
A Novel Flower Pollination Algorithm

based on Genetic Algorithm Operators

Allouani Fouad 1 Kai Zenger 2 Xiao-Zhi Gao 3, 4

1Department of Industrial Engineering, University of Khenchela, Algeria, fouad.allouani@g.enp.edu.dz
2Department of Electrical Engineering and Automation, Aalto University, Aalto, Finland, kai.zenger@aalto.fi
3Machine Vision and Pattern Recognition Laboratory, Lappeenranta University of Technology, Lappeenranta, Finland.

4School of Computing, University of Eastern Finland, Kuopio, Finland, xiao.z.gao@gmail.com

Abstract
The Flower Pollination Algorithm (FPA) is a new

natural bio-inspired optimization algorithm that mimics

the real-life processes of the flower pollination. Thus,

the latter has a quick convergence, but its population

diversity and convergence precision can be limited in

some applications. In order to improve its

intensification (exploitation) and diversification

(exploration) abilities, we have introduced a simple

modification in its general structure. More precisely,

we have added both Crossover and Mutation Genetic

Algorithm (GA) operators respectively, just after

calculating the new candidate solutions and the greedy

selection operation in its basic structure. The proposed

method, called FPA-GA has been tested on all the

CEC2005 contest test instances. Experimental results

show that FPA-GA is very competitive.

Keywords—�flower pollination algorithm, crossover,

mutation, genetic algorithm (GA)

1 Introduction

Swarm intelligence (SI) optimization algorithms which

are inspired by simulation of various types of

biological behavior existing in nature, have

characteristics of simple operation, good optimization

performance and strong robustness. In the last two

decades, a large number of algorithms based on this

aspect have been suggested, such as, ant colony

optimization (ACO) (Socha and Dorigo, 2008),

differential evolution (DE) (Storn and Price, 1997),

particle swarm optimization(PSO) (Kennedy and

Eberhart, 1995), firefly algorithm (FA) (Xinshe, 2012),

glowworm swarm optimization (GSO) (Yongquan and

Jiakun, 2012), monkey search (MS) (Mucherino and

Seref, 2007), harmony search (HS) (Geem et al, 2001),

cuckoo search (CS) (Yang and Deb, 2009), bat

algorithm (BA) (Yang, 2010). SI optimization

algorithm can solve complex optimization problems,

which classical methods cannot handle efficiently.

They have shown excellent performance in many ways

(Blum and Li, 2008), and their fields of application are

continuously growing (Yang et al, 2013).

Flower pollination algorithm (FPA) is a simple and

effective SI optimization algorithm proposed in (Yang,

2012). It derives its inspiration from pollination

process of flowering plants. From the biological

evolution point of view, the objective of flower

pollination is the survival of the fittest and the optimal

reproduction of plant species. All these factors

involved in this process interact systematically

between them to achieve optimal reproduction of the

flowering plants.

In reality (in the general sense), there are two

different ways of pollination; Self-pollination and

cross-pollination (Yang, 2012). The cross-pollination

(or global pollination) means that pollination can be

achieved through pollinators, which carry pollen of a

flower of a different plant using Levy flights (Yang,

2012).

The second type, self-pollination (local pollination),

is made by the same plant or flower without

pollinators. In the latter, the carrying process of pollen

is generally done with the help of environmental

factors such as wind and diffusion in the water (Yang,

2012).

In this paper, a novel FPA based on both Crossover

and Mutation Genetic Algorithm (GAs) operators has

been proposed. The changes made allow the

introduction of two major improvements: (i) enhancing

the diversity of the population, and (ii) improving the

intensification ability by the association of these two

operators and the elite selection mechanism. Indeed, to

demonstrate the efficacy of the proposed algorithm an

experimental investigation was carried out using the

CEC2005 test suite benchmark problems (Suganthan et
al, 2005). In addition, the proposed method was also

compared to a set of state-of-the-art algorithms

including, the basic FPA, the MGOFPA (Draa, 2015),

which is a recently proposed FPA variant, the Co-

variance Matrix Adaptation Evolution Strategies

(CMA-ES) algorithm (Hansen and Ostermeier, 2001),

the Comprehensive Learning Particle Swarm

Optimizer (CLPSO) (Liang et al, 2006), JADE (Zhang
and Sanderson, 2009), jDE (Brest et al, 2012), CoDE

(Wang et al, 2011) which are all a DE variants.

Moreover, Wilcoxon’s rank-sum statistical test was

carried out at 5 % significance level to judge whether

EUROSIM 2016 & SIMS 2016

1 060DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

the results of the proposed algorithm differ from those

of the other algorithms in a statistically significant way

(Derrac et al, 2011). The rest of this paper is organized

as follows: Section 2 presents the fundamental

principles of the standard FPA. Section 3 contains a

brief description of GAs and its crossover and mutation

operators. The proposed algorithm is introduced in

Section 4. Experimental results are reported in Section

5. Finally, Section 6 concludes this paper.

2 The Flower Pollination Algorithm

The flower pollination algorithm (FPA) is a new

population-based optimization technique inspired by

the physiological process of mating in plants. More

specifically, this algorithm mimics the reproduction of

plants of the same kind or other, through the so-called

fertilization or pollination of flowers. To better

basically understand the principle of this optimization

technique, we start by giving a brief description of its

biological underpinnings (Yang, 2012).

2.1 Biological underpinnings of the FPA
Generally, everyone knows that the reproduction of

almost plants, in its direct and simple meaning, is a

result of a pollination operation. Thus, this very

important biological process is typically associated

with the transfer of a chemical substance called pollen,

and such transfer is often linked with some creatures

called pollinators such as insects, birds, bats and other

animals.

In fact, some pollinators and certain flowers have

co-evolved into very specialized flower-pollinator

cooperation. For example, some pollination kind

cannot be completed successfully without the

intervention of a specific type of pollinators. In reality,

there are two main forms in the pollination process; the

biotic and abiotic pollination. Thus, about 90% of

flowering plants belong in the first class, in which the

pollen is transferred by a specific pollinator.

Concerning the second class, which does not involve

using other organisms and employs wind, water or

gravity as pollination mediators, we find only 10% of

flowering plants.

Pollinators, or sometimes-called pollen vectors,

which may be of various kinds like honeybees for

example, represent an essential factor in a biotic

pollination form. Thus, some pollinators tend to visit

exclusively one species of flower; this pollinator

behavior is called flower constancy. The latter

increases directly the reproduction of the same flower

species by maximizing the transfer of flower pollen to

the same plants. This is also advantageous for the

pollinators, since they will be sure of the availability of

nectar supply with a limited memory and minimum

cost of learning.

Depending on the availability of pollinators, two

types of pollination are considered; self-pollination and

cross-pollination. The first pollination type, called also

local pollination, occurs when pollen from one flower

pollinates the same flower or other flowers of the same

plant (Yang, 2012). Contrariwise, cross-pollination

also known as global pollination, happens over long

distances when pollen is delivered to a flower from a

different plant through a direct or indirect intervention

of pollinators following the so-called Lévy flight

behavior (Pavlyukevich, 2007).

