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Abstract 

Many modern off-road construction machines incorporate traction control systems to provide 

better performance and stability in harsh driving conditions.  These systems are capable of 

controlling wheel slip in such a way that the tractive force is increased, tire consumption is 

reduced, and the overall safety of the machine is improved.  However, the driving surface 

conditions can have a strong impact on the optimal control parameters for the traction control 

system.  This paper sets forth a method of automatically tuning the controller parameters in real 

time, so that the system can maximize the tractive force on its own. 

Toward this end, a simple longitudinal wheel dynamics model is developed using a construction 

machine as a reference.  This model incorporates considerations for the generation of tire force, 

wheel slip dynamics and machine transmission.  Then, a simple traction control structure using 

proportional-integral-derivative (PID) control is presented which attempts to keep the machine 

wheels from slipping excessively.  Finally, a real-time optimization scheme using the extremum-

seeking algorithm was included in the system in order to automatically improve the setpoint of 

the controller by maximizing the pushing force of the machine.  Using the vehicle model of the 

system, the auto-tuning controller is tested to determine the capability of the system to improve 

the performance.  The optimization scheme allows the controller to find the optimal point, 

meaning that the output force can be increased when starting at a poor setpoint.  Given the 

availability of a proper feedback signal, this system should be widely applicable to a wide range 

of different vehicle systems for incorporating traction control. 
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1 Introduction 

Traction control systems have become standard components 

in on-road vehicle systems over the past decades.  Other 

industries such as heavy construction machinery have not 

seen such a strong proliferation of these systems, though there 

are some examples of traction control in commercially 

available construction machines [1]–[3].  The benefits gained 

by achieving a proper control of a vehicle’s tires are well 

documented, and they include reduced tire consumption, 

increased traction force and increased vehicle drivability and 

safety. Therefore, it is desired to design an appropriate 

traction control system for use with construction equipment. 

While the previous efforts listed above toward traction 

control for construction machines have been successful in 

reducing slip in certain operating conditions, little effort has 

been documented in literature in the direction of systems 

which can adjust to actually improve the traction control as 

conditions change.  This paper describes the structure of an 

automatically-tuned controller for an electro-hydraulic 

braking system that reduces wheel slippages by acting on the 

wheel brakes. In the case of excessive torque from the 

transmission system causing slip at one wheel, the controller 

applies a proper braking torque to set the wheel at an optimum 

slip condition. The vehicle considered as a reference is a 

wheel loader (fig. 1). 

One of the most difficult aspects of designing a traction 

controller is determining the setpoint for the control signal.  

Construction machines present a very particular set of 

problems, due to the unpredictable rapid changes in the 

operating conditions and diving surfaces used.  Because of 

this, the controller parameters have to be able to quickly adapt 

to different conditions to avoid poor performance. 

Therefore, this work focuses on devising a strategy for 

updating the controller parameters of the traction control 

system in real time so that the controller can function in the 

best possible condition on all surfaces.  To do that, a simple 

traction control system has been designed and simulated to 

determine the effectiveness of the auto-tuning control 

approach. 

In order to determine the effectiveness of a potential traction 

control strategy on the reference machine, a simulation model 

was created using standard vehicle dynamics formulations.  
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This model was then run using a simple feedback control 

structure to actuate the brakes in order to reduce the 

occurrence of excessive wheel slip.  The simulation model 

incorporates both the dynamics of the machine itself and its 

wheels, as well as a model of the tire-road surface interaction 

and generated forces at each wheel. 

This paper sets forth the outline of such a self-tuning 

controller.  First, the dynamic system model is described, 

taking into account both vehicle dynamics and tire force 

generation.  Next, a simple but effective control structure is 

developed which can keep the machine wheels from slipping 

beyond a desired value.  Then, the ES optimization algorithm 

is incorporated into the model alongside the traction 

controller.  Finally, a simulation is run using the simulation 

model which shows the performance capability of the system 

and the usefulness of incorporating the optimization structure 

into the control structure. 

 

Figure 1: Reference vehicle and setup for testing traction 

control. 

2 State of the Art 

Many different methods have been developed for modeling 

the dynamic behavior of vehicles.  The overall vehicle 

dynamics model incorporated into this work is based on 

models like those in Gillespie [4], Jazar [5], and Rajamani [6].  

For considering the traction at the tire-road interface, a more 

specific model is needed.  For this study, the slip-friction 

relationship of the tire-surface interface is modeled using 

Pacejka’s Magic Formula tire model [7].  This is a semi-

empirical tire friction model which fits a curve of values with 

particular characteristics to a data set. 

Next, a simple traction control structure for maintaining 

wheel traction was developed.  This control structure attempts 

to increase tractive force and decrease tire slip by actuating 

the system brakes.  There are numerous different traction 

control strategies which have previously been developed for 

various different vehicle systems.  Often these strategies are 

constructed in order to overcome specific limitations within 

the system.  It is very common to incorporate structures such 

as sliding-mode control, adaptive controllers, and fuzzy logic 

into the designed controls for these systems [8], [9].  Due to 

the uncertain nature of the various system parameters, tools 

like state estimators are also frequently utilized in these 

systems [10], [11].  For this work, instead, a self-tuning 

proportional-integral-derivative (PID) control was 

formulated.  This controller can be incorporated well into 

many different systems.  The optimization aspect of this 

controller allows it to account for model complexities such as 

the transmission system effects without requiring a 

complicated model-based control structure. 

