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Abstract 
The object of this paper is to present asymmetric rotor 

and shaft models in rotating machinery systems. Using 

these models it is possible to analyze the electrical 

motors or generators which have different lateral 

stiffness or the moments of inertia in two orthogonal 

directions. The asymmetry causes unstable vibrations in 

some rotating speed ranges. A cracked shaft model is 

presented as the extension of the asymmetric shaft 

model. These models are implemented in our original 

rotating machinery library. 

Keywords: Rotor Dynamics, Asymmetrical Rotor, 
Asymmetrical Shaft, Cracked Shaft 

1 Introduction 

Rotating machinery systems have been dominant in 

most of heavy equipment such as turbine, generator, 

motor and so forth. Rotating machinery systems are 

always the key component of these equipment and the 

dynamic properties of which can determine the 

performance of the whole system. Before manufacturing, 

the modelling and simulation of rotating machinery 

systems can help the engineers to design a better system. 

Rotating machinery systems may suffer from different 

kinds of faults. A proper modelling and simulation of 

rotating machinery system with common faults should 

help engineers understand the performance with faults 

well, so that faults can be discovered or diagnosed in the 

early stage. Approaches to dynamic analysis of rotor 

systems can be divided into two main branches. One is 

the widely used finite element method (FEM), and the 

other is the relatively more traditional one, i.e. the 

transfer matrix method (TMM). This method is 

relatively simple and straightforward in application. The 

rotating shaft are decomposed into the concentrated 

mass and flexible beam. The main advantage of TMM 

is low computational cost.  

Modelica is an object-oriented, declarative, acausal, 

multi-domain modelling language for component- 

oriented modelling of complex systems. It is suitable for 

modelling and simulation of rotating machinery systems 

with faults, whose parameters are frequently changed. 

Causal modelling method appears to be inefficient 
because the code is difficult to modify and reuse. 

Modelling by Modelica decomposes rotating machinery 

systems into several basic components. Basic 

components are reusable, and their parameters can be 

simply modified. By using the 

Modelica_LinearSystems2 library, it is possible to do 

eigenfrequency analysis in the linearized system. These 

are the big advantage for modelling and simulating of 

the rotating machinery systems with several faults by 

TMM. 

Several papers have been written relating modelling 

rotor dynamics in Modelica. Vibrations of gears in the 

plane have been implemented and refined (Dahl et al, 

2017; Kosenko and Gusev, 2012; van der Linden, 2012). 

However those are focusing on only a gear. Previously 

3 DOF (degree of freedom) rotor dynamics library with 

multi-faults is reported (Ming et al, 2013). It only handle 

Jeffcott rotor systems neglecting the gyroscopic effect, 

which is very important for rotor dynamics.  

We have created the rotating machinery library which 

has 5 DOF rotor dynamics model components (Ishibashi 

et al, 2017). The library has common faults of rotating 

machinery systems including static and dynamic 

unbalance, shaft bending, and faulty bearing. In this 

paper, we implemented asymmetrical rotor and shaft 

models. The actual rotating machinery systems have 

asymmetries such as two pole generators and propellers 

etc. The cracked shaft model is also implemented as the 

extension of the asymmetric shaft model. 

2 Asymmetrical systems 

The actual rotating machinery such as propeller rotors 

and two-pole generator rotors have the asymmetry. The 

former are systems with a directional difference in the 
rotor inertia (Figure 1 (a)). The latter are systems with a 

directional difference in the shaft stiffness (Figure 1 (b)). 

As the shaft with these directional differences rotates, 

terms with time-varying coefficients appear in the 

governing equations. The most characteristic property 

of asymmetrical system is the appearance of unstable 

vibrations in some rotating speed ranges (Ishida and 

Yamamoto, 2012; Matsushita et al, 2017). The 

asymmetrical rotor and shaft models are implemented in 

our rotating machinery library. 
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Figure 1. Asymmetries of the rotor and the shaft. 

2.1 Asymmetrical rotor 

The asymmetrical rotor is considered as a single point 

with a rigid disc or a long rigid shaft.  
The directional difference in the moment of inertia is 

expressed as 𝐼1 = 𝐼 + ∆𝐼, 𝐼2 = 𝐼 − ∆𝐼. The equations of 

asymmetrical rotor motion are following. 

