
SIGRAD (2002)
Mark Ollila (Editors)

Surface Construction with Near Least Square Acceleration
based on Vertex Normals on Triangular Meshes

Tony Barrera

Cycore AB
Dragarbrunnsgatan 35, P.O. Box 1401, S-751 44 Uppsala, Sweden

Anders Hast

Creative Media Lab
University of Gävle, Kungsbäcksvägen 47, S-801 76 Gävle, Sweden. aht@hig.se

Ewert Bengtsson

Centre for Image Analysis
Uppsala University, Lägerhyddsvägen 17. S-752 37, Uppsala, Sweden. ewert@cb.uu.se

Abstract
Shading makes faceted objects appear smooth. However, the contour will still appear non smooth. Subdivision
schemes can handle this problem by introducing new polygons in the mesh. The disadvantage is that a more com-
plex mesh takes more time to render than a simple one. We propose a new method for constructing a curvilinear
mesh using quadratic curves with near least square acceleration. This mesh could be used for subsequent subdi-
vision of the surface. This can be done on the fly, at least in software rendering, depending on the curvature of the
contour. The advantage is that new polygons are only inserted where needed. However, in this paper we will focus
on how such curvilinear mesh can be constructed using vertex points and vertex normals for each polygon. Thus,
information about neighboring polygons are not needed and on the fly subdivision is made easier.

1. Introduction

Recursive surface subdivision has gained a lot of attention
in recent years since it makes it possible to have several lev-
els of detail11. As an example, the famous Utah teapot was
modeled by using Beziér patches in a rather coarse mesh.
This mesh could be subdivided into smaller patches creat-
ing a tighter mesh, and thus a smoother looking teapot. The
new mesh points are created by computing new points on
each Beziér surface patch. Nevertheless, many models do
not have an underlying curve description that could be used
for subdivision. Such faceted models only have a flat poly-
gon mesh. The interior of the object can appear smooth if
a shading algorithm is used. Nonetheless, the contour will
still appear non smooth since the edges are straight lines.
However, it is possible to create a spline surface interpolat-
ing or approximating the polygonal mesh, which then can
be used for recursive subdivision. This will yield a tighter

mesh, which will make the object appear more smooth on
the contour.

Several such approaches have been made and the algo-
rithm by Catmull and Clark2 use information about neigh-
boring polygons. Others only use the vertices and nor-
mals at these vertices, when constructing the new surface.
Volino and Magnenat-Thalmann10 construct a spherical sur-
face called a Spherigon. Vlachos et al.9 use a three sided cu-
bic Beziér surface for their Curved PN triangles and Bruijn1

uses quadratic Beziér surfaces. Overveld and Wyvill7 also
use Beziér surfaces, however they replace the cubic curve
with two quadratic curves in order to guarantee monotonic
curvature. In surface subdivision presented by Maillot and
Stam5, a spline surface is generated and the curvature and
smoothness is controlled by a parameter α, which is set to
some proper value for optimal smoothness. Other subdivi-
sion schemes have been introduced by Loop4 and kobbelt3.

c© SIGRAD 2002.

43



Barrera, Hast and Bengtsson / Surface Construction

P1

P2

P3

N1

N2

N3

�

�

�

Figure 1: Three sided polygon with three vertices and three
normals

1.1. Main Contribution

We propose a new algorithm for finding a near least square
acceleration curvilinear mesh. And we will focus on three
sided polygons for simplicity. This mesh is constructed by
using quadratic curves which are derived using vertex nor-
mals and vertex points only. Thus, we do not propose a new
subdivision scheme. We only propose how the new vertex
points can be found by using the curvilinear mesh. More-
over, it will not produce surfaces that are C1 continuous over
polygon edges. This would have required the use of cubic
surfaces. However, this method will be faster since it uses
quadratic meshes. Hence, the method will yield a surface
which is smoother than the original mesh.

2. Second Degree Best-Fit Least Square Acceleration
Boundary Curves

The method of finding a least square acceleration boundary
curve has been explored before by Overveld and Wyvill7.
They use cubic Beziér curves that are divided into two
quadratic curves. We will show how this can be done for
quadratic curves directly, even though the curve will be an
approximation of the a least square acceleration curve.

