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Abstract

Modern annotation tools and pipelines that support automatic text annotation and processing

have become indispensable for many linguistic and NLP-driven applications. To simplify their

active use and to relieve users from complex configuration tasks, Service-oriented architecture

(SOA) based platforms – like CLARIN’s WebLicht – have emerged. However, in many cases

the current state of participating endpoints does not allow processing of “big data”-sized text

material  or  the execution of  many user tasks  in parallel.  A potential  solution is  the use of

distributed  computing  frameworks  as  a  backend  for  SOAs.  These  systems  and  their

corresponding  software  architecture  already  support  many  of  the  features  relevant  for

processing big data for large user groups. This submission describes such an implementation

based on Apache Spark and outlines potential consequences for improved processing pipelines

in federated research infrastructures.

1 Introduction

There are several approaches to make the variety of available linguistic applications  –  i.e. tools for

preprocessing, annotation, and evaluation of text material – accessible and to allow their efficient use

by researchers  in a service-oriented environment.  One of those,  the WebLicht  execution platform

(Hinrichs et al., 2010), has gained significance – especially in the context of the CLARIN project –

because of its easy-to-use interface and the advantages of not being confronted with complex tool

installation and configuration procedures, or the need for powerful local hardware where processing

and annotation tasks are executed.

The relevance of this general architecture can be seen when considering the increasing relevance of

“cloud services” in the current research landscape (in projects like the European Open Science Cloud

EOSC)  and the rising number  of alternative platforms.  Comparable services  like Google’s  Cloud

Natural  Language,  Amazon  Comprehend,  GATE  Cloud (Gate  Cloud,  2018),  or  the  completed

AnnoMarket project are typically tight to some form of business model and show the significance –

including a commercial one – of those applications. It has to be seen how a platform like WebLicht

that  is  mostly driven by its  participating research communities  can compete with those offerings.

However, some of the shortcomings that could be reasons to use alternative services may be reduced

in the context of the CLARIN infrastructure as well. Potential problems may include the following

areas:

• Support of processing large amount of text material (so called “big data”) without loosing the

mentioned benefits of a service-oriented architecture.

• Efficient use of parallelization, including the parallel processing of large document collections

and the support of large user groups.
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• Open accounting of used resources (ranging from used hardware resources to financial costs)

for  enhancing  user  acceptance  of  services  and  workflows  by  making  hidden  costs  more

transparent.

Using  parallel  computing  approaches  to  improve  the  performance  and  workload  on  available

hardware is a common topic in computer science. Several approaches have been established over time,

including a variety of libraries, distributed computing frameworks, and dedicated computing hardware

for different forms of parallelization. This submission proposes using the Apache Spark 1 framework

on Hadoop clusters as backend for a WebLicht processing endpoint to address the aforementioned

issues. A first prototypical implementation suggests the benefits of this approach.

The following two sections will  describe the technical details of this demonstrator.  In section 4

some of the general  outcomes  –  like potential  consequences  for improving the performance,  user

satisfaction and clarity of the tasks – will be discussed and are followed by a brief summary of this

contribution in section 5.

2 Synchronous Communication and Interaction in a SOA

Service-oriented architectures (SOAs) are an architectural approach that supports a group of services –

as discrete units of functionality – to communicate with each other. The basic principles of SOAs are

their independence of users, products and technologies. Some of SOA-based applications have several

limitations such as the inability to develop highly interactive or completely customizable applications

or lack of supporting synchronous interactions (Papazoglou, 2003), (Erl, 2005).

CLARIN’s WebLicht2 is a SOA-based processing environment that provides chains of language

resources  and  tools  (LRT)  as  distributed  and  independent  services  and  covers  a  wide  range  of

linguistic applications and several languages (Hinrichs et al., 2010). It facilitates the users’ processes

and relieves them from complicated configuration tasks. In our working prototype, the atomic feature

of the implemented tools make them appropriate to integrate into WebLicht and other SOAs as well.

WebLicht  and  comparable  environments  are  mostly  based  on  synchronous  communication  and

interaction between users and the framework. The typical WebLicht workflow relies on users issuing –

simple or combined  –  tasks and waiting for the final results for their export or further analysis. In

general, this assumes synchronous interactions which are hardly feasible for big data analysis that may

require execution times of several days or more. 

However, WebLicht’s popular Web-interface does not provide any adequate handling of long-term

processes, processing of document collections or (very) large input data in general. Although it should

be  noted  that  with  WebLicht  as  a  Service,  a  first  alternative  approach exists  for  WebLicht,  that

mitigates some of these problems3.