𝐼𝑖�̈� + 𝐼𝑝�̇�𝑖�̇� − ∆𝐼
𝑑

𝑑𝑡
(𝑖�̇�cos2𝜔𝑡 + 𝑖�̇�sin2𝜔𝑡) 

+𝜏𝜃2̇{(𝐼 − 𝐼𝑝) cos(𝜔𝑡 + 𝜏0) − ∆𝐼 cos(𝜔𝑡 − 𝜏0)} 

= 𝑀𝑥 

(1) 

𝐼𝑖�̈� − 𝐼𝑝�̇�𝑖�̇� − ∆𝐼
𝑑

𝑑𝑡
(𝑖�̇�sin2𝜔𝑡 + 𝑖�̇�cos2𝜔𝑡) 

+𝜏𝜃2̇{(𝐼 − 𝐼𝑝) sin(𝜔𝑡 + 𝜏0) − ∆𝐼 sin(𝜔𝑡 − 𝜏0)} 

= 𝑀𝑦 

(2) 

Here,  

𝑖𝑥, 𝑖𝑦: Deflection angle of each direction, 

𝑀𝑥, 𝑀𝑦 : Moment of each direction, 

𝜃 : Rotational angle, 

𝜏 : Slope of dynamic unbalance, 

𝜏0 : Initial phase of dynamic unbalance, 

∆𝐼 : Difference of moment of inertia, 

𝐼 :  Average moment of inertia, 

𝐼1 : Moment of inertia about y axis, 

𝐼2 : Moment of inertia about x axis, 

𝐼𝑝 : Polar moment of inertia. 

2.2 Asymmetrical shaft 

According to the coordinate system O -ξη rotating 

with the shaft shown in Figure 2, the asymmetrical 

elastic shafts which have a directional difference in the 

shaft stiffness, holds the following equation. 

 

 

 

𝐸 (
𝐼𝜉𝑖𝑏𝜉

𝐼𝜂𝑖𝑏𝜂
) =

𝐿2

2
(

𝐹𝑎𝜉

𝐹𝑎𝜂
) + 𝐿 (

𝑀𝑎𝜉

𝑀𝑎𝜂
) + 𝐸 (

𝐼𝜉𝑖𝑎𝜉

𝐼𝜂𝑖𝑎𝜂
) 

                     + (
cos𝜃 −sin𝜃
sin𝜃 cos𝜃

) × (
0

−
𝑚𝑔𝐿2

6

) 
(3) 

𝐸 (
𝐼𝜉𝑢𝑏𝜉

𝐼𝜂𝑢𝑏𝜂
) =

𝐿2

6
(

𝐹𝑎𝜉

𝐹𝑎𝜂
) +

𝐿

2
(

𝑀𝑎𝜉

𝑀𝑎𝜂
) + 𝐸𝐿 (

𝐼𝜉𝑖𝑎𝜉

𝐼𝜂𝑖𝑎𝜂
) 

+𝐸 (
𝐼𝜉𝑢𝑎𝜉

𝐼𝜂𝑢𝑎𝜂
) + (

cos𝜃 −sin𝜃
sin𝜃 cos𝜃

) × (
0

−
𝑚𝑔𝐿3

24

) 

(4) 

The second moments of area changes twice per 

revolution at the stationary coordinate system as 

expressed by Equation 5.  

(
𝐼𝑥

𝐼𝑦
) =

𝐼𝜉 + 𝐼𝜂

2
(

1
1

) +
𝐼𝜉 − 𝐼𝜂

2
cos2𝜔𝑡 (

−1
1

) (5) 

 Here, 

𝑚 : Shaft mass, 

𝐿 : Shaft length, 

𝐸 : Young’s modulus, 

𝐼𝑥 , 𝐼𝑦  : Second moments of area in the stationary 

coordinate system, 

𝐼𝜉 , 𝐼𝜂  : Second moments of area in the rotating 

coordinate system, 

𝑔 : Constant of gravitation, 

𝜔 : Rotating speed. 

The indices a and b mean left and right flange 

respectively. 

This time-varying coefficients cause an unstable range 

in machine operating frequency. 

 

Figure 2. The stationary (black) and rotating coordinate 

system (red).  

3 Cracked shaft 

One of the most important causes of accidents in 

rotating machinery is the crack caused by fatigue. In 

horizontal shaft system, since the weight of the rotors 

and shafts bend shafts, expanding force acts on the 

underside of the shaft and compressing force acts on the 

upper side. As the result, when the shaft rotates, periodic 

stress is generated and cracks sometimes occur. In the 

cracked shaft, the stiffness differs depending on the 

direction in which the shaft bends. In the crack opening 

direction, the shaft stiffness is small, and on the other 

hand, in the closing direction, the stiffness becomes 

large (Figure 3 (a)). The restoring force of the shaft has 

a nonlinear spring characteristic in a fragment linear 

fashion along the ηdirection at the rotating coordinate 
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system O -ξηrotating with the shaft (Figure 3 (b)) . 

