Proceedings of the 1st International Workshop on
Teaching Logic Programming
TeachLP 2004

2004, Saint Malo
,D.Seipel (Eds)

LINKOPING UNIVERSITY
ELECTRONIC PRESS

Proceedings of the First International Workshop on
Teaching Logic Programming: TeachLP 2004
Saint Malo, September 8-9, 2004

M. Ducassé, U. Nilsson, D. Seipel (Editors)

Preface

Following the panel discussion at the International Conference on Logic Program-
ming 2003 in Mumbai, India, the first international workshop on Teaching Logic
Programming, TeachLLP 2004, was held in Saint Malo, France, on 8-9 September
2004. The meeting ran as a workshop in conjunction with the 2004 International
Conference on Logic Programming, held on September 6-10, 2004.

Logic Programming (LP) and Constraint Logic Programming (CLP) are pow-
erful programming paradigms, but hard to learn without sufficient assistance. To
further spread the technology it should be taught to a broader range of computer
science students. The aim of the workshop was to investigate what is currently
taught and how; what should be taught and why.

Suggested topics for submissions included:

e teaching on different aspects of (C)LP

— fundamentals of logic programming,
— software engineering techniques for Prolog,
— debugging techniques for Prolog,

— practical applications,

e teaching special aspects of (C)LP, such as control structures and meta pred-
icates,

e teaching Prolog/(C)LP in a few hours for CS students,
e tools for teaching,

— tools for teaching (C)LP,
— using (C)LP technology for e-learning systems,

e relation to other fields and paradigms,
e applying (C)LP in other courses,

e (C)LP and the ACM curriculum,

e (C)LP for the masses or for experts.

We would like to thank all the authors who have submitted a paper, and all
colleagues who have served as reviewers in the program committee for their con-
tributions to the success of the workshop. Many thanks also to the organizers of

the International Conference on Logic Programming ICLP’2004 for the schedul-
ing and the local arrangements. Finally, we acknowledge the support of Linkoping
University Electronic Press for publishing the workshop proceedings.

Saint Malo, September 2004
Mirelle Ducassé, Ulf Nilsson, Dietmar Seipel

Organizing committee

Mireille Ducassé (IRISA/INSA de Rennes, France)
Ulf Nilsson (Link6pings Univ., Link&éping, Sweden)
Dietmar Seipel (Univ. Wiirzburg, Germany, PC chair)

Program committee

Christoph Beierle (Fern-Uni Hagen, Germany),
Manuel Carro (Technical Univ. of Madrid, Spain),
Mireille Ducassé (IRISA/INSA de Rennes, France),
Ulrich Geske (Fraunhofer First Berlin, Germany),
Gopal Gupta (Univ. of Texas at Dallas, USA),
Michael Hanus (CAU Kiel, Germany),

Ulrich Neumerkel (TU Vienna, Austria),

Ulf Nilsson (Linkopings Univ., Sweden),

Enrico Pontelli (NMSU, Las Cruces, USA),
Dietmar Seipel (Univ. Wiirzburg, Germany),
Kazunori Ueda (Waseda University, Tokyo, Japan).

Contents

An On-line Course on Constraint Programming 11
Christine Solnon

Partial Specifications of Program Properties 18
Christoph Beierle, Marija Kulas, Manfred Widera

Teaching Prolog Programming at the E6tvos Lorand University,
Budapest 35
Tibor Asvdnyi

Prolog as Description and Implementation Language in Computer
Science Teaching 43
Henning Christiansen

Teaching Logic Programming at the Budapest University of Tech-
nology 55
Péter Szeredi

A Logic Programming E-Learning Tool For Teaching Database De-
pendency Theory 71
Paul Douglas, Steve Barker

A Database Transaction Scheduling Tool in Prolog 81
Steve Barker, Paul Douglas

10

An On-line Course on Constraint
Programming

Christine Solnon
LIRIS CNRS FRE 2672, Nautibus, Université Lyon [
48 Bd du 11 novembre, F-69 622 Villeurbanne cedex
christine.solnon@liris.cnrs.fr

Abstract

This paper describes an on-line course on constraint programming. This
course is dedicated to students of the “e-miage” formation, which is a french
remote formation to “Information Systems for Companies Management”.
This course is available (in french) at
http://www710.univ-1lyonl.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm

1 Introduction

The MIAGE (Méthodes Informatiques Appliquées & la Gestion des Entreprises)
is a popular french formation on “Information Systems for Companies Manage-
ment” which is delivered in twenty french universities. This formation lasts for
three years and delivers a “Maitrise” diploma, nearly corresponding to a Master’s
degree.

The e-miage [4] is an on-line version of the MIAGE formation: students of the
e-miage can earn their degree via the Internet. This remote formation aims at
reaching new trainees who cannot follow traditional courses, either because they
cannot physically attend them (foreign or handicapped students), or because they
are professionals that are continuing education during their release time. Another
goal is to improve the actual learning conditions of basic education students
by providing them with complete courses and training exercises available via
Internet.

E-learning allows students to earn their degrees with maximum efficiency
and flexibility, without commuting nor schedule conflicts: students study via
Internet whenever and wherever they choose. However, remote formation also
raises drawbacks, and students may feel isolated, or get stucked on difficult points.
To overcome these drawbacks, student progresses are followed by tutors: a tutor
is a professor of the university from which the student is registered; he answers

11

student’s questions via e-mail and evaluates his knowledge at the end of each
course.

The e-miage formation is composed of fifty course units, each course unit
roughly corresponding to fourty learning hours and to three ECTS (European
Credit Transfer System). One of these course units is entitled “Artificial In-
telligence” and is composed of 36 working sessions of one hour: 2 introductory
sessions about artificial intelligence, 8 sessions about logic, 5 about Prolog, 7
about constraint programming, 4 about ontologies, 2 about problem solving, 3
about machine learning, and 5 about expert systems. There is no predefinite
order for studying these lessons. However, some sessions may be required for
studying other sessions. In particular, logic must be studied before Prolog, and
Prolog before constraint programming.

