH, Germany Christian.Bertsch@de.bosch.com

2Dept. of Informatics, Clausthal University of Technology, Germany, Awad.Mukbil@tu-clausthal.de
3QTronic GmbH, Germany, Andreas.Junghanns@QTronic.de

Abstract
The Functional Mockup Interface (FMI) is more and
more adopted by industrial users, increasing the
pressure for higher quality and standard compliance of
FMI supporting tools. The FMI cross check
infrastructure was created to support tool vendors in
their quest for quality improvements and to give users
some measure of confidence in the tool quality.
Currently it is up to the tool vendors which FMUs to
submit there. For this reason the features tested in the
FMI cross check are incomplete and interpretation of
failures is difficult. While for FMI export there is the
FMU compliance checker to test a wide variety of FMI
features, no means are available today to prove standard
compliance for FMI import. This will be overcome by
adding reference FMUs to the FMI cross check, testing
specific features of the FMI standard for standard
compliance and giving detailed feedback, if an
importing tool violates the standard. The paper
describes the realization and the importance of reference
FMUs.
Keywords: FMI, Reference FMUs, Compliance, Testing

1 Introduction
The Functional Mock-up Interface (FMI) is a tool
independent approach for model exchange (ME) and co-
simulation (CS) (Blochwitz et al. 2011, 2012), and on
the way to become the industry standard for exchange
of models and cross-company collaboration (Bertsch et
al. 2014). Its main purpose is to share and reuse
simulation artifacts among a wide variety of tools and
environments, by putting the model specifications into a
simple compressed file called Functional Mockup Unit
(FMU). The FMU contains a model description in XML
format, source written in C and/or binaries ready to run
and optional components such as documentation, model
logo, etc.

Even before the release of the first version of FMI,
several modeling and simulation tools started
supporting the FMI standard. According to the official
website of FMI project, more than 80 simulation tools
support FMI version 1.0 and more than 40 support

version 2.0. Many automotive Original Equipment
Manufacturers (OEM) have committed themselves to
support FMI as exchange format for simulation models.

Because industrial users must rely on the results of
FMI-based simulations, the maturity of FMI
implementations comes into focus. For this reason, the
FMI project has organized the FMI cross check (XC,
2014), where FMI exporting tools can upload test FMUs
together with reference solutions as comma-separated
values (CSV) files, and importing tools can run those
FMUs and report the results. Once the results have been
submitted, they are shown in the FMI cross check table
at the FMI official website, which helps users to check
which tools work well together and which vendors are
serious in supporting FMI. In our experience, this has
improved the quality and the maturity of FMI support of
tools significantly.

The FMU compliance checker (FMU CC, 2016) is an
open source software tool that was initiated by the FMI
project and implemented by Modelon AB,contracted by
the Modelica Association. Its intention is to check
compliance of a given FMU with the FMI standard.
Through this compliance checker, users can get reports
about a wide range of problems that could arise from
loading FMUs, which in turn play an important role in
validating the tools that create (i.e. export) FMUs.

Figure 1: Three complementary ways of FMI compliance
testing

According to the “rule #8” of the FMI cross check
document (XC, 2014), vendors should test their FMUs
using the FMU compliance checker before submitting

Exporting
Tool

compliant?

FMU
Compliance

Checker

Importing
Tool

compliant?

Reference
FMUs

Feedback

Feedback Feedback

Feedback

? ?Today‘s
FMI

Cross Check

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

533

them, with or without reference results. This allows
vendors to find problems in their implementations early.
However, it is up to the exporting tool vendors which
FMUs they submit to the FMI cross check, and (as
depicted in Figure 1) in cases of problems it can be
difficult to find out if it is a problem of the importing or
exporting tool. This shows that special testing of FMI
importing tools is no less important. We propose do
realize this with the help of reference FMUs. Executing
these in an importing tool can provide feedback on the
FMI standard compliance of this tool as described
below.

From the beginning, in the FMI cross check rules
(XC, 2014) the important role of reference FMUs was
foreseen. The contribution of this work is a step towards
realizing such reference FMUs. In Sec. 2 we introduce
the concepts, the requirements and the classifications of
the reference FMUs. In Sec. 3 we present an initial
implementation of reference FMUs. In Sec. 4 we present
the means of testing the reference FMUs and first
experience with FMI importing tools. Last but not least,
we conclude our work and give an outlook to ongoing
research in Sec. 5 respectively.