Along the ξ direction, the restoring force has a linear 

spring (Gasch, 1976; Henry and Okah-Avae, 1976). The 

cracked shaft model is expressed as the extension of the 

asymmetrical shaft model. In Equation 3 and 4, the 

second moments of area at the rotating coordinate 

system changes as follows. 

𝐼𝜂 = {
𝐼𝜂 − 𝛿,   𝑖𝑏𝜂 − 𝑖𝑎𝜂 ≥ 0

𝐼𝜂 + 𝛿,   𝑖𝑏𝜂 − 𝑖𝑎𝜂 < 0
   (6) 

Here, 

𝛿: Crack strength parameter. 

 

Figure 3. The cracked shaft model. (a) Conceptual diagram 

(b) A nonlinear spring characteristic in a fragment linear 

fashion. 

4 Example Models 

The above models are using our original rotating 

machinery library. Dymola is used for the simulations. 

The asymmetrical rotor model is implemented by 

modifying rotor. The asymmetrical and cracked shaft 

models are implemented by modifying the shaft. Figure 

4 shows a simple Jeffcott rotor model using our rotating 

machinery library.  Here, we simulate the asymmetrical 

rotor and shaft and the cracked shaft in the Jeffcott rotor 

system. 

4.1 Symmetrical system 

Before the transient simulation, we check the 

symmetrical model by eigenfrequencies analysis using 

the Modelica_LinearSystems2 library (Bauer et al, 
2009; Otter, 2006) and creating the function. Figure 5 

shows the Campbell diagram. Red curve shows the 

 

Figure 5. The Campbell diagram of the symmetrical 

system. Red shows the counterclockwise rotation whirl 

mode. Blue shows the clockwise rotation whirl mode.  

counterclockwise rotation whirl mode and blue curve 

shows the clockwise rotation whirl mode by eigenvector 

analysis. The eigenfrequency curves starting from 

around 70Hz split due to the gyroscopic effects. The 

intersection between the synchronous excitation line 

and the eigenfrequencies in Campbell diagrams are 

referred as critical speeds.  Also, the intersection 

between twice the synchronous excitation line and the 

eigenfrequencies are referred as secondary critical 

speeds. This system has two critical speeds around 14Hz 

and 83Hz. Since it is easy to understand the simulation 

results, in this case, time derivatives terms in the 

equations of journals motion are ignored. 

To check this system, we simulate the ramp response 

of this system. Rotor with a diameter of 80mm has both 

the static and dynamic unbalance. Shaft3 with a 

diameter of 8mm also has the shaft bending.  Figure 6 

and Figure 7 show the deflection in the horizontal 

direction and the deflection angle vibration of Rotor 

against the rotating speed respectively. The rotating 

speed is raised from 0 rps to 100 rps at the rate of 10 

rps/s by replacing the constant input with the ramp input 

in Figure 4. The deflection has the peak at the a little bit 

higher speed of the 15 rps and the deflection angle has 

the peak around 83 rps. 

1x

2x

 
 

 
Figure 4.  Modelica model of a Jeffcott rotor system. 
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Figure 6. Ramp response of Rotor deflection. 

 

Figure 7. Ramp response of Rotor deflection angle. 

4.2 Asymmetrical system 

4.2.1 Asymmetrical rotor 

We simulate the model replacing Rotor with the 

asymmetrical rotor in Figure 4. The asymmetrical rotor 

is expressed in Equation 1 and 2. The asymmetrical rotor 

is assumed as the elliptic cylinder with the long axis of 

45mm and the short axis of 35mm which has  the 

directional difference in the moment of inertias ∆𝐼 =
6.4e−4 kgm2. 

Figure 8 and Figure 9 show the ramp response. The 

deflection angle peak amplitude is larger than that of the 

symmetrical system, although the peak positions in both 

the deflection and deflection angle are the totally same 

positions as the symmetrical system. This implies that 

the rotating speed around 83 rps is unstable. To examine 

the unstable region, we simulate the model at several 

constant rotating speeds around 83 rps. 

Figure 10 shows the transient simulation results of 

rotor deflection angles at the different constant rotating 

speeds respectively.  At the rotating speed of 80 and 86 

rps, Rotor deflection angle converges. From 81 to 85 rps, 

Rotor deflection angle vibration diverges. At 83 rps, 

Rotor deflection angle diverges rapidly. These clearly 

indicate that this system is unstable in this region. 