This paper describes the sessions dedicated to constraint programming. We
first discuss instructional objectives, and the reasons that guided the choice of
the programming language used to illustrate this course. We then describe the
content of each session. We conclude on a first feedback on this course, and on
some related sources of information.

2 Instructional objectives and choices

This course does not aim at training experts of constraint programming, but is
an introduction to this field: the goal is to train students to use a constraint
programming language to solve problems. By means of competences, one can
summarize our objectives by the 4 following points:

e knowing what is a constraint satisfaction problem (CSP),

e being able to model a problem as a CSP,

e knowing how a constraint solver works, and

e being able to use a constraint programming language to solve a CSP.

These objectives must be achieved within 7 training sessions of one hour so
that we have limited this course to the very basic concepts: we mainly deal with
basic constraint satisfaction problems, and only briefly introduce their different
extensions, such as Max-CSP or Valued-CSP; also, we have limited the study of
constraint solvers to complete approaches, based on the “branch and propagate”
schema, and to constraints on finite domains.

To illustrate constraint programming, we have chosen a logic programming
language. Indeed, it would have been interesting to illustrate constraint program-

12

ming with different languages, based on different paradigms. However, consider-
ing the small number of sessions, we have limited the study to one language. We
have more particularly chosen Gnu-Prolog [8], a language developped by Daniel
Diaz. Indeed, Gnu-Prolog is used to illustrate the Prolog course within the same
course unit; it integrates a constraint solver over finite domains and provides a
large number of built-in predicates for defining and solving constraints; finally, it
is free and easy to install on most computers and operating systems.

3 Content of the sessions

The course on constraint programming is divided into 7 learning sessions of one
hour.

Session 1 introduces constraint satisfaction problems.

In a first part, we introduce terminology and definitions: we define what
is a constraint, and give an overview of the different kinds of constraints; we
formally define what is a constraint satisfaction problem (CSP); we introduce the
notion of variable assignment (complete or partial, consistent or inconsistent)
and define what is a solution of a CSP; we introduce the concept of over and
under constrained problems, and briefly discuss the main extensions to the CSP
framework.

In a second part, we illustrate how to model a problem as a CSP through two
examples. The first example is the well known n-queens problem: this problem is
very simple to describe and allows us to introduce the fact that there may exist
different CSP modelings for a same problem. The second example is the stable
marriage problem [5], which has more practical applications.

Session 2 is a training session, where the student has to model 5 problems
within the CSP framework:

e The first problem involves computing the set of coins that must be returned
back by a slot machine, given a price and a quantity of inserted coins. This
problem is modeled with integer variables and linear integer constraints.
We then ask to add an optimization criterion in order to minimize the
number of returned coins.

e The second problem is the classical map coloring problem.

e The third problem is a logical puzzle that has been proposed by Lewis
Caroll in [3]: 6 friends have to decide what condiment to take (i.e., either

13

salt, or mustard, or both salt and mustard, or nothing) while satisfying 5
given logical rules. We ask for two different modelings for this problem: one
which associates one 4-valued variable with each friend, and another one
which associates one boolean decision variable for each condiment/friend
pair.

e The fourth problem is the well-known “SEND 4+ MORE = MONEY”
cryptarithmetic puzzle, for which we ask for the two classical modelings:
one with a single constraint that expresses the global sum constraint, and
another one with carry variables and 5 sum constraints.

e The fifth problem is the well-known “zebra” puzzle, which involves associ-
ating a nationality, a colour, an animal, a favorite drinking, and a favorite
cigarette tobacco to five consecutive houses, given a set of clues.

For each of these problems, students may ask for some help by clicking on a link
that gives indications to help him identifying the variables, their domains and
constraints holding between them.

Session 3 introduces basic principles of constraint solvers. We first describe
the “generate-and-test” algorithm, which exhaustively enumerates all complete
assignments until a solution is found, and we introduce the concept of search
space of a CSP. We then describe the “simple-backtrack” algorithm, and we
show that the integration of constraint checks within enumeration actually re-
duces the number of generated combinations. We then introduce the basic prin-
ciple of constraint propagation and filtering algorithms, and the associated local
consistencies, and we show how to integrate these filtering technics within the
simple-backtrack algorithm. Finally, we discuss ordering heuristics, and we show
that they may speed-up the solution process.

Each algorithm is first informally described. It is then given in imperative
pseudo-code, and its run-time behavior is illustrated on the 4-queens problem.

Session 4 is a training session, where the student has to implement in Prolog
the different algorithms introduced in session 3. The goal is to let the students
have a better understanding and a first practice of the basic principles of enumer-
ation and propagation. Another goal is to let them go deeper into the practice
of the Prolog language, which has been studied previously during the five Prolog
sessions, and to show that Prolog is very well suited to implement these algo-
rithms.

14

To simplify constraints representation and consistency checking, we limit our-
selves to binary constraints. The different algorithms that are implemented dur-
ing the session are used to solve the n-queens problem, the map coloring problem,
and the stable marriage problem (Prolog predicates describing these three prob-
lems are given to the student). Finally, the efficiency of the different algorithms
is experimentally compared on the n-queens problem.

As this training session is not directly supervised by a teacher, we have to
guide students progression. Hence, for each algorithm, we progressively introduce
the different predicates to implement, and for each predicate to implement, we
give its template, a description by means of the relationship between its argu-
ments, and some examples of calls and answers.

Session 5 is dedicated to learning and using a constraint programming lan-
guage, i.e., Gnu-Prolog.

In a first part, we introduce the built-in Gnu-Prolog predicates for defining
finite domain variables, and constraints over finite domain variables, and for solv-
ing these constraints. For the main built-in predicates, we give a full description,
and we illustrate them on different examples. We widely refer to the Gnu-Prolog
on-line users’ manual [8] for more information on other predicates.

