
An Architecture for Distributed Spatial Configuration of
Context Aware Applications

Martin Wagner Gudrun Klinker

Technische Universität München, Institut f̈ur Informatik
Boltzmannstr. 3, 85748 Garching bei München, Germany∗

Abstract

This paper discusses an architecture for spatially distributed storage
of contextual configuration information in ubiquitous computing
environments. Based on the assumption that we want to integrate
arbitrary mobile clients in ubiquitous computing environments, we
derive the requirements for the spatial distribution of data, trans-
parent access to context aware configuration data, and separation of
context estimation algorithms. We developed a highly distributed
architecture that fulfills these requirements. UsingDWARF, we im-
plemented and successfully demonstrated a mobile demonstration
setup that incorporates all key concepts of our architecture.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications

Keywords: Augmented Reality, Context Awareness, Ubiquitous
Computing, Distributed Data Storage

1 Introduction

This paper deals with an architecture for spatially distributed stor-
age of contextual configuration information in ubiquitous comput-
ing environments.Ubiquitous Computing[Mattern 2001; Weiser
1991] aims at providing computers invisibly at all places one may
go to such that access to information gets ubiquitous.

In particular, we explore the possibilities of Augmented Real-
ity based applications in ubiquitous computing environments.Aug-
mented Reality(AR) is a new technology that seamlessly integrates
virtual information in a user’s physical environment. Using a Head-
Mounted Display (HMD), the user’s view of the world is aug-
mented with virtual objects that are spatially fixed in relation to the
physical objects. For example, a refrigerator AR application would
display virtual objects that depict the content of the refrigerator or
objects that are missing and should be refilled on the display, thus
giving the impression to the user that the door of the refrigerator
is transparent. When the user moves or turns his head, the vir-
tual objects are displayed so that the user has the impression that
they are “attached” to the refrigerator. Hence, one of the core re-

∗e-mail:{wagnerm,klinker}@in.tum.de

quirements of AR is the correct three-dimensional registration of
the user’s viewing direction and all relevant objects in real time.

Many AR applications handle registration by a combination
of several trackers, each specialized for different situations (e.g.,
tracking the user outdoors, tracking the general location of the user
indoors, precise tracking of the user’s head motion) [Klinker et al.
2000]. All these devices need to be configured.Configuration data
is data that a generic software or hardware device needs to work
correctly in a ubiquitous computing environment. Hence, an opti-
cal tracker worn by a mobile user needs descriptions of markers in
the current room to correctly compute the room’s position relative
to the user; a tracker mounted in a room needs information about
the properties of a marker on the user to register the user’s position
relative to the room. Moreover, many ubiquitous computing appli-
cations have the requirement to accomodate arbitrarymobile clients
potentially composed of multiple, configurable devices.

The usual approach of storing all configuration data in a cen-
tral database turns the environment into a complex monolith that is
hard to understand for both developers and users. A strictly central
data structure is contradictory to the intention of ubiquitous com-
puting to provide usually simple applications that are specifically
tailored to the who, where, when and how. In this paper, we pro-
pose a highly distributed architecture that stores the configuration
data where it belongs to. We think that every device in a ubiqui-
tous computing environment should be responsible for its own con-
figuration. This yields more flexible applications in context aware
environments, as the environment can be partially reconfigured dy-
namically and with minimal side effects to the rest of the system.
By this assumption, the architecture we propose naturally allows to
incorporate arbitrary new mobile clients worn by users that come to
ubiquitous computing environments they have never been to before.

Although this architecture results from the need to configure mo-
bile tracking devices, it is suitable to store all types of configuration
information that have a clear mapping on spatial entities. These
entities may be rooms as well as mobile users carrying their own
information with them on theirmobile clients.

This paper is structured as follows. Section 2 illustrates the prob-
lem using a visionary scenario. Section 3 derives requirements for
our architecture from this. Section 4 presents the core concepts
of the DWARF framework that allow us to implement a distributed
configuration. The key ideas of this architecture are described in
section 5. We implemented the scenario with a mobile marker-
based tracker and describe some details of this implementation in
section 6. Section 7 discusses work related to ours. Section 8 con-
cludes this paper with proposals for future enhancements.

