
Extraction of Intersection curves from Iso-surfaces on co-located 3D grids

Patric Ljung <plg at itn.liu.se> Anders Ynnerman <andyn at itn.liu.se>

Scientific Visualization Group, Department of Science and Technology, Linköping University

(a) Surface of real field, 310627 triangles (b) Surface of imaginary field, 308859
triangles

(c) Coloured intersection curves, 17104
line segments, rendered using 4-sided
tubes

(d) Intersection points, 6615 points, ren-
dered using tangent shaded points

Figure 1: The intersection of two iso-surfaces resulting in intersection curves and intersection points using the Marching Faces method. The
curves represent nodal lines in quantum chaos. In general, bi-isolines are extracted from two scalar fields. The volume size is1283 for this
chaos illustration, see section 8.

Abstract

This paper presents new methods for efficient extraction of intersec-
tion curves between iso-surfaces of any pair of co-located 3D scalar
fields. The first method is based on the Marching Cubes algorithm
which has been enhanced to produce an additional data structure
that makes it possible to reduce the complexity of the general sur-
face intersection extraction fromO(N2) toO(

√
N), whereN de-

notes the number of triangles in the arbitrary surfaces. The second
method directly extracts the intersection lines based on finding in-
tersection points on the faces of the voxels for two iso-surfaces ex-
tracted from a regular grid. A simple classification scheme is used
for early termination of testing of voxels that are not intersected by
both surfaces.

Also presented is an efficient method for fast curve generation
through combination of line segments resulting from the explicit
surface intersection method. An indexing structure is used to ac-
celerate access and matching of intersection line segments to be
combined into closed or open curves.

The presented methods have been used to identify and visualize
nodal lines in 3D quantum and wave chaos data. These data are
represented by a volume of complex values and a nodal line is a
connected curve where the complex iso-valueziso = 0 + i0. This
type of chaos is believed to represent physical phenomena present
in, for example, quantum mechanics, microwaves, fibre optics, and
acoustics.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Boundary representations, Ge-
ometric algorithms; I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures

Keywords: Intersection curves, Isosurfaces, Surface intersection,
Feature Detection, Nodal lines visualization, Complex 3D fields

1 Introduction

Finding the intersection of surfaces is of importance in many ap-
plication areas within mathematics and science. The meaning of
the intersections depends on the application field. In most fields a
topological sorting of the identified intersection segments is essen-
tial so that a set of distinguishable closed and open curves can be
generated. The starting point for this investigation has been taken
in the intersection of surfaces in chaotic quantum mechanical sys-
tems and results are presented in the context of the problems posed
by this application. The work is focused on the intersection of iso-
surfaces generated from co-located grids. Two alternative methods
have been developed to identify the intersection of these surfaces.
The first method uses explicitly created surfaces by means of iso-
surface extraction algorithms, e.g. the Marching Cubes algorithm
[Lorensen and Cline 1987; Montani et al. 1994]. This method is
used when the surfaces as well as the intersection curves are of in-
terest for visualization. With a minor enhancement the Marching
Cubes algorithm enables efficient computation of the surface inter-
section with a complexity ofO(

√
N) whereN is the average num-

ber of polygons in the surfaces. The general surface intersection
problem is of complexityO(N2).

As a second stage to the first method, line segments from the
explicit surface intersection are combined into curves. For the type
of data under consideration and for the purpose of this visualization,
there is a need to identify the different curves. By colouring the
distinct curves differently the interpretation of the generated images
is improved.

The second method, named Marching Faces (MF), seeks to di-
rectly extract the intersections by implicitly considering the sur-
faces to intersect on the voxel faces in the sampled fields. The lat-
ter method avoids the memory consuming generation of polygons
to represent the surfaces and only produces a significantly smaller
point set for the intersection of the two surfaces and the voxel faces.
It uses a simple voxel classification scheme to early detect voxels
not intersected by both surfaces in order to avoid further testing.
Both methods use efficient data structures for fast lookup of line
segments, triangles, and intersection points.