In a second part of this session, we illustrate the built-in constraint predicates
of Gnu-Prolog through the two examples introduced in session 1, i.e., the n-queen
problem and the stable marriage problem.

Sessions 6 and 7 are training sessions, where students have to use Gnu-Prolog
for solving the different problems introduced during session 2. For each exercise,
we first recall the CSP modeling that has been designed during session 2. Then,
we give some indications and we guide the students’ progression for solving the
CSP with Gnu-Prolog. In particular, we describe the main predicates that should
be written, and for each of them we give its template and some examples of calls
and answers.

4 Conclusion

First results. A first group of thirteen students has used this course this year.
Some feedback on it has been provided through the questions they asked to the
tutor... and more over through the questions they did not asked (!): they actually
asked very few questions, on minor points only, and globally felt satisfied. For
this first experiment, solutions to exercises were available on-line, and the tutor
has not checked the solutions found by the students. As a consequence, we had

15

nearly no feedback about the difficulties they may have uncountered. For the
next year, we have decided to deliberately hide the solutions to the students, and
to ask them to send their own solutions to their tutor before sending them an
“official” solution. This should allow us to evaluate more precisely the difficulties
they encountered.

The whole “artificial intelligence” course unit has been ratified by a test. The
questions about the constraint programming part mainly dealed with modeling a
problem into a CSP. Answers were rather satisfactory, and the average score for
the part concerning the constraint programming course has been slightly greater
than the average score for the whole artificial intelligence course.

Related work and references. Anybody looking for information on con-
straint programming via Internet very quickly finds the “Online guide on con-
straint programming” written by Roman Bartak [2], which is a very complete
tutorial, and which has been a valuable source of inspiration for this course.

However, our goal —and therefore the resulting course— is rather different:
we do not aim at training experts and at being complete on the subject, but
we aim at training students to model constraint satisfaction problems, and to
use a constraint programming language to solve them, within a limited amount
of time (7 hours). Hence, our course only focuses on basic aspects and is not
as complete as Roman Bartak’s guide on some points. In particular, we do not
develop heuristic algorithms (such as local search) and approaches for solving
over-constrained problems. As a counterpart, our course includes many exercices,
and (try to) guide students to build their own solutions to these exercices. Also,
our course includes some other points that are not developped in Roman Bartak’s
guide: it introduces a constraint programming language, and illustrates how to
use it to solve constraint satisfaction problems.

To write this course, we also took inspiration from many other tutorials and
books on constraint programming, e.g., [1, 6, 7, 9, 10]. Students that have been
appealed by this introductory course are refered to these books to actually become
experts!

Finally, note that if this course has been designed for e-miage students, it is
available (in french) at
http://www710.univ-1lyonl.fr/~csolnon/Site-PPC/e-miage-ppc-som.htm

References

[1] K.R. Apt: Principles of Constraint Programming, Cambridge University
Press, August 2003, 407 pages. ISBN: 0521825830.

16

[2] Roman Bartak: On-line guide to constraint programming
http://kti.ms.mff.cuni.cz/~bartak/constraints/

[3] Lewis Carrol: Symbolic Logic, 1896 http://durendal.org/lcsl/
[4] e-miage: http://www.u-picardie.fr/~cochard/IEM/

[5] Ian P. Gent and Patrick Prosser: an empirical study of the stable marriage
problem with ties and incomplete lists, in the proceedings of ECAI 2002, IOS
Press, pp 141-145

[6] Frangois Fages: Programmation Logique par Contraintes, Collection ” Cours
de I’Ecole Polytechnique”, Ellipses, Paris, 1996.

[7] T. Frihwirth and S. Abdennadher: Essentials of Constraint Programming,
Springer Verlag, March 2003.

[8] GNU-Prolog: http://gnu-prolog.inria.fr/

[9] K. Marriott and P.J. Stuckey: Programming with Constraints: An Introduc-
tion, The MIT Press, 1998

[10] E. Tsang: Foundations of Constraint Satisfaction, Academic Press, 1993

17

Partial Specifications of Program Properties

Christoph Beierle, Marija Kulas, Manfred Widera
Wissensbasierte Systeme, Fachbereich Informatik
FernUniversitdt in Hagen, 58084 Hagen, Germany

{beierle | marija.kulas [manfred.widera}@fernuni-hagen.de

Abstract

For the automatic revision of homework assignments in Prolog program-
ming courses, in general one has to rely on testing or on validating pro-
grams with respect to a specification. Here, we present a pragmatic and
flexible method for the partial specification of program properties. Within
the AT(P) system, partial specifications can be used for automatic analysis
of student solutions to Prolog exercises, yielding automatically generated
feedback to the student. AT(P) is integrated into the Virtual University
system of the FernUniversitat in Hagen.

1 Introduction

For the automatic revision of homework assignments in Prolog programming
courses, in general one has to rely on testing or on validating programs with
respect to a specification. Here, we present a pragmatic and flexible method
for the partial specification of program properties. Partial specifications can
be used for automatic analysis of student solutions to Prolog exercises, yielding
automatically generated feedback to the student.

This approach has been realized in the AT(P) system which is a Prolog in-
stance of our more general AT(x) framework. Within the distance teaching en-
vironment where AT(P) is being used for teaching Prolog courses, three major
requirements emerged:

e (Correctness: when stating an error in a student’s program, there indeed
exists one.

e Robustness: guaranteed termination even for students’ programs that cause
runtime errors or infinite loops.

e Understandable output: messages of the system must especially aim at stu-
dents.

18

In this paper, we provide an introduction to the AT(P) system. AT(P) was also
presented at the 18. Workshop on Logic Programming in Potsdam [1]. Several
parts of this paper describing the general AT (x) framework are taken from [1],
while here backtracking tests are described in more detail, and new examples for
partial specifications are given.