2 An Example Scenario

The following scenario illustrates the typical features of a ubiqui-
tous computing environment.

A user, Joe, walks around an intelligent building (see figure 1).
The building is equipped with many sensors registering what hap-
pens inside. All sensors are integrated in a ubiquitous computing
environment providing access to information and applications at

19

Mark Ollila
MUM2003



Outside

Kitchen Lab

Hallway

M1 M7

M3M2

M4M5

M6

Figure 1: Example scenario.

every point in the building. Most users of the building wear mobile
clients, a set of computing devices having widely varying function-
ality and configuration, depending on the user’s personal prefer-
ences. Joe is wearing a mobile Augmented Reality system consist-
ing of computers that access the environment using a Wireless Lo-
cal Area Network (WLan), a head mounted display, an input device
on his hand and a camera that detects markers for tracking Joe’s
current position. A prototype of this mobile client is depicted in
figure 5.

Many applications are available in the building, and most are
tied to specific rooms. For example, the refrigerator in the kitchen
has a virtually transparent door, the table in the AR lab is aug-
mented with shared views of three-dimensional construction plans
Joe is currently working on. The AR system enables him to collab-
orate on these with some remote colleagues.The hallway provides
short speech output about what is behind all the doors. To exe-
cute the matching applications at every point in time, the mobile
client has to know which room Joe is currently in. This is handled
by optical tracking software analyzing the video stream from Joe’s
camera. For example, the inner side of the kitchen door carries a
marker with the semantics “User leaving the kitchen”. We do not
assume that the mobile client has any knowledge about the building,
as we would like to incorporate arbitrary new users. As such, our
environment provides the semantical information correlating with
certain markers automatically to the mobile clients.

Let us assume Joe is in the hallway. His mobile client has a ser-
vice that can play arbitrary sounds and gets therefore connected
to the hallway’s “What’s behind the door?” application. When-
ever either the environment or Joe’s mobile client realize that he is
standing in front of a door, the application gets notified and sends
an audio stream to Joe’s mobile client. If Joe now leaves the hall-
way and goes to the lab, his audio service gets disconnected from
the hallway application and connected to the collaboration pro-
gram in the lab. By this dynamic reconfiguration, Joe is now able
to listen to his colleagues’ comments on his work using the same
mobile client services as in the hallway. If Joe had another ser-
vice allowing streaming video in his mobile client, he could see his
colleagues as well.

3 Requirements for Distributed Spatial
Configuration

Ubiquitous computing environments are typically made out of
many small applications using a small number of basic components
and a large number of users and sensors. Both applications and
sensors need to be partially reconfigured very often, as the envi-
ronment serves many users with different background, preferences,
access rights and capabilities of their mobile clients. The simple
approach of using a central static configuration database for our

setup has several major drawbacks. On the user level, the whole
environment would have to be treated as a single complex applica-
tion, making it hard for both developers and end users to understand
the effects of changes in the configuration. This may easily break
existing applications if the central system is adapted to new applica-
tions. Moreover, the centralized approach introduces a single point
of failure.

Configuration information that only is of interest in certain spa-
tial regions is organized best according to these regions rather than
in a centralized structure. This facilitates keeping the data up to date
and allows simple partial reconfiguration. In addition, it seems rea-
sonable to let every user with a mobile client store all configuration
information that the environment needs to correctly communicate
with the user at this mobile client. This strategy allows users to dy-
namically change their clients, depending on personal preferences
and the availability of hardware or software components, without
the need to tell the ubiquitous environment of these changes before
actually using the reconfigured client. Our architecture supports
spatial distribution of configuration data and automatic reconfigu-
ration of both the environment and the mobile clients.

This leads to the following requirements on a distributed config-
uration architecture.