We assume that we have a triangular mesh with coordi-
nate points P1,P2,P3 and corresponding normalized normals
N1,N2,N3 as shown in figure 1. The tangents correspond-
ing to a pair of normals as shown in figure 2 can be ob-
tained by using the so-called Gram-Schmidt orthogonaliza-
tion algorithm6:

T1 =N2 −N1(N1 ·N2), (1)

T2 =−N1 +N2(N1 ·N2). (2)

Note. that the normals are assumed to be normalized. We
shall show later that we do not need to normalize the tan-
gent vectors. However, at this point we shall assume that they
have unit length. It should also be pointed out that when the
angle θ between the normals, as shown in figure 2, is zero,
then we can not compute the tangent in this way. The simple
solution is to use linear interpoltaion between the surface

N1 N2

T1

T2

θ

�

�

	




Figure 2: Construction of the tangent vectors T1 and T2
orthogonal to N1 and N2 respectively, lying in the plane
spanned by N1 and N2

points instead of a quadratic curve, whenever the angle is
zero or very close to zero.

We shall derive a curve spanned by the tangent vectors
and vertex points which is as relaxed as possible. This curve
can be obtained by minimizing the integral which is the total
sum of the square acceleration:

∫ 1

0
‖ f ′′(t)‖2dt (3)

on some variable β that controls the tangent length and ap-
ply it on the boundary curve. This defines the least square
acceleration. However, a second degree curve can only have
one derivative determined when it is also determined to pass
through two end points. Therefore, we have to find a sec-
ond degree curve spanned by the tangent vectors and ver-
tex points which have optimal fit between both these tangent
vectors and the derivatives. We shall derive such a curve by
finding an optimal fit for the first tangent, then we can mini-
mize the integral in equation (3).

2.1. Optimal Fit for the First Tangent

The quadratic curve is given by the equation:

f = at2 +bt + c. (4)

We have the initial conditions:

f(0) =P1, (5)

f(1) =P2, (6)

f′(0) =αβT1, (7)

f′(1) =βT2, (8)

c© SIGRAD 2002.

44



Barrera, Hast and Bengtsson / Surface Construction

where T1 and T2 is the tangent vectors corresponding to N1
and N2 respectively. The constants α and β are to be deter-
mined. The value of α will determine optimal (in the least
square-sense) fit between the curve and the second tangent.
The value of β will determine the least square acceleration
of the curve in the interval [0,1]. It can be shown that:

c =P1, (9)

a+b+ c =P2, (10)

b =αβT1. (11)

Let P be the vector from P1 to P2:

P = P2 −P1. (12)

Then we have:

a = P−αβT1. (13)

At the first edge, we have the initial condition that the
tangent is equal to the derivative, as shown in equation (7).
Furthermore, we want to determine α so that the difference
between the derivative and the tangent is as small as possi-
ble. Thus:

∂
∂α

{
‖f′(1)−βT2‖2

}
= 0. (14)

In this way we seek the least-square difference between
the tangent and the derivative. The difference of the curve
slope and the polygon tangents in one of the ends equals
zero, but at the other end minimization can be performed:

∂
∂α

{
(2a+b−βT2)

2
}

= 0 ⇒ (15)

2αβ2T1 ·T1 − 4βP ·T1 +2β2T1 ·T2 = 0. (16)

Finally, divide both sides of the equation (16) by −2β and
rearrange the terms:

2P ·T1 −αβT1 ·T1 −βT1 ·T2 = 0. (17)

In order to find an α that fulfills the criterion set in equation
(17) we must also determine β.

2.2. Finding the Least Square Acceleration

Next, we determine β such that the integral of the accelera-
tion is least-square minimum in the interval [0,1]:

∂
∂β

∫ 1

0
‖f′′(t)‖2dt = 0 (18)

The second derivative of f(t) is constant: f′′ = 2a. Since it
does not depend on the variable t we have:

∂
∂β

‖2a‖2 = 0 ⇒ (19)

8α2βT1 ·T1 − 8αP ·T1 = 0. (20)

Divide both sides of the equation (20) by −8β and rear-
range the terms:

P ·T1 −αβT1 ·T1 = 0. (21)

This gives us a system with the two equations 17 and 21.
The solution becomes:

α =
T1 ·T2

T1 ·T1
, (22)

β =
P ·T1

T1 ·T2
. (23)

This is valid for the quadratic curve

f1(t) = (P−αβT1)t
2 +αβT1t +P1. (24)

2.3. Near least Square Acceleration

So far we have a curve where the derivative of f1(t) at P1 is
the same as the tangent T1 and the derivative at P2 is as close
to T2 as the least square minimization allows. If we had cho-
sen to have the same derivative of the function as the tangent
at P2 and optimize at P1 instead, we would get another curve.
Which one will be the best? It is hard to tell. However, we
could get an approximation by taking the average of both.
Hence, we will get an near least square acceleration second
degree curve which is close to optimal in both ends.