2.2 The FPA
In (Yang, 2012), Yang emulated the characteristic of

the biological flower pollination process in flowering

plants to develop the algorithm in question, based on

four main rules listed as follows:

Rule1: The global pollination process takes place

through biotic and cross-pollination, such that the

movement of pollinators has the form of the levy flight

(Pavlyukevich, 2007).

Rule2: Local pollination process is considered as

abiotic and self-pollination.

Rule3: The flower constancy provided by pollinators is

equivalent to a reproduction probability proportional to

the similarity of two flowers involved in pollination

process.

Rule4: The orientation of the global pollination

process, towards local or global pollination is

controlled by a switch probability 𝑝 ∈ [0,1] with a

simple prejudice toward local pollination for reasons

relating to the approximation of the algorithm to the

real case.

The implementation of these rules is based on a

simplistic idea said that: each plant has only one

flower, and each flower produces only one pollen

gamete (Yang, 2012). Thus, this argument means that

it is not necessary to distinguish between a pollen

gamete, a flower, a plant or a solution to a problem.

The transition to the mathematical formulation of

these rules is carried out according to (Yang, 2012) as

follows; first, the global pollination processes (Rule 1),

and flower constancy (Rule 3) are represented using

the following equation:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛾𝐿(𝜆)(𝑔∗ − 𝑥𝑖
𝑡) (1)

where, 𝑥𝑖
𝑡 is the pollen 𝑖 or the solution vector 𝑥𝑖 at

iteration 𝑡, 𝑥𝑖
𝑡+1 is the generated solution vector at

iteration 𝑡 + 1, 𝑔∗is the current best solution. In

addition, 𝛾 is a scaling factor used to control the step

size. 𝐿(𝜆) is the Lévy flights-based step size, it

corresponds to the strength of the pollination. In

reality, pollinators can fly over a long distance with

different distance steps; this can be modeled using a

Lévy distribution (Pavlyukevich, 2007) according to

the following equation:

EUROSIM 2016 & SIMS 2016

1 061DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

𝐿 ∼
𝜆Γ(𝜆)sin⁡(

𝜋𝜆

2
)

𝜋

1

𝑠1+𝜆
 (𝑠 ≫ 𝑠0 ≫ 0). (2)

In this equation, Γ(𝜆) is the standard gamma

function, and this distribution is valid for large steps

𝑠 > 0.

Then, the local pollination (Rule 2), and the flower

constancy (Rule 3) can be represented as follows:

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝜖(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) (3)

where 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡 are pollen gametes obtained from

different flowers of the same plant species. Thus, this

random subtraction (𝑥𝑗
𝑡 − 𝑥𝑘

𝑡) is used to imitate the

flower constancy in a limited neighbourhood. The

parameter 𝜖 is chosen arbitrarily in [0,1] to

approximate this selection to a local random walk

(Yang, 2012).

Flower pollination processes can occur randomly at

all scales, both local and global case. Hence, to emulate

this bi-orientation, a switching parameter 𝑝 chosen

randomly in [0,1] (Rule 4) can be effectively used

(Yang, 2012).

The standard FPA is summarised in the following:

Algorithm 1. The flower pollination algorithm

1: Objective Function 𝑓(𝑥), 𝑥 = (𝑥1, … . , 𝑥𝑑)
𝑇

2: Initialise a population of 𝑛𝑓 flowers in random positions

3: Find the best solution 𝑔∗ in the initial population

4: Define the switch probability 𝑝 ∈ [0, 1]
5: Initialise the iteration counter 𝑡 = 0

6: While 𝑡 < 𝑡𝑚𝑎𝑥 do

7: For 𝑖 = 1 ∶ 𝑛𝑓⁡(all 𝑛𝑓 flowers in the population) do

8: If rand < 𝑝 then

9:
 Draw a 𝑑-dimensional step vector 𝐿 which

obeys a Lévy distribution

10: Do global pollination via (1)

11: Else

12: Draw 𝜖 from a uniform distribution in [0,1]

13:
 Randomly chose 𝑥𝑗

𝑡 and 𝑥𝑘
𝑡 from the

population

14: Do local pollination via (3)

15: End if

16: Evaluate the newly generated solution 𝑥𝑖
𝑡+1

17:
 If the newly generated solution is better, replace 𝑥𝑖

𝑡

by 𝑥𝑖
𝑡+1

18: Update the current best solution 𝑔∗

19: 𝑡 = 𝑡 + 1

18: End for

19: End while

3 Genetic Algorithm
Genetic algorithm (GA) is a search method that
employs random choice to guide a highly exploitative

search, by maintaining a balance between exploration

of the feasible search domain and exploitation of

‘‘good’’ solutions, see (Holland, 1992). A simple GA

is comprised of three main operators: reproduction,

crossover, and mutation. Reproduction allocates more

copies to solutions with better fitness values and thus

imposes the survival-of-the-fittest mechanism on the

candidate solutions. Crossover combines partially a set

of bits and pieces of two or more parental solutions to

produce new, possibly better solutions (i.e. offspring).

Many crossover techniques exist, but the key idea

of the most of them is based on the following simple

concept: two individuals (parents) are randomly

selected and recombined with a probability equal to 𝑝𝐶

called crossover probability. Indeed, the combination is

achieved if the following condition 𝑟𝑎𝑛𝑑 ≤⁡𝑝𝐶 is

verified, where 𝑟𝑎𝑛𝑑 is random number. Otherwise,

the two offspring are simply copies of their parents.

Mutation is the occasional random inversion of bit

values that generates non-recursive offspring. More

precisely, mutation is often the secondary operator

performed with a low probability in GAs. One of the

most common mutations method is the bit-flip

mutation (Sastry et al, 2005). In this kind of mutation,

each bit in a binary string is altered (from 0 to 1 or the

opposite) with a certain probability 𝑝𝑚 known as the

mutation probability. In reality, mutation operator

performs a random walk near to the individual.

In this paper, we integrate these two GAs operators

(crossover and mutation) in the FPA structure to

improve its performances. The typical crossover and

mutation operation is shown in Figure.1.

Figure 1. Crossover and mutation operation.

4 The Proposed Algorithm

The key idea of the proposed algorithm FPA-GA, is

including the concept of crossover and mutation

operators as successive steps in the basic FPA. These

two steps are included just after calculating the new

candidate solutions and the greedy selection operation.

Thus, the proposed FPA-GA can be described as

shown in the pseudo-code of Algorithm 2 below.