The first method, using the Enhanced Marching Cubes (EMC)

algorithm, is preferred when the visualization of the surfaces is of
interest as well as the intersection curves. The intersection algo-
rithm then works with little additional cost. The MF algorithm is
faster than EMC and thus preferred when surfaces need not be vi-
sualized. Both EMC and MF must visit all the voxels to ensure that
all surface patches and intersections are detected, which constitute
a fundamental problem since it grows with the volume size. Many
methods have been proposed to speed-up iso-surface generation by
using additional data structures, for example octrees [Wilhelms and
Gelder 1992] or span-space [Livnat et al. 1996]. However, to the
best of the authors’ knowledge, in order to produce these structures,
all voxels must be visited. For interactive pipelined processing of
time-varying data sets, such pre-processing is not beneficial unless
the accelerating structures can be used repeatedly. Or the following
process otherwise would be of a complexity order larger than that of
the volume traversal. Volume traversal is, in most cases, the most
resource consuming operation but cannot be avoided in the pro-
posed context of interactive pipelined processing of time-varying
data sets, i.e. computational steering or visualization of raw, large
scale, time-varying data sets.

2 Related work

Several methods for finding the intersection between surfaces have
previously been proposed, in particular, the intersection of para-
metric surfaces have attracted extensive work [Patrikalakis 1993;
Sabharwal 1994; Krishnan and Manocha 1997].

The general surface intersection problem is, in the naïve ap-
proach, anO(N1N2) problem, orO(N2) if N ' N1 ' N2,
that is, all elements (polygons) must be tested against each other.
By using subdivision methods or hierarchical methods it is possible
to avoid intersection testing for patches of surfaces whose bound-
ing volumes do not intersect. Extensive work has been dedicated
to efficient extraction of iso-surfaces [Wilhelms and Gelder 1992;
Livnat et al. 1996].

Previous work related to the Marching Faces algorithm is the 3D
Marching Lines algorithm [Thirion and Gourdon 1996]. In this al-
gorithm random seeds can be automatically placed in voxels of the
volume. When a seed detects an intersection curve passing through
a voxel, this curve is traced. To ensure detection of all curves,
all voxels can also be searched. Even though the The Marching
Lines algorithm is similar to the approach in the presented March-
ing Faces method it differs in some key aspects. The 3D March-
ing Lines method traces a curve segment when it is encountered.
The Marching Lines algorithm determines the intersection points
on the edges of the polygons from the first surface by interpola-
tion whereas the Marching Faces method solves the intersection of
the voxel-face/iso-surface intersection lines. The MF method also
uses a classification scheme to entirely eliminate setting up any
surface/voxel-face intersection lines unless both surfaces intersect
a voxel cube.

3 Definitions

A scalar fieldψ is defined asψ : R3 → R. A subscript notation
is used to refer to other data sets or variables that are unique to
a specific scalar fieldψi. For instanceT1 is the triangle set for a
surface generated fromψ1.

The angle notation〈 xi | i = 0, 1, . . . , 7 〉 is used to denote a
vector. A simplified notation〈 xi 〉N havingi = 0, 1, . . . , N − 1 is
also used. The cardinality|S| of a setS is the number of elements
in the set.

Set 0 1 2 3 4 5 6 7
Real 88.13 3.12 6.09 2.17 0.49 0.00 - -
Imag 88.07 3.06 6.24 2.15 0.48 0.00 - -
Lines 99.20 0.15 0.24 0.26 0.12 0.03 0.00 0.00

Table 1: Histograms over percentage of voxels with a specific num-
ber of primitives, triangles for the surfaces and line segments for
lines. Results are based on a1283 cube, e.g. 2048383 voxels.

4 Optimized Surface Intersection

This section describes the Enhanced Marching Cubes (EMC)
method, the following intersection algorithm, and the method to
combine intersection line segments into topologically sorted curves.