Context aware configuration data. In our work, we follow
Dey’s [Dey and Abowd 2000] separation of context inlocation,
identity, activityandtime. Our architecture should support configu-
ration based on all these contextual attributes. Location is obviously
handled by the spatial distribution, as is partially the identity of the
user. Some configuration may depend on the current time of day,
for example, an optical tracker may have some parameters telling
it the current lighting situation. Finally, the user’s current activity,
in our example the application he currently uses, may influence the
choice of tracking accuracy.

Transparent access to configuration data. Components that
need to be configured should not have to bother about where to get
the necessary data. The architecture should support dynamic recon-
figuration based on the current context. This should happen trans-
parently to the components getting configured. The transparency
may be used to centralize some logically separate configuration in-
formation on a single database server for security or reliability rea-
sons.

Separate context estimation component. If the mobile client
and the ubiquitous infrastructure have to work together to provide
its users full access to all information available, they need to com-
municate using clear protocols. This holds especially true for those
parts of the system that derive the current context out of sensor data.
For example, an optical tracker has to get information about its envi-
ronment to determine the user’s current location. If the environment
is equipped with new trackable features that can only be handled by
an algorithm not available to the mobile client beforehands, we ei-
ther have to implement this algorithm at the mobile client, dynam-
ically load executable code to the mobile client or have to send the
mobile client’s video image to a stationary compute server. In all
three cases, we must encapsulate the tracking algorithm in a com-
ponent that takes video images and provides location information.
The same holds true for all other components deriving context of
the current situation.

4 DWARF

The Distributed Wearable Augmented Reality Framework[Bauer
et al. 2002b] is a research platform that explores the possibili-
ties of Augmented Reality based applications in distributed ubiq-

20



uitous computing environments. The framework contains services
for tracking, visualization of three-dimensional data, calibration of
objects, multimodal input, and modeling of user tasks. Several sys-
tems have been built so far [Bauer et al. 2001; Echtler et al. 2002;
Klinker et al. 2002; MacWilliams et al. 2003], consisting of be-
tween 10 and 50 services.

TheDWARF services are accessed through a CORBA-based mid-
dleware. On each network node of aDWARF system, there is one
service manager. There is no overall central component. The ser-
vice manager controls its local services and maintains descriptions
of them. Each service manager cooperates with the others in the
network to set up connections between services. ADWARF service
is the basic building block of a running system. It either encapsu-
lates a hardware device like a tracker, performs some reusable func-
tionality like controlling a taskflow or handles some application-
specific task. Each service is running within a separate operating
system process or thread. Its functionality is described in terms
of abilities, the functionality it requires from other services is de-
scribed in terms ofneeds. Needs and abilities are matched using
connectors.

An ability is the abstract description of a service’s functionality,
e.g. location data for optical trackers. A service can have multiple
abilities, e.g. the tracker may track multiple objects simultaneously.
Abilities are typed, an optical tracker deliversPoseData for loca-
tion information.

A needdescribes the functionality a service requires from its
counterparts to be able to work. Again, a service may have mul-
tiple needs. The optical tracker needs a stream of video data and
descriptions of markers to be able to find these markers in the video
image. Needs are typed, too, and a need can only be satisfied by an
ability of the same type.

A connector is a description of the communication protocol,
e.g. shared memory for video data, CORBA object references or
CORBA notification events for event-based communication of lo-
cation data.

Attributes enhance the description of an ability. The optical
tracker may therefore specify which object it tracks, using e.g.
Thing=UserHead. Needs can be refined usingpredicates, e.g.
(&(User=Joe)(Room=Lab)). When matching needs with abili-
ties, the service managers ensure that the ability’s attributes satisfy
the need’s predicate. Attributes may be specified for the entire ser-
vice, in this case all abilities of that service have these attributes.