EUROSIM 2016 & SIMS 2016

1 062DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

Algorithm 2. FPA based on Crossover and Mutation GAs

Operators

1: Objective Function 𝑓(𝑥), 𝑥 = (𝑥1, … . , 𝑥𝑑)

𝑇

2: Initialise a population of 𝑛𝑓 flowers in random positions

3: Find the best solution 𝑔∗ in the initial population

4: Define the switch probability 𝑝 ∈ [0, 1]
5: Define the crossover and mutation application probability

𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 ∈ [0, 1]
6: 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑛𝑓n

7: While 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣 do

9: For 𝑖 = 1 ∶ 𝑛𝑓⁡(all 𝑛𝑓 flowers in the population) do

10: If rand < 𝑝 then

11: Draw a 𝑑-dimensional step vector 𝐿 which

obeys

 a Lévy distribution

12: Do global pollination via (1)

13: Else

14: Draw 𝜖 from a uniform distribution in [0,1]

15: Randomly chose 𝑥𝑗
𝑡 and 𝑥𝑘

𝑡 from the

population

16: Do local pollination via (3)

17: End if

18: Evaluate the newly generated solution 𝑥𝑖
𝑡+1

19: If the newly generated solution is better, replace 𝑥𝑖
𝑡

by

 𝑥𝑖
𝑡+1

20: End for

21: 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 + 𝑛𝑓

22: If 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣 then

23: Break ;

24: End if

25: if 𝑟𝑎𝑛𝑑⁡ < 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢⁡𝐭𝐡𝐞𝐧

26: Apply crossover operator on the current population

 𝑃𝑜𝑝𝑡 to generate a new population 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠
27: Apply mutation operator on the 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠

population

 to generate a new population 𝑃𝑜𝑝𝑀𝑢𝑡𝑎

28: Apply an elite selection of 𝑛𝑓 individuals from

 𝑷𝒐𝒑𝒕 ∪ 𝑷𝒐𝒑𝑪𝒓𝒐𝒔𝒔 ∪ 𝑷𝒐𝒑𝑴𝒖𝒕𝒂

29: 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 = 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 + 𝑛𝑓

30: end if

31: If 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 < 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣 then

32: Break ;

33: End if

34: Update the current best solution 𝑔∗
35: End while

As shown in Algorithm 2, the main algorithmic

structure of the conventional FPA is preserved in the

proposed FPA-GA; the supplementary part is shown in

gray. Indeed, the intervention of these two operators

successively is controlled by the following condition;

𝑟𝑎𝑛𝑑⁡ < 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢, where 𝑟𝑎𝑛𝑑 is a random

number ∈ [0,1] and 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 represents the

probability of applying these latter.

Consequently, if this condition is checked two

additional populations 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 and 𝑃𝑜𝑝𝑀𝑢𝑡𝑎 will be

added respectively. Then, an elite selection takes place

to chose the 𝑛𝑓 ⁡best solutions from the new global

generated population 𝑃𝑜𝑝𝐺𝑙𝑜𝑏 = 𝑃𝑜𝑝 ∪ 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 ∪
𝑃𝑜𝑝𝑀𝑢𝑡𝑎.

In addition, we note that Algorithm 2 contains two

independent control structures form lines 22–24 and

lines 31–33, which their purpose is to avoid execution

of extra objective function evaluations by the

algorithm. It is also to be noted that the number of

objective function evaluations 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 is

always incremented while 𝑁𝑢𝑚𝑏_𝑂𝑏𝑗_𝐸𝑣 <
𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣 by 𝑛𝑓 (see line 21 and 29).

It should be noted that, the strong point of our

algorithm resides in the fact that it has a simple

algorithmic structure compared with other algorithms,

which makes its implementation very easy.

5 Experimental Study
In this section, the FPA-GA algorithm is benchmarked

on 25 benchmark functions from a CEC2005 special

session (Suganthan et al, 2005). The benchmark

functions used are minimization functions. They can be

divided into four groups: unimodal, multimodal, fixed-

dimension multimodal, and composite functions

(Suganthan et al, 2005). The FPA-GA algorithm was

run 20⁡times on each benchmark function. The number

of decision variables is 𝑁. For each algorithm (FPA-

GA and all other algorithms used in comparative study;

FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE and

CoDE and each test function, 20 independent runs

were conducted with 𝑛 × 100000 function

evaluations. In our experimental studies, the average

and standard deviation (𝑀𝑒𝑎𝑛 and 𝑆𝑡𝑑⁡𝐷𝑖𝑣) of the

function error value (𝑓(𝑥⃗) − 𝑓(𝑥⃗∗)) were recorded for

measuring the performance of each algorithm, where 𝑥⃗

is the best solution found by the algorithm in a run and

𝑥⃗∗ is the global optimum of the test function. All

obtained results are given in Table 1 where the best

results are marked in gray spaces. Moreover,

𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛’𝑠 rank-sum statistical test was carried out at

5% significance level to judge whether the results of

FPA-GA algorithm differ from those of the other

algorithms in a statistically significant way. In

addition, ⊝ indicates that FPA-GA performs

significantly better than the tested algorithm on the

specified function a ⊕ indicates that FPA-GA

performs not as good as the tested algorithm, and a ⨀

means that the Wilcoxon rank sum test cannot

distinguish between the simulation results of FPA-GA

and the tested algorithm. All Wilcoxon rank-sum based

comparison of different obtained results are

summarized in Table 2.

In all simulation tests, we have adapted FPA-GA,

FPA and MGOFPA respectively with the following

parameters combination:⁡𝑝 = 0.2, 𝑛𝑓 = 50

, 𝑃𝑟𝑜𝑏_𝐶𝑟𝑀𝑢 = 0.1 𝑃𝑟𝑜𝑏_𝐺𝑂𝐵 = 0.1 (Draa, 2015),

𝑝𝐶 = 0.55, the mutation rate 𝑝𝑚 is given by: 𝑝𝑚 = 1 −
0.1

𝑁𝑏
× 𝑖, 𝑖 = 1,…… ,𝑁𝑏 is used in the following

condition 𝑝𝑚 <⁡𝑝𝑚⁡𝑟𝑎𝑛𝑑, where 𝑝𝑚⁡𝑟𝑎𝑛𝑑 is a random

number. Furthermore, in this paper we have used the

EUROSIM 2016 & SIMS 2016

1 063DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

following crossover and mutation kinds: arithmetical

crossover (Michalewicz, 1992) and non-uniform

mutation (Michalewicz, 1992).

Consequently, we can observe clearly from these

two tables that FPA-GA performed better than all other

algorithm. More precisely (see Table 2), the FPA-GA

performed better than FPA, MGOFPA, CMA-ES,

CLPSO, JADE, jDE and CoDE in 24, 24, 21, 23, 20,

23 and 21 cases (functions) respectively out of 25 and

equal to these latter in 1 ,1,1,1,2,1,2 cases out of 25.

Also, FPA-GA performs worse in 3, 1,3,1,2 cases out

of 25 than CMA-ES, CLPSO, JADE, jDE and CoDE

respectively.

It is clear from this simple presentation, that adding

these two operators (crossover and mutation) to the

main algorithmic FPA structure allows to improve

significantly its performance. Thus, this is due

primarily to an improvement of the diversity of the

population (three sub-populations 𝑃𝑜𝑝, 𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠 and

𝑃𝑜𝑝𝑀𝑢𝑡𝑎) which greatly increases the chance to find

the best solution, and also to an enhancement of the

intensification ability by the association of these two

operators and the elite selection mechanism.

6 Conclusions
A new hybrid optimisation method named FPA-GA is

introduced in this paper, which considerably improves

the performance of the original FPA algorithm by

integrating the conventional FPA with two GAs main

operators; crossover and mutation. In FPA-GA, the aim

of using these latter is to improve the diversification

and the intensification characteristics. The

experimental studies were carried out on 25 global

numerical optimization problems used in the CEC2005
special session on real-parameter optimization. FPA-

GA was compared with; the standard FPA, a new FPA

variant called MGOFPA, the CMA-ES, the CLPSO,

and three DE variants called respectively JADE, jDE

and CoDE. The obtained experimental results shown

clearly that FPA-GA performances are better than the

seven competitors.