2 FMI and Reference FMUs
The FMI standard comes in textual form, supported by
graphs, e.g., of the calling sequence, and XML
schemata. (Blochwitz et al. 2012). The FMI 2.0
standard has added also a mathematical description of
FMI, which clarifies a large number of concepts.
However, the FMI standard is considered to be not fully
formalized, which means the standard specifications are
not written in formal description language. Formalizing
the standard would help automatically generating test
cases, and for validating FMUs statically or during
runtime.

Formalizing the FMI standard has been partially
addressed in some publications, e.g. (Hasanagić et al.
2016), but this seems far away from being realized for
the whole standard in the next years. Thus, testing
methods from software engineering come into the focus.

2.1 Reference FMUs and Software Testing
In order to test FMI standard compliance, we must test:
1. Exporting tools: these tools create FMUs.
2. Importing tools: these tools run FMUs.

The exporting tool should follow the FMI standard
specifications for creating FMUs, such as providing a
correct modelDescription.xml file, and use the
correct naming and implementation for the functions as
stated in the standard. The FMU compliance checker
tests the validity of the FMUs and, implicitly, the
exporting tools with respect to a large number of FMU
properties. However, the FMU compliance checker can
only check a finite number of FMU properties for
correctness and is extended step by step. If the FMU

compliance checker does not find a problem, it is not
guaranteed that the FMU is error free.

In software engineering, the three basic types of
software testing are (Bruegge, B., Dutoit, A. H., 2009):
• Black-Box testing: testing done by giving inputs and

analyzing outputs. Tester does not use source code.
• White-Box testing: testing done with knowledge of

the internals of the software.
• Grey-Box testing: a combination of the black-box

and white-box techniques.
Testing FMUs using the FMU compliance checker is
grey-box testing because there are open aspects about an
FMU (like the modelDescription.xml) and closed
aspects of an FMU (compiled dynamic link libraries
(DLLs) containing the model behavior of the FMU). If
the FMU comes with reference CSVs, then the FMU
compliance checker sets the inputs according to the
input CSV file, runs the FMU and compares the
resulting outputs with the reference outputs.

Dealing with the importing tools is different. Most of
the simulation tools supporting FMI are commercial,
with unknown import mechanisms. Therefore, those
importing tools are considered black-boxes, and the
only way to test them is to run special FMUs that can
spot problems and log errors. These special FMUs are
called “Reference FMUs”.

2.2 Definition of Reference FMUs
“A reference FMU is an FMU specifically implemented
to test compliance with a certain aspect of the FMI
standard of a simulation tool. It has the ability to detect
and log errors and wrong practices according to the
FMI standard specifications. A reference FMU shall be
inspected and reviewed before being accepted and
published; thus, they must be available in source code
and all the creation tools must be freely available.”

This definition makes clear, that FMUs
demonstrating a certain feature but exported by some
commercial simulation tool cannot be considered as
reference FMUs, because they might be too
complicated, coming without the full source code and
tools that are necessary to create them without having
the needed licenses. However, they can also be very
valuable. We encourage tool vendors also to export such
“Feature demonstration FMUs” more often to the FMI
cross check.

For the first set of reference FMUs we focus on
testing “hard facts”, e.g., testing standard compliance
aspects of the importing tools such as data type support
and correct calling sequences. Other goals such as
testing usability of FMUs with many parameters or large
input/output sets, simulation performance with many
states or simulation performance with many
algebraic/discrete equations are currently not covered.
We limit ourselves to “positive” test cases (that the
importing tool should accept) and do not consider
negative FMU cases (that should be rejected by the

Improving Interoperability of FMI-supporting Tools with Reference FMUs

534 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

importing tool), because we think that invalid or
incorrect FMUs should be detected by the FMU
compliance checker and in the FMI standard we have
not seen requirements on an FMI importing tool to reject
certain FMUs.