After giving an overview on the integration of AT(P) into the Virtual Uni-
versity system of the FernUniversitat in Hagen, the general requirements of the
central analysis component are described. The analysis of Prolog programs is
based on the partial specification of program properties (procedural as well as
declarative ones). In particular, we will give various examples of our approach
to partial program specifications that can be expressed in AT(P), illustrating for
instance how the messages provided by the system can be easily adapted to the
students’ needs.

2 WebAssign and AT(x)

The AT(x) framework is designed to be used in combination with WebAssign,
a general system for assignments and assessment of exercises for courses [2, 12].
WebAssign provides support with web-based interfaces for all activities occurring
in the assignment process, e.g. for the activities of the author of a task, a student
solving it, and a corrector correcting and grading the submitted solution. In
particular, it enables tasks with automatic test facilities and manual assessment,
scoring and annotation. WebAssign is integrated in the Virtual University system
of the FernUniversitét Hagen [6].

From the students’ point of view, WebAssign provides access to the tasks to
be solved by the students. A student can work out his solution and submit it
to WebAssign. Here, two different submission modes are distinguished. In the
so-called pre-test mode, the submission is only preliminary. In pre-test mode,
automatic analyses or tests are carried out to give feedback to the student. The
student can then modify and correct his solution, and he can use the pre-test
mode again until he is satisfied with his solution. Eventually, he submits his
solution in final assessment mode after which the assessment of the submitted
solution is done, either manually or automatically, or by a combination of both.

While WebAssign has built-in components for automatic handling of easy-to-
correct tasks like multiple-choice questions, this is not the case for more complex
tasks like programming exercises. Here, specific correction modules are needed.
The AT(x) framework aims to analyze solutions to programming exercises and
can be used as an automatic correction module for WebAssign. Its main purpose
is to serve as an automatic test and analysis facility in pre-test mode.

19

AT(x) is divided into several components: the main work is done by the
analysis component of the respective AT(x) instances (cf. Figure 1). Especially in
functional and logic programming, the used languages are well suited for handling
programs as data. The analysis components of AT(P) (and also of AT(S), an
instance of AT(x) for the functional programming language Scheme, cf. [13]) is
therefore implemented in the target language (i.e. the language the programs to
be tested are written in).

While for a description of the various other AT(x) components we refer to
[1], the general requirements for the analysis components are summarized in the
following section, whereas the Prolog analysis system for AT(P) is described in

Sec. 4.

’ \ N
WebAssign

user interface
user admlnlstranon

background Java interface
data ~ analysissystem

(test queries,

test results '
reference solution) (in target language)

core component

Figure 1: Structure of AT(x)

3 General Requirements for the Analysis Components

The heart of the AT(x) system is given by the individual analysis components
for the different programming languages. The intended use in testing homework
assignments rather than arbitrary programs implies some important properties
of the analysis components discussed here: it can rely on the availability of a
detailed specification of the homework tasks, it must be robust against non ter-

20

minating input programs and runtime errors, and it must generate reliable output
understandable for beginners.
The description for each homework task consists of the following parts:

e A textual description of the task. (This is essentially used in preparation
of the homework assignment, but not in the testing task itself.)

o A set of test cases for the task.

e Specifications of program properties and of the generated solutions. (This
applies especially for declarative languages like Prolog.)

e A reference solution. (This is a program which is assumed to be a cor-
rect solution to the homework task and which can be used to judge the
correctness of the students’ solutions.)

This part of input is called the static input to the analysis component, because
it usually remains unchanged between the individual test sessions. A call to the
analysis system contains an additional dynamic input which consists of a unique
identifier for the homework task (used to access the appropriate set of static
input) and a program to be tested.

Now we want to discuss the requirements on the behaviour of the analysis sys-
tem in more detail. Concretizing the requirement of reliable output we want our
analysis component to return an error only if such an error really exists. Where
this is not possible (especially when non termination is assumed), the restricted
confidence should clearly be communicated to the student, e.g. by marking the
returned message as a warning instead of an error. For warnings the system
should describe an additional task to be performed by the student in order to
discriminate errors from false messages.

Runtime errors of every kind must be caught without affecting the whole
system. For instance, if executing the student’s program causes a runtime error,
this should not corrupt the behaviour of the other components. Towards this end,
our AT(P) and AT(S) implementations exploit the hooks of user-defined error
handlers provided by SICStus Prolog and MzScheme, respectively. An occurring
runtime error is reported to the student, and no further testing is done, because
the system’s state is no longer reliable.

For ensuring termination of the testing process, infinite loops in the tested
program must also be detected and interrupted. As the question whether an
arbitrary program terminates is undecidable in general, an analysis component
will have to rely on a safe approximation to the detection of non-termination (see
Sec. 4), and the report to the student must clearly state the restricted confidence
on any detected non-termination.

21

4 Analysis of Prolog Programs

Due to the declarative character of Prolog, a variety of tests can be performed
on Prolog programs. Certain main properties of a program can be tested by
annotations. Our system AT(P) is essentially based on the TSP approach of
H. Neumann [7] where several kinds of Prolog annotations are proposed, together
with an algorithm for their validation with respect to a given student’s program
and a reference program.

4.1 Annotation Tests

One general kind of annotation is a positive/negative annotation. Such an anno-
tation consists of a test query, a flag whether this query should succeed or fail
and a description of the property that is violated if the query does not behave
as expected. This description is reported to the student together with the query
and the intended result.

Example 1 Consider the task of implementing a predicate between/3 described
as follows:

Let N and M be integers with N < M. Define a predicate between/3
such that a query between(X, N, M) is true if N is less or equal to M,
and X is an integer between N and M.

A possible error of a student’s program is to allow for too large values X in a call
between(X, N, M). We can detect and explain that by an annotation test where

e the test query is set to “between(30, 10, 20)”,
e the success flag is set to expected failure,

e the error explanation text is “If X is greater than the uppe r bound M,
between(X,N,M) must not succeed”.