The proposed FPA-GA algorithm should be used to

solve multi-objective optimization problems in the

future to validate its performance. In addition, there

exists many NP- hard problems in literature, such as

traveling salesman problem, graph-coloring problem,

finder of polynomials based on root moments (Huang

et al, 2004) and knapsack problem. In order to test

performance of FPA-GA comprehensively, it should be

used to solve these NP-hard problems in the future.

References
C. Blum and X. Li. Swarm intelligence in optimization. In

C. Blum, D. Merkle (Eds.), Swarm Intelligence:

Introduction and Applications, Springer Verlag,

Berlin, pages 43-86, 2008.

J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V.

Zumer. Selfadapting control parameters in differential

evolution: A comparative study on numerical

benchmark problems. IEEE Trans. Evolut. Comput.,

10(6):646–657,2006.

A. Draa. On the performances of the flower pollination

algorithm- qualitative and quantitative analyses. Appl.

Soft Comput, 34: 349–371,2015.

J. Derrac, G. Molina, and F. Herrera. A practical tutorial

on the use of nonparametric statistical tests as a

methodology for comparing evolutionary and swarm

intelligence algorithms. Swarm Evolut Comput, 1:3–

18, 2011.

J. H. Holland. Adaptation in natural and artificial

systems: An introductory analysis with applications to

biology, control and artificial intelligence. MIT Press,

1992.

D.S. Huang, H.H.S. Ip, and Z. Chi. A neural root finder of

polynomials based on root moments. Neural Comput.

16(8):1721–1762, 2004.

N. Hansen and A. Ostermeier. Completely derandomized

self-adaptation in evolution strategies. Evolut.

Comput., 9(2):159–195, 2001.

Z.W. Geem, J.H. Kim, and G.V. Loganathan. A new

heuristic optimization algorithm harmony search.

Simulation, 76(2):60–68, 2001.

J. Kennedy and R. Eberhart. Particle swarm optimization.

In Proceedings of the IEEE International Conference

on Neural Networks, Perth, Australia, pages 1942–

1948, 1995.

J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar.

Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE

Trans. Evolut. Comput., 10(3): 281–295, 2006.

Z. Michalewicz. Genetic Algorithms + Data Structures =

Evolution Programs, Springer-Verlag, New York,

1992.

A. Mucherino and O. Seref. Monkey search: a novel

metaheuristic search for global optimization. In

Proceedings of the American Institute of Physics

Conference, USA, pages 162–173,2007.

I. Pavlyukevich. L´evy flights, non-local search and

simulated annealing. J. Computational Physics, 226:

1830–1844, 2007.

K. Sastry, D. Goldberg, and G. Kendall. Genetic

algorithms. In E.K. Burke and G. Kendall (eds.).

Introductory Tutorials in Optimisation, Decision

Support and Search Methodology. ISBN:

0387234608, Springer. Chapter 4, pages 97-125,

2005.
K. Socha and M. Dorigo. Ant colony optimization for

continuous domains. Eur. J. Op. Res, 185(3): 1155–

1173, 2008.

R. Storn and K. Price. Differential evolution – a simple and

efficient heuristic for global optimization over continuous

spaces. J. Glob. Optim,11:341–359, 1997.

P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen,

A. Auger, and S. Tiwari. Problem definitions and

evaluation criteria for the CEC 2005 special session on

real-parameter optimization. Nanyang Technol. Univ.,

Singapore, Tech. Rep. KanGAL #2005005, IIT Kanpur,

India, May 2005.

Y. Xinshe. Multiobjective firefly algorithm for continuous

optimization. Eng. Comput. 29(2): 175–184, 2012.

L. Z. Yongquan and Z. G. Jiakun. Leader glowworm swarm

EUROSIM 2016 & SIMS 2016

1 064DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref49
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref49
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref49
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref49
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref4

optimization algorithm for solving nonlinear equations

systems. Electr. Rev. 88(1b): 101–106, 2012.

X.S. Yang and S. Deb. Cuckoo search via Lévy flights. In

Proceedings of World Congress on Nature &

Biologically Inspired Computing (NaBIC 2009, India),

IEEE Publications, USA, pages 210–214,2009.

X.S. Yang. A new metaheuristic bat-inspired algorithm. In

J.R. Gonzalez, D. A. Pelta, C. Cruz (Eds.), Nature

Inspired Cooperative Strategies for Optimization.

Springer-Ver-lag, Berlin, Germany, pages 65–74, 2010.

X. S. Yang, Z. Cui, R. Xiao, A. H. Gandomi, and M.

Karamanoglu. Swarm Intelligence and Bio-Inspired

Computation. Elsevier, Waltham, MA, 2013.

X.S. Yang. Flower pollination algorithm for global

optimization. In Unconventional Computation and

Natural Computation, Springer, Berlin, pages 240–249,

2012.

Y. Wang, Z. Cai, and Q. Zhang. Differential evolution with

composite trial vector generation strategies and control

parameters. IEEE Trans. Evol. Comput., 15(1): 55–66,

Feb. 2011.

J. Zhang and A. C. Sanderson. JADE: adaptive differential

evolution with optional external archive. IEEE Trans.

Evolut. Comput., 13(5):945-958, 2009.

EUROSIM 2016 & SIMS 2016

1 065DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01826-3/sbref6
https://scholar.google.fr/citations?user=VMf3wfMAAAAJ&hl=fr&oi=sra

Table 1. Experimental Results of FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE, CoDE and FPA-GA over 20 Independent runs on 25 test functions of 𝑛 = 30 variables

with 100000 𝑀𝑎𝑥_𝑂𝑏𝑗_𝐸𝑣.

Function FPA-GA FPA MGOFPA CMA-ES CLPSO JADE jDE CoDE

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

1 0.00e+00 0.00e+00 4.03e-29 1.08e-28 1.26e-29 4.59e-29 1.80e-25 4.65e-26 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

2 3.38e-11 7.54e-11 3.44e-18 8.02e-18 1.55e-02 1.79e-02 6.37e-25 1.78e-25 8.12e+02 2.32e+02 9.37e-29 1.07e-28 8.84e-07 1.12e-06 1.77e-15 2.19e-15

3 3.77e-10 1.65e-10 1.38e+06 1.87e+06 1.27e+06 8.95e+05 5.13e-21 1.30e-21 1.70e+07 2.61e+06 6.57e+03 3.64e+03 2.02e+05 9.92e+04 1.08e+05 5.38e+04

4 4.66e-06 1.15e-06 2.46e-04 4.79e-04 3.73e-01 3.87e-01 6.11e+05 1.68e+06 6.79e+03 1.10e+03 2.56e-14 8.55e-14 3.07e-02 5.68e-02 8.09e-03 2.24e-02

5 1.64e-04 1.27e-04 5.92e+01 2.21e+01 4.80e+01 7.00e+00 3.35e-10 8.62e-11 4.13e+03 4.76e+02 7.89e-06 3.52e-05 5.65e+02 5.22e+02 5.14e+02 4.42e+02

