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Abstract

This paper presents a method to render synthetic sky images c
sponding to given weather conditions. The method combirtds a
cial neural networks and principal component analysis sociate
the appearance of the sky with the state of a weather paraweete
tor. This association is then used to generate artificialislages
corresponding to a given weather parameter vector. Theopaap
method has important applications for example in flight $atars
and in the game industry.

The skies are represented by high-dynamic-range imagewhi
are able to store the dynamic properties of sky light. Thigee
sentation can be used for global illumination in softwarekages
such as Radiance to render scenes at arbitrary lightingitoomsl
The results show that, although the cloud details can noepees
sented by this method it is possible to distinguish betweékerdnt
weather states.

CR Categories. 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading and texture.

Keywords: Skylight, illumination and weather visualization.

1 Introduction

Lighting conditions and the appearance of the sky in outdoenes
have a fundamental effect on the way human beings perceiga-an
vironment. Just by altering the light and appearance of kizgahe
same place can be perceived as frightening or comfortind, ao
warm etc. In the fine arts and psychology literature the ingrae
of the sky for human perception has long been recognized ifizaV
1970]. This paper strives to encapsulate this importantesiicon-
text of computer graphics and presents a method to rendéretim
sky images corresponding to given weather conditions. Téthoad
allows us to generate virtual worlds that exhibit a rich ritudte of
lighting conditions and sky backdrops. There are severssipte
applications of synthetic skies. One obvious applicat®fflight
simulators where it is important to generate realistic iesgions of
weather conditions. Another application is the entert@nnindus-
try where extreme weather conditions are frequently usdabth
computer games and in the film industry.

Our method of choice to represent sky light is based on high-
dynamic-range images (HDR images) which can store the dignam
properties of the sky light [Debevec and Malik 1997]. Theusc
of the paper is to present a method to synthesize HDR images of
the sky corresponding to a weather parameter vector. Thieatiet

uses eigenskies, based on principal component analysh) (B&
liffe 1980] of HDR photographs of a real sky, to compress tpit
data. Artificial neural networks (ANN) are then used to tie Hal-
ues of a PCA coefficient vector to a vector of weather pararmete
measured at the same time as the HDR image was captured. The
ANN can then, given any set of weather parameters as inpogrge
ate PCA components that are used to create a synthetic HDgeima
If weather parameters from a forecast are used it is fornestaos-
sible to generate an HDR image corresponding to a futurehseat
scenario.

The general field of weather visualization can be divided ino
main categories. The first contains the more traditionat@gghes
aimed at the creation of maps, in 2D and 3D, for weather fateca
ing. Trivis [Haase et al. 2000] which is used in the creatibmaps
for broadcast weather forecasts is one example of such aTool
generate realistic images of an environment during giveather
conditions is the task of the second approach. The analygtboa
of [Preetham et al. 1999] to render images of sky light is ane e
ample of this approach, which is able to render a generalénofg
the sky using information about the viewer's location ortlgathe
position of the sun and irradiance values. The resultingyenaill
be an average image for this time of the year, but no infolmnati
about the daily weather is included and thus the dynamicgshah
the weather can not be seen in this image. Related methautg usi
basis functions to fit simulation data have been developeathosr
authors. A series of Legendre basis functions was used byq&lo
et al. 1995] and steerable basis functions were used by [hifne
and Rushmeier 1996] to fit sky luminance model data. Methods t
synthesize clouds using real-time volume rendering takirgsur-
face scattering effects into account have been developéRilay
et al. 2003]. The method described in this paper falls ini® $bc-
ond category but will in contrast to other methods be abletaler
images which vary with the actual weather state.