For instance, if this test fails, the system will generate the following output: The
following query succeded, though it should fail: between(30,10,20). Therefore,
your program violates the following property: If X is greater than the upper
bound M, between(X,N,M) must not succeed. O

Apart from positive/negative annotations, the TSP system introduced com-
pleteness annotations, expressing constraints on the number of solutions to a
query (see Sec.b), and file annotations, enabling some handling of files. Further,
mode and example specifications are special kinds of annotations as well.

22

4.2 Mode Tests

Mode tests form the class of tests that is performed most often by AT(P). Its
aim is to check whether the given program (or more precisely, the currently
checked predicate in this program) behaves correctly for all intended modes (i.e.
combinations of input and output instantiations of the predicate). Performing a
mode test consists of the following steps:

1. Generate test queries for all intended modes of the tested predicate.

2. For each generated query perform the following steps:

(a) Evaluate the query (as a backtracking test, to be explained below) with
respect to the student’s program, and collect all generated results.

(b) Evaluate the query with respect to the reference program, and collect
all generated results.

(c) Search for evidence for errors in the results of evaluation.

The generation of test queries uses a list of instantiated terms (ezample terms)
that should be provable by the tested predicate, and a list of modes the predicate
should be applicable with. In the mode list the individual parameter positions are
marked as input or output parameter as usual: + denotes an input parameter
that must be instantiated, — denotes an output parameter that must not be
instantiated, and parameters marked with ? may be either way.

Example 2 Consider the well-known append/3 predicate:

append([], L, L).
append ([H|R1], L2, [HIR]) :- append(R1, L2, R).

Some example terms (provable goals) for this predicate are
append([], [a,b], [a,b]), append([al,[],[a]), append([al, [, c],[a, b, c]).
Let the list of modes of append/3 be the following.!

append(?L1,7L2,+L3), append(+L1,+L2,7L3)

'In contrast to the usual mode declaration append(? Prefiz, ?Suffiz, ? Combined) found e.g. in
[10], here we are not interested in the capability of append/3 to guess list entries when they are
not completely given as e.g. in the goal append (L1, [a,b], L).

23

For the first example term and the first mode declaration we get the following
list of test queries:

append (L1, L2, [a,b]), append(L1,][a,b],|a,b]),
append([], L2, [a,b]), append([],[a,b],[a,b]).

The other example terms and mode declarations are processed analogously. [

4.3 Backtracking tests

Mode and completeness annotations give rise to so-called backtracking tests. The
current test query (built from a mode annotation as shown above, or given in a
completeness annotation) is evaluated within the original backtracking analyzer
of [7]. The backtracking analyzer evaluates a test query with respect to a pro-
gram and an expected number of answers, creating a (partial) list of answers
and a status report. The evaluation process is controlled by two limits. The
backtracking limit L stems from the backtracking test in question. It is set to be
L := Ly + 3, where L is the limit of the completeness annotation, or, in case of
a mode test, Ly := 1. So for a mode or completeness annotation, several extra
solutions to each test query shall be sought, thereby giving more possibility to
catch wrong solutions, or to detect universal termination. The second limit is
the termination limit Max, the empirical estimation of the number of resolution
steps and runtime calls needed. If Lg is given, the execution of the test query
ends at the latest after L + 1 solutions have been found. Either way, the excution
of the test query ends at the latest after Max + 1 steps.

A mode error is reported, if for some mode test query no student solution
(i. e., no solution with respect to the student’s program) is found, or some student
solution is refuted by the reference program, or the termination limit is reached.
Analogously for a completeness error.

4.4 'Wrong and Missing Solutions

To determine wrong solutions, we have to evaluate each test query with respect to
the student program, and then check the resulting substitutions with the reference
program. The substitutions refuted by the reference program are wrong. If we
also want to determine missing solutions, we need to evaluate each test query
for the second time, now with respect to the reference program. Both programs,
the reference program and the student’s program, are held in memory in parallel
using different modules.
The following steps of comparison are performed:

24

e Solutions of a student’s program are reported as wrong solutions if they are
falsified by the reference program (i.e. if the query given by the solution
fails in the reference program).

e A solution of the reference program is reported as missing if it is not sub-
sumed by some solution of the student’s program. (It is not sufficient for
the student’s program to accept every solution generated by the reference
program. The student’s program must rather be able to generate all these
solutions.)

e For some of the test queries the number of expected solutions can be given
(completeness annotation), and the number of solutions generated by the
student’s program is compared with this specification.

Example 3 Consider the task of implementing a predicate perm/2 that is ful-
filled if both arguments are lists which are permutations of each other. Let the
analyzed test query be perm([a,b,c|, L). Let further the programs generate the
following instantiations for L:

‘ considered values
analyzed program | (a,b,d], [0,¢,8], b0, Breral, (60,8, [6,5,d
reference solution | [¢, b, a], [c,a,b], [b,c,al, [b,a,c], [a,c,b], [a,b,c]

Because of comparing of the solution sequences as sets, the system can infer the
correctness of the analyzed program with respect to this query. O

In case of an infinite number of solutions just a prefix is generated. The system
is still applicable to those tasks with infinite solution set if a natural order on the
solutions exists and therefore the generated solutions of the student’s program
and the reference program match. An example of a problem with natural order is
the generation of all prime numbers. In contrast, there is no single natural order
for generating all words over the alphabet 3 = {@, #, $}.

4.5 Redundant Solutions

Redundant solutions, i.e. solutions erroneously occurring several times in the se-
quence of solutions, are detected by an algorithm that interprets every repetition
of a solution as an unintended one. If repeated solutions are intended by the
problem, these messages can be filtered out later. This procedure turned out to
be sufficient since in our context of homework assignments the processed solution
sequences are usually quite small.