Under the condition that iso-surfaces are requested, the infor-
mation obtained through the process of iso-surface extraction can
be reused to significantly speed-up intersection testing. A few key
properties of the triangles generated from the Marching Cubes al-
gorithm is observed.

1. Any triangle can be uniquely located inside only one voxel.

2. The number of triangles in one voxel is a small number be-
tween 0 and 5. The vast majority of voxels have 1 or 2 trian-
gles if and only if a surface intersects it.

3. Triangles can be enumerated in monotonically increasing
numbers in the voxel traversal order.

4. Most voxels have no triangles at all. For the case shown in
table 1, it is found that 88% of the voxels are empty.

These properties are exploited to optimize the surface intersec-
tion task. In essence, a subdivided space based on the grid on which
the scalar field is sampled is obtained. For each voxel, a maximum
of five against five triangles need to be tested for intersection. A
voxel without triangles from both surfaces can be directly skipped.
Table 1 shows some statistics for the distribution of elements-per-
voxel.

4.1 The Enhanced Marching Cubes algorithm

The Marching Cubes algorithm is a well established method for
extracting iso-surfaces from volumetric data. Triangles produced
are uniquely defined within one voxel. Thus, for any co-located
volume, testing of the triangles can simply be done on a per-voxel
basis. This can be done immediately by traversing the two volumes
simultaneously or by storing an indexing data structure to be used in
a second stage. The advantages with the latter method are: The two
surfaces can be computed in parallel if multiple CPUs are available.
The Marching Cubes code requires only a very simple and restricted
enhancement to support this case. Multiple sets of surfaces can be
intersected without repeated traversal of the volume data.

The Marching Cubes algorithm is enhanced to produce an ad-
ditional data structure, a triangle index structureIT with the same
dimensions as the processed volumeψi. When the MC algorithm
traverses the volume it occasionally produces triangles and stores
them in a triangle listT = 〈 tj 〉N . For each processed voxelk, any
new triangles are appended to the triangle listT . The Enhanced
Marching Cubes version then also stores the new size|T | of the
triangle list in a triangle index tableIT , IT (k)← |T |.

After traversing the full volume, the triangle index structureIT

can be used to query the presence of triangles in a specific voxel and
to retrieve the index of the first triangle in that voxel. For two voxels
in traversal order sequence,k − 1 andk the number of trianglesn
in voxelk is extracted fromIT by

Algorithm: SURFACEISECT

Input: IT1 , IT2 , T1, T2

Output: L, IL

1 L← ∅
2 for each voxelk do
3 if IT1 (k − 1) = IT1 (k) ∨ IT2 (k − 1) = IT2 (k)
4 then continue with next voxel
5 for i = IT1 (k − 1) to IT1 (k)− 1 do
6 for j = IT2 (k − 1) to IT2 (k)− 1 do
7 APPEND(L, T1(i)

⋂
T2(j))

8 end for
9 end for

10 IL(k)← |L|
11 end for
12 return L, IL

Table 2: Pseudo-code for algorithm SURFACEISECT that performs
the surface intersection operation.

n = IT (k)− IT (k − 1) (1)

with the following boundary conditions forIT

IT (k) = 0 k < 0

IT (k) = |T | k > Nvoxels

After application of the EMC algorithm on two selected scalar
fields the output is passed to the surface intersection method.

4.2 Explicit surface intersection

The key element of an efficient surface intersection algorithm is to
reduce the number of (triangle) intersection tests. By using the tri-
angle index structureITi the proposed method effectively reduces
the number of tests. Given the inputsIT1 , IT2 , T1, andT2, the
algorithm SURFACEISECT is outlined in table 2.

For each voxelk the presence of triangles in both surfaces is de-
termined. If a voxel contains triangles from both surfaces, each pair
of triangles are tested for intersection. For each intersection a line
segment is generated and stored in the line segment list,L. When
all triangle pairs in a voxel have been tested the current size of the
line segment listL is assigned to the line segment index table,IL,
similar to the triangle index table. The further use of this structure
is described in section 5.