3 Technical Approach

In this section we discuss the techniques utilized in our implementation including Apache Hadoop and

Apache  Spark  and  their  strengths  in  comparison  with  other  techniques.  We  also  describe  the

implemented linguistic applications and compare their efficiency with similar tools that use different

frameworks.

3.1 Apache Hadoop

Apache Hadoop is a framework to process large-scale data in a distributed computing environment

and is a popular framework for applications that deal with massive data and where the response time is

significant. Its large ecosystem consists of the Hadoop Kernel, MapReduce, HDFS and some other

components such as YARN, Apache Hive and Zookeeper (Apache Hadoop, 2019).

Apache  Hadoop  has  a  fault‐tolerant  distributed  storage  system called  Hadoop  Distributed  File

System (HDFS) that  supports storage of  massive amounts  of  data.  HDFS is highly fault-tolerant,

suitable  for  applications  that  support  large data  sets,  easily  deployable  on low-cost  hardware and

provides high throughput access to data. It scales up incrementally and is able to handle the failure of

1 https://spark.apache.org/
2 https://weblicht.sfs.uni-tuebingen.de
3 https://weblicht.sfs.uni-tuebingen.de/WaaS/
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storage infrastructure  without  losing data  by storing three complete  copies  of  each block of  data

redundantly on three different servers (Bhosale and Gadekar, 2014).

MapReduce (Dean and Ghemawat, 2004) – which is the processing pillar in the Hadoop ecosystem

– is a programming model and associated implementation that allows processing of data up to the size

of multiple terabyte in parallel on large clusters (with thousands of nodes) in a reliable, fault-tolerant

way. A MapReduce job divides input data into independent blocks. Users define the  Map functions

that process these data blocks in parallel and generate intermediate results as set of key-value pairs.

The key-value based approach is utilized for the challenging task of combining processed data in a

distributed  environment.  Reduce functions  merge  the  intermediate  values  based  on  the  same

intermediate keys to produce the output. Input and output of the functions are stored in HDFS; the

framework  supervises  and  monitors  scheduled  tasks,  and  re-executes  failed  tasks  (Bhosale  and

Gadekar, 2014), (Apache Hadoop, 2019).

Hadoop has some particular properties that make it more eligible (White, 2012). For instance, it can

increase access speeds – the rate at which data can be read or written from or to drives – by reading

and writing data from and to multiple disks in parallel instead of serial accesses and allows shorter

analysis times by parallel execution of tasks. Furthermore, replication and redundant copies of data is

a central component of Hadoop to avoid data loss in the event of hardware failure.

In comparison with relational database management systems (RDBMS) Hadoop is more efficient in

many respects. RDBMS are able to do large-scale batch analysis on several disks but there are several

problematic issues resulting from the used architecture. For example, updating a large portion of data

–  which  often  comes  with  sort  or  merge  operations  –  is  less  efficient  than  using  MapReduce.

Furthermore, seek time latency – the time required to move the disk’s head to a particular place on the

disk to  read or  write  data  –  when processing big data  is  considerable,  especially  in  unstructured

resources like texts. The approach of data access patterns in MapReduce – read, process and write the

entire data set at once – decreases this latency.

In High Performance Computing (HPC) and Grid Computing platforms, large-scale data processing

is executed using Message Passing Interface (MPI) which is distributing tasks across a cluster  of

machines  and utilizing  a  shared  file  system.  However,  accessing  very  large  data  volumes  (up  to

several terabytes) makes network bandwidth a potential bottleneck that can lead to idle computing

nodes. MapReduce uses the data locality feature: data is collected by corresponding computing nodes;

data is stored locally which improves access times (White, 2012).

3.2 Apache Spark

Apache Spark is also a general-purpose cluster computing framework for big data analysis with an

advanced in-memory programming model and upper-level libraries and APIs. It uses a multi-threaded

model where splitting tasks on several executors improves processing times and fault tolerance.

Compared to MapReduce, Apache Spark uses a data-sharing abstraction called Resilient Distributed

Dataset  (RDD);  individual  operations  (i.e.  Map  and  Reduce)  are  similar.  RDDs  are  In-Memory

Databases (IMDB) which are designed to run completely in RAM. Using this extension, Apache Spark

is able to perform processing workloads easier and more efficient and provides large speedups. RDDs

are transient: every time they are used they are recomputed. If data is used more often, users can

persist individual RDDs in memory for a faster reuse.

One of the key properties of RDDs is their design as fault-tolerant collections, which are capable to

recover lost data after a failure occurs and can be processed and manipulated in parallel. In other

distributed computing frameworks, fault tolerance is achieved by data replication or check pointing

while Spark uses a different  approach called lineage.  When building an RDD, the graph of  used

transformations is kept and if any failure occurs, the operations are re-run to rebuild lost results. As the

RDDs  are  stored  in  memory,  rewriting  recovered  data  is  faster  than  writing  operations  over  the

network. Thus, lineage-based recovery can save both execution time and storage space ((Zaharia et al.,

2016), (Hamstra and Zaharia, 2013), (Salloum et al., 2016)).