25

4.6 Supervising Termination and Runtime Errors

During the evaluation of a query in a module, its termination behaviour is as-
sessed by a meta-interpreter as follows. Goals for predicates defined in the module
are resolved, whereas goals for built-ins or imported predicates are passed to the
runtime system using timed-out call/1. The interpreter counts the number of res-
olutions and runtime calls. Upon exceeding the threshold, the current evaluation
of the query is aborted and evidence for an infinite loop is reported.

The class of runtime errors contains all errors that are detected by the runtime
system and cause the immediate termination of the computation (unless they are
caught and processed as in our system). Runtime errors in Prolog programs
contain among others

e cxistence errors (e.g. a non-existing predicate was called)

e instantiation errors (e.g. performing a mathematical computation with unin-
stantiated arguments)

® resource errors (eg no more memory).

Test evaluations performed by AT(P) are supervised and runtime errors are
caught. If a runtime error occurs, the error message is passed to the student
via WebAssign and the remaining tests are canceled. This cancellation avoids
imprecise results for further tests caused by side-effects of the runtime error.

5 Partial Specifications of Program Properties

We will present concrete examples of specifications of program properties as they
can be expressed in our system. They are provided by the tutor and present a
powerful and very flexible means of expressing partial program specifications. Re-
garding the significance of “correct” specifications, one might ask what happens
if a partial specification given by the tutor contains incomplete or wrong decla-
rations of e.g. modes or examples. Of course, this could have dramatic effects
leading to incorrect feedback to the students. However, this situation touches an
inherent teaching problem: The teacher’s instructions should be flawless. While
it seems generally accepted that fully automatic generation of test cases is not
feasible, AT(P) improves the homework assignment process compared to only
manual correction and textual handout of reference solutions.

Factorial Suppose in a Prolog course, the predicate fac/2 for computing the
factorial of a natural number has been introduced, using the calling pattern
fac(+N,?F), i.e., if N and F are such that F' = N/ then fac(N,F) holds provided

26

that the first argument is instantiated. Let us further assume that the following
homework assigment is given to the students: Define a predicate inv_fac/2 that
computes both the factorial as well as its inverse, where at least one argument
must be instantiated.

Figure 2 gives a partial specification of inv_fac/2. In line 2, modes/1 has a
list of two mode terms expressing the intended usage of inv_fac/2. Together with
the example term given in line 3, the test queries inv_fac(5,F), inv_fac(5,120),
and inv_fac(N,120) are automatically generated.

% Import: fac/2 % 0
:- load files([library(’fac.pl’)], [compilation mode(assert_all)]). % 1
modes ([inv_fac(+N, ?F), inv_fac(?N, +F)]). % 2
examples([inv_fac(5,120)]1). % 3
testcase(complete(inv_fac(N,1), 2, =)). h 4
testcase(pos_ann((inv_fac(0, F), F = 1), % 5
’inv_fac(0,F) =>F = 17)). % 6
testcase(pos_ann((fac(6, F), inv_fac(X, F), X = 6), %7
’F > 1 and fac(N,F) and inv_fac(X,F) => N = X’)). % 8
testcase(pos_ann((inv_fac(N, 720), fac(N, X), X = 720), %9
’inv_fac(N,F) and fac(N,X) => F = X’)). %10
testcase(pos_ann((inv_fac(5,F), fac(5,F)), AN
>inv_fac(N,F) => fac(N,F)’)). h12
testcase(neg_ann(inv_fac(.N,100), %13
‘not fac(N,F) => not inv_fac(N,F)’)). %14
testcase(neg_ann(inv_fac(N,0), ’not inv_fac(N,0)’)). %15
testcase(neg_ann(inv_fac(N,-1), ’F < 0 => not inv_fac(N,F)’)). %16
testcase(neg_ann(inv_fac(-1, F), N < 0 => not inv_fac(N, F)’)). %17
Figure 2: Specification of program properties for inv_fac/2

Line 4 contains a so-called completeness annotation (cf. Sec. 4). The general
form of a completeness annotation is

testcase(complete(+ TestQuery, +Limit, +Op)).

which causes a check whether TestQuery produces a number N of solutions such
that N Op Limit holds, with Op € {<, <=, =, >=, >}. Thus, line 4 specifies that
inv_fac(_N,1) has exactly 2 solutions (the factorial of both 0 and 1 yields 1).

27

Lines 5-17 contain four positive (5-12) and four negative (13-17) annotations.
In general, for a positive annotation

testcase(pos_ann(+ TestQuery, +Annotation)).

TestQuery should succeed. If it fails, Annotation is violated. For instance,
if the query inv_fac(N, 720), fac(N, X), X = 720 fails, then the annotation
“inv_fac(N,F) and fac(N,X) => F = X’ has been violated (lines 9-10). Note
that the annotations are given as text strings, intended as error explanations for
the students.

Analogously, the test query in a negative annotation should fail. For instance,
if the query inv_fac(_N,100) succeeds, the annotation ’not fac(N,F) => not
inv_fac(N,F)’ has been violated (lines 13-14).

Let us now suppose that the tutor wants the students to develop a version of
inv_fac/2 where both of its arguments may be uninstantiated. The specification
of program properties given in Fig. 2 can be adapted to this modified task easily
by just replacing line 2 by

modes ([inv_fac(?N, ?F)]).
specifying the generalized mode situation.

Between A partial specification of program properties of the predicate
between/3 (Sec. 4) is given in Figure 3. Note that here, the tutor has choosen
rather verbal annotations as error explanations, instead of more formal ones as
for inv_fac/2. An example session involving between/3 is given in the appendix.
Subterm Let the following homework assignment be given: Define a predicate
subterm/2 with calling pattern subterm(+SubTerm,+Term) that holds if SubTerm
1s a subterm of Term, where every term is a subterm of itself, and a subterm of
an argument of some term T is a subterm of T as well. For instance, p(X) is a
subterm of p(X) and of q(a,p(X),Y), but not a subterm of p(Y). Figure 4 specifies
various properties of subterm/2. If we want to extend the task by requiring that
in the case of multiple occurrences of SubTerm in Term the predicate should
succeed only once, we could adapt the partial program specification of Figure 4
by adding the completeness annotation

testcase(complete(subterm(a, p(a,gla,a),a)), 1, =)).