Unstable regions are demonstrated in the asymmetrical 

rotor system, whereas in the symmetrical system they 

are not observed. Due to the directional difference in the 

moment of inertias, the unstable region exists only in 

this region. 

 

 

 

Figure 8.  Ramp response of Rotor deflection with the 

asymmetrical rotor. 

 

Figure 9.  Ramp response of Rotor deflection angle with 

the asymmetrical rotor. 

 

 

4.2.2 Asymmetrical shaft 

We simulate the model replacing Shaft3 with the 

asymmetrical shaft in Figure 4. The asymmetrical shaft 

model is expressed in Equation 3, 4 and 5. The 

asymmetrical shaft is assumed as the elliptic cylinder 

with the long axis of 4.5mm and the short axis of 3.5mm 

which has the directional differences in second moments 

of area.  
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Figure 10.  Unstable regions of the asymmetrical rotor 

system. Transient results of Rotor deflection angle with the 

asymmetrical rotor at different constant speeds. 

 

Figure 11 and Figure 12 show the ramp response. The 

behavior is the same as the asymmetrical rotor system. 

Since the equations of motion of both the deflection and 

deflection angle have the directional stiffness 

differences in the asymmetrical shaft system, the 

asymmetrical shaft system has much more unstable 

regions such as the region around 14 rps.  

To examine the unstable region, we simulate the model 

at several constant rotating speeds around 14 rps. Figure 

13 shows the transient simulation results of Rotor 

deflections in the horizontal direction at the different 

constant rotating speeds respectively. At 14.1 and 14.7 

rps, Rotor deflection converges. From 14.2 to 14.6 rps, 

Rotor deflection diverges. At 14.6 rps, Rotor deflection 

diverges rapidly. These clearly indicate that the system 

is unstable in this region. Similarly the system is 

unstable at the region around 83 rps.  Also, the other 

several unstable regions corresponding to the minute 

peaks at 45 and 62 rps exist in simulation. 

 

 

Figure 11. Ramp response of Rotor deflection with the 

asymmetrical shaft. 

 

Figure 12. Ramp response of Rotor deflection angle with 

the asymmetrical shaft. 
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Figure 13.  Unstable regions of the asymmetrical shaft 

system. Transient results of Rotor deflection with the 

asymmetrical shaft at different constant speeds. 

5 Cracked shaft 

We simulate the model replacing Shaft3 with the 

cracked shaft in Figure 4. The cracked shaft model is 

expressed as the extension of the asymmetrical shaft by 

adding Equation 6. Here, we examine the nonlinear 

vibration of the cracked shaft. The cracked shaft shape 

is symmetrical. It has the crack strength parameter  𝛿 

with half the second moment of the area of the 

symmetrical shaft.  

The asymmetrical shaft and the symmetrical system 

are simulated to check the differences. Figure 14 shows 

the transient simulation results of the rotor deflection 

angle at the constant rotating speed of 5 rps.  

We analyze frequency characteristics of results by FFT 

signal processing with a rectangular window in the 

range of 4 to 6 s. The range is chosen to remove the 

initial transient effect of this system. Figure 15 shows 

the results of FFT analysis.  The symmetrical system has 

the only component synchronized with the rotating 

speed. The asymmetrical shaft has the other components. 

The frequency of 14 Hz is the eigenfrequency of the 

 

 

 

Figure 14. Comparison of transient simulation results at 

constant speed 5 rps. (a) Symmetrical system. (b) 

Asymmetrical shaft. (c) Cracked shaft. 
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Figure 15. Comparison of FFT analysis. Blue line: 

Symmetrical system. Green line: Asymmetrical shaft. Red 

line: Cracked shaft. The inset shows the enlarged view. 

rotor horizontal vibration mode in this system. The 

cracked shaft has the same components as the 

asymmetrical shaft and the other components due to the 

nonlinear spring characteristic in a fragment linear 

fashion. 

6 Conclusion 

In this paper, models are presented to simulate the 

asymmetrical rotor and shaft and the cracked shaft. 

Using our rotating machinery library, it is possible to 

model an actual rotating machinery such as propeller 

rotors and two-pole generator rotors with asymmetries. 

As the extension of the asymmetrical shaft model, the 

cracked shaft model is implemented. Examples of 

simple rotor systems are demonstrated. The presented 

model shows the abilities to design and diagnose 

rotating machinery systems.   
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