6 1.07e-11 4.12e-12 2.16e+01 4.26e+01 1.75e+01 2.00e+01 3.98e-01 1.22e+00 5.90e+00 1.27e+01 1.00e+01 2.85e+01 2.47e+01 2.69e+01 7.39e-10 1.99e-09

7 8.32e-05 5.38e-06 1.85e-02 1.43e-02 2.68e-02 3.52e-02 1.81e-03 4.39e-03 4.48e-01 8.44e-02 8.17e-03 7.32e-03 1.19e-02 7.76e-03 7.41e-03 8.51e-03

8 4.67e-02 1.46e-04 2.10e+01 9.79e-02 2.10e+01 7.65e-02 2.04e+01 6.89e-01 2.09e+01 5.05e-02 2.09e+01 6.48e-02 2.09e+01 3.31e-02 2.01e+01 1.05e-01

9 1.76e-03 1.42e-04 5.27e+01 2.38e+01 2.55e+01 9.76e+00 4.00e+02 1.15e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

10 1.13e-03 1.47e-04 1.15e+02 8.63e+01 4.36e+01 3.58e+01 4.41e+01 1.49e+01 1.04e+02 1.77e+01 2.25e+01 2.96e+00 5.33e+01 8.70e+00 3.82e+01 1.14e+01

11 2.00e-02 1.04e-03 3.29e+01 8.41e+00 2.12e+01 7.49e+00 6.72e+00 2.23e+00 2.60e+01 1.72e+00 2.54e+01 2.27e+00 2.76e+01 1.46e+00 1.32e+01 3.84e+00

12 2.55e-02 1.54e-03 4.19e+01 7.61e+00 3.19e+01 8.43e+00 1.36e+04 1.42e+04 1.95e+04 5.56e+03 6.30e+03 7.21e+03 6.05e+03 5.30e+03 2.63e+03 1.91e+03

13 5.83e-04 2.58e-04 7.50e+00 7.29e+00 3.91e+00 2.97e+00 3.22e+00 8.63e-01 2.10e+00 2.21e-01 1.51e+00 6.68e-02 1.68e+00 1.21e-01 1.56e+00 3.17e-01

14 6.88e-02 7.40e-04 1.34e+01 5.76e-01 1.35e+01 2.98e-01 1.47e+01 2.33e-01 1.27e+01 2.28e-01 1.22e+01 2.76e-01 1.29e+01 2.20e-01 1.24e+01 4.91e-01

15 7.51e-04 4.35e-05 2.53e+02 8.60e+01 3.00e+02 1.12e+02 3.67e+02 2.10e+02 6.12e+01 4.10e+01 3.51e+02 1.14e+02 3.89e+02 8.78e+01 4.00e+02 7.94e+01

16 7.87e-04 1.05e-04 2.66e+02 1.15e+02 9.27e+01 8.02e+01 3.65e+02 3.10e+02 1.70e+02 3.47e+01 1.28e+02 1.42e+02 7.81e+01 2.23e+01 6.45e+01 1.64e+01

17 7.58e-04 1.29e-04 1.90e+02 1.29e+02 2.68e+02 8.71e+01 4.97e+02 3.47e+02 2.54e+02 4.25e+01 1.18e+02 1.00e+02 1.46e+02 4.27e+01 6.51e+01 1.27e+01

18 6.82e-04 2.44e-05 8.26e+02 2.01e+00 9.04e+02 1.07e+00 9.03e+02 2.12e-01 9.14e+02 1.34e+00 9.03e+02 2.61e-01 9.04e+02 1.23e+00 9.04e+02 9.64e-01

19 6.86e-04 2.96e-05 8.25e+02 1.77e+00 2.12e+02 3.13e+00 9.03e+02 2.12e-01 9.09e+02 2.20e+01 9.04e+02 1.06e+00 9.04e+02 1.04e+00 9.04e+02 1.04e+00

20 6.96e-04 3.14e-05 8.25e+02 2.28e+00 9.03e+02 7.08e-01 9.03e+02 2.99e-01 9.12e+02 8.11e+00 9.04e+02 7.62e-01 9.04e+02 1.07e+00 9.04e+02 1.34e+00

21 6.23e-04 1.69e-05 7.39e+02 1.80e+02 5.33e+02 1.32e+02 5.00e+02 2.63e-12 5.00e+02 1.25e-12 5.00e+02 5.05e-14 5.00e+02 3.91e-14 5.00e+02 8.65e-14

22 4.71e-04 4.94e-05 5.08e+02 4.57e+00 8.74e+02 2.22e+01 8.19e+02 1.30e+01 9.64e+02 1.05e+01 8.66e+02 2.05e+01 8.74e+02 1.54e+01 8.58e+02 2.23e+01

23 6.31e-04 2.32e-05 7.88e+02 1.83e+02 5.90e+02 1.73e+02 5.36e+02 3.89e+00 5.34e+02 2.04e-04 5.54e+02 9.00e+01 5.34e+02 2.59e-04 5.34e+02 4.51e-04

24 6.17e-04 1.53e-05 2.12e+02 3.13e+00 5.77e+02 3.57e+02 2.00e+02 6.18e-14 2.00e+02 1.46e-12 2.00e+02 2.91e-14 2.00e+02 2.91e-14 2.00e+02 2.91e-14

25 5.05e-04 1.05e-05 2.16e+02 6.91e-01 1.56e+03 1.09e+01 2.10e+02 6.05e+00 2.00E+02 1.96E+00 2.13e+02 7.95e-01 2.11e+02 7.31e-01 2.13e+02 9.12e-01

Table 2. Summarised Wilcoxon rank-sum comparisons between the proposed algorithm as reference and FPA, MGOFPA, CMA-ES, CLPSO, JADE, jDE, CoDE

Functions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ⊝ ⨀ ⊕

Algorithms

FPA ⊝ ⨀ ⊝ 24 1 0

MGOFPA ⨀ ⊝ 24 1 0

CMA-ES ⨀ ⊕ ⊕ ⊝ ⊕ ⊝ 21 1 3

CLPSO ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 23 1 1

JADE ⨀ ⨀ ⊝ ⊕ ⊕ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 20 2 3

jDE ⨀ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 23 1 1

CoDE ⨀ ⊕ ⊝ ⊝ ⊝ ⨀ ⊝ ⊝ ⊕ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ ⊝ 21 2 2

EUROSIM 2016 & SIMS 2016

1 066DOI: 10.3384/ecp171421060 Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland

	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	Introduction
	Calculation formulas
	Calculation of Intra-Ocular Lens for Non-Normal Eyes

	Back ground of studies
	Artificial Neural Network
	Real data
	Collected Data
	Specification of Patients Data Selected for Collection
	Specification of Preprocessing Parameters

	Results
	Objective
	ANN training
	ANN settings
	Results

	Conclusion
	Future work
	Introduction
	Homeostasis, Disturbance Rejection and Set Point Tracking
	Controller Motifs

	Results
	Dynamic Properties of Controller Motifs
	Tuning of Individual Controllers