For each voxel tested, a maximum of 25 triangle pairs need to be
tested for intersection, typically 2–3 triangle pairs are tested accord-
ing to table 1. For two arbitrary surfaces it is shown this intersection
method works inO(

√
N) whereN is the number of triangles in a

surface, e.g.N = |T |, see appendix A for details.

5 Combining line segments

The triangle intersection algorithm SURFACEISECTgenerates a list
L of line segments and a line index data structureIL. The line index
data structureIL provides fast look-up (O(1)) of the presence of
line segments within a local neighborhood.

The algorithm COMBINEL INESEGS(table 3) combines line seg-
ments into closed or open curves by joining end-points of line-
segments and creating lists of points. Each list defining a unique
distinguishable curve. This enables an improved visual cue to per-
ceive the different curves by using separate material properties, e.g.
colour, over unrelated rendering of all segments with one and the
same material property.

By iterating over all the line segments, nearby line segments are
selected from the indexing setIL. For each pair of these nearby line

Algorithm: COMBINEL INESEGS

Input: L, IL

Output: CS
1 U(∗)← 〈 −1, ∗ 〉, CS ← ∅
2 for each line segmenti /∈ U do
3 iF ← i, iL ← i, m← 1, m′ ← 1
4 do [Backward trace]
5 〈 i′, m 〉 ← FINDCLOSESTPOINT(iF , 1−m, IL, U)
6 if i′ 6= NIL then

U(i′)← 〈 iF , m 〉
7 iF ← i′

8 end if
9 while i′ 6= NIL ∧ iF 6= iL

10 if iF 6= iL then
11 do [Forward trace (open curves)]
12 〈 i′, m 〉 ← FINDCLOSESTPOINT(iF , m′, IL, U)
13 if i′ 6= NIL then
14 U(iL)← 〈 i′, m′ 〉
15 iL ← i′, m′ ← 1−m
16 end if
17 while i′ 6= NIL ∧ iF 6= iL
18 end if
19 APPEND(CS, L INESEGSTRACE(L, iF , U))
20 end for
21 return CS

Table 3: Pseudo-code for algorithm COMBINEL INESEGS.

segments the algorithm matches end-points and selects the closest
point to join. Since two end-points of two segments will match
exactly, within rounding error, an alternative approach could be to
stop searching when a match below a small threshold is reached.
However, since line segments can be located arbitrary close to voxel
vertices, within rounding error, the implemented method finds the
point with the smallest error even for such degenerate cases. A
threshold is also introduced to establish a maximum distance to al-
low connection of two end-points. Thus, this constitutes a greedy
algorithm that always picks the best/closest end-point.

The already used line segments are marked to prevent multiple
connections and further matching. The used segments are marked
in a setU . If segmenta is linked to segmentb the used setU is
assignedU(a) ← b. After matching all line segments,U contains
a linkage of points from the combined line segments.

The trace process is continued until the current curve reaches
the boundary or connects back to itself, i.e. forms a closed curve.
The algorithm first traces the first end-point backwards and identify
the first segment index byiF . If the curve is closed, this tracing
ends when the initial segment is reached. Otherwise it continues
to trace forward and updatesiL to indicate the last segment index.
The traversal ofL then continues to trace new curves among the
line segments not already used. Note that the voxel is not marked
as used, but rather the line segments are, since multiple curves can
cross a voxel.

The algorithm finally outputs a list of curves, a curve listCS,
each element of this list is a closed or open curveC. A curve con-
sists of a list of curve points. A detailed view of the algorithm
COMBINEL INESEGS is presented in pseudo-code in table 3. The
function FINDCLOSESTPOINT returns the closest matching point
in the unused line segments within a local neighborhood. A line
segmentL(i) has a start and end point, denotedL(i)0 andL(i)1,
identified in the pseudo-code by variablesm andm′.