3.3 Scalability

In parallel computing, beside the performance that increases by distributing executions over several

processing cores, the efficiency and scalability of applications are also desirable attributes. 
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Scalability relates to the capability of a process to deal with a growing amount of data. As one of

the performance metrics for parallel implementation is the runtime, the scalability is measured by the

speedup that is the ratio of runtime using one executor to n executors. Efficiency is calculated by the

speedup divided by the number of executors. In the ideal case, the highest value for efficiency shows a

linear  growing speedup.  In reality  and for  typical  use  cases,  a  sub-linear  speedup also  shows an

improvement in efficiency ((Hill, 1990), (Bondi, 2000)).

3.4 Tools

In  the  context  of  our  implementation,  a  variety  of  typical  NLP  tools  –  including  sentence

segmentation,  pattern-based  text  cleaning,  tokenizing,  language  identification,  and  named  entity

recognition  –  were  implemented4.  These  tools  use  Hadoop as  their  framework,  Apache  Spark  as

execution engine and store the input data and outputs on HDFS. The tools are atomic services that

have the potential to be integrated in any SOA-based annotation environment.

In order to execute these tools, we have used a cluster provided by Leipzig University Computing

Center (Meyer et al., 2018). Table 1 illustrates hardware and configuration of this cluster (Lars-Peter

Meyer, 2018).

Number of nodes CPUs Hard drives RAM Network

90 6 cores per node >2 PB in total 128 GB per node 10 Gbit/s Ethernet

Table 1: Cluster Characteristics

During the execution, as the first step, input text files are read from HDFS and loaded in RDDs. Those

RDDs are distributed over the allocated cluster hardware and are processed by several executors in

parallel. The results are provided by merging processed RDDs and the finalized outputs again are

stored on HDFS.

Optimum hardware configuration for each job can be set dynamically considering volume and type

of input data as well as the selected processing pipeline which may consist of a single or even multiple

tools. The specific configuration is determined automatically based on empirical values taken from

previous runs and takes the current workload of the underlying cluster into account.

For the subset of these tasks that is supported by WebLicht’s text corpus format (TCF) (Heid et al.,

2010)  (i.e.  tokenization and sentence segmentation)  converters  between TCF and the RDDs were

written. As a result, the endpoint is structured as depicted in Figure 1.

4 http://hdl.handle.net/11022/0000-0007-CA50-B

Figure 1: WebLicht with a Spark-based Backend.
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For the evaluation of the implemented solution benchmarks were carried out. The benchmarks were

executed to show the impact of parallelization for every task. The diagrams in Figures 2 and 3 show

runtimes  for  various  data  volumes  with  comparable  characteristics  using  different  cluster

configurations. They illustrate the effect of configuration variables on concrete process runtimes and

especially the impact of parallelization (i.e. the number of executors). Using these results, for every

batch of input data a cluster configuration can be estimated that constitutes an acceptable trade-off

between allocated resources and the expected runtime.

4 Results

The implemented tools already provide added value to the WebLicht platform. In this section, we will

describe some of the more general outcomes.

4.1 Performance Improvements

The central  advantage of  the described implementation is  its  ability  to use state-of-the-art  cluster

computation technology to process input material in massive scale. Parallelization in general has the

potential to achieve major performance improvements; using Apache Hadoop and Spark – on the basis

of large scale clusters – is a promising approach in this area. As a result, we were able to process huge

amounts of data with a significant decrease in resources compared with sequential approaches. 

Table 2 compares the runtimes for processing 6.5 GB input data for the subset of tools that can be

currently  integrated  into  WebLicht,  using  our  parallel  implementation  and  an  existing  sequential

application. Both tests used the same hardware configuration with 8 GB memory and one executor.

The  measured  runtimes  illustrate  that  parallelization  using  Apache  Spark  can  generate  results  in

significantly less amount of time when the same input texts were processed using equal resources

(memory and CPU).

Segmenting Tokenizing

Existing Sequential Implementation 8,200 sec 19,860 sec

Parallel Implementation 357 sec 781 sec

Table 2: Runtime for processing 6.5 GB input text using sequential and parallel implementations

The diagrams in Figure 2 and 3 show the scalability of the tools. As expected, by increasing the

number  of  executors,  runtime  declines  and efficiency improves.  It  is  worth  mentioning,  that  the

number of executors cannot grow infinitely and exceeding available resources will lead to negative

effects on the efficiency.