<service name="OpticalTracker">

<need name="video" type="VideoStream">

<connector protocol="SharedMemory"/>

</need>

<need name="marker" type="MarkerData"

predicate="(&(Room=*)(User=*))">

<connector protocol="ObjectReference"/>

</need>

<ability name="poseData" type="PoseData"

isTemplate="true">

<attribute name="Room"

value="$(markerData.Room)">

<attribute name="User"

value="$(markerData.User)">

<connector protocol="NotificationPush"/>

</ability>

</service>

Figure 2: Sample XML description of an optical tracker service
having two needs of typeVideoStreamandMarkerDataand an abil-
ity of type PoseData. If the need forMarkerDatagets satisfied by
another service with attributesRoomandUser, the optical tracker
offers thePoseDataability with the same attributes.

Optical-
Tracker

:PoseData :MarkerData

:VideoStream

ObjrefImport

SharedMemory

NotificationPush <<service>>

Figure 3: Sample UML description of an optical tracker service.
Needs are depicted as semicircles, abilities as circles.

EachDWARF service installed on a system may either describe
itself at startup to the service manager or use an XML file format to
give the service manager the possibility to start and stop the service
on demand. Our example of an optical tracker is shown in figure 2.
A UML-based notation is shown in figure 3.

MacWilliams and Reicher describe in [MacWilliams and Re-
icher 2003] how a service’s ability may change at runtime according
to how its needs are satisfied. In our example, if and only if the op-
tical tracker getsMarkerData for userJoeand the roomLab, it can
provide an ability of typePoseDatawith the attributesUser=Joe
andRoom=Lab. As such, the optical tracker has atemplateability
of typePoseData that can run in multiple instances depending on
the available configurations.

5 Automatic Context Aware Configuration

The DWARF framework provides the basic building blocks for our
distributed configuration architecture. In this section, we describe
this architecture based on a simple example setup consisting of the
following components. A UML description of the setup is shown
in figure 4. This rather simple setup is prototypical for most ubiq-
uitous computing applications.

Video Grabber. A digital camera is read out and the resulting
video image is sent to other components.

Optical Tracker. This component takes a video image and marker
descriptions detailing the marker’s appearance as well as their
3D location in a room. It then finds the marker in the image
and reconstructs the camera’s current position [Tsai 1987]. In
our setup, the user is wearing the camera, therefore the tracker
yields the user’s current position. Finally, this component has
the need for contextual changes and can therefore be told the
current context.

Application. There is one instance of this component for each ap-
plication, such as the transparent refrigerator door discussed
in section 2. Applications may either run on the user’s mobile
client or in the ubiquitous environment. A typical application
takes the location information from the tracker and displays
augmentations to the user’s view using the mobile client’s ren-
dering component [MacWilliams et al. 2003].

Context Estimation. This component analyzes the location data
from the tracker and triggers context switches whenever it
concludes that a user has moved to a new room. Note that
this component may exist in multiple instances, each specifi-
cally adopted to a certain contextual situation.

Configuration Data. This component actually stores configura-
tion data. There is one instance of this component for each
contextual state. As the marker descriptions of the tracker are
nothing more than configuration information, it is this com-
ponent that reconfigures the optical tracker.

21



Optical-
Tracker

:PoseData
Room=Hallway

User=Joe

:MarkerData
Room=Hallway

:VideoStream

Video 
Grabber

:VideoStream

Context 
Estimation

:ContextSwitch
Room=Hallway

:ContextSwitch
Room=Hallway

Appli-
cation:ContextSwitch

Room=Hallway

Config 
Data

:MarkerData
Room=Hallway

:MarkerData
Room=Lab

:ContextSwitch
Room=Lab

:PoseData
Room=Hallway

User=Joe

<<service>>

<<service>> <<service>>

<<service>><<service>>

Figure 4: UML model of the mobile setup. Needs are depicted as semicircles, abilities as circles. Note that needs may satisfy two other
service’s abilities (ContextSwitch). Both theContextEstimationand theConfigDataservices offer abilities for two contextual situations.

