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Abstract

This paper presents a method to render synthetic sky images corre-
sponding to given weather conditions. The method combines artifi-
cial neural networks and principal component analysis to associate
the appearance of the sky with the state of a weather parameter vec-
tor. This association is then used to generate artificial skyimages
corresponding to a given weather parameter vector. The proposed
method has important applications for example in flight simulators
and in the game industry.

The skies are represented by high-dynamic-range images which
are able to store the dynamic properties of sky light. This repre-
sentation can be used for global illumination in software packages
such as Radiance to render scenes at arbitrary lighting conditions.
The results show that, although the cloud details can not be repre-
sented by this method it is possible to distinguish between different
weather states.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading and texture.

Keywords: Skylight, illumination and weather visualization.

1 Introduction

Lighting conditions and the appearance of the sky in outdoorscenes
have a fundamental effect on the way human beings perceive anen-
vironment. Just by altering the light and appearance of the sky the
same place can be perceived as frightening or comforting, cold or
warm etc. In the fine arts and psychology literature the importance
of the sky for human perception has long been recognized [DaVinci
1970]. This paper strives to encapsulate this importance inthe con-
text of computer graphics and presents a method to render synthetic
sky images corresponding to given weather conditions. The method
allows us to generate virtual worlds that exhibit a rich multitude of
lighting conditions and sky backdrops. There are several possible
applications of synthetic skies. One obvious application is flight
simulators where it is important to generate realistic impressions of
weather conditions. Another application is the entertainment indus-
try where extreme weather conditions are frequently used inboth
computer games and in the film industry.

Our method of choice to represent sky light is based on high-
dynamic-range images (HDR images) which can store the dynamic
properties of the sky light [Debevec and Malik 1997]. The focus
of the paper is to present a method to synthesize HDR images of
the sky corresponding to a weather parameter vector. The method

uses eigenskies, based on principal component analysis (PCA) [Jo-
liffe 1980] of HDR photographs of a real sky, to compress the input
data. Artificial neural networks (ANN) are then used to tie the val-
ues of a PCA coefficient vector to a vector of weather parameters
measured at the same time as the HDR image was captured. The
ANN can then, given any set of weather parameters as input, gener-
ate PCA components that are used to create a synthetic HDR image.
If weather parameters from a forecast are used it is for instance pos-
sible to generate an HDR image corresponding to a future weather
scenario.

The general field of weather visualization can be divided into two
main categories. The first contains the more traditional approaches
aimed at the creation of maps, in 2D and 3D, for weather forecast-
ing. Trivis [Haase et al. 2000] which is used in the creation of maps
for broadcast weather forecasts is one example of such a tool. To
generate realistic images of an environment during given weather
conditions is the task of the second approach. The analytic method
of [Preetham et al. 1999] to render images of sky light is one ex-
ample of this approach, which is able to render a general image of
the sky using information about the viewer’s location on earth, the
position of the sun and irradiance values. The resulting image will
be an average image for this time of the year, but no information
about the daily weather is included and thus the dynamic change of
the weather can not be seen in this image. Related methods using
basis functions to fit simulation data have been developed byother
authors. A series of Legendre basis functions was used by [Dobashi
et al. 1995] and steerable basis functions were used by [Nimeroff
and Rushmeier 1996] to fit sky luminance model data. Methods to
synthesize clouds using real-time volume rendering takingsubsur-
face scattering effects into account have been developed by[Riley
et al. 2003]. The method described in this paper falls into this sec-
ond category but will in contrast to other methods be able to render
images which vary with the actual weather state.

To show the results of the method an application of the synthetic
HDR images to define the lighting conditions in the renderingtool
Radiance [Ward 1994] is described.
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Figure 1: A diagrammatic representation of the main steps inthe
method. The method can be divided in five steps: Computation
of HDR-images, computation of eigencomponents, data collection,
training and synthesizing.