	Conclusions
	Introduction
	Modelling the pharmacokinetics of propofol
	The 3-compartmental model
	Effect-site concentration model
	Model parameters

	Model verification
	Simulation results
	Propofol inflow
	Plasmatic concentration
	Effect-site concentration
	Evaluation of the predictive quality of the model

	Conclusion
	Introduction
	Modular Model Predictive Control Concept
	Building Setup
	Modular Predictive Control Concept

	Energy Supply Level - ESS - Models
	Linear Models
	Hybrid Models

	Model Predictive Controllers
	Objective Function
	LMPC
	MI-MPC

	Simulation Results
	Simulation Setup
	Demonstration of MPCC Performance
	Comparison between MPCC and RBC

	Conclusion
	Introduction
	Data Properties
	Macro Money Systems in QEs
	Behavior in QE1=(2008m11,2010m06)
	Behavior in QE2+=(2010m11,2012m08)
	Behavior in QE3=(2012m09,2014m10)

	Transmission Path of Housing Price from Reserve to Economic Activity
	Decomposition of M2 into Transaction and Precautionary Money Demands in (1975m10, 2016m03)
	Estimation of Precautionary Money Demand
	The Role of Business Condition u(t)=napm-50 in Transmission Mechanism of QEMP during QE1, QE2+ and QE3

	Conclusion
	Introduction
	Mathematical Model
	Model Parameters and Geometry
	Results and Discussions
	Conclusions
	Introduction
	Field Excitation Control
	Capability Curve
	Classical Control

	Concept and Formulation of MPC
	MPC as Excitation Control
	Modeling and Control Workflow

	Tuning the MPC Controller
	Time Response
	Open Circuit Conditions

	First-swing Angle Stability Enhancement
	Long-term Voltage Stability Enhancement
	Steady-state Voltage Stability
	Power System Simulator
	LTVS Simulations

	Discussion
	Conclusion
	Introduction
	Grid impedance model
	Impedance-based instability studies
	Practical implementation
	Conclusion
	Aknowledgements
	Introduction
	Literature Review
	Circulating Fluidized Bed Boilers
	Characteristics of RDF
	Agglomeration

	Methodology
	Description of Model
	Mass and Energy Balances
	Hydrodynamics

	Results and Discussion
	Validation
	Agglomerate Prediction

	Conclusion
	Introduction
	Theory
	Stability of Grid-Connected System
	Maximum-Length Binary Sequence

	Implementation in dSPACE
	System Setup
	Experiment

	Conclusions
	Introduction
	Governing Equation for Flow Modeling
	KP Numerical Scheme
	Simulation of the River Flow
	Results and Discussion
	Simulation Results
	Simulation Results for Numerical Stability Analysis

	Conclusion
	Introduction
	Air preparation process
	Fuzzy identification
	Takagi-Sugeno fuzzy model
	Fuzzy clustering

	Data collection
	Structure selection
	Input and output variables
	Representation of the systems' dynamics
	Fuzzy models granularity

	Fuzzy clustering and model validation
	Comments on resulting model performance

	Control experiments
	PID control
	Supervisory logic

	Conclusions
	Introduction
	First step - DES model
	Second Step - Portfolio optimization

	Stochastic DES model through markovian properties
	Product-Form Networks - Convolution algorithm
	Marginal probability
	Mean response time

	Load-haulage cycle
	DES model: Load-haulage system
	Project portfolio formulation
	Conclusion
	Introduction
	Overview of the Method
	Computing the Encounter Probabilities
	Example

	State Transition Matrix
	Projectile with a Single Sensor Fuzed Submunition
	Example
	Projectile with Two Sensor Fuzed Submunitions

	Failure Probability of the System
	Conclusion
	Hydro-pneumatic Accumulator
	Recent Research
	Purpose of This Study

	Logical Structure of Simulation Model
	Physics of Piston Type Hydro-Pneumatic Accumulator
	Nitrogen gas
	Mechanical Structure
	Hydraulic Fluid

	Conceptual Model

	Mathematical Model
	Equations for Nitrogen Gas
	Equations for Piston
	Equations for Friction
	Equations for Hydraulic Fluid
	Equations for Orifice

	Modelling in MATLAB/Simulink
	Calibration and Validation of the Simulation Model
	Testing Setup
	Laboratory Tests
	Validation

	Conclusion
	Introduction
	Contributions
	Setup for the analysis
	Experimental data
	Compressor Map
	Compressor Isentropic Efficiency
	Corrected Mass Flow
	Data Treatment

	 Pressure Losses in Gas Stand
	Pressure Loss in Straight Pipe
	Friction Factor - Laminar Flow
	Friction Factor - Turbulent Flow
	Pressure Loss In Bend
	Pressure Loss in Inlet Nozzle and Outlet Diffuser
	Adjust Measured Data
	Calculate New Compressor Efficiency

	Effect of pressure losses on measured compressor efficiency
	Compressor and Pipes Dimensions
	Case 1: Straight Pipes
	Case 2: Pipes with Diffuser and Nozzle
	Case 3: Pipes with Diffuser, Nozzle and Bend

	Summary and Discussion
	Future Work
	Conclusion
	Introduction
	Traffic Regulation: Stage selection
	Signal Control Schemes
	Pre-timed network control
	Max-Pressure Practical (MPract)

	Modelling and Simulation Overview
	An event-driven approach
	PointQ design

	Case Study-Data description
	From theory to applications
	System Stability
	Trajectory Delay Measurement
	Queue Delay Measurement
	Varying Traffic Conditions

	 PointQ versus AIMSUN Network Performance
	Evolution of phase (137,154)
	Evolution of phase (254,237)

	Conclusion
	Introduction
	Background
	MVB and Master Transfer
	Multifunction Vehicle Bus
	Mastership Transfer

	Model Checking with temporal logic

	System Modelling
	Bus Administrator Modelling
	basic data structure
	finite state machine of Bus Administrator

	Communication and Timing Modelling
	communication mechanism of BusAdmin
	timing mechanism

	Property Modelling
	Property Classification
	safety property
	liveness property

	Live sequence charts
	Observer Automata modelling

	Experiments
	Conclusion
	Introduction
	Experimental data
	Modeling
	Compressor
	Turbine
	EGR Blowers
	Auxiliary Blower
	Exhaust Back Pressure
	Combustion Species and Thermodynamic Parameters

	Parameterization Procedure
	Complete stationary parameterization
	Dynamic estimation

	Model Validation
	Conclusions
	Nomenclature
	Introduction
	Fundamentals
	Safe Active Learning
	The high pressure fuel supply system

	Design and Implementation
	Training of the hyperparameters
	The discriminative model
	The risk function
	The path to the next sample
	The algorithm

	Evaluation
	Evaluation in simulation
	Evaluation at a test vehicle

	Conclusion
	Introduction
	Modelling
	Centre of Gravity
	Aerodynamic Forces
	Definition of Angles
	Lever Arms
	Catenary
	Equations of Motion
	Velocities
	Self Stabilisation
	Complete Model

	Model Parameters
	Simulation Results
	Gliding Flight
	Towing Process

	Conclusions
	Introduction
	Context
	Compton scattering tomography (CST)