Figure 2: Segmentation 1 to 10 GB Text Data using 4 or 8 

Executors and 1, 2 or 4 GB RAM.
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It  is  also  noteworthy  that  the  total  runtime for  the  pipeline  including  sentence  segmentation  and

tokenizing as a combined task depends on the most  time-consuming sub-task  –  tokenizing in this

experiment  –  regardless of the volume of documents and the allocated resources.  That is  because

combined tasks save I/O time for writing the segmented documents which is the main part of the

overall sentence segmentation runtime.

4.2 Benefits of Asynchronous Workflows

The aforementioned focus on synchronous communication patterns is problematic when dealing with

very large input data and resulting growing execution times of scientific workflows. In those cases, a

direct interaction with the user can not be expected and alternatives have to be evaluated. One of the

possible approaches is  the automated execution of  pipelines  as  it  is  supported by  WebLicht  as  a

Service.  However,  this  already requires  some deeper  technical  knowledge from the  end user  and

contradicts  partially  the  seamless  integration  of  pipeline  results  in  a  federated  Web-based

infrastructure.

For a systematic support of big data processing in the context of WebLicht pipelines, changes in the

default workflows and user interfaces might be helpful. This may comprise an improved support for

the processing of document collections  –  in contrast to a more document-centric approach  –  and a

stronger focus on data storage platforms that support workspaces for individual users like B2DROP.

This infrastructure component  has  the ability to  function both as  a  primary means of  storage for

individual users and user groups, but also as a central entry point to start new workflows in a data-

oriented environment. Its function would include both being a potential provider of input data for

WebLicht but also as the default storage space of intermediate and final results.  User information

about status and outcome of scheduled processing jobs can be transfered via Email or job-specific

status pages5. Those status reports should be seen as an important means to inform users about used

hardware resources, required runtimes, and relevant process variables. For increasing user acceptance

of the overall system, they may also contain information about required financial resources that would

have been necessary to perform the same task using a commercial platform.

4.3 Technical Costs for Accountability and User Motivation

Resulting  execution  times  for  a  specific  configuration  (i.e.  number  of  used  executors,  allocated

memory, etc.) are valuable information for estimating requirements and runtime behavior of every

task.  Based on empirical  data,  runtimes for new tasks can be estimated considering their  general

characteristics (i.e.  size of input  data and used tool  configuration).  This estimate provides several

added values to our system that are briefly described in the following.

5 A functionality that is already supported by other comparable frameworks.

Figure 3: Tokenizing 1 to 10 GB Text Data using 4 or 8 

Executors and 1, 2 or 4 GB RAM.
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• Balance between resources and users satisfaction: This valuable information helps to find

an optimal balance between number of parallel user tasks, available hardware configuration,

and waiting times that are still acceptable for the users.

• Processing  time:  It  provides  the  users  the  approximate  process  time  for  the  requested

services, which may help to increase their willingness to wait for results.

• Parallel users: Available resources and estimated runtimes for requested tool chains can be

used to define the number of parallel users on the system dynamically.

• Financial costs: Using services (resources and tools) has financial costs in commercial NLP

platforms like Amazon Comprehend6 and Google Cloud NLP7. Prices are defined based on the

chosen service and size of the data (like number of characters). Making these potential costs

more visible can encourage users to carefully select a proper configuration. This information –

next  to  required  resources  and run  times  –  can  also  be  taken as  a  basis  to  calculate  the

technical cost for each tool chain individually.

Having this information, the tool chain is not a black box anymore and this transparency can increase

the user’s motivation and satisfaction.

As an instance, results of sentence segmentation a 5 GB document using 8 executors with 8 GB

memory will be ready after 10 minutes and using 2 executors with 4 GB memory after 25 minutes.

Administrator of the system can suggest different configuration considering the available resources

and the user has the options to decide based on the waiting time and probable technical cost.

5 Summary

In this working prototype, we have presented an alternative approach to use NLP tools for processing

large text data and handling large user groups using parallelization in a cluster environment. Using this

approach, besides simple runtime improvements  –  processing more data using affordable resources

and less runtime –, several results were achieved.

Dynamic resources configuration was introduced for each individual NLP task that constitutes an

acceptable  trade-off  between  allocated  resources  and  expected  runtime.  The  capability  of  open

accounting of required resources – ranging from used hardware resources to financial costs – to make

hidden costs more transparent is seen by the authors as a central means to enhance user acceptance of

services in an environment like WebLicht, or CLARIN in general. Furthermore, it was outlined how a

stronger focus on asynchronous communication in a federated research environment has the potential

for seamless integration even in the case of long-term annotation processes or the processing of big

data resources.
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