2.3 Requirements on Reference FMUs
Reference FMUs shall:
• test specific features of FMI importing tools, and the

set of reference FMUs cover many features, and
• follow the FMI standard. A minimum requirement

is, that the FMU compliance checker runs
successfully (i.e., without warnings or errors) or that
a trac issue has been created in case of limitations,

• be simple and well-documented,
• be of high quality; to this purpose they shall
• be reviewed according to defined rules
• be available with all source code and tools that are

necessary to create them – in order that the creation
process can be inspected and reproduced,

• detect and log the cause of a failure if possible, and
• fit into the FMI cross check infrastructure (if

possible), e.g. by providing output signals.
The documentation of the reference FMUs is very
important in order to reproduce the creation and
interpret the results. It shall contain the following
information:
• Authors, change history and review status of this

reference FMU.
• The test purpose: What shall be tested with this

FMU? Which potential errors of importing tools
shall be detected with this FMU? Which capabilities
of importing tools shall be tested?

• Implementation hints: How is this FMU created?
(E.g. which libraries and tools are used?) Which
steps or scripts have to be run to create the FMU?

• Test setup: What are inputs to this FMU (data type,
values over time) and what are the expected
outputs?

• Is this FMU suitable for the current FMI cross check
infrastructure?

We have created a template for the documentation
which will be made publicly available. The
documentation will be contained within the reference
FMUs as html documentation.

2.4 Sources of Reference FMUs and
Coverage

There are several ways of deriving reference FMUs:
One is to go systematically through the standard and
trying to derive FMUs testing coverage and correct
implementation of all features. Another is to implement
FMUs based on (negative) experience with importing
and simulating FMUs created by one and run in some

other (presumably buggy) tool. For creating a reference
FMU based on this experience, one should abstract the
missing feature or error of the importing tool to a simple
example fulfilling the requirements listed above and
triggering the erroneous behavior.

In the following we followed both concepts. In the
current work, we did not intent creating a complete set
of reference FMUs, but we consider this as a starting
point that can be extended by developers and users once
the reference FMUs will be released to the FMI project
and to the public.

For certain aspects of the FMI standard, measures of
coverage can be derived: E.g., we have created reference
FMUs for all supported data types or we check the
allowed function calls in all FMI states and have created
reference FMUs that reach all of these states.

2.5 Classifications of Possible Reference
FMUs

FMI standard has main features and specifications that
should be followed, and from those features we propose
this classification of reference FMUs:
• FMUs for testing data type’s capability (one for

each data type),
• FMUs having dependencies on binaries, e.g. DLLs,

or other resources, e.g. CSV files,
• FMUs testing correct interpretation of the

modelDescription.xml file (version string,
GUID, model identifier… etc.),

• FMUs for testing access restrictions depending on
variable attributes (i.e. causality/variability
combination),

• FMUs for testing the calling sequence as specified
in the finite-state machine of the standard document,

• FMUs testing correct event handling (e.g., plausible
event localization),

• FMUs for testing optional capabilities, e.g., partial
derivatives, and

• Complex FMUs enabling the testing of the
interactions of different features (e.g., having
continuous states, multiple variables with different
attributes, different kind of events).

The first FMUs in this list can be considered as single-
feature “diagnostic FMUs”, i.e., they are designed to
test for a specific feature. A failure of them is very easy
to interpret. It is intended that the features to be tested
by different diagnostic FMUs are “orthogonal” in the
sense that the feedback is as clear as possible.

On the other hand, the more complex “multi-feature”
FMUs enable the detection of more subtle errors that
only occur due the interplay of different effects or due
to high complexity of the FMUs.

While in principle there could be completely different
reference FMUs for ME and CS, for our first set of

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

535

reference FMUs we have created all our reference
FMUs for both ME and CS.

2.6 Feedback of Reference FMUs
If an importing tool does not support a feature (e.g.,
specific data types) it should check this during FMU
import based on the information in the
modelDescription.xml file, and give a meaningful
feedback: this is an “announced incompatibility”.

During runtime – especially for diagnostic FMUs –
an internal check of the reference FMU will trigger an
FMI error, so that the simulation is stopped and a
meaningful log message is created. Another possibility
is, that the FMU runs without an error, but the outputs
of the FMU are wrong. This can be detected, e.g. by the
FMI cross check infrastructure.

In the best case the reference FMU is simulated by
the importing tool without any error and produces the
correct outputs (within specified tolerances).