To show the results of the method an application of the syiathe
HDR images to define the lighting conditions in the rendetiog

Radiance [Ward 1994] is described.
1 Images High—-Dynamic-Range
Images
2 High-Dynamic—Range Eigen—
Images components
High-Dynamic—-Range Coefficiont V.
aoes oefficient Vectors
3 Images Input
Data
Weather Parameter Set
4
vectors vectors
Eigen— Radiance
> components ’

Figure 1: A diagrammatic representation of the main stepgheén
method. The method can be divided in five steps: Computation
of HDR-images, computation of eigencomponents, data atodle,
training and synthesizing.
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2 Method

Instead of explicitely defining the appearance of the skyaimous
weather conditions we collect images from different weasiates.
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These images are then used to train the model. The method uses

principal component analysis (PCA) to compress the datdesnd

the most important features of the images. The eigenfaad @nd
Pentland 1991; McGuire and D’Eleuterio 2001] method irepir
this work. The relation between the weather parameters laad t
image features is learned by ANN. We thus use ANN as a statisti
cal method for function approximation. Our method is base@o
combination of PCA and neural networks with supervisedingj.

In our approach we first capture a series of images with vgryin
shutter speeds at each time interval (An image series capdie s
in Figure 3). One series is used to construct one HDR image. Th
method used for computing HDR images is described in detail i
[Debevec and Malik 1997]. The resulting fisheye images défiae
irradiance in every direction in Euclidean space.

Original image. November 3 2002. 11 am. Shutter speed 1/512 s.

Figure 2: This is one example of the original fisheye imageszaf
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Figure 3: In order to compute a High-Dynamic-Range image a se
ries of images is captured with varying shutter speeds. Tbe fi
image is captured with a shutter speed p1024 s. For every im-
age in the series the shutter speed is doubled until 1 s whitttei
last exposure.
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The eigenvectors are the eigenskies. New sky images cambe ge
erated from them by linear combination. The weights are adet
from weather parameters using ANN'’s.

2.2 Artificial Neural Networks

Artificial neural network is a collective term for a numberaun-
nected but in many cases very different methods. Neuralarkswv
originate from neuroscience as a historical method of satng

1500%x2000 pixels. The images used are captured of exaatly th the brain neurons. This technology has found applicationgi-
same scene by a camera located in a roof window. Some parts ofverse areas such as pattern recognition and signal proge$sir a

the field of vision are obstructed. These parts are intetpdlasing
radial symmetry.

2.1 Principal Component Analysis

Next we use PCA to decompose HDR images as follows: The pix-

els in an image are rearranged into a veoter [x1,Xp,...,Xn] of
lengthN. We assume that we hal such vectors. The transpose
is denotedx™. The mean vectony is defined asmy = E(x) and
the covariance matrix i€xx = E((X— ) * (X— )T ), whereE(.)
means the expectation value of a stochastic variable. Tdenei
value problem is then define@yxV = VD, whereV is a matrix
with the eigenvectors as columns abdh diagonal matrix with the
eigenvalues along the main diagonal.

For the resolution needed in this project the size of the tova
ance matrix becomes impractical. The size of the matrix aan b
decreased by using dimensionality reduction [Haykin 1999t
Y be the rectangular data matrix of silkxM. The matrix has the
same height as the number of vectdvh ( The eigenvalue problem,
CxxV = VD, can be written as
%YTY = %YTYV =VD (1)

The size of the covariance matrix is reduced from a siz&>ifl
elements to a size dfixM elements by multiplying withY from

Cxx =

more detailed description of this subject see [Hagan et@5]Lor
[Haykin 1999].
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Figure 4: The single-input neuron. An activation functibiis ap-
plied on the sum of the bias and the inpunultiplies with a weight
W.