2.4. Same Procedure for the Other Side

The next step is to repeat the same procedure for the other
tangent T2 at the other end of the curve, in order to obtain
f2(t). We use the initial conditions:

f(0) =P1, (25)

f(1) =P2, (26)

f′(0) =β′T1, (27)

f′(1) =α′β′T2, (28)

Then we derive the boundary curve using these conditions,
where:

c =P1, (29)

a+b+ c =P2, (30)

2a+b =α′β′T2. (31)

This system of equations gives:

a+b =P2 −P1 = P, (32)

a =α′β′T2 −P, (33)

b =2P−α′β′T2. (34)

Finally, the quadratic curve becomes:

f2(t) =(α′β′T2 −P)t2+ (35)

(2P−α′β′T2)t +P1.

c© SIGRAD 2002.

45



Barrera, Hast and Bengtsson / Surface Construction

Repeating the minimization process of f2(t) for both β and
α gives:

α′ =
T1 ·T2

T2 ·T2
, (36)

β′ =
P ·T2

T1 ·T2
. (37)

2.5. Putting it all together

By taking the mean value of (24) and (35) we get a symmet-
ric curve with near least square acceleration:

f3(t) =
(

α′β′T2 −αβT1

2

)
t2+

(
P+

αβT1 −α′β′T2

2

)
t +P1. (38)

It is easy to prove that it will be symmetric. The derivative
is:

f′3(t) = (α′β′T2 −αβT1)t

+
(

P+
αβT1 −α′β′T2

2

)
. (39)

Moreover, the derivatives at the edges are:

f′3(0) = P+
αβT1 −α′β′T2

2
, (40)

f′3(1) = P− αβT1 +α′β′T2

2
. (41)

Clearly, the derivatives will be symmetric around P which
is the vector between the vertex points. Since the curve is
quadratic we can not get a curve that has derivatives equal
to the tangents at the vertex points. However, for a quadratic
curve, this is as close as we can get with the least square
acceleration requirement.

2.6. Invariance with respect to Normalization

We stated earlier that the tangent vectors do not need to be
normalized and we shall prove that this is true. Expand the
terms αβT1 and α′β′T2:

αβT1 =
T1 ·T2

T1 ·T1

P ·T1

T1 ·T2
T1 =

P ·T1

T1 ·T1
T1, (42)

α′β′T2 =
T1 ·T2

T2 ·T2

P ·T2

T1 ·T2
T2 =

P ·T2

T2 ·T2
T2. (43)

Remember that P is an vector and not a point and therefore
equation (42) is the projection of P on T1. Likewise, equa-
tion (43) is the projection of P on T2. Hence, normalization
of T1 and T2 is not necessary, since projection of one vector
onto another is independent of the other vectors length.

3. Quadratic curvilinear surfaces

A quadratic surface can be determined by using the six con-
trol points8 in figure 3. The edge mid points P12,P23 and

P1

P2

P3

P12

P13

P23

Figure 3: Six control points

P13 can be determined by setting t = 0.5 in (38). By using
a quadratic surface, it is possible to use any kind of subdivi-
sion scheme without recalculating new points in a recursive
manner. Instead, new points are retrieved from the quadratic
surface.

4. Rendering the Curvilinear Polygons

Figure 4 shows a wire frame rendering of a Torus. It is quite
obvious that the Torus has got straight edges on the outer
contour. These can be made smooth by using the proposed
method. Figure 5 shows the same Torus, but this time, the
curvilinear mesh is used. The contour is now smooth.

To our knowledge, most modern hardware do not have the
capability to insert new polygons on the fly. The only possi-
ble solution, in order to make the contour smooth, is to sub-
divide the whole object before rendering. However, the result
is a more complex object. Moreover, it will take more time
to render it since it has more polygons. It would be prefer-
able if we could subdivide the object on the fly, only where
extra polygons are needed, i.e on the contour. The proposed
method could be used to produce these extra polygons that
will make the object smoother.

The extra points will lie on the quadratic surface, that will
have near least square acceleration. This will assure that the
contour will be as relaxed as possible using quadratic bound-
ary curves. However, since quadratic surfaces are used, C1

continuity is not guaranteed. If the angle between the nor-
mals is large, then the constructed curve can make a rather
large bend. This implies that there is a sharp edge between
the polygons or that the polygons should have been subdi-
vided prior rendering. This is of course a problem common
also for shading, not only for this method.

However, subdivision on the fly is not as easy as one might
think at first glance. First of all, we must be able to deter-
mine which polygons lie on the contour. This can be done
if pointers to neighboring polygons are available. Then, it is
possible to check if a neighboring polygon is back facing.
Secondly, it is possible that a polygon edge that lies behind
another polygon can have a large curvature and if subdivi-
sion is performed, then it will be visible. As long as it is

c© SIGRAD 2002.