3 Implementation of Reference FMUs
3.1 Tools to Create our Reference FMUs
The FMU Software Development Kit (FMUSDK, 2014)
is considered a good starting point for supporting FMI
and implementing reference FMUs. The FMUSDK
demonstrates the basic use of Functional Mockup Units
(FMUs) as defined by the FMI version 1.0 and 2.0
specifications (FMUSDK, 2014) and implemented by
QTronic and freely available in open source. The
FMUSDK is suitable to create source code FMUs in a
quite simple manner, and already contains many
checking mechanism for the functions calling sequence.
Therefore, reusing and adding to this implementation
helps in creating the first reference FMUs. Furthermore,
we used the FMUSDK scripts and libraries for building
our FMUs.

For the first reference FMUs we concentrated on FMI
2.0 FMUs for Windows 64-bit binaries. Extending this
to other platforms is discussed in Sec. 4.2.

3.2 Preliminary Set of Reference FMUs
The basic structure of our reference FMUs is the same

as proposed by the FMUSDK (Figure 2).

Figure 2: Reference FMU source code structure

 The fmuTemplate.c/.h source files contain all
necessary FMI function implementations and are
included by the main FMU source file “fmu.c”. We
consider this structure versatile, because each FMU can

reuse the template and just modify small code parts for
the realization of specific features. As a starting point,
we used the original template files from the FMUSDK.
For advanced checks for the calling sequence, we
modified the templates (see Sec. 3.2.5).

All of the source code is included in the FMU in order
to enable inspection and debugging. Except for the FMU
mentioned in 3.2.3, all FMUs are separately created as
ME or CS FMUs. We will briefly describe our first set
of reference FMUs:

3.2.1 FMUs for Testing Datatype Support
While the support for real variables is standard for FMI
importing tools, the support for other data types is
limited. String inputs/outputs are not standard in many
simulation tools; however, it is expected that an
importing tool gives a meaningful error message in such
a case.

We created an FMU for testing of support for
Boolean inputs/outputs (bool.fmu): We implemented a
simple test of the Boolean data type support. This model
demonstrates a simple AND gate logical operation, with
two Boolean inputs, executing AND operation and a
Boolean output with the result. This FMU uses three
model variables: two Boolean inputs and one Boolean
output.

Additionally, we implemented an FMU for testing of
support for Integer inputs/outputs (integer.fmu): It
implements the addition of two Integer inputs written to
an output.

Further on, an FMU for testing String capability
(string.fmu) was created: It gets a string input,
concatenates it with a locally defined string and writes
it to a String output. As stated in the FMI standard, the
importer should provide his own allocating and freeing
functions (e.g. calloc, free) along with the logger
function. This property gives the importer the ability to
manage memory also for the FMU. We use this
allocation function to initialize strings, and problems of
the importing tool arising from the allocation will be
detected.

3.2.2 FMU for Testing FMI Version Number for
Future Bugfix Release FMI 2.0.1 (ver.fmu)

This FMU tests if FMI 2.0 importing tools accept FMUs
with a version string “2.0.1”. A future version 2.0.1 of
the FMI standard will have only clarifications about
ambiguities in the FMI 2.0 standard. FMI 2.0.1 FMUs
shall be valid FMI 2.0 FMUs (i.e., FMI 2.0 shall be
“forward compatible”) as mandated by the FMI
development process (FMI DEV, 2015). This reference
FMU contains no calculations.

3.2.3 FMU for Testing Events
We created an FMU with internal time events
tEvents.fmu: it increments an internal integer variable
every second; for ME, time events are defined for this

Improving Interoperability of FMI-supporting Tools with Reference FMUs

536 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

purpose; for CS the events are handled internally in the
FMU.

State events are present by the bouncingBall example
described in 3.2.6. Event handling shall be tested by
more reference FMUs to be developed in the future, see
Sec. 5.4.

3.2.4 FMU for Testing the Support of both ME and
CS Support in One FMU (mecs.fmu)

This FMU contains both ME and CS binaries – without
any calculations. The FMI 2.0 standard allows for
having both ME and CS in one FMU. It is expected, that
importing tools supporting only one of these FMI
flavors, nevertheless accept such an FMU. This FMU
was inspired by negative experience with one simulation
tool only supporting ME import and rejecting FMUs
containing ME and CS. This FMU is created with
modified build scripts compared to the original
FMUSDK, which can create only FMUs supporting
either ME or CS.