Palindrom Let alphabet([a, d, m/). specify the alphabet of characters a, d, m. A
palindrom is a sequence of characters (from this alphabet) that reads backwards
the same (“Madam I'm Adam”). Figure 5 contains a partial specification of

28

modes ([between(?_X, +N, +M)]). % 1
examples([between(1,0,3)]). h 2
testcase(complete(between(X,100,102), 3, =)). %3
testcase(complete(between(X,5,5), 1, =)). % 4
testcase(neg_ann(between(X,6,5), *If the lower bound N is greater % 5
than the upper bound M, between(X,N,M) can not succeed’)). % 6
testcase(pos_ann(between(10,10,20), ’The lower bound N is %7
between N and M’)). % 8
testcase(pos_ann(between(20,10,20), ’The upper bound M is % 9
between N and M’)). %10
testcase(pos_ann(between(20,20,20), ’N is between N and N’)). %11
testcase(neg_ann(between(20,30,40), ’If X is less than the lower %12
bound N, between(X,N,M) must not succeed’)). %13
testcase(neg_ann(between(30,10,20), ’If X is greater than the upper %14
bound M, between(X,N,M) must not succeed’)). %15
Figure 3: Specification of program properties for between/3

palindrom/1 that holds if its argument is a palindrom, e.g. palindrom(/m, a, d,
a, m/). Note the use of the completeness annotation in line 3, requiring that the
test query ?- palindrom(_L). generates at least 10 solutions.

Cycles Assume that an undirected graph is given by stating its edges using
edge/2, e.g.:

edge(a,b). %

edge(a,c). % a4 —————— b
edge(c,d). % | I\
edge(d,h). % | I\
edge(b,d). % c —————- d --h
edge(b,h). %

Define a predicate cycle/1 that holds if its argument is a simple cycle, i.e. a path
in the graph with identical initial and final node where only one node occurs more
than once in the path. For instance:

?- cycle([d, h, b, d]).
yes

29

Figure 5: Specification of program properties for palindrom/1

modes ([subterm(+_SubTerm, +_Term)]). %1
examples ([subterm(p(X), q(a,pX),y,p(pX))N1). h 2
testcase(pos_ann(subterm(p(X), p(X)), %3
’forall T: [atomic(T) or var(T) or compound(T)] => subterm(T,T)’)). % 4
testcase(neg_ann(subterm(p(X), p(Y)), % 5
’var(X) and var(Y) and not X == Y => not subterm(p(X),p(¥))’)). % 6
testcase(neg_ann(subterm(p(x), p(X)), h T
’atomic(A) and var(X) => not subterm(p(d),p(X))’)). % 8
testcase(neg_ann(subterm(p(x), p(q(x))), % 9
’T1 does not occur as substring in T2 => not subterm(T1,T2)’)). %10
Figure 4: Specification of program properties for subterm/2

modes ([palindrom(?7_L)]). 51
examples([palindrom([m,a,d,a,m])]). % 2
testcase(complete(palindrom(_L), 10, >=)). % 3
testcase(pos_ann(palindrom([]), ’palindrom([]1)’)). % 4
testcase(pos_ann(palindrom([a]), % 5
’member (X, _Alphabet) => palindrom([X])’)). % 6
testcase(pos_ann(palindrom([a, al), W7
’member (X, _Alphabet) => palindrom([X,X])’)). % 8
testcase(pos_ann(palindrom([a, a, al), %9
’member (X, _Alphabet) => palindrom([X,X,X])’)). %10
testcase(pos_ann(palindrom([d, m, a, a, m, d4]), AN
>[forall X: member (X,A) => member (X, _Alphabet)] and reverse(A,B) %12
and append(A,B,C) => palindrom(C)’)). 513
testcase(neg_ann(palindrom([m, a, b, a, m]), h1d
’not_member (X, _Alphabet) and member(X,L) => not palindrom(L)’)). %15
testcase(neg ann(palindrom([m, a, d, a, m, al), %16
’L = [A|R] and length(L,N) and even(N) and last(L,B) %17
and not A == B => not palindrom(L)’)). %18
testcase(neg_ann(palindrom([m, a, d, a, dl), %19
’L = [A|_R] and length(L,N) and odd(N) and last(L,B) %20
and not A == B => not palindrom(L)’)). %21

30

modes([cycle(?_cycle)]). h1
examples([cycle([h,d,c,a,b,h]1)]). h 2
testcase(complete(cycle([h|Rest]), 6, =)). % 3
testcase(neg_ann(cycle([]), ’The empty path is not a cycle’)). h 4
testcase(neg_ann(cycle([a,al), % 5
’not edge(A,A) => not cycle([A,A])?)). % 6
testcase(neg_ann(cycle([a,b,a,c,al), ’Z = [A|Rest] and Rest % 7
contains A more than once => not cycle(Z)’)). % 8
testcase(neg_ann(cycle([a,b,d,h,b,a]), ’Z = [A|Rest] and Rest %9
contains a node other than A more than once => not cycle(Z)’)). %10
testcase(neg_ann(cycle([a,b,d,c]), ’Z = [A|Rest] and last(Rest,B) %11
and not A == B => not cycle(Z)’)). %12
testcase(neg_ann(cycle([a,h,al), %13
’not A == B and not edge(A,B) => not cycle([A,B,A])’)). %14
Figure 6: Specification of program properties for cycle/1

?7- cycle([a, blRest]).
Rest = [a] ;

Rest = [d, c, al ;
Rest = [h, d, c, a]

Figure 6 contains a partial specification of cycle/I. For instance, line (2)
specifies that there are exactly 6 simple cycles with start node h. Please note
that the testcases in Figure 6 are rather fine-tuned towards the given graph;
however, given the flexibility of our specification approach, it is easy to use also
more general ones.