2 Method

Instead of explicitely defining the appearance of the sky in various
weather conditions we collect images from different weather states.
These images are then used to train the model. The method uses
principal component analysis (PCA) to compress the data andlearn
the most important features of the images. The eigenface [Turk and
Pentland 1991; McGuire and D’Eleuterio 2001] method inspired
this work. The relation between the weather parameters and the
image features is learned by ANN. We thus use ANN as a statisti-
cal method for function approximation. Our method is based on a
combination of PCA and neural networks with supervised training.

In our approach we first capture a series of images with varying
shutter speeds at each time interval (An image series can be seen
in Figure 3). One series is used to construct one HDR image. The
method used for computing HDR images is described in detail in
[Debevec and Malik 1997]. The resulting fisheye images definethe
irradiance in every direction in Euclidean space.

Original image. November 3 2002. 11 am. Shutter speed 1/512 s.

Figure 2: This is one example of the original fisheye images ofsize
1500x2000 pixels. The images used are captured of exactly the
same scene by a camera located in a roof window. Some parts of
the field of vision are obstructed. These parts are interpolated using
radial symmetry.

2.1 Principal Component Analysis

Next we use PCA to decompose HDR images as follows: The pix-
els in an image are rearranged into a vector ¯x = [x1,x2, . . . ,xN] of
lengthN. We assume that we haveM such vectors. The transpose
is denoted ¯xT . The mean vectormx is defined asmx = E(x̄) and
the covariance matrix isCxx = E((x̄−mx)∗(x̄−mx)

T), whereE(.)
means the expectation value of a stochastic variable. The eigen-
value problem is then definedCxxV = VD, whereV is a matrix
with the eigenvectors as columns andD a diagonal matrix with the
eigenvalues along the main diagonal.

For the resolution needed in this project the size of the covari-
ance matrix becomes impractical. The size of the matrix can be
decreased by using dimensionality reduction [Haykin 1999]. Let
Y be the rectangular data matrix of sizeNxM. The matrix has the
same height as the number of vectors (M). The eigenvalue problem,
CxxV = VD, can be written as

Cxx =
1

N2 YTY ⇒
1

N2 YTYV = VD (1)

The size of the covariance matrix is reduced from a size ofNxN
elements to a size ofMxM elements by multiplying withY from

1/1024 s 1/512 s 1/256 s 1/128 s

1/64 s 1/32 s 1/16 s 1/8 s

1/4 s 1/2 s 1 s

Figure 3: In order to compute a High-Dynamic-Range image a se-
ries of images is captured with varying shutter speeds. The first
image is captured with a shutter speed of 1/1024 s. For every im-
age in the series the shutter speed is doubled until 1 s which is the
last exposure.

the left and changing variableW = YV.

1
N2 YYTYV = YVD ⇒

1
N2 YYTW = WD. (2)

The eigenvectors are the eigenskies. New sky images can be gen-
erated from them by linear combination. The weights are computed
from weather parameters using ANN’s.

2.2 Artificial Neural Networks

Artificial neural network is a collective term for a number ofcon-
nected but in many cases very different methods. Neural networks
originate from neuroscience as a historical method of simulating
the brain neurons. This technology has found applications in di-
verse areas such as pattern recognition and signal processing. For a
more detailed description of this subject see [Hagan et al. 1995] or
[Haykin 1999].
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Figure 4: The single-input neuron. An activation functionf is ap-
plied on the sum of the bias and the inputp multiplies with a weight
w.