Context is modeled usingDWARF attributes and predicates. Ac-
cording to [Dey and Abowd 2000], we split context inidentity, lo-
cation, activityand time. We assume thatJoe is moving around
the Lab at 9 a.m. doing NothingSpecial. As such, the optical
tracker’s need for marker descriptions should have the predicate
(Room=Lab) and its ability to send location data should have the at-
tributesUser=Joe, Room=Lab andTime=9am. Our optical tracker
does not care about Joe’s current activity, so we leave out this at-
tribute.

Let us now discuss how the automatic configuration proceeds.
We assume the user starting in theHallway and moving to theLab
(see floor plan in figure 1). The transition from the contextual state
Room=Hallway to Room=Lab is triggered by the markerM3, there-
fore the optical tracker is configured initially to recognize marker
M3 (and some others). Once the user is in the lab, the optical tracker
has to be configured in a way that allows it to recognize markersM6
andM7 in order to detect other context switches. The flow of events
is as follows:

1. The user enters the building’s hallway with his mobile setup.
He starts theVideo Grabber, ApplicationandOptical Tracker
components. This may also be performed automatically
(see [MacWilliams and Reicher 2003]).

2. Initially, the optical tracker’s need for marker data has the
predicate(Room=Hallway). As there exists aConfiguration
Data service with a matching attribute, theDWARF service
manager connects both. The configuration service gives the
information necessary to detect markersM2, M3 andM4 to
the optical tracker.

3. The service manager recognizes that there exists aContext Es-
timationcomponent that has the need for marker data with the
predicate(Room=Hallway) and the ability to trigger contex-
tual changes, attributed again byRoom=Hallway. The com-
ponent matches the optical tracker in its current state and gets
therefore connected.

4. The user now moves towards the door and has markerM3 for
quite a while in his camera’s viewing frustum. This informa-
tion is sent to the context estimation that concludes that the
user must have left the hallway and went to the lab. It there-
fore tells the optical tracker (and all other components of the
mobile setup that may be interested) that there was a change
in context.

5. The optical tracker service changes its service description at
the service manager, setting the marker data need’s predicate
to (Room=Lab).

6. The service manager disconnects the hallway’s configuration
and context estimation services from the optical tracker. In
consequence, the optical tracker unloads all configuration data
it received from these services. As there is a new configura-
tion service available in the lab with an attributeRoom=Lab,
the optical tracker is connected with the new configuration
and context estimation services.

7. Again, the optical tracker gets information about markers, this
timeM6 andM7, and outputs location information to the lab’s
context estimation component until the latter concludes that
the user left the room again.

22



Up to now, we always assumed that the user has an initial con-
textual state. This state is either provided by explicit user input,
i.e. “I am at the TUM campus.” or by using the same configuration
mechanisms with special attributes.

For each network broadcast area, there must be one configura-
tion and context estimation service that provides the initial state.
For example, if a user walks towards a campus building and en-
ters its WLan area, the currentRoom predicate should be set to
(Room=global). The campus building may now provide a context
estimation service with matching attributes that interprets the user’s
current GPS information in order to trigger contextual switches
at the user’s mobile client, such as setting theRoom attribute to
Room=FMIBuilding.

6 Implementation Status

The architecture just described was implemented within a larger
project, ARCHIE (Augmented Reality Collaborative Home Im-
provement Environment), evaluating some new AR technologies
for collaborative support of architectural planning. Further infor-
mation about ARCHIE can be found on our web site1.

The system runs on several stationary and mobile computers run-
ning Linux (see figure 5). The components are implemented in C++
and Java. We use an iBot IEEE 1394 camera that delivers its data
via the libdc2 library. The optical tracker uses the AR Toolkit li-
brary3, an easy to use marker-based tracking library. More informa-
tion on how we incorporate AR Toolkit in our setup can be found
in [Wagner 2003]. The application consists of a simpleSpeaker
service that plays prerecorded texts matching the current location.
Context estimation is rather simplistic, once the system realizes that
a single or multiple markers have been “seen” several times by the
user’s camera, a context switch is triggered. As such, our system al-
lows the user to implicitly change the context by moving to another
room. The configuration data is stored by a service wrapping a
MySQL database offering separate abilities for every configuration
context stored. We successfully demonstrated the context aware
configuration architecture incorporating multiple instances of the
Context EstimationandConfiguration Dataservices presented in
this paper.