After selecting the PID controller structure, the actual 

parameters to be used must be determined.  In particular, the 

wheel slip setpoint for the controller can have a strong impact 

on the system performance.  Depending on the ground 

condition, the optimal setpoint can change quite a bit, and a 

poor setpoint will not allow the system to reach its maximum 

possible tractive force.  Furthermore, because of the complex 

interactions of the different system components, if the wheels 

are on different ground conditions, the restrictions given by 

the transmission system can make determining the optimal 

setpoint for all four wheels rather difficult.  Therefore, an 

optimization technique was employed to tune the controller 

setpoint automatically. 

Due to the well-conditioned behavior of the slip-friction 

relationship, several different optimization techniques could 

be used for this system.  For the purposes of this work, the 

optimization method selected is the extremum-seeking (ES) 

algorithm.  The ES algorithm has been shown to be useful for 

real-time optimization of dynamic systems [12].  This method 

has previously been used by the authors’ research team for 

other real-time optimization applications, specifically with 

regard to vibration reduction in a mobile crane [13], [14].  

Having constructed the full system including an optimization 

strategy, it can be simulated in order to determine its 

capability to find the maximum tractive force. 

3 Vehicle Dynamics 

In order to determine the capability of the traction control 

system, it must be simulated using a sufficiently accurate 

model of the machine dynamics.  The vehicle model needs to 

account for the motion of both the chassis and the wheels, as 

well as the transmission system which connects the wheels 

together. 

It is important to note that the system model developed here 

considers only straight-line motion of the wheel loader.  This 

simplification is due to the fact that the primary operational 

mode for implementing traction control on this system is 

when the machine is pushing into a work pile.  In the most 

common loading and unloading cycles (e.g. the Y-cycle), the 

wheel loader approaches the work pile in a straight line and 

does not turn significantly until it reverses out of the pile.  As 

this is the primary operation which will likely need significant 

traction control, the system model has only been developed 

for longitudinal motion.  Should the need arise for 

incorporating lateral motion into the model, that can be done 

at a later time. 
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3.1 Quarter-Car Vehicle Model 

Before taking into account the complete vehicle system with 

weight transfer and multiple interconnected wheels, the 

general motion of the machine and its coupling to a single 

wheel is developed.  Essentially, this creates a system 

modeled as a single point mass on top of a single wheel.  As 

the full system contains four wheels, this simplified model is 

known as a quarter-car vehicle model. 

Essentially, this model takes into account the force balance 

on the vehicle mass and the torque balance on the wheel to 

describe the motion of those bodies. 

 
𝑚𝑣̇𝑥 = 𝐹𝑥 − 𝐹𝑟𝑜𝑙𝑙 sgn(𝑣𝑥) − 𝐹𝑟𝑒𝑠𝑖𝑠𝑡 sgn(𝑣𝑥) 

 

(1) 

 

 𝐼𝑤𝜔̇ = 𝑇𝐸 − 𝑇𝐵 sgn(𝜔) − 𝑟𝑑𝐹𝑥 (2) 

In eq. (1), m represents the quarter-car vehicle mass, vx is the 

longitudinal vehicle velocity, Fx is the longitudinal force 

produced by the tires, Froll is the rolling resistance, and Fresist 

is all other resistive forces acting on the vehicle (including air 

resistance, etc.).  Equation (2) also contains the wheel 

moment of inertia Iw, the wheel rotational velocity ω, the 

input engine torque to the wheel TE, braking torque TB, and 

the dynamic radius of the wheel rd. 

For the simulation, the inputs to the system are engine torque 

and braking torque.  Resistive forces are typically modeled 

either as constants or as functions of system velocity, though 

there are other more complex models which can be applied 

[5], [6], [15].  The wheel force Fx is typically calculated as a 

function of wheel slip, which is discussed at length in Section 

4 of this paper. 

Of course, this model is overly simplistic for modeling a 

complete vehicle system.  Therefore, it must be expanded 

toward a full model by including wheel dynamics equations, 

equivalent to eq. (2) for each wheel.  This means that the full 

machine model will actually have five equations in total: four 

for the dynamics of the wheels and another for the linear 

motion of the vehicle chassis.  However, the input to the 

system remains a single engine torque, so the model needs to 

be expanded further to account for the distribution of this 

torque to each wheel. 

3.2 Two-Axle Vehicle Model 

The next step toward developing a complete vehicle model is 

examining how the normal forces at each tire shift as the 

machine moves.  As this model is only considering a wheel 

loader which is moving forward and backward in plane, it is 

assumed that the weight is balanced equally from right to left 

and does not shift.  This is a reasonable assumption in general, 

since the only action being modeled for the machine is 

straight-line digging. 