3.2.5 Testing the Handling Additional Resources
We implemented an FMU testing the calling of an
additional dynamic link library (DLL) in the binaries
folder (dll.fmu): The FMI 2.0 standard allows the
exporting tools to include additional binaries to be
shipped along with the FMU. These libraries should be
placed in the same folder of the compiled FMU binary
(or binaries) and to test this capability we have created
a simple FMU that contains and uses an additional DLL.
This DLL is compiled for each specific target platform
(i.e. 32-bit or 64-bit for Windows) with /MT option to
include a run-time environment, which is also
mentioned by the FMI standard when compiling the
FMU source code. In our example, we included
“square.dll”, which includes a function that returns
the square of a given real value. We use this function to
calculate the square of an input and to write it to an
output.

Additionally, we implemented an FMU shipped
using a CSV file resource (csv.fmu): The FMI 2.0
standard enforced the importing tool to provide a clear,
IETF RFC3986 compliant URI of resources location
during FMU instantiation. According to the standard,
this URI could be used for a local resources folder
(prefixed by ‘file:///’) or for remote ones (prefixed by
‘http://’, ‘https://’ or ‘ftp://’). The resources folder is
intended to be used only during FMU instantiation. To
test this feature, we created a simple FMU that is
shipped with a csv file in resources folder, which is
accessed during instantiation. This csv file contains an
integer value, and during instantiation we load this file,
set the value stored in the csv file to a local variable and
calculate the square of this value as an output.

3.2.6 FMUs for Testing the Calling Sequence
The FMUSDK has already implemented many

checks regarding the calling sequence. However, we

have gone through all states again and re-considered the
allowed function calls. The FMI standard describes the
calling sequences for ME and CS using finite-state
machines and textual representations
(Blochwitz et al., 2012). The finite-state machines and
their legends also describe which functions are allowed
in which state, including which categories of the
variables are allowed to be accessed in each state,
regarding the causality-variability-initial attributes.
 The FMUSDK functions knows which state the FMU
is in by an indicator and a table of allowed functions
calls in each state is defined. The following features are
already checked by the FMUSDK:
1. Whenever an FMI interface function is called, it

checks whether the current state is among the
allowed states, otherwise it returns fmi2Error.
This ensures the detection of erroneous calling
sequences.

2. fmi2Instantiate ≠ NULL. This can happen if:
a. there is no valid logger function,
b. no allocate/free function provided by importer,
c. the GUID is inconsistent, or
d. model variables did not initialize successfully.

Those features are clearly described in the state machine
graphs. However, there are a few rules mentioned in the
textual description of the FMI standard, that should also
be checked, which are not yet handled by the FMUSDK.
Those features are:
1. Fmi2SetupExperiment should be called at least

once before fmi2EnterInitializationMode,
although they can be called in the same state:
instantiated.

2. stopTime and Tolerance are optional, but
should be handled if set. If stopTimeDefined =
fmi2True, then the independent variable time
must not be set to a value greater than stopTime.

3. In case of CS, after an fmi2SetXXX call, there
must be an fmi2DoStep before an fmi2GetXXX is
allowed. In other words, the order fmi2SetXXX -
fmi2DoStep - fmi2GetXXX must be followed.

Checks for these features are implemented in a
modified version of the fmuTemplate.h/.c files.
Several FMUs with an increasing difficulty using these
modified template files have been created:

An FMU testing the correct calling sequence for an
algebraic calculation for real variables has been
implemented: (real.fmu): It sums two real inputs and
writes them to the output.

An FMU testing the correct calling sequence for one
continuous state was created (dq.fmu): This is a simple
FMU with a continuous state, we used the Dahlquist’s
example from the FMUSDK.

Another FMU tests the correct calling sequence for
continuous states and state events (bB.fmu): this is the
BouncingBall example from the FMUSDK, which

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

537

contains two continuous states and state events. The
simulation time for running this FMU shall be 2s, so that
the phase of minimal amplitudes of the bouncing ball
including the Zeno effect (Fritzson 2004) is currently
excluded from the evaluation.

We used modified fmuTemplate.c/.h files with
the additional checks.to create these FMUs.