	Modelling of the new CST modality
	Proposed setup by back-scattering
	Direct problem : Image formation
	The half-space Radon transform (HRT)
	Image formation

	Inverse problem : Object Reconstruction
	Inversion of the HRT
	Filtered back-projection

	Simulation of the new CST modality
	Energy resolution of the detector
	Spatial discretization
	Window functions

	Conclusion and perspectives
	Introduction
	Powertrain model
	Problem formulation
	Tip-in problem constraints
	Boundary conditions for the tip-in problem
	Path constraints during tip-in

	Optimal control problem formulation
	Numerical solution of optimal control problems

	Optimal control results
	Extreme transients
	Compromise between time, Jerk and energy
	Jerk-Energy trade-off
	Efficient state and control transients

	Conclusions
	An Improved Kriging Model Based on Differential Evolution
	1 Introduction
	2 Theory of kriging model
	3 Kriging model based on DE algorithm
	3.1 Theory of DE algorithm
	3.2 Kriging interpolation based on DE algorithm
	3.3 Process of kriging Model based on DE algorithm

	4 An engineering example
	4.1 Setting DE algorithm parameters
	4.2 Data preprocessing
	4.3 Model computation and optimization

	5 Conclusion
	Introduction
	Model for slug flow
	Simulation for slug flow
	State estimation
	Control strategies
	Model predictive control
	PI control

	Simulation results and discussion
	Control structure I
	Control structure II
	Control structure III

	Computational time for MPC
	Maximum valve opening
	Conclusion
	Introduction
	Description of the loading bridge
	Modelling with Modelica
	Package of mechanical components Mechanics
	Package of causal components Blocks
	Structure and components of the overall model
	Model of the loading bridge
	World
	Cart
	Pendulum
	Drive

	Controller in Matlab Simulink environment
	Experiments
	Open loop experiments
	Closed loop experiments

	Conclusion
	Introduction
	MMT - Mathematics, Modelling and Tools
	Structure of MMT
	Usage of MMT

	Maple T.A. - Maple Testing and Assessment
	Structure MTA
	Usage MTA
	Mathapps
	MTA - Moodle Connector

	Case Study
	Conclusion
	Outlook
	Introduction
	Signal processing
	DFT and derivatives
	lp-norms and MIT-indices
	Nadaraya-Watson nonparametric regression

	Measurements and gearbox properties
	Load haul dumper front axle
	Water power station gearboxes

	Calculations from the LHD measurements
	Calculations from the WPS measurements
	Conclusion
	Introduction
	Preliminaries
	Problem Statement
	Vector Smoothing Splines

	Trajectory Planning
	Trajectory between Two Lines
	Centerline and Intermediate Time Instants
	Smoothing Spline Trajectory

	Numerical Examples
	Path with Piecewise Linear Boundaries
	Path in Obstacle Avoidance Problem

	Concluding Remarks
	Introduction
	Literature Review
	Dynamic multi-workstation model based on electrical components

	Simulation Model with a PI Controller
	Test and Results
	Final Remarks
	Introduction
	Related Work
	Methodology
	DataSet

	Semantic Identification Through Multiple Classifiers
	Global Feature Extraction through Wavelet Decomposition
	Deep Learning of Neural Network

	Image Retrieval
	Performance Analysis
	Conclusion
	Motivation
	Related work
	Data set and pre-processing
	Defining the curvature of a steel plate
	Experiment
	Discussion
	Conclusion
	Introduction
	New Evolutionary Computation
	Island model parallel distributed in NN-DEGA
	Self-adaptive using Neural Network
	Reconstruction of differential vector
	Elite strategy

	Numerical Experiments
	Benchmark Functions
	Experiment Results
	Comparison for Robustness

	Conclusion
	Introduction
	Classical RF Prediction
	Fuzzy Clustering Prediction
	Analysis
	Conclusion
	Introduction
	Dynamic Artificial Neural Network
	Back Propagation Through Time (BPTT)
	Real Time Recurrent Learning (RTRL)
	Extended Kalman Filter Learning (EKF)

	Experimental Set-up
	Results
	Simulation Study
	Experimental Study

	Conclusion
	Introduction
	Overview of Toolbox
	DANN Main
	Uploading data set
	Division of data set
	Validation check
	Bias
	Learning algorithm
	Learning parameters
	Past inputs and outputs
	Additional parameters

	Parameter Tuning
	Plot Menu
	Performance plot
	Regression plot
	Prediction plot
	Parameter plot
	Error plot

	Additional information
	Installing the MATLAB DANN toolbox

	Case Studies
	Case I: BPTT learning algorithm for flow measurement
	Case II: EKF learning algorithm for temperature measurement
	Case III: RTRL learning algorithm for mortality prediction

	Conclusion
	Modeling and Simulation of Train Networks Using Max-Plus Algebra
	1. Introduction
	2. Max-plus algebra
	3. Scheduled max-plus linear systems
	4. Timetable stability
	4.1 Delay sensitivity analysis
	4.2 Dynamic Delay Propagation
	4.3 Recovery Matrix

	5. Conclusion
	Introduction
	Construction of DBN metamodels
	Utilization of DBN metamodels
	Example analysis - simulated operation of air base
	Conclusion
	Introduction
	Metastable liquids

	Model for two phase flow and phase transition
	The van der Waals equation of state

	Solver
	Stiff pressure relaxation
	Stiff thermodynamic relaxation

	Experiments
	Simulation set-up
	Results and discussion
	Conclusion
	Introduction
	ParModelica
	Previous Research on PDEs in Modelica
	Partial Differential Equations (PDE)
	Explicit Form

	Numerics
	Discretisation
	Runge-Kutta with Variable Step Length

	General-Purpose Computing on Graphics Processing Units (GPGPU)
	PDEs in Modelica
	Algorithmic Modelica and ParModelica
	Solver Framework
	User Defined State Derivative and Settings
	Types Used by the Solver
	Solvers

	Use Case — Heat in Plane
	Poor Insulation and Constant Temperature
	Constant Temperature Depending on Location

	Performance Measurement
	Pros & Cons of Solver Written in Modelica
	Conclusions
	Blood Flow in the Abdominal Aorta Post 'Chimney' Endovascular Aneurysm Repair
	1 Introduction
	2 Methodology
	2.1 Governing Equations
	2.2 Anatomical Model
	2.3 Numerical Model
	2.4 Numerical Discretization

	3 Results
	3.1 Validation
	3.2 Flow Patterns
	3.3 Flow Regime

	4 Discussion and Conclusions
	Introduction
	Spin-Image Algorithm
	The Proposed Parallel Spin-Images Algorithm
	Results and Analysis
	Platform Specification
	Experimental Data
	Results

	Conclusions and future work
	Introduction
	Overview of Python API
	Goal
	Installing the OMPython Extension
	Status
	Description of the API
	Python Class and Constructor
	Utility Routines, Converting Modelica FMU
	Getting and Setting Information
	Operating on Python Object: Simulation, Optimization
	Operating on Python Object: Linearization

	Use of API for Model Analysis
	Case Study: Simple Tank Filled with Liquid
	Model Summary
	Modelica Encoding of Model
	Use of Python API
	Basic Simulation of Model
	Parameter Sensitivity/Monte Carlo Simulation