ANN methods are used for function approximation in this pa-
per. In the simplest form an ANN consists of one neuron (See
Figure 4). The scalar inpyt is multiplied by the scalar weight
and then added to parameterThe neuron output is calculated as
a= f(wp+b). Parameterss andb are adjusted by some learning
rule. The activation functiod may be linear or nonlinear. Exam-
ples of activation functions include the hard-limit actiea func-
tion (also called the step functiori(x) = {0,x < 0;1,x >= 0}),



the linear activation function and the log-sigmoid aciwatfunc-
tion (f(x) = Tlefx)- In a single layer network several neurons are
all connected to the same input-signals. The mathematoalfia-
tion is identical to the single-neuron cases T(W p+b), but now
W is a matrix anda, p andb are vectors. A multiple layer network
is built by connecting several single layer networks. Irs thaper
we use two layers of the form
a= fa(Wafy(Wip+by)+bp). (3)

The first layer is called the hidden layer and the units of ldyer
are called the hidden units. The second layer is called thgubu
layer. MatricesW, and W» and vectorsh; and b, are the ad-
justable parameters in the two-layer case. Many diffeneining
methods exist but most are variations of the backpropagaiigo-
rithm [Rumelhart et al. 1986]. We used the Levenberg-Mardjua
algorithm [Scales 1985], which is a variation of Newton’sthoel.

The algorithm is provided with a set of examples of proper net
work behaviour:

(m7ﬁ)7(m76)7"'7(@7&)7"'7(W7m)7 (4)

wherepy is an input to the network arig is the corresponding tar-

get output. The network output is compared to the targetelsiea

put is applied to the network. The network parameters angssetj

by the algorithm in order to minimize the mean squared error.
Data from two different types of data sets were usddDR

fisheye imagesomputed from eleven fisheye images with varying

shutter speeds amtirect measurements of weather paramet@en

HDR image has been developed. An image series of original HDR
images is located in Figure 6. The original images were doalesl

to a size of (150x200) pixels to lower the memory-demand. t€he
most important eigenskies were used in the calculations.
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Figure 5: The sixteen most important eigencomponents -itfeme
skies. Note the small artifacts in the middle of the imagekwhre
caused by reflections. The most important component, inpper

parameters were measured at the same time as an image was capeft corner, is a grey sky, which means that mostly the skyéy.g

tured. The image database and the database of weather parmme
were combined to train the model used to synthesize an aecura
HDR fisheye image for a general set of weather parameters.

The method can be divided into five steps (See Figure 1). In the
first step captured image series are used to compute highadgn
range representations of the sky light. The eigencompsnaret
computed from all the HDR-images in the second step. In order
to compute well-defined eigenskies a large number of images a
different weather conditions from a large time interval eeded.
Every image is projected to the most important eigenskiesign
this method a PCA-coefficient vector is computed. The veretpr
resents a compressed version of the original image.

This vector is then combined with a weather parameter végtor
the fourth step to form a data pair which is used to train theeho

By using PCA the image data is compressed to a small number of

coefficients. The first part of a data pair is an example veator
the input which in this case is a vector with the actual weatze
rameters at a certain time. The second part is the expectpdtou
at this input vector, a small number of PCA coefficients. Wedus
twentyfour neural networks, one for each hour of the day,thet
eigenskies were identical for all networks. In the fifth am@fistep,
the synthesizing step, a weather parameter vector is sée teeu-
ral network which generates a coefficient vector. This coeffit
vector is used together with the eigenskies to synthesiesidting
image which is used in a Radiance rendering to define the ght li
for this particular set of weather parameters.

3 Results

3.1 HDR images

An off-the-shelf digital camera (Nikon Powershot 990) hatb
mounted in a roof window. This camera captures an imagesserie
consisting of eleven images with varying shutter speedsOy
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Figure 6: An image series of High-Dynamic-Range imagesr&he
is one image for each hour of the 24 hour day. This series was
captured March 31, 2003.

3.2 Weather parameter vector

Direct measurements of the weather parameters were uséuefor
training of the neural networks. These parameters were umeas
by an automatic weather station every hour at a positioratstu

s, 1/512 s, ..., 1/2 s, 1 s) every hour. An example image can be two kilometers from the camera. Ten parameters are meastfired

seen in Figure 2. Images from a time-period of seven montie we
used in this work. A C++ program to convert an image seriesto a

which temperature, pressure, date, time of the day, demsabf
pressure and temperature were used.