3.2.7 Testing Variables Access Restrictions
One of the enhancements brought by the FMI 2.0
standard is the clear definition of variables access
restrictions. The standard added more categories to the
causality/variability attributes, and the “initial” attribute
was added. According to the standard, a specific set of
combinations are allowed to be used in describing model
variables. Furthermore, there are restrictions in
accessing model variables in each state according to the
attribute combinations of the variables. These
restrictions are considered to be part of the state-
machine (Figure 3 and Figure 4), because not only a
specific set of functions are allowed to be called in a
state, but also a specific set of variables are allowed to
be accessed in each state. E.g., discrete variables are
only allowed to be accessed when an event is triggered.
Another example is that the simulator should never set
constant variables. A last example is, that continuous
states may not be set via fmi2SetReal, but with
fmi2SetContinuousStates. This is a basic idea of
this kind of reference FMU and the authors are still
working on these when submitting this paper.

Compared to the current implementation of the
FMUSDK, the template.c/.h and the specific
fmu.c files have to be enriched by additional
information regarding the variable attributes, as the
FMUSDK does not parse the
modelDescription.xml during FMU creation and
this information is currently not available to the
implementation of the FMU during simulation.

4 Testing and Using Reference FMUs
We validated our reference FMUs with the FMU
compliance checker, and tested them with several tools.
This led to three tickets for clarification of the FMI
standard version 2.0.1, three tickets for extension to the
FMU compliance checker, several tickets for
improvements of the FMUSDK and several bug reports
regarding errors or improvements the tested tools.

4.1 Implementing an Erroneous Simulator
Two simple open source simulators come with the
FMUSDK that import and run FMUs, one for ME and
one for CS. We used these simulators to perform first
test of the reference FMUs. Then we injected some
faults (or wrong practices) in these simulators to check
that these errors are detected by the reference FMUs and
meaningful feedback is provided. Those faults are

chosen carefully from our experience and from most
frequent errors that occur. Examples of these faults are
to initialize FMUs before instantiating, or to exit
initialization mode before entering it. Another example
for CS to call fmi2SetXXX and directly call
fmi2GetXXX afterwards without an fmi2DoStep call
between them.

4.2 Tests with Importing Tools - Overview
We tested the reference FMUs with 10 different tools
for Windows 64-bit binaries. Most of these tools cope
very well with normal FMUs generated by other
simulation tools. However, with our reference FMUs we
detect some limitations and bugs in the involved tools,
which are communicated to the tool vendors and
implementers.

In Table 1 and Table 2, we depict the result of our
checks of the ME and CS Reference FMUs:

Table 1: Results for ME:

Table 2 Results for CS:

 OK
 “Announced limitation” of the tool
 Error or missing feedback for limitations
 Error; possibly standard clarification needed
 ME or CS not supported by the tool
Alone for testing the Windows 64-bit combinations of
10 tools with 11 ME and 11 CS FMUs, it took the effort
of setting up and running more than 200 simulation
models. Additionally, we tested some 32-bit tools, with
no significant differences to the 64-bit results. The effort
of running the tests and diagnosing the results will be
shifted in the future to the tool vendors by including the
reference FMUs in the FMI cross check (see Sec. 5.1).

bool integer string tEvent versionmecs csv dll real dq bB

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

Tool I

Tool J

bool integer string tEvent ver mecs csv dll real dq bB

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

Tool I

Tool J

Improving Interoperability of FMI-supporting Tools with Reference FMUs

538 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

In most tools the FMI import support has a quite
mature quality level, and the problems encountered in
our tests mostly are mainly due to our very strict
diagnostics.

4.3 Problems Detected in Importing Tools
The reference FMUs for data type support revealed
problems of several tools for non-real data types: For the
FMUs testing for Integer and Boolean input data support
(bool.fmu and integer.fmu), five tools show errors in
ME due to violations of the calling sequence: They want
to set discrete values in continuous time mode, which is
forbidden. (Remark: this is not an incompatibilty
between hybrid modeling in Modelica and limitations of
the Modelica standard; several Modelica-based tools do
not have a problem with these FMUs).

The results for the string.fmu reflect, that String
inputs and outputs are not supported by typical block-
oriented simulation tools. However, it is expected that
in this case, the tools give a meaningful diagnostic
message during FMU import and not just ignore the
string in/outputs.

The time events FMU tEvents.fmu was successfully
run by all except one tool (violating the calling
sequence).

A “2.0.1” version string in the ver.fmu as foreseen in
the FMI 2.0 standard for a future FMI 2.0.1 FMU is
problematic for all but one tested importing tools. FMUs
following a future FMI 2.0.1 bugfix release, shall be
valid “FMI 2.0” FMUs, see (FMI DEV, 2015). Thus, we
suggest not to use the “2.0.1” version string in FMI
2.0.1, but “2.0”. FMUs could contain the information
that they follow the FMI 2.0.1 standard in an annotation
in the modelDescription.xml file. This shall be
discussed in the FMI project and clarified for FMI 2.0.1.