On the other hand, the forces at the front and rear axles can 

vary quite a lot depending on the motion of the wheel loader 

and outside forces acting on it.  The normal forces at the front 

and rear axles are calculated using a force and moment 

balance in the plane of the wheel loader motion.  This results 

in the following equations. 
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In eq. (3) and (4), Fz1 and Fz2 are the normal forces at the front 

and rear axles, respectively.  Again, these are assumed to be 

split equally between the right and left wheels on each axle.  

Calculating these forces utilizes the coefficient of gravity g, 

the horizontal distances from the machine center of mass to 

the front (l1) and rear (l2) wheels, the horizontal distance 

between the axles l = l1 + l2, the longitudinal acceleration of 

the vehicle ax, the height of the center of gravity hCG, the 

external force on the wheel loader (pile force Fp, assumed 

horizontal), and the height of that external force hp. 

 

Figure 2: Wheel loader force diagram. 

As the traction control system for this machine is being 

developed primarily for standard working conditions, the 

simulated operation is pushing into a work pile, which is 

modeled simply as a horizontal resistive force.  As this work 

is only focused on generating excessive wheel slip and not on 

developing an extremely accurate digging material model, the 

work pile itself has been represented simply as a horizontal 

resistive force pushing back against the motion of the 

machine.  The horizontal force Fp is modeled as a spring-

damper system, which only acts against the motion of the 

machine once it has made contact. 

 𝐹𝑝 = {
𝑘𝑝𝑥𝑝 + 𝑐𝑝𝑥̇𝑝 ,    𝑥𝑝 ≥ 0 and 𝑥̇𝑝 ≥ 0

0,                          else
 (5) 

In this equation, kp and cp are the spring and damper constants 

of the simulation pile, respectively, and xp is the distance the 

machine has driven into the simulated pile.  This allows a 

large resistive force to be built up quickly, but not so quickly 

that it causes simulation problems. 

From these equations, it can be seen that, as the wheel loader 

accelerates forward, its weight is transferred from the front to 

the rear axles.  Furthermore, when the machine encounters 

the resistive force from the pile, this also causes weight to be 

shifted from the front axle to the rear axle.  This assumes a 

strictly horizontal resistive force from the pile.  When digging 
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into a material pile, the material compaction and added 

weight in the machine bucket can have other effects on weight 

transfer which are not considered here, as they can be 

exceedingly complex to model properly.  The changing 

normal force at each wheel will affect the longitudinal force 

that wheel is capable of producing, as the wheel force is equal 

to the product of the normal force and the wheel coefficient 

of friction (see Section 4.2). 

3.3 Transmission Model 

Having developed the model for transferring normal force 

from one axle to the other, the torque distribution to the 

wheels can be determined.  For the wheel loader in question, 

this involves modeling both the front and rear differentials, 

which connect the driveshaft to the axles, and the transfer 

case, which connects the transmission to the driveshaft.  It is 

assumed for this model that the engine torque to the driveshaft 

is known, so effects like the torque converter and gearbox are 

ignored here. 

The first component of the transmission to be modeled is the 

differential.  There are two of these in the machine linking the 

front and rear axles to the driveshaft.  The primary purpose of 

the differential is to allow the wheels on each side of the axle 

to rotate at different velocities while still being driven by the 

engine.  Through use of a planetary gear, the torque from the 

driveshaft is split in half to each wheel on the axle. 

 𝑇𝑖,𝐿 = 𝑇𝑖,𝑅 =
1

2
𝑅𝑑𝑖𝑓𝑓𝑇𝐷𝑆,𝑖  , (6) 

where Ti,L and Ti,R are the driving torques into the left and 

right wheels of axle i, Rdiff is the gear ratio of the differential, 

and TDS,i is the torque input to axle i from the driveshaft. 

In order to split the torque evenly, the differential allows the 

wheels at each side of the axle to turn at different speeds.  Of 

course, there is still a relationship between the driveshaft 

speed θ̇DS,i and the wheel speeds θ̇L,i and θ̇R,i. 

 𝜃̇𝐷𝑆,𝑖 =
𝑅𝑑𝑖𝑓𝑓

2
(𝜃̇𝑖,𝐿 + 𝜃̇𝑖,𝑅) (7) 

That is to say, the driveshaft speed is equal to the average of 

the wheel speeds on a given axle, scaled by the gear ratio. 

What remains is to determine the driveshaft torque to each 

axle.  In some vehicle systems, the driveshaft itself is driven 

by a central differential, splitting the torque evenly to the 

front and rear axles.  The wheel loader in this study, however, 

has what is known as a locked transfer case, which means the 

front and rear section of the driveshaft are connected directly.  

This means that, instead of each section being able to rotate 

independently, they are constrained to turn at the same rate.  

Therefore, the torque to each axle can vary based on the load 

at that axle.  By treating the driveshaft as a rotational mass-

spring-damper system with some simplifications (as in [16]), 

the following equations result for describing the torque 

distribution to each axle. 
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(9) 

In eq. (8(8) and (9), TDS,F and TDS,R are the torques distributed 

to the front and rear axles via the driveshaft, respectively, TE 

is the torque into the transfer case from the engine, θDS,F and 

θDS,R are the angular positions of the front and rear sections of 

the driveshaft, respectively, and kDS and cDS are the rotational 

spring and damper constants of the driveshaft sections. 