Predicted image:030331

Figure 7: Images which have been synthesized using the chetho
described in this paper. There is one image for each houeafak.

The neural networks were trained with seven months of imagg d
and weather parameters. The weather parameters for March 31
2003 were used to render these images. This day was not éttlud
in the training set.

Figure 8: Examples of the result possible using the predente
method in combination with Radiance. The High-Dynamic-gan
fisheye images in Figure 7 were used to define the sky-light in a
Radiance rendering. These images are the result from Raxdfan
L. 9 am until 5 pm. As can be seen the sky is varying during the day.
3.3 The resulting images Some small artifacts exist in the images due to internal ctdiss

All images were used to compute the eigencomponents (See Fig and interpolation errors.

ure 5). The database of images was divided into twentyforts pa
and each neural network was trained with data from one spdcifi o ) o o
hour of the day. All networks were optimized using the adiga  resulting image series can be seen in Figure 8. The missitag da
data. Most of the data was used, as a training set, to trainetheal was interpolated assuming radial symmetry.

networks, but a number of data points were saved and used, as a

test set, to verify the output result. The process to syitbhem- 4 Di .

ages was initiated by sending a weather parameter vectoe toet- IScussion
works. A PCA-coefficient vector was predicted by one of therak
networks, depending on which time of the day the data point be
longed to. The resulting image was computed by using thitovec
in combination with the eigenskies. This image represeateigw

of the weather at this specific data point. For every hour atNAN
was trained to predict the eigensky coefficients from theptenar
ture, pressure, time, time derivative of temperature, tiervative

of pressure and date entries of the measurement vector. tyfiwen
four neural networks were used to simplify the training s of
the individual networks. All images were transformed toftioient
vectors using the ten most important eigenskies. The twel-eet-
work used had a linear activation function on the hidderetand

a log-sigmoid activation function on the second layer. Aftworks
were trained until no further change could be seen. It waadou
that six hidden units gave a good compromise between fléyibil
and the risk of over-training. We have developed a softwarkp
age in MATLAB [Olsson et al. 2003] that computes the eigeeski
and trains an ANN to synthesize HDR-images. HDR images o
the light field can then be synthesized from the artificialraboet-
works using weather data sets (See examples in Figure 7).

The synthesized HDR images have less detail than captueegkisn
due to the compression to a small number of coefficients. &or e
ample the cloud details are not represented correctly,Heutrtain
apperance of the sky is correct. The presented method sheuld
seen as an alternative to the analytic method [Preetham 298]

to synthesize sky light. While the analytic method of Prasattet
al. is able to synthesize ab initio a realistic image baseavenage
values of the irradiance depending on the position of thétssinot
able to produce an image varying with the weather conditidhge
method presented in this paper is on the other hand able thesyn
size an image, based on real photographs which varies degend
on weather information for a specific instance in time. Altgb
some differences in the intensity levels between the coetpand
the captured images exist, this method should prove to bieiahle
aid in synthesizing sky images varying with the weather darts.
The obstructions in the images due to the camera locatiobders

¢ @ major problem but this will be improved with an outdoor cam-
era. A minor drawback is the loss of detail due to the timerirate
between the different exposures in the image series. Nbleiar-
tifacts can be seen in the resulting images depending ond¢fas.

3.4 Results from Radiance

5 Future Work
The synthesized HDR images can be used to define the light field
in theRadiancgWard 1994] system. HDR images of the sky light Future work include increasing the number of parameterd irse
are synthesized by the model using weather parameter seasor  the neural network training to increase the precision ofpitealic-
input. The resulting image is a map of the lighting condision tion. Another future task is to generalize this method talsgsize
the upper half sphere. Radiance is then used to render aafjlener sky images from parameters in weather forecast files andrno co
scene with the lighting conditions defined by the HDR-imagde. bine this method with a method to compute realistic cloudsnfr



parameters included in the forecast data sets.
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