Only one tool is not able to import an FMU with both
ME and CS support contained (mecs.fmu), but gives a
meaningful feedback.

The csv.fmu crashes for one tool both in ME and CS.
The dll.fmu detects in one tool a violation of the

calling sequence which is not related to DLL-access.
In ME, in none of the tools, except one, problems due

to the additional checks in the calling sequence
(real.fmu, dq.fmu and bB.fmu) have been detected.
For CS, two tools violate the rule, that there may not be
a call to fmi2GetXXX directly after an fmi2SetXXX
without an fmi2DoStep call in between for real.fmu.

5 Outlook
The implemented reference FMUs will first be
internally shared within the FMI project, e.g. within the
“sandbox” of the FMI cross check infrastructure. The
intention is to gather feedback both on the concept and
the reference FMUs, to fix bugs and extend the
documentation and to give tool vendors the opportunity
to fix their implementations. The cross check working

group of the FMI project will review the FMUs and
discuss the proposed requirements on reference FMUs.

5.1 Usage within the FMI Cross Check
After the feedback and review phase within the FMI
project we plan to publish the reference FMUs on the
public part of the FMI project’s resources on GitHub.

After acceptance by the FMI project, the part of the
reference FMUs that fit into the FMI Cross Check
infrastructure (e.g., w.r.t. to real inputs/outputs) shall be
committed there and treated as an exporting tool and
extensions to the infrastructure shall be considered.

5.2 Versioning and Indexing
When releasing the reference to the public within the
FMI cross check, we will use a version number to refer
to this release of the reference FMUs.

With the first release, we will propose an indexing of
the FMUs by a naming convention enabling for a serial
execution of the reference FMUs in a meaningful order.
E.g. single-feature diagnostic FMUs should be
performed before complex FMUs, so that the
localization of errors is simplified. In this ordering, as
few features as possible shall be added from one FMU
to the next.

5.3 Extension of Supported Platforms
With the current solution, it is very easy to create
reference FMUs for Windows 32-bit and 64-bit binaries.
In order to support other platforms like Linux (32-
bit/64-bit) or MAC OS X, the port of the FMUSDK to
Linux (FMUSDK Linux, 2015) could be used.
However, this version is not up to date with the latest
version for the FMUSDK. Linux and OS X versions of
the FMUSDK would be beneficial.

5.4 Increasing the Coverage
The first set of reference FMUS shall be extended by
additional diagnostic and complex FMUs, e.g.:
• for systematically testing all kinds of events (state,

time, externally triggered, zero crossings),
• dealing with a larger number of states (e.g. >=10

states with multiple events), and
• testing for optional capabilities of FMUs (e.g.,

partial derivatives).
Additionally, reference FMUs shall be implemented as
proof of concept of new features of a future FMI
standard from FMI Change Proposals (FCPs).

5.5 Connected FMUs and Parameter Sets
We also propose to extend the FMI cross check and
reference FMUs to connected FMUs: for this purpose
one could use connected FMUs inspired by the FMI 2.0
test FMUs (Test FMUs FMI 2.0 ME). However, these
FMUs are implemented in Modelica, and need a
Modelica tool for the generation of the C-code. Thus, it

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

539

would have to be clarified, if this can be done with a
publicly available tool chain fulfilling our requirements
listed in 2.4 or a re-implementation in C-code is needed.
The definition of connected FMUs should be realized
using the future System Structure and Parameterization
(SSP) standard for the definition of connected FMUs
(Köhler et al., 2016). Additionally, the SSP standard
could be used to test the correct setting of parameter
values to an FMU by the importing tool. For this
purpose, the FMI cross check will have to be extended
for connected FMUs.

5.6 Additional Benefit of Reference FMUs
Reference FMUs can also provide additional example
implementations of FMUs to the FMI community that
can serve as a starting point to implement FMI features
in a good way; in other words, they give hints to the
exporting tools of how typical FMUs could be
implemented. This could help, e.g., for the handling of
additional resources (binaries or other files), where we
have observed many problems of tools in the past.