7 Related Work

There exist several systems supporting ubiquitous computing en-
vironments. The Gaia project [Hess and Campbell 2003; Román
et al. 2002] introduced the concept ofActive Spaces, ubiquitous
computing environments similar to our spatial entities. It proposes
a context aware filesystem that stores the user’s data. In contrast,
our system stores the user’s data on the user’s mobile client. Project
Aura [Garlan et al. 2002] uses the coda file system [Satyanarayanan
2002] to allow a mobile user nomadic file access. Again, the data
storage solution is central. The Ninja system [Gribble et al. 2001]
uses distributed data structures to provide the high load that a cen-
tral storage solution has to handle. Riché and Brebner propose
a user-centric replication mechanism [Riché and Brebner 2003]
to speed up access to contextual information, however, this ap-
proach is based on a centralized data storage as well. The NEXUS
project [Hohl et al. 1999] aims at providing an open platform for
context-aware applications with a special focus on location. The
CANU subproject [Bauer et al. 2002a] proposes to obtain model
data by the next network node in a mobile ad-hoc network and

1http://www.augmentedreality.de
2http://sourceforge.net/projects/libdc1394/
3http://www.hitl.washington.edu/research/shared_space/

download/

is therefore similar to our basic assumption of spatially organized
data. However, the spatial model is still represented as a single cen-
tral graph and does not support the separation of context estimation
according to the current spatial situation.

The configuration problem of trackers with large tracking ar-
eas has been treated by Reitmayr and Schmalstieg using an XML
based configuration framework called OpenTracker [Reitmayr and
Schmalstieg 2001], later this work was extended to allow reuse of
configuration information [Kalkusch et al. 2002]. Although using
OpenTracker is an easy way of configuring setups of many tracking
devices, the framework does not support dynamic reconfiguration
of trackers. The Bat system [Addlesee et al. 2001] provides build-
ing wide location tracking, but suffers from a central data storage,
not allowing dynamic addition of mobile clients.

The configuration data in our architecture is structured along the
four dimensions of context defined by Dey [Dey and Abowd 2000].
Lieberman and Selker [Lieberman and Selker 2000] point out that
context aware applications can simplify the interaction with com-
puters without reducing functionality. This simplification can be
done via automatic configuration as discussed in this paper. The
GUIDE Project’s data storage architecture [Efstratiou et al. 2001]
discusses strategies to resolve ambiguities in contextual informa-
tion that could be incorporated in our architecture, whereas Dearle
et al. propose an architecture for global smart spaces [Dearle et al.
2003], leading to universally available information that may be en-
hanced locally by ubiquitous computing environments as discussed
in this paper.

8 Conclusion and Future Work

In this paper, we presented an architecture for distributed spatial
configuration of context aware applications that allows spatial dis-
tribution of data, separation of configuration data according to its
contextual use, transparent access to the data and an encapsulation
of algorithms estimating the context. This architecture is built on
the DWARF framework, thus incorporating a wide array of already
existing other components for location tracking, 3D rendering and
modeling of data necessary for Augmented Reality.

Although we discussed our concepts only for a rather simple
marker-based tracking setup, we think it is well suited for all mobile
systems acting in ubiquitous environments. However, clear inter-
faces need to be defined to allow flexible yet simple configuration
for other areas than tracking.

While the ideas presented in this paper allow the spatial sepa-
ration of data, it is left to the application to define spatial entities.
In our setups single rooms proved well, for other applications we
might have to choose larger or smaller contextual entities. An in-
teresting question is how to structure context in a way that allows
a “natural” design of new applications. Problems arising include
how to provide architectural support for restructuring legacy infor-
mation and whether it is possible to let the system learn context
boundaries automatically. A similar area of future work lies in de-
veloping concepts on how to actually store the spatially organized
data. For security or reliability reasons, it might make sense to
store all spatially organized configuration data of a building in a
single database system, if the network infrastructure in this build-
ing is dense and reliable.