Using equations (1) through (9), the full vehicle dynamics for 

straight line motion have been described.  Assuming a good 

estimate of the input torque to the transfer case and the 

braking torque at each wheel, this model should be 

appropriate for simulating the system to get an idea of 

controller performance. 

3.4 Braking System Dynamics 

A simplified schematic of the braking system designed for 

implementing an electronic traction control in the reference 

machine is shown in fig. 3 below.  The traction control system 

uses a pressure reducing valve (1) to command a desired 

pressure based on the controller output.  A check valve (2) is 

used to ensure that the higher pressure is always selected and 

sent to the brake caliper (3).  This allows the system to operate 

as normal when no pressure is commanded from the traction 

control system, meaning that the pressure from the standard 

braking foot valve is seen directly by the brakes.  The system 

is also unable to decrease the braking pressure below that of 

the foot valve.  This is done for safety reasons, but it also 

means that the current system cannot implement an anti-lock 

brake system (ABS) or any other functionality which would 

require decreasing the braking pressure from the foot valve. 

 

Figure 3: Simplified schematic of braking system for 

implementing traction control. 

The modeling of this system, including valves and other 

braking system components like lines and shuttle valves, was 

accomplished using the Simscape library in Matlab Simulink.  

Using this library allows the simulation to account for valve 

dynamics, fluid compressibility, and other important 

hydraulic system effects.  The resulting system model was 

then verified by comparing it with real-world system test data. 
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4 Tire Slip Dynamics 

Where traction control is concerned, the most important 

component of the entire vehicle system is the interface 

between the tire and the road surface.  This interface 

represents the only connection between a typical vehicle and 

the road, and it is also the location where the forces for 

propelling the vehicle are generated.  Correct modeling of the 

interaction between a vehicle’s tires and the road surface is 

crucial to properly modeling the vehicle system and 

generating an acceptable traction control structure. 

4.1 Wheel Slip 

Under normal operation, wheels which are being driven or 

braked do not rotate at a velocity which matches exactly the 

velocity of the road surface.  In general, any time a torque is 

applied to the wheel deformation in the tire and other 

phenomena cause a small amount of slip (or micro-slip) to 

occur at the tire-road interface [15]. 

This micro-slip is different from visible slip (or macro-slip) 

one tends to think of when discussing wheel slip, such as 

spinning or sliding against the ground.  In fact, micro-slip is 

a necessary component for force generation at the tire-road 

interface, as the primary force production mechanism there is 

friction between the tire and road surface. 

Of course, it is possible to have too much slip at the tire-road 

interface, and in cases of excessive slip, the amount of friction 

force generated can decrease significantly, while also causing 

problems such as increased tire wear and controllability.  In 

order to determine the effect of tire slip on tractive force, a 

proper model is required. 

4.2 The Magic Formula Tire Model 

Perhaps the most widely used model for representing the 

relationship between slip and force is Pacejka’s Magic 

Formula model [7].  The Magic Formula tire model was 

developed as a relatively compact and simple way of 

representing the relationship between tire slip and the friction 

coefficient (i.e. tractive force) between the wheel and the road 

surface.  It is a semi-empirical model, meaning that it is a 

relationship based on the general shape of slip-friction curves, 

which is adapted to best fit a data set for a given driving 

condition. 

The Magic Formula is not based directly on physics 

equations, but it is adequate to describe the behavior of most 

systems.  It has the form: 

 
𝜇𝑥,𝑖(𝜅𝑖) = 𝐷𝑥,𝑖 sin(𝐶𝑥,𝑖 tan−1[𝐵𝑥,𝑖𝜅𝑖               

                    −𝐸𝑥,𝑖(𝐵𝑥,𝑖𝜅𝑖 − tan−1[𝐵𝑥,𝑖𝜅𝑖])]) , 
(10) 

where μx,i and κi are the longitudinal friction coefficient and 

the slip ratio at wheel i, respectively.  Coefficients Bx,i, Cx,i, 

Dx,i, and Ex,i are parameters affecting the shape of the Magic 

Formula curve, and they are adjusted in order to approximate 

a given data set as closely as possible.  The data itself can be 

generated through several different methods, such as the one 

developed by Rajamani [17]. 

 

Figure 4: Example Magic Formula plots. 

What results from the proper setting of the Magic Formula 

parameters is a plot similar to the examples shown in fig. 4.  

These example curves were taken from real-world test data 

and were used for the simulations shown in Section 7 of this 

work.  Using the form in eq. (10), the result is an odd function.  

Typically, though not always, this plot has a well-defined 

maximum at some optimal value of κ.  The objective of the 

traction control system is usually to keep the wheel slip at or 

below this value. 

To convert the friction coefficient from eq. (10) to a 

longitudinal tractive force, it simply has to be multiplied by 

the normal force at that wheel. 