Reference FMUs can also contribute to clarifying
unclear points of the FMI standard, as demonstrated e.g.
for the version string reference FMU.

Additionally, with reference FMUs we can provide
test FMUs for features that are not yet supported by
(many) exporting tools, e.g. string inputs, provision of
partial derivatives, and serialization of states.

6 Summary
In the current paper, we present the concept for the
creation and usage of reference FMUs. As a starting
point, first reference FMUs have been implemented and
tests with importing tools have been performed, which
led to the detection of several bugs in importing tools.
This is seen as a proof of concept for the idea of
reference FMUs. They shall be made publicly available
first within the FMI project and then publicly by
including them in the regular FMI cross check. With
FMI community effort, the set of reference FMUs and
thus feature coverage shall be increased. This will
contribute to the improvement of quality of FMI
importing tools.

Acknowledgements
The authors want to thank the members of the FMI cross
check working group for their valuable input to our
work.

Many thanks also to Torsten Blochwitz (ESI group),
Umut Durak (DLR Braunschweig), Dan Henriksson
(Dassault Systems), Adrian Tirea (QTronic), Karl
Wernersson (Dassault Systems) for their valuable input
and fruitful discussions.

Referenced Tools and Online Documents
(XC, 2014) FMI Cross Check Rules, v3.1, Modelica

Association Project FMI: How to Improve FMI
Compliance, June 2015. [Accessed online on Dec 16th
2016] https://www.fmi-standard.org/tools

(FMI DEV, 2015) FMI Development Process and
Communication Policy, [Accessed online on Jan 22nd 2017]
https://www.fmi-standard.org/development

(FMI 2.0 Standard, 2014) Functional Mock-up Interface for
Model Exchange and Co-Simulation, Version 2.0,
[accessed on Jan 21st 2017] https://www.fmi-
standard.org/downloads

(FMU CC, 2016) FMU Compliance Checker, Modelon AB,
released by Modelica Association Project FMI [accessed
on Dec 16th 2016] https://www.fmi-standard.org/downloads

(FMUSDK, 2014) FMUSDK 2.0.4, QTronic GmbH, July
2014. [Accessed online on Dec 16th 2016]
https://resources.qtronic.de/fmusdk/

(FMUSDK Linux, 2015) FMUSDK port to Linux and OS X,
[accessed on Jan 6th 2017] https://github.com/cxbrooks/
fmusdk2

(Test FMUs FMI 2.0 ME) Testing FMI 2.0 Model Exchange
features of connected FMUs, Martin Otter, DLR, [Accessed
on Jan 13th 2017] https://www.fmi-standard.org/downloads

References
Bertsch, C., Ahle, E., Schulmeister, U., The Functional

Mockup Interface - seen from an industrial perspective, In:
Proceedings of the 10th International Modelica Conference
2014, Lund, Sweden

Blochwitz, T., Otter M., Arnold, M., Bausch, C., Clauß, C.,
Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M.,
Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V, Wolf,
S., The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, In: Proceedings of the 8th
International Modelica Conference 2011, Dresden,
Germany

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauß, C.,
Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J.,
Neumerkel, D., Olsson, H., Viel, A., The Functional
Mockup Interface 2.0: The Standard for Tool independent
Exchange of Simulation Models, In: Proceedings of the 9th
Modelica Conference 2012, Munich, Germany

Bruegge, B., Dutoit, A. H., Object-Oriented Software
Engineering Using UML, Patterns, and Java, 3rd edition,
Prentice Hall Press, 2009, Upper Saddle River, USA

Fritzson, P., Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1, Wiley, 2004, Hobiken, USA

Hasanagić, M., Tran-Jørgensen, P. W. V., Lausdahl, K.,
Larsen, P. G., Formalising and Validating the Interface
Description in the FMI Standard, FM 2016: Formal
Methods, 2016, Springer, Heidelberg, Germany

Köhler, J., Heinkel, H.-M., Mai, P., Krasser, J., Deppe, M.,
Nagasawa, M., Modelica-Association-Project “System
Structure and Parameterization” – Early Insights, Modelica
Conference Japan, 2016

Pressman, R. S., Software engineering: a practitioner’s
approach, seventh edition. Publisher McGraw-Hill Higher
Education, (2010), New York, USA

Improving Interoperability of FMI-supporting Tools with Reference FMUs

540 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