Finally, the subroutine LINESEGSTRACE follows the linkage in
the used segments set,U , beginning at the first segment indexiF
and generates a list of curve points. The curve is defined as ’closed’
if iF = iL, otherwise it is ’open’.

4

6

5

7

3

1

2

0

Face No.
Left 0
Right 1
Front 2
Back 3
Bottom 4
Top 5

Figure 2: Voxel vertices and face numbering.

Algorithm: MARCHINGFACES

Input: V1, V2, iso1, iso2

Output: P, IP

1 P ← ∅
2 for each voxelk do
3 b1 ←VOXELCONFIG(V1(k), iso1)
4 b2 ←VOXELCONFIG(V2(k), iso2)
5 f1 ← FaceTable[b1]
6 f2 ← FaceTable[b2]
7 f ← f1 & f2 & FACECHECK(k)
8 for each facej in f(j) 6= 0 do
9 c1 ←FACECONFIG(V1(k), j, iso1)

10 c2 ←FACECONFIG(V2(k), j, iso2)
11 l1 ←SETUPL INES(V1(k), c1)
12 l2 ←SETUPL INES(V2(k), c2)
13 P ′ ←INTERSECTL INES(l1, l2)
14 APPEND(P, P ′)
15 end for
16 IP (i)← |P |
17 end for
18 returnP, IP

Table 4: Pseudo-code for algorithm MARCHINGFACES.

6 Implicit intersection of two iso-
surfaces

The second method for finding the intersection of two iso-surfaces
is based on directly extracting points of intersection from two co-
located scalar fields. The creation of surface elements is avoided
and computation is minimized by quickly discarding voxels and
voxel faces where the two surfaces do not intersect. The points of
intersection are defined by the intersection of two iso-surfaces and
voxel faces. The authors have called this method Marching Faces
due to its similarity to the Marching Cubes algorithm and its focus
on intersection points on voxel faces.

The Marching Faces algorithm starts with two scalar fieldsψ1

andψ2 and traverses the voxels of these fields concurrently. The
pseudo-code for MARCHINGFACES is found in table 4. Each voxel
is classified by constructing a voxel configuration vectorb (an un-
signed byte). Equation 2 defines this vector, having the valuesdi at
the vertices anddiso is the queried iso-value. See figure 2 for the
numbering of vertices and faces.

b = 〈 di < diso 〉8 (2)

In the pseudo-code this operation is performed by the subroutine
VOXELCONFIG.

To simplify the loop construction for handling of the bound-
ary voxels where two opposing faces need checking, a function
FACECHECK that returns a binary vector for ruling out testing of
faces 1 (right), 3 (back), and 5 (top) for interior voxels.

Two voxel configuration vectors,b1 andb2, are evaluated from
the two fields. Depending on the configuration, certain faces can
potentially hold an intersection between the surfaces. A face with

0 1 2

3 4 5

Figure 3: Face configurations. Red dots indicate a value below the
iso-value. The blue dashed lines is the topological alignment of the
iso-surface intersection.

1

32

0 u

v

Figure 4: Numbering of the face’s vertices and alignment on the
parameter axisu, v.

a mixed combination of vertices below and above the iso-value has
the surface intersecting it. The possible voxel faces are encoded in
a 256 byte array,FaceTable, for quick lookup of potential faces.
By using the face-numbering in figure 2 it requires six bit codes.
The bit-wise binary-and operator (&) on the face vectors from each
voxel yields non-zero bits identifying faces that might hold a sur-
face intersection point since the two surfaces intersect the same
voxel face. For each of these faces the face configuration,c, is
determined and encoded in four bits as illustrated by equation 3.
This operation is carried out by the subroutine FACECONFIG.

c = 〈 di < diso 〉4 (3)

where the valuesdi at the verticesi of the face are numbered as
in figure 4. Figure 3 shows the unique six possible configurations
of a face. By rotation all 16 combinations can be obtained. Each
dashed line represents the topological location of the iso-surface.
The points,pj , of intersection on the edges with the corresponding
iso-surface is determined by means of linear interpolation. Every
pair of points,pj andpj+1, then identify an iso-line segment on the
face. These lines are generated in the subroutine SETUPL INES. In
face configuration 3, four intersection points are determined. This
case represents an ambiguous configuration. The interpolated gra-
dient orientation can be used to deterministically determine the best
choice in this case.