46



Barrera, Hast and Bengtsson / Surface Construction

considered being hidden, it is no problem but when it even-
tually lies on the contour, due to that the object is rotating,
it will suddenly pop up as a heavily curved contour. This
problem is generally known as popping.

We suggest these problems for further research. Nonethe-
less, the proposed method could be used for determining new
points for any subdivision scheme that will subdivide an ob-
ject in order to make it appear more smooth.

Vlachos et al.9 suggest that their PN triangles should be
subdivided on the graphics chip without any software assis-
tance. The proposed method could also be used for hardware
subdivision since it is based on the available vertex informa-
tion for each polygon. Furthermore, it should be an attractive
method for hardware implementation, since the bottleneck in
todays graphics hardware is in feeding the graphics proces-
sor with triangles at a sufficient rate. Thus, fewer triangles
could be transfered and more triangles are created on the fly
on the graphics chip. This can not easily be done for the con-
tour only, since information from neighboring polygons are
needed. Instead, on the fly subdivision is done for the whole
object.

Another interesting fact is that the dot product of P and
the tangents T1 and T2 is invariant under rotation and trans-
lation. Hence, these products could be precomputed. This is
probably better for software rendering where it is possible to
save computation time. For a hardware implementation, this
means that two new variables must be transferred through
the graphics pipeline and this will make the bottleneck prob-
lem previously discusses even worse.

5. Conclusions

It has been shown that a curvilinear mesh with near least
square acceleration for quadratic surfaces could be con-
structed from vertex normals and vertex points. This mesh
can then be subdivided using an appropriate subdivision al-
gorithm. The proposed method will be fast, since the com-
puted tangents does not need to be normalized. Furthermore,
it has been shown that some terms can be precomputed in or-
der to speed up software rendering.

5.1. Future Work

We propose for future work, how the presented method for
constructing a curvilinear mesh, could be used in order to
make on the fly subdivision for contours only. Moreover, it
should be easy to use the method for on the fly subdivision
on the graphics chip. This would decrease the problem of the
bandwidth bottleneck.

It should also be determined if this method is good enough
for more complex objects, or if cubic surfaces are preferred,
even though they are computationally more expensive. Fur-
thermore, it should be investigated whether the average func-
tion (38) could be replaced with either of the functions (24)

Figure 4: A wire frame rendering of a Torus

Figure 5: A curvilinear mesh for a Torus

c© SIGRAD 2002.

47



Barrera, Hast and Bengtsson / Surface Construction

and (35) depending on how the normals are pointing com-
pared to the edge.

References

1. J. Bruijn. Quadratic Bezier triangles as drawing
primitives Proceedings of the 1998 EUROGRAPH-
ICS/SIGGRAPH workshop on Graphics hardware 1998
, Lisbon, Portugal pp. 15 - 24, 1998

2. E. Catmull, J. Clark. Recursively generated B-spline
Surfaces on arbitrary Topological Meshes. Computer
Aided Design, 10 pp.350 - 355, Oct 1978.

3. Leif Kobbelt.
√

3-subdivision Proceedings of the 27th
annual conference on Computer graphics and interac-
tive techniques, pp. 103 - 112, July 2000.

4. Charles Loop. Smooth subdivision surfaces based on
triangles. Master s thesis, University of Utah, Depart-
ment of Mathematics, 1987.

5. J. Maillot, J. Stam. A unified Subdivision Scheme for
Polygonal Modeling Proceedings Eurographics 2001,
Vol 20, No 3, pp. 471-479, 2001.

6. W. K. Nicholson. Linear Algebra With Applications
PWS Publishing Company, Third Edition, pp. 275,
1995.

7. K. van Overveld and B. Wyvill. An Algorithm for Poly-
gon Subdivision Based on Vertex Normals Proceedings
Computer Graphics International 1997, pp. 3-12, 1997.

8. L. Seiler. Quadratic Interpolation for Near-Phong Qual-
ity Shading Proceedings of the conference on SIG-
GRAPH 98: conference abstracts and applications,
Page 268, 1998.

9. A. Vlachos , J. Peters , C. Boyd , J. L. Mitchell. Curved
PN triangles Proceedings on 2001 Symposium on In-
teractive 3D graphics, March 2001 pp. 159-166, 2001.

10. P. Volino, N. Magnenat-Thalmann. The SPHERIGON:
A Simple Polygon Patch for Smoothing Quickly your
Polygonal Meshes. Computer Animation’98, proceed-
ings, IEEE Press, pp.72-79, 1998

11. A. Watt. 3D Computer Graphics. Addison-Wesley,
pp.59-64, 2000.

c© SIGRAD 2002.

48