 𝐹𝑥,𝑖 = 𝜇𝑥,𝑖𝐹𝑁,𝑖  , (11) 

where Fx,i is the tractive force and FN,i is the normal force at 

the wheel in question.  Depending on the desired accuracy of 

the model, the normal force can either be considered constant 

or it can be modeled as a time-varying force.  The longitudinal 

force generated from eq. (11) can then be fed back into the 

equations of motion for the vehicle to update the linear 

dynamics. 

4.3 Tire Slip Modeling 

Since tire tire-road friction (and hence tractive force) is a 

function of tire slip, it is necessary to have an acceptable 

model for slip ratio which approximates well the behavior of 

the system. 

In general, the tire slip model simply needs to quantify the 

relationship between the longitudinal motion of the vehicle 

and the rotational motion of each wheel.  The simplest form 

definition of the tire slip ratio is an algebraic relationship, 

such as the one shown below [4]. 

 𝜅𝑖 =
𝑟𝑑𝜔𝑖 − 𝑣𝑥

𝑣𝑥

 (12) 

In eq. (12), vx represents the longitudinal velocity of the 

vehicle, rd is the dynamic radius of the wheel, and ωi is the 

rotational velocity of wheel i.  This relationship is adequate 

for many modeling applications, but in some cases a more 

complex definition is needed.  Traction control systems in 
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particular represent such a case, as the low velocities where 

they are most commonly used cause eq. (12) to vary rapidly 

with small variations in vx.  Furthermore, it cannot be used in 

the case where the vehicle stops completely (vx = 0). 

Therefore, a different tire slip formulation is needed which 

does not have such issues at low velocities.  For the purposes 

of this research, the following definition has been defined, 

based on the work of Bernard [18]. 

 𝜅̇𝑖 +
|𝑣𝑥|

𝐵
𝜅𝑖 =

𝑟𝑑𝜔𝑖 − 𝑣𝑥

𝐵
 , (13) 

where B is the longitudinal relaxation length of the tire, and 

all other coefficients are the same as above.  This new tire slip 

definition is a differential relationship, as opposed to the 

previous algebraic relationship.  Thus, the velocities are 

allowed to approach and reach zero without creating the same 

problems. 

Using eq. (13) to model the wheel slip and eq. (10) with the 

proper parameter values, the force generation dynamics at 

each tire of the vehicle can be adequately modeled. 

5 Traction Control Design 

A traction control system seeks to achieve relatively simple 

goals.  First, there should be a reduction in tire macro-slip (i.e. 

significant visible slip against the ground surface) to reduce 

the amount of tire wear and increase system stability.  

Furthermore, this reduction in slip should also see payoffs in 

terms of tractive force.  By maintaining better traction against 

the ground surface, the system is able to attain higher pushing 

force at each wheel.  Both tire slip and pushing force are 

measurable quantities which can provide a numerical value to 

the performance increase when using the traction control. 

The control structure chosen for this work is a very simple 

proportional-integral-derivative (PID) controller. The PID is 

a very common control structure with well understood design 

principles [19].  It is also typically well-behaved for many 

different kinds of systems, so it is suited quite well to the 

machine system considered here. 

 

Figure 5: Overall control system block diagram. 

Once the controller itself has been determined, it is important 

to determine how the controller should be incorporated into 

the overall system design.  It is necessary to define an error 

signal from which the controller can generate the signal for 

the braking system.  For this investigation, the control system 

was defined as seen in fig. 5. 

From this figure, it can be seen that the feedback variable 

being used in this construction is the tire slips κ.  Here, κ is 

usually a vector of slip values at all four wheels.  By 

comparing the wheel slips to some vector of desired values 

κ*, an appropriate error signal e(t) is created. 

One consideration which should be noted about the slip 

setpoint for traction control systems is that while the general 

controller design attempts to keep the slip at a certain value 

κ*, in actuality the goal of the system is to keep the wheel slip 

at or below that value.  As brakes are single-acting actuators, 

only capable of acting against the motion of the wheel, the 

signal itself is physically saturated in the real-world system.  

However, for some simulations it may be necessary to 

saturate the output to zero to ensure the brakes are not 

attempting to increase the wheel speed.  The concept of 

brakes as single-acting inputs also plays an important role in 

developing the optimization algorithm in Section 6 of this 

work. 

6 Real-Time Controller Setpoint Optimization 

Having defined a proper control strategy for the traction 

control system, it is important to correctly set the parameters 

of the system for the best possible control performance.  The 

simplest way to do this would be to pick a wheel slip setpoint 

which is reasonable for all wheels and allow it to remain 

constant.  While such a setup would most likely show an 

improvement over no traction control system, it is also 

probable that a better setup can be achieved.  Ideally, the 

controller would be able to identify the slip setpoint which 

maximizes traction force (see fig. 4) on its own. 

6.1 The Extremum-Seeking Algorithm 

For this particular work, the optimization strategy chosen is 

the extremum-seeking (ES) algorithm.  This is a non-model-

based approach which uses sinusoidal perturbations to 

ascertain the gradient of an objective function.  The parameter 

or parameters to be optimized are then adjusted according to 

the cost function gradient to either minimize or maximize the 

objective function.  The general continuous-time 

implementation of this algorithm is shown below (as 

formulated by Ariyur [12]. 