By testing each pair of iso-line segments for the two fields on
a face for intersection, one or two points on a face can be found
to identify intersection points between iso-surfaces and the voxel
face. Intersection curves thus pass through these points. The points
are first defined in the localu, v coordinate system. The subroutine

0

1

2

3

4

5

6

7

8

9

10

100000 200000 300000 400000 500000

C
P

U
-t

im
e

fo
r

al
go

rit
hm

s

Triangles in first surface

EMCx2
MC-Isect
MF-Points

Figure 5: Execution times for the Enhanced Marching Cubes al-
gorithm for two surfaces (EMCx2), Triangle intersection algorithm
(MC-Isect), and the Marching Faces algorithm (MF-Points) as a
function of the number of polygons in the first iso-surface. The
variations of surface sizes have been generated by varying the sam-
pling cube size. Tests were performed on a Laptop PC with Intel
Pentium III CPU at 1 GHz and 512 MB of internal memory.

INTERSECTL INES finds all line segments inl1 intersecting with a
line segment inl2. The intersection points identified are returned
in P ′, along with the computed tangential directions, as described
below.

The gradient∇ψ at u, v is estimated by bi-linear interpolation
of approximated gradients at the vertices of the face. The gradients
at the vertices are approximated by central difference, see equation
4, or a partially single sided difference at the volume boundary.

(∇ψ)i(r) =
1

2δ

(
ψ(r + δêi)− ψ(r− δêi)

)
, i = 1, 2, 3 (4)

By taking the cross-product of the normalized gradients from
the two iso-surfaces an estimate of the curves tangential direction
is obtained at the point of intersection. For two almost co-planar
surfaces the magnitude of the cross-product becomes very small,
this measure can be used to place a weighting or confidence on the
tangential direction. The estimated tangent can also be used as the
direction of the curves’ first order derivative for higher order curves.
However, in the current implementation the tangent is only used for
tangent shading [Zockler et al. 1996] for the rendered intersection
points, see figure 1d.

7 Results

In figure 5 the timings for iso-surface and intersection lines extrac-
tion are shown for varying volume sizes with a fixed surface ge-
ometry. As can be seen, iso-surface extraction requires the most
work. However, if iso-surface rendering is required, there is a
small additional amount of work required to extract the intersection
curves. However, the advantage of the Marching Faces algorithm
is clear whenever surfaces are not required. Nonetheless, both the
Enhanced Marching Cubes and the Marching Faces algorithms tra-
verse all the voxels in the volumes and so these operations expand
with the number of voxels. Profiling of the Marching Faces algo-
rithm has shown that almost all execution time stems from travers-
ing the volume and classifying each voxel. The computation has
been reduced by using a simple caching scheme to save half of the

0

20000

40000

60000

80000

100000

120000

16 32 64 96 128 192 256

In
te

rs
ec

tio
n

te
st

s

Size of volume side

trisect
xface

Figure 6: Performed intersection tests as a function of the side of
the volume. The label ’trisect’ refers to the triangle intersection al-
gorithm using the triangles from two EMC passes, the graph spec-
ify number of triangle intersection tests. The label ’xface’ refers
to the Marching Faces algorithm, the graph specify the number of
intersection tested voxel faces having a sign change at the vertices.
Both methods are linear to the side of the volume, however, the MF
method has a smaller constant in the ordo-notation making it faster.

bit-set of the voxel configuration when the algorithm advances to
the following voxel. This scheme roughly halves the execution time
of the Marching Faces algorithm.