ANN methods are used for function approximation in this pa-
per. In the simplest form an ANN consists of one neuron (See
Figure 4). The scalar inputp is multiplied by the scalar weightw
and then added to parameterb. The neuron output is calculated as
a = f (wp+b). Parametersw andb are adjusted by some learning
rule. The activation functionf may be linear or nonlinear. Exam-
ples of activation functions include the hard-limit activation func-
tion (also called the step function,f (x) = {0,x < 0;1,x >= 0}),



the linear activation function and the log-sigmoid activation func-
tion ( f (x) = 1

1+e−x ). In a single layer network several neurons are
all connected to the same input-signals. The mathematical formula-
tion is identical to the single-neuron case, ¯a = f (W p̄+ b̄), but now
W is a matrix and ¯a, p̄ andb̄ are vectors. A multiple layer network
is built by connecting several single layer networks. In this paper
we use two layers of the form

ā = f2(W2 f1(W1 p̄+b1)+b2). (3)

The first layer is called the hidden layer and the units of thislayer
are called the hidden units. The second layer is called the output
layer. MatricesW1 and W2 and vectorsb1 and b2 are the ad-
justable parameters in the two-layer case. Many different training
methods exist but most are variations of the backpropagation algo-
rithm [Rumelhart et al. 1986]. We used the Levenberg-Marquardt
algorithm [Scales 1985], which is a variation of Newton’s method.

The algorithm is provided with a set of examples of proper net-
work behaviour:

(p1,t1),(p2,t2), . . . ,(px,tx), . . . ,(pn,tn), (4)

wherepx is an input to the network andtx is the corresponding tar-
get output. The network output is compared to the target as each in-
put is applied to the network. The network parameters are adjusted
by the algorithm in order to minimize the mean squared error.

Data from two different types of data sets were used.HDR
fisheye images, computed from eleven fisheye images with varying
shutter speeds anddirect measurements of weather parameters. Ten
parameters were measured at the same time as an image was cap-
tured. The image database and the database of weather parameters
were combined to train the model used to synthesize an accurate
HDR fisheye image for a general set of weather parameters.

The method can be divided into five steps (See Figure 1). In the
first step captured image series are used to compute high-dynamic-
range representations of the sky light. The eigencomponents are
computed from all the HDR-images in the second step. In order
to compute well-defined eigenskies a large number of images at
different weather conditions from a large time interval is needed.
Every image is projected to the most important eigenskies and by
this method a PCA-coefficient vector is computed. The vectorrep-
resents a compressed version of the original image.

This vector is then combined with a weather parameter vectorin
the fourth step to form a data pair which is used to train the model.
By using PCA the image data is compressed to a small number of
coefficients. The first part of a data pair is an example vectorof
the input which in this case is a vector with the actual weather pa-
rameters at a certain time. The second part is the expected output
at this input vector, a small number of PCA coefficients. We used
twentyfour neural networks, one for each hour of the day, butthe
eigenskies were identical for all networks. In the fifth and final step,
the synthesizing step, a weather parameter vector is sent tothe neu-
ral network which generates a coefficient vector. This coefficient
vector is used together with the eigenskies to synthesize a resulting
image which is used in a Radiance rendering to define the sky light
for this particular set of weather parameters.

3 Results

3.1 HDR images

An off-the-shelf digital camera (Nikon Powershot 990) has been
mounted in a roof window. This camera captures an image series
consisting of eleven images with varying shutter speeds (1/1024
s, 1/512 s, . . . , 1/2 s, 1 s) every hour. An example image can be
seen in Figure 2. Images from a time-period of seven months were
used in this work. A C++ program to convert an image series to an

HDR image has been developed. An image series of original HDR
images is located in Figure 6. The original images were downscaled
to a size of (150x200) pixels to lower the memory-demand. Theten
most important eigenskies were used in the calculations.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5: The sixteen most important eigencomponents - the eigen-
skies. Note the small artifacts in the middle of the images which are
caused by reflections. The most important component, in the upper
left corner, is a grey sky, which means that mostly the sky is grey.

Original
0
30331

Figure 6: An image series of High-Dynamic-Range images. There
is one image for each hour of the 24 hour day. This series was
captured March 31, 2003.

3.2 Weather parameter vector

Direct measurements of the weather parameters were used forthe
training of the neural networks. These parameters were measured
by an automatic weather station every hour at a position situated
two kilometers from the camera. Ten parameters are measuredof
which temperature, pressure, date, time of the day, derivatives of
pressure and temperature were used.