	Discussion and Conclusions
	Introduction
	Related Work
	Virtual Testing of Open embedded Systems
	Simulator Coupling for Network Simulation
	Network Fault Injection Testing
	Case Study
	Conclusions and future work
	Validation Method for Hardware-in-the-Loop Simulation Models
	1 Introduction
	2 Validation Methods
	2.1 Open-Loop Operation
	2.2 Independent Closed-Loop Operation
	2.3 Compensated Closed-Loop Operation

	3 Related Work
	3.1 Example Circuit
	3.2 Simulation Models

	4 Simulation Results
	4.1 Models with Different Switching Delays
	4.2 Discrete-Time Models
	4.3 Fixed-Point Models

	5 Conclusion
	Introduction
	Control Engineering: The Teacher's Challenge
	New Curriculum For Teaching Automatic Control
	Luma Activity
	Conclusion
	Introduction
	The Activated Sludge Process
	Mass balances and expression for the sludge age
	The settler

	ASP with ideal settler model
	Steady-state solutions
	Substrate input-output relationship for constant sludge age

	ASP with DZC settler model
	Steady-state solutions
	Substrate input-output relation for constant sludge age

	An approximation for S* given 0
	Numerical example
	Theorem 1
	Theorem 2

	Conclusions
	Introduction
	Materials and Methods
	Gaussian Mixture Models
	GMM based fault detection criteria

	Case Study: Monitoring a Secondary Settler
	Results
	Discussions
	Conclusions
	Introduction
	Industrial Process Description
	SIAAP Waste water and sewage Sludge Treatment Process
	Incineration Process
	The Furnace
	The Heat Exchanger

	Identification Process Overview
	Sludge Incineration sub-models: Input-output interaction.
	Identification Strategy

	Validation Methods
	Absolute Criteria
	Relative reference-model criteria

	Results and Discussions
	Relative Reference-Model Criteria Results

	Conclusion
	1 Introduction
	2 Modelling
	2.1 Basic Process Components
	2.2 Boiler Evaporator Loop
	2.3 Test Model

	3 Simulation Tests
	3.1 Comparison of Numerical Solvers
	3.2 Effects of Initial State and Parameters

	4 Conclusions
	Introduction
	TCP-100 solar field description
	Mathematical modeling of TCP-100 solar field
	 Optical and geometric efficiencies
	Characteristics of the heat transfer fluid
	Thermal losses

	Simulations
	Conclusion
	Introduction
	Description of a Basic Gas Turbine Model
	Compressor
	Combustion Chamber
	Turbine Module

	Computational Causality And Conditions for Numerical Convergence
	First Principles Compression and Expansion Maps
	Compression Case
	Expansion Case

	Simulation Results
	Conclusion
	Appendix
	Introduction
	Modelling methodology, libraries and tools
	Plant Description
	Innovative aspects
	OTSG topology

	Device modelling
	Re-used components
	Custom component models
	Separator
	Feedwater heater
	Deaerator
	MS fluid model

	Plant modelling
	OTSG model
	Turbine model
	Feedwater preheaters train
	Plant control system
	Complete plant model

	Simulation objectives - methodology
	Simulation performance
	Conclusion
	Introduction
	Formal Problem Statement and SVM
	SVM by Set-Valued Training Data
	A Modification of the AdaBoost
	Imprecise Updating Weights of Robots
	Conclusion
	Introduction
	Methodology
	Power grid connection
	Electrolyser
	Interim gas storages
	Methanation
	MEA CO2 capture
	CH4 compression

	Control sequences
	CH4 compression
	Start-up
	Power grid connection
	Methanation reactor
	Electrolysers
	Interim gas storages
	CH4 compression

	Shutdown
	Methanation reactor
	CH4 compression
	Interim gas storages
	Electrolysers

	Results
	Conclusion and future work
	Acknowledgment
	Introduction
	Mathematical Model
	Assumptions
	Development of Model
	Material Balance
	Energy Balance
	Heat Exchanger

	Simulation Results and Discussion
	Simulation Results
	Comparison with Previous Work

	Conclusions
	1 Introduction
	2 Herding behavior of rhinos
	2.1 A synoptic model of space use
	2.2 Population size updating model

	3 Rhino herd (RH) algorithm
	3.1 Synoptic model
	3.2 Population size updating model
	3.3 RH algorithm

	4 Simulation results
	5 Discussions and conclusions
	Acknowledgements
	References

	Introduction
	Structure and Kinematics of the Double-Spiral Mobile Robot
	Structure
	Forward kinematics
	Gripper positions
	COG

	NESM
	Numerical Case Study
	Conditions and methods
	Results

	Discussion
	Conclusion
	Introduction
	Data analysis
	Nonlinear scaling
	Interactions
	Uncertainty
	Natural language

	Recursive analysis
	Scaling
	Interactions
	Fuzzy logic
	Smart adaptive systems

	Temporal analysis
	Trend indices
	Fluctuations
	Changes of operating conditions

	Conclusion
	Introduction
	MOEA/D
	Algorithm
	Focused Issue

	Proposed Method: Chain-Reaction Initial Solution Arrangement
	Aim and Concept
	Method

	Experimental Settings
	Results and Discussion
	Search Performance at Final Generation
	Search Performance over Generations

	Conclusions
	Introduction
	Modeling demand-side management
	Markets
	Actors
	Other elements

	Controlling consumption
	Optimizing scheduling
	Controlling (via) frequency

	Discussion and conclusions
	Introduction
	Components and Parameters of Musical Expression
	Learning Support System of Musical Representation
	Generation of Example of Musical Expression
	Construction of Kansei Space
	Image Estimation
	Parameter Values Estimation using Fuzzy Inference
	Interactive Modification of Musical Expression

	Comparison of Parameter of Musical Expression
	Advice for Parameter of Musical Expression

	Range of Learner's Musical Expression on Kansei Space
	Estimation of Range of Musical Expression
	Advice about Impression

	Experiment
	Results and Discussions

	Conclusion
	Introduction
	Formulating the GA Optimization
	The Problem Encoding
	The Objective Function (Fitness)
	Selecting The GA Operators
	Tuning the GA Parameters

	FPGA Implementation
	GA's HDL Entities
	Fitness
	Selection
	Crossover
	Mutation
	Generating Pseudo Random Sequences
	Replacement

	Performance Evaluation
	Functional Verification
	Fitness
	Selection
	Replacement
	Crossover
	Mutation
	LFSRs
	Comparator

	Integrating GA into the SoC
	Interfacing GA with the HPS
	Controlling GA from the Linux host

	Conclusion and Future Work
	Introduction
	Related Work
	Earthmoving Simulator
	Workspace Subdivision with Scoop Area
	High Point and Zero Contour Methods
	Simulation Results and Discussion
	Conclusion and Future Work
	Introduction
	SDNized Wireless LAN Testbed
	 Central Manager
	 Aggregator and Transport Network
	 Network Edge
	 Android Measurement Application
	Experiment Automation

	Mobility Management - A Use-Case Scenario Implementation
	Mobility Handling in Developed Testbed
	Logging
	Running the Experiment
	Parsing and aggregating results

	Conclusion