 

Figure 6: Basic extremum-seeking optimization scheme. 

Essentially, the ES algorithm begins with an estimate of the 

optimal parameter value 𝛽̂.  By applying an additive 

sinusoidal perturbation to this signal, the actual parameter 

value β which is used in the system in question causes a 

response in the objective function J(β).  By passing the 
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resulting signal through a high-pass filter (labeled “HPF” in 

fig.6), “demodulating” it with using a multiplicative 

perturbation of the same frequency, and using an integrator to 

remove high-frequency components, the estimate of the 

optimal parameter value 𝛽̂ is driven toward the actual optimal 

value for the system β*. 

If the objective function of the system J(β) has a well-defined 

optimum J* at β*, the ES algorithm has been shown to 

converge to that value, given proper setting of the ES 

parameters [12].  Perhaps the most difficult aspect of 

implementing the ES algorithm: it introduces four new terms 

which must themselves be set before using the optimization 

strategy: ω, the frequency of the perturbation frequency, a, 

the additive perturbation gain, h, the high-pass filter pole, and 

k, the integrator gain.  These parameters do add a degree of 

difficulty to implementing the optimization, but once they are 

tuned sufficiently, the algorithm can work quite well. 

It should also be noted that this particular system is quite 

well-suited to the ES optimization technique.  In general, the 

slip-friction characteristic of tire-road surface interfaces 

looks something like the plot in fig. 4.  These plots are 

continuous, and each has a single, easily definable maximum 

at some slip κ* > 0.  Therefore, given proper settings for the 

ES algorithm, the system should be able to find the best 

setpoint for the controller relatively efficiently. 

6.2 Integration into Controller Structure 

There are multiple important parameters within the 

controller, including the gains KP, KI, and KD for the 

proportional, integral, and derivative components of the 

control law, respectively.  These can have a strong impact on 

the system if set incorrectly, even causing an otherwise stable 

system to become unstable in certain circumstances [20].  

However, once set correctly within reason, small changes in 

other parameters, specifically the tire slip setpoint, should not 

cause the system to become unstable.  Therefore, the 

controller gains were not chosen as the optimization 

parameters for the ES algorithm. 

 

Figure 7:Control system block diagram including setpoint 

optimization. 

Instead, the parameter to be optimized for each wheel is the 

tire slip setpoint.  By selecting the slip setpoint instead of the 

controller gains, at most one value per wheel needs to be 

optimized, instead of potentially three or more for each 

wheel.  This greatly simplifies the optimization process.  

Furthermore, the tire slip setpoint is controlled directly by the 

operating condition for the vehicle, so it should be a fitting 

parameter to use for optimizing the controller. 

In order to do this, the ES algorithm must be inserted into the 

block diagram of fig. 5.  What results is a system in which the 

tracking setpoint r(t) is modified in real time. This reference 

trajectory is the equivalent of β, the output of the ES 

algorithm in fig. 6. 

6.3 Feedback Signal Considerations 

As optimization methods require a quantifiable objective 

function, the ES algorithm in fig. 7 receives some feedback 

information J(t) from the system plant.  The signal chosen for 

this feedback can have a drastic effect on the capability of the 

ES algorithm to optimize the controller performance. 

In general, J(t) needs to be chosen as a signal which quantifies 

the system performance in some meaningful way.  For 

traction control systems, the primary desired output of the 

system is tractive force at the wheels.  In standard on-road 

vehicle applications, the force can be approximated using the 

linear acceleration and wheel velocities, etc., as the vehicle is 

only propelling itself and is not attempting to interact with an 

external body [21], [22].  For construction machines like the 

one in question, however, the range of operating conditions 

and uses is significantly higher.  In fact, the typical driving 

operation for this machine takes place at relatively low 

speeds, and its weight is enough that loss of traction when 

driving is usually not an issue. 

For implementation in a real-world machine, a representative 

objective function needs to be constructed from available 

sensor data.  This may not always be simple, but when 

specifically considering wheel loaders, a good estimate of the 

wheel force could potentially be generated using implement 

boom and bucket cylinder pressures and angles.  Similar 

systems have already been developed for estimating the 

payload in the machine bucket [23], [24]. 

On the other hand, simulations allow for much more direct 

access to the system states. Therefore, the objective function 

for simulations can simply be the total pushing force Fx,tot of 

the machine.  That is, 

 𝐽(𝑡) = 𝐹𝑥,𝑡𝑜𝑡 = ∑ 𝐹𝑥,𝑖

𝑖

 . (14) 

This objective function may be overly simplistic for some 

applications.  For instance, Osinenko [25] includes a term for 

“traction efficiency,” which can be included as an 

optimization tradeoff.  Other systems may want to take into 

account the amount of wheel slip when creating the feedback 

objective function.  Nevertheless, for the sake of this study, 

the purpose of the optimizer is simply to maximize the total 

pushing force of the machine. 