Predicted image:030331

Figure 7: Images which have been synthesized using the method
described in this paper. There is one image for each hour of the day.
The neural networks were trained with seven months of image data
and weather parameters. The weather parameters for March 31,
2003 were used to render these images. This day was not included
in the training set.

3.3 The resulting images

All images were used to compute the eigencomponents (See Fig-
ure 5). The database of images was divided into twentyfour parts
and each neural network was trained with data from one specified
hour of the day. All networks were optimized using the available
data. Most of the data was used, as a training set, to train theneural
networks, but a number of data points were saved and used, as a
test set, to verify the output result. The process to synthesize im-
ages was initiated by sending a weather parameter vector to the net-
works. A PCA-coefficient vector was predicted by one of the neural
networks, depending on which time of the day the data point be-
longed to. The resulting image was computed by using this vector
in combination with the eigenskies. This image representeda view
of the weather at this specific data point. For every hour an ANN
was trained to predict the eigensky coefficients from the tempera-
ture, pressure, time, time derivative of temperature, timederivative
of pressure and date entries of the measurement vector. Twenty-
four neural networks were used to simplify the training process of
the individual networks. All images were transformed to coefficient
vectors using the ten most important eigenskies. The two-level net-
work used had a linear activation function on the hidden-layer and
a log-sigmoid activation function on the second layer. All networks
were trained until no further change could be seen. It was found
that six hidden units gave a good compromise between flexibility
and the risk of over-training. We have developed a software pack-
age in MATLAB [Olsson et al. 2003] that computes the eigenskies
and trains an ANN to synthesize HDR-images. HDR images of
the light field can then be synthesized from the artificial neural net-
works using weather data sets (See examples in Figure 7).

3.4 Results from Radiance

The synthesized HDR images can be used to define the light field
in theRadiance[Ward 1994] system. HDR images of the sky light
are synthesized by the model using weather parameter vectors as
input. The resulting image is a map of the lighting conditions in
the upper half sphere. Radiance is then used to render a general
scene with the lighting conditions defined by the HDR-image.A

Figure 8: Examples of the result possible using the presented
method in combination with Radiance. The High-Dynamic-Range
fisheye images in Figure 7 were used to define the sky-light in a
Radiance rendering. These images are the result from Radiance for
9 am until 5 pm. As can be seen the sky is varying during the day.
Some small artifacts exist in the images due to internal reflections
and interpolation errors.

resulting image series can be seen in Figure 8. The missing data
was interpolated assuming radial symmetry.

4 Discussion

The synthesized HDR images have less detail than captured images
due to the compression to a small number of coefficients. For ex-
ample the cloud details are not represented correctly, but the main
apperance of the sky is correct. The presented method shouldbe
seen as an alternative to the analytic method [Preetham et al. 1999]
to synthesize sky light. While the analytic method of Preetham et
al. is able to synthesize ab initio a realistic image based onaverage
values of the irradiance depending on the position of the sunit is not
able to produce an image varying with the weather conditions. The
method presented in this paper is on the other hand able to synthe-
size an image, based on real photographs which varies depending
on weather information for a specific instance in time. Although
some differences in the intensity levels between the computed and
the captured images exist, this method should prove to be a valuable
aid in synthesizing sky images varying with the weather conditions.
The obstructions in the images due to the camera location hasbeen
a major problem but this will be improved with an outdoor cam-
era. A minor drawback is the loss of detail due to the time interval
between the different exposures in the image series. No visible ar-
tifacts can be seen in the resulting images depending on thisdelay.

5 Future Work

Future work include increasing the number of parameters used in
the neural network training to increase the precision of thepredic-
tion. Another future task is to generalize this method to synthesize
sky images from parameters in weather forecast files and to com-
bine this method with a method to compute realistic clouds from



parameters included in the forecast data sets.
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