In figure 6 the number of intersection tests versus the size of the
cube side are shown. The graph clearly shows the linear relation-
ship to the volumes’ side for both intersection methods and that the
more computational expensive part of the algorithm is bounded by
linear complexity. Traversal of volumetric data is however a mem-
ory intensive task. By using blocking or bricking of the volume the
data locality can be improved and thus yield higher cache hit-rates.
See [Parker et al. 1998] for a discussion and implementation of an
optimized bricking technique.

It can be concluded that both methods have anO(
√
N) com-

plexity for intersection testing (N = |T |). In terms of iso-surfaces,
whose size depends on the side of the volume, the surface intersec-
tion methods are both linear with respect to the side of the volume.
For the algorithm described in SURFACEISECTthis reasoning holds
if the iso-surface extraction is excluded. However, for the Marching
Faces algorithm, the volume must be traversed. By expressing the
algorithm complexity usings, the size of the side of the volume, we
getO(s3 +

√
N) = O(s3 + s) = O(s3).

8 Applications

Chaotic behavior is a phenomenon of importance in many fields of
physics and has applications on multiple scales, including quantum
mechanics, fibre optics, acoustics, and microwaves. The chosen ap-
plication for this work is quantum chaos. Random superposition of
monochromatic plane waves using the Berry wave function [Berry
1977] has been suggested as an approximation [Stöckmann 1999].
This wave function is then defined as a three-dimensional complex
functionψ : R3 → C.

ψ(r) =

N∑
j=1

aje
i(kj ·r+φj) (5)

whereaj andφj are random numbers andkj are random directions,

N defines the number of mixing states. In a bounded space like a
cube, the functionψ must vanish on the boundary and equation 5 is
rewritten to the form of equation 6

ψ(x, y, z) =
∑

j

cj sin(kxjx) sin(kyjy) sin(kzjz) (6)

wherecj are complex mixing coefficients, i.e. transformed versions
of aj andφj in equation 5. The sampling cube is slightly smaller
than the domain ofψ in order to reveal the interior structure. See
images in figure 1 for an example of a chaotic parameter region.

The properties of this function, e.g. where this function is zero
(0 + i0) defines the nodal lines of the wave-function. These nodal
lines are of interest in applications such as electron transport in
quantum mechanics. Nonetheless, the intersection of iso-surfaces
has many other applications in the general fields of mathematics
and physics.

The goal of this work is to provide fast extraction of these nodal
lines so that interactive exploration of the properties of the nodal
lines and corresponding electron transport can be conducted. For
interactive exploration the authors take to mean that the entire pro-
cess of computation of the complex field, extraction of nodal lines
and visualization should be fast enough to provide acceptable up-
date rates and user interaction.

9 Conclusions and future work

Two methods have been developed for efficient surface intersec-
tion of iso-surfaces, as embedded in volumetric data-fields. The
algorithms have been tested on a complex dataset representing 3D
chaos. By adding efficient data structures constructed on the fly, the
performance has been improved for the intersection algorithm for
triangular surfaces as generated by the Enhanced Marching Cubes
algorithm. By using early classification of voxels in the Marching
Faces algorithm the work is reduced for implicit intersection test-
ing (roughly proportional to the side of the volume) to be almost
negligible in comparison to volume traversal.

The indexing structures used for performance enhancement are
currently implemented as volumes, which consumes internal mem-
ory. The authors consider these structures could be implemented
primarily as two-dimensional structures, or by using hash-tables in
order to reduce the memory requirement. It is also of interest to
investigate the possibilities of caching obtained information for re-
use in order to speed-up the intersection of consecutive data sets
based on space-time coherence.