Up to now, we have not systematically investigated security and
privacy issues, although storing all user data at the user’s mobile
client will serve as a good starting point for implementing privacy
policies.

Finally, we might incorporate some of the storage facilities dis-
cussed in related work in order to allow efficient access not only
to local but to global data as well. In our concept, global data is a
context device that has noRoom attribute and is therefore available

23

http://www.augmentedreality.de
http://sourceforge.net/projects/libdc1394/
http://www.hitl.washington.edu/research/shared_space/download/
http://www.hitl.washington.edu/research/shared_space/download/


Camera for Marker
Detection

Laptops connected
to environment via WLan Input Device

Head Mounted Display

Figure 5: The mobile client.

everywhere. To access such information efficiently, caching and
prefetching services should be added.

Acknowledgments

The work described in this paper was partially supported by the
High-Tech-Offensive of the Bayerische Staatskanzlei.

The authors would like to thank all people involved in the
ARCHIE project, in particular Felix L̈ow and Marcus T̈onnis, and
all members of theDWARF project for their collaboration on the
framework. Special thanks to Allen Dutoit, Thomas Reicher and
Christian Sandor for helpful comments and valuable dicussions.

References

ADDLESEE, M., CURWEN, R., HODGES, S., NEWMAN , J., STEGGLES,
P., AND WARD, A. 2001. Implementing a Sentient Computing System.
IEEE Computer(August).

BAUER, M., BRUEGGE, B., KLINKER , G., MACWILLIAMS , A., REI-
CHER, T., SANDOR, C., AND WAGNER, M. 2001. Design of a
Component-Based Augmented Reality Framework. InProceedings of
the International Symposium on Augmented Reality.

BAUER, M., BECKER, C., AND ROTHERMEL, K. 2002. Location Mod-
els from the Perspective of Context-Aware Applications and Mobile Ad
Hoc Networks.Personal and Ubiquitous Computing 6, 5–6 (December),
322–328.

BAUER, M., BRUEGGE, B., KLINKER , G., MACWILLIAMS , A., RE-
ICHER, T., SANDOR, C., AND WAGNER, M. 2002. An Architecture
Concept for Ubiquitous Computing Aware Wearable Computers. InIn-
ternational Workshop on Smart Appliances and Wearable Computing.

DEARLE, A., K IRBY, G., MORRISON, R., MCCARTHY, A., MULLEN ,
K., YANG, Y., CONNOR, R., WELEN, P., AND WILSON, A. 2003.
Architectural Support for Global Smart Spaces. InProceedings of Inter-
national Conference on Mobile Data Management.

DEY, A. K., AND ABOWD, G. D. 2000. Towards a better understanding of
context and context-awareness. InWorkshop on the What, Who, Where
and How of Context-Awareness, affiliated with CHI 2000.

ECHTLER, F., NAJAFI, H., AND KLINKER , G. 2002. FixIt. InDemonstra-
tion at the International Symposium on Augmented and Mixed Reality
(ISMAR 2002).

EFSTRATIOU, C., CHEVERST, K., DAVIES, N., AND FRIDAY, A. 2001.
An Architecture for the Effective Support of Adaptive Context-Aware
Applications. In Proceedings of International Conference on Mo-
bile Data Management (MDM 2001), Springer, K.-L. Tan et al., Eds.,
vol. 1987 ofLNCS, 15–16.

GARLAN , D., SIEWIOREK, D., SMAILAGIC , A., AND STEENKISTE, P.
2002. Project Aura: Toward Distraction-Free Pervasive Computing.
IEEE Pervasive Computing 1, 2.

GRIBBLE, S. D., WELSH, M., VON BEHREN, J. R., BREWER, E. A.,
CULLER, D. E., BORISOV, N., CZERWINSKI, S. E., GUMMADI , R.,
HILL , J. R., JOSEPH, A. D., KATZ , R. H., MAO, Z. M., ROSS, S.,
AND ZHAO, B. Y. 2001. The Ninja Architecture for Robust Internet-
Scale Systems and Services.Computer Networks 35, 4, 473–497.