The ES algorithm updates parameters based on the 

assumption that all changes in the parameters are reflected in 

the objective function.  However, if the current braking 

control signal is negative, the wheel speeds are not being 
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affected at all.  Therefore, during instances where the control 

signal is negative, the optimization code receives incorrect 

information about its effect on the system.  This can cause the 

algorithm to converge to an incorrect point.  Therefore, some 

logic has been added to the ES algorithm so that it does not 

modify the guess of κ* unless the wheels are being braked 

(fig. 8).  The scheme incorporating this update logic is 

referred to in this work as the augmented extremum-seeking 

algorithm. 

 

Figure 8: Augmented extremum-seeking algorithm. 

7 Simulation Results 

Now that the system has been properly constructed and the 

optimization algorithm set in place, it is necessary to 

determine how well the system can perform.  For this work, 

the performance metric will be assessed using a simulation 

conducted in Matlab Simulink and based on the model 

developed in Sections 3 and 4 of this paper. 

Before the traction control simulation was conducted, it was 

first desired to assess the accuracy of the vehicle model.  This 

was done by running a test with a series of accelerations and 

braking actions and recording an estimate of the input torque 

to the system.  This torque was then used as an input to the 

simulation model.  The resulting simulation was compared to 

the results of the machine test (fig. 9). 

The next simulation used for this system was a simplified 

digging cycle, similar to the setup shown in fig.1.  In the 

simulation, the machine approaches the simulated pile and 

pushes against it for a few seconds.  During that time, the 

controller and optimizer work together to maximize the 

pushing force of the machine.  In theory, this increased 

pushing force translates, in real-world operation, to increased 

digging force along with decreased tire slip. 

 

Figure 9: Simulation model validation. 

For the first test, the vehicle is on a ground condition with 

relatively high friction for all four wheels (the high-μ example 

from fig. 4).  The wheel loader begins the simulation by 

advancing toward the work pile without the wheels slipping 

against the ground.  Once the machine reaches the pile and 

begins pushing against it, however, the tires begin to slip 

(with the vehicle velocity actually slowing down) and the 

tractive force is reduced.  As the wheel slip increases, the 

traction control system activates and slows down the wheels 

until they are kept at the proper slip ratio.  The vehicle and 

wheel velocities for this simulation are shown in fig. 10 

 

Figure 10: Traction control simulation velocities (high-

friction simulation). 

The overall effect of this is that the tractive force is increased 

and the machine can dig farther into the pile.  Figure 11 shows 

the pushing force of the machine over time for the machine.  

It makes contact with the work pile after just before 1 second 

and quickly begins losing tractive force.  As the traction 

control activates, at first the brakes are actuated too strongly.  

This causes an overshoot where the vehicle is actually slowed 

down for a brief moment.  Very quickly, however (within two 

seconds), the optimization algorithm finds the correct 

setpoint value, and within three seconds the system has 

converged to a very good tractive force value.  In fact, the 

system achieves a final force which is 54.7% higher than the 

final force without the traction control system (21.9 vs. 14.1 

kN in this simulation).  Furthermore, the wheel slip is greatly 

reduced in this case.  This indicates that the controller is in 

fact meeting the requirements set for it in Section 5 of this 

paper.  The speed at which the algorithm is able to converge 
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suggests that this system could be well-suited for 

implementation on a real-world machine. 

 

Figure 11: Longitudinal force for vehicle simulation in 

high-friction condition. 

Figure 12 shows the result of the setpoint optimization for this 

simulation using the augmented extremum-seeking 

algorithm, as well as a comparison to the same simulation 

using an unmodified ES algorithm (i.e. exactly as shown in 

fig. 6).  The tire-road interface has a known maximum friction 

coefficient at a slip ratio of around κ* = 0.5.  This is found by 

determining the location of the maximum friction coefficient 

for the slip friction curve, shown in fig. 4.  To determine the 

location of the slip that maximizes the friction, the curve is 

differentiated with respect to κ, and then the location where 

the derivative curve crosses zero is taken as κ*. 

It can be seen that, even when the system is not being braked, 

the unmodified ES algorithm still attempts to use the force 

information to update the setpoint.  As a result, it ends up 

overshooting the actual optimum value and, as the force 

continues to change, it could potentially wander farther from 

the correct point.  If, on the other hand, the optimization is 

updated only when the brakes are being actuated (as in the 

augmented ES algorithm), the optimization avoids the effect 

of bad objective function information.  Therefore, instead of 

the haphazard development of the standard ES algorithm, the 

updated ES algorithm pauses when no wheels are being 

braked and consistently approaches the correct setpoint as 

time progresses. 

 

Figure 12: Performance comparison of standard ES 

algorithm with updated version (high-friction). 

A second simulation was then run using the same system in a 

different ground condition.  This time, all four wheels were 

simulated as being on slick ground (the low-μ example from 

fig. 4).  In this condition, the traction control system must 

work much more to keep the wheels from spinning.  