10 Acknowledgement

The authors wish to thank Karl-Fredrik Berggren at the Department
of Physics and Measurement Technology, Biology and Chemistry at
Linköping University for an interesting and encouraging problem to
solve, which also happens to yield beautiful geometries. Financial
support from the National Graduate School in Scientific Comput-
ing, the Swedish Research Council, and the Swedish Foundation
for Strategic Research is acknowledged.

A Triangle Intersection Complexity

In this section a computational complexity ofO(
√

N) is deduced for two
arbitrary surfaces. Assuming two arbitrary1 surfaces withN1 andN2 tri-
angles. The probabilitypi for a voxel to contain any triangle in the triangle
surfaceTi is

1Arbitrary means a random distribution of the surface over the voxels in
the volume and that the surfaces are not correlated.

pi =
Ni

s3
(7)

wheres is the side of the volume. The probabilityp for two independent
surfaces to intersect in a voxel is thenp = p1p2. For surfaces generated on a
per voxel basis, the number of triangles in a surface is typically proportional
to s2, i.e. Ni = cis

2 for an unknown constantci.

p = p1p2 =
N1N2

s6
=

c1c2s4

s6
=

c1c2

s2

The number of triangle intersection testst can then be expressed as

t = s3p =
s3c1c2

s2
= c1c2s

With Ni = cis
2 ⇒ s =

√
Ni/ci we rewritet as

t = c1c2s = c1c2

√
Ni

ci
= c

√
Ni, c = c1c2/

√
ci (8)

The number of triangle intersection tests for two surfaces is thus propor-
tional to

√
N , (N ' N1 ' N2), given arbitrary surfaces. Two more or

less identical surfaces leads toN intersection tests while two surfaces never
intersecting yield0.

References
BERRY, M. V. 1977. Regular and irregular semiclassical wave functions.

Journal of Physics A 10, 2083–2091.

KRISHNAN, S., AND MANOCHA, D. 1997. An efficient surface intersec-
tion algorithm based on lower-dimensional formulation.ACM Transac-
tions on Graphics 16, 1 (January), 74–106.

L IVNAT , Y., SHEN, H.-W., AND JOHNSON, C. R. 1996. A near optimal
isosurface extraction algorithm using the span space.IEEE Transactions
on Visualization and Computer Graphics 2, 73–84.

LORENSEN, W. E., AND CLINE , H. E. 1987. Marching cubes: A high
resolution 3D surface construction algorithm. InProceedings of SIG-
GRAPH ’87, ACM Press, 163–169.

MONTANI , C., SCATENI, R., AND SCOPIGNO, R. 1994. A modified look-
up table for implicit disambiguation of marching cubes.Visual Computer
10, 6, 353–355.

PARKER, S., SHIRLEY, P., LIVNAT , Y., HANSEN, C., AND SLOAN , P.-P.
1998. Interactive ray tracing for isosurface rendering. InProceedings of
IEEE Visualization ’98.

PATRIKALAKIS , N. M. 1993. Surface-to-surface intersections.IEEE Com-
puter Graphics and Applications 13, 1 (January), 89–95.

SABHARWAL , C. L. 1994. A fast implementation of surface/surface in-
tersection algorithm. InProceedings of the 1994 ACM symposium on
Applied computing, ACM Press, 333–337.

STÖCKMANN , H.-J. 1999.Quantum Chaos: An Introduction. Cambridge
University Press, Cambridge, UK.

THIRION, J.-P.,AND GOURDON, A. 1996. The 3D Marching Lines al-
gorithm. Graphical Models and Image Processing 58, 6 (November),
503–509.

WILHELMS , J., AND GELDER, A. V. 1992. Octrees for faster isosurface
generation.ACM Transactions on Graphics 11, 201–227.

ZOCKLER, M., STALLING , D., AND HEGE, H.-C. 1996. Interactive visu-
alization of 3d-vector fields using illuminated stream lines. InProceed-
ings of IEEE Visualization ’96, IEEE Computer Society, 107–113,474.