HESS, C. K., AND CAMPBELL , R. H. 2003. A Context-Aware Data Man-
agement System for Ubiquitous Computing Applications. InProceed-
ings of the 4th International Conference on Mobile Data Management.

HOHL, F., KUBACH, U., LEONHARDI, A., ROTHERMEL, K., AND

SCHWEHM, M. 1999. Next century challenges: NEXUS – an open
global infrastructure for spatial-aware applications. InProceedings of
the Fifth Annual International Conference on Mobile Computing and
Networking (MobiCom).

KALKUSCH, M., L IDY, T., KNAPP, M., REITMAYR , G., KAUFMANN , H.,
AND SCHMALSTIEG, D. 2002. Structured Visual Markers for Indoor
Pathfinding. InThe First IEEE International Augmented Reality Toolkit
Workshop.

KLINKER , G., REICHER, T., AND BRUEGGE, B. 2000. Distributed User
Tracking Concepts for Augmented Reality Applications. InProceedings
of the International Symposium on Augmented Reality.

KLINKER , G., DUTOIT, A., BAUER, M., BAYER, J., NOVAK , V., AND

MATZKE , D. 2002. Fata Morgana – A Presentation System for Product
Design. InInternational Symposium on Aumgented and Mixed Reality
ISMAR 2002.

L IEBERMAN, H., AND SELKER, T. 2000. Out of context: Computer sys-
tems that adapt to, and learn from, context.IBM Systems Journal 39,
3&4.

24



MACWILLIAMS , A., AND REICHER, T. 2003. Decentralized Coordination
of Distributed Interdependent Services.IEEE Distributed Systems On-
line (June). Accepted for publication as Middleware Works in Progress
Paper.

MACWILLIAMS , A., SANDOR, C., WAGNER, M., BAUER, M.,
KLINKER , G., AND BRUEGGE, B. 2003. Herding Sheep: Live Sys-
tem Development for Distributed Augmented Reality. InProceedings of
the International Symposium on Mixed and Augmented Reality (ISMAR).

MATTERN, F. 2001. The Vision and Technical Foundations of Ubiquitous
Computing.Upgrade 2, 5 (October), 2–6.

REITMAYR , G., AND SCHMALSTIEG, D. 2001. OpenTracker – An Open
Software Architecture for Reconfigurable Tracking based on XML. In
Proceedings of the ACM Symposium on Virtual Reality Software & Tech-
nology (VRST).

RICHÉ, S., AND BREBNER, G. 2003. Storing and Accessing User Con-
text. InProceedings of the 4th International Conference on Mobile Data
Management.

ROMÁN , M., HESS, C. K., CERQUEIRA, R., RANGANATHAN , A.,
CAMPBELL , R., AND NAHRSTEDT, K. 2002. Gaia: A Middleware
Infrastructure to Enable Active Spaces.IEEE Pervasive Computing 1, 4,
74–83.

SATYANARAYANAN , M. 2002. The evolution of Coda.ACM Transactions
on Computer Systems 20, 2 (May), 85–124.

TSAI, R. 1987. A Versatile Camera Calibration Technique for High-
Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cam-
eras and Lenses.IEEE Journal on Robotics and Automation 3, 323–344.

WAGNER, M. 2003. Configuration Strategies of an AR Toolkit-based Wide
Area Tracker. InProceedings of The Second IEEE International Aug-
mented Reality Toolkit Workshop.

WEISER, M. 1991. The computer of the twenty-first century.Scientific
American(Sep.), 94–100.

25


	1 Introduction
	2 An Example Scenario
	3 Requirements for Distributed Spatial Configuration
	4 DWARF
	5 Automatic Context Aware Configuration
	6 Implementation Status
	7 Related Work
	8 Conclusion and Future Work