Furthermore, the maximum pushing force is found at a 

different value of slip ratio (κ* ≈ 0.36).  This means that, 

whereas the ES algorithm needed to increase the setpoint in 

the previous simulation, with this condition it must decrease 

the setpoint somewhat.  The results of this simulation are 

shown in fig. 13. 

 

Figure 13: Simulated system performance (low-friction). 

In this simulation, the controller setpoint was again initialized 

at a non-optimal value.  In fact, it started at the same point as 

the high-friction simulation (κ0 = 0.4).  In this case, the ES 

algorithm decreased the setpoint during the simulation, so 

that it achieved a better setpoint.  Furthermore, the traction 

control system was able to contain the wheel slip to an 

appropriate value such that the tractive force was maximized 

(again, after some initial overshoot where the tractive force 

was briefly decreased).  Even in a worse ground condition, 

this system far outperforms a simulation with no traction 

control. 

These simulations indicate that the system developed in this 

work is capable of determining and reaching an optimal slip 

value given the proper feedback signal for the optimization 

objective function. 

8 System Potential 

Generating the feedback signal is relatively simple in 

simulation, as most states can be computed fairly easily.  In 

practice, however, it is more difficult to obtain, for instance, 

a proper estimate of the wheel force.  Nevertheless, if an 

acceptable objective function can be computed, this system 

should be equally applicable to real-world vehicle systems.  

In terms of generating a longitudinal force estimate, the wheel 

loader presents some potential for accomplishing this.  For 

instance, if it is being used to dig or push, the pressure in the 

implement boom and bucket hydraulic cylinders can be 

processed in such a way that a reasonable estimate of pushing 

force can be determined.  This could potentially incorporate 

a system similar to the payload sensing apparatus described 

in [23], [24]. 
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Nevertheless, if a suitable feedback signal can be generated, 

this system has quite a lot of potential toward being applicable 

to other systems.  Using a basic PID structure for the 

controller means that there are very few parameters which 

need to be adjusted in order to apply it to a new vehicle.  Other 

more complex model-based controllers may have somewhat 

better performance, but they are also very specific to the 

machine for which they are designed, and transferring them 

to other systems could require some rigorous work. 

Furthermore, using the extremum-seeking algorithm also 

makes the controller design relatively simple to transfer to 

new machines.  As long as the objective function is well-

behaved and has a relatively well-defined maximum (or 

minimum), the ES algorithm is a fairly robust method for 

optimizing the system.  Therefore, this system should be 

applicable toward the development of other traction control 

systems without very much needed modification. 

9 Conclusions 

This paper presents a self-tuning controller for eletro-

hydraulic traction control systems in vehicles.  By focusing 

on the case of a construction machine, a simple vehicle model 

is developed for simulating the performance of the traction 

control system.  This model includes considerations for wheel 

force generation, including wheel slip dynamics.  A relatively 

simple controller consisting of a PID structure was then 

included in order to control the wheel slip to some value. 

Much work was conducted toward finding the optimal wheel 

slip value, which can change from one ground condition to 

the next.  Therefore, a feedback structure was created which 

utilized a real-time optimization method (the extremum-

seeking algorithm) in order to determine this value online.  In 

order to do this, an objective function for the system was 

designated and the extremum-seeking parameters were tuned 

to appropriate values. 

By using the automatic tuning controller, simulations were 

run which showed that it has the ability to determine the 

optimal slip value for the wheels on its own and to control the 

wheels to that value.  This resulted in a simulation in which 

the wheel force was optimized in real time while pushing 

against a work pile (modeled as a resistive force).  In all, this 

control structure shows promise for tuning traction control 

systems in vehicles which work on varied surfaces. 

Nomenclature 

Designation Denotation Unit 

ax Longitudinal acceleration m/s2 

B 
Tire longitudinal relaxation 

length 
m 

Bx Magic Formula parameter none 

Cx Magic Formula parameter none 

cDS 
Damping rate of driveshaft 

section 

N∙m∙s

rad
 

cp 
Damping rate of pile resistive 

force model 
N·s/m 

Dx Magic Formula parameter none 

Ex Magic Formula parameter none 

F Force N 

g Acceleration of gravity m/s2 

h 
High-pass filter pole for 

extremum-seeking algorithm 
none 

hCG Height of center of gravity m 

hp Height of pile force application m 

Iw Wheel moment of inertia kg·m2 

J 
Objective function value for 

optimization 
none 

k 
Integral gain for extremum-

seeking algorithm 
none 

kDS Spring rate of driveshaft section N·m/rad 

kp 
Spring rate of pile resistive 

force model 
N/m 

l Horizontal distance m 

m Vehicle mass kg 

Rdiff Gear ratio of differential none 

r 
Reference trajectory for control 

system 
none 

rd Dynamic radius of wheel m 

T Torque N·m 

vx Longitudinal vehicle velocity m/s 

xp Distance of travel into pile m 

β 
Optimization variable(s) for 

extremum-seeking algorithm 
none 

β̂ 
Estimate of variable optimum 

value for ES algorithm 
none 

θ Rotational position rad 

κi Slip ratio at wheel i none 

μx Longitudinal friction coefficient none 

ωi Rotational velocity of wheel i rad/s 
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