6 Conclusions and Further Work

The AT(P) system is fully implemented and operational. The analysis component
runs under SICStus Prolog based on the SUN Solaris or Suse Linux operating
system and, via its Java interface component, serves as a client for WebAssign.
AT(P) is being used in the framework of a course on deduction and inference sys-
tems at the FernUniversitat Hagen, as well as in a course on logic and functional
programming. After the usage of AT(P), feedback from the students was very
positive in general; a more detailed evaluation of the system has still to be done.

31

Of the several annotation types shown in Sec. 5, the modes and examples have
proven to be especially useful. Compared to the little effort needed to formulate
modes and examples, there is ample reward in automatically detected errors.
Also, along with the introduction of the system TSP, at the heart of AT(P), our
exercises have become more precise, thus reducing the risk of misunderstanding
with the students. Some reference solutions benefitted as well: by testing against
alternative versions, several improvements could be achieved. Finally, the modes
and examples are useful documentation of the predicates in question.

In the area of testing and analysis of Prolog programs there have been many
proposals, ranging from theorem proving (eg. [11]) to various forms of debugging
(eg. [3]) and systematic testing. The proposals differ along several axes: static
or run-time analysis, restricting the target language or not, expressiveness of the
annotation language. For a comparison of our AT(P) approach to various systems
like LPTP [11], GUPU [8], ApVICE [9], C1a0-Prolog [4], NOPE [5], or the TSP
system [7], we refer to [1].

There are other programming aspects that are not covered by AT(P). Exam-
ples are the layout of Prolog code, use of “imperative” programming style, etc.
While there are systems dealing with such aspects (e.g. enforcing a particular
layout discipline), in our AT(P) approach they are currently handled by a human
corrector in the final assessement mode. Whereas it should not be too difficult to
extend AT(P) in this direction, our priority in the design of AT(P) was the focus
on program correctness by fully automated pre-testing of Prolog programming
assignments.

Acknowledgements: The basis for the analysis component of AT(P) is taken
from the TSP system, which was designed and implemented by Holger Neumann
[7]. TSP offers a variety of different tests and turned out to be extremely stable;
the partial specifications presented here were adapted from [7].

References

[1] C. Beierle, M. Kulas, and M. Widera. A pragmatic approach to pre-testing
Prolog programs. In D. Seipel, M. Hanus, U. Geske, and O. Breitenstein, edi-
tors, Proc. 15th International Conference on Applications of Declarative Pro-
gramming and Knowledge Management (INAP 2004) and 18th Workschop
on Logic Programming (WLP 2004), pages 102-114. Technical Report 327,
Univ. Wiirzburg, March 2004.

[2] J. Brunsmann, A. Homrighausen, H.-W. Six, and J. Voss. Assignments in
a Virtual University — The WebAssign-System. In Proc. 19th World Con-

32

ference on Open Learning and Distance Education, Vienna, Austria, June
1999.

M. Ducasse. Opium: An extendable trace analyser for prolog. J. of Logic
Programming, 39:177-223, 1999.

M. Hermenegildo, G. Puebla, and F. Bueno. Using global analysis, partial
specifications, and an extensible assertion language for program validation
and debugging. In K. Apt, V. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm: A 25-Year Perspective. Springer-
Verlag, 1999.

M. Kulas. Annotations for Prolog — A concept and runtime handling. In
A. Bossi, editor, Logic-Based Program Synthesis and Transformation. Se-
lected Papers of the 9th Int. Workshop (LOPSTR’99), Venezia, volume 1817
of LNCS, pages 234-254. Springer-Verlag, 2000.

Homepage LVU, Fernuniversitat Hagen, http://www.fernuni-hagen.de/LVU/.

2003.

H. Neumann. Automatisierung des Testens von Zusicherungen fiir Prolog-
Programme. Diplomarbeit, FernUniversitdt Hagen, 1998.

U. Neumerkel and S. Kral. Declarative program development in Prolog with
GUPU. 1In Proc. of the 12th Internat. Workshop on Logic Programming
Environments (WLPE’02), Copenhagen, pages 77-86, 2002.

Richard A. O’Keefe. advice.pl. 1984. Interlisp-like advice package.

Swedish Institute of Computer Science. SICStus Prolog User’s Manual, April
2001. Release 3.8.6.

Robert F. Stdrk. The theoretical foundations of LPTP (a logic program
theorem prover). J. of Logic Programming, 36(3):241-269, 1998. Source
distribution http://www.inf.ethz.ch/ staerk/lptp.html.

Homepage WebAssign. http://www-pi3.fernuni-hagen.de/WebAssign/.
2003.

Manfred Widera. Testing Scheme programming assignments automatically.
In S. Gilmore, editor, Trends in Functional Programming, volume 4. Intellect,
2004. (to appear).

33

Appendix A

Let us assume that the following program is submitted for the between/3 (see
Example 1):

between(X, N, M) :- var(X), integer(N),
integer(M), N =< M,
gen_list(N, M, X).
gen_list(N, N, [N|[1]) :- !.
gen_list(N, M, [NIR]) :- L is N + 1, gen_list(L, M, R).

Then AT(P)’s output is the following:

The following query failed, though it should succeed:
between(10,10,20)

Therefore, your program violates the following property:
The lower bound N is between N and M

Wrong solutions were generated for the following query:
between(A,100,102)

The wrong solutions for this query are listed below:
between([100,101,102],100,102)

Solutions were overlooked for the following query:
between(A,100,102)

The overlooked solutions for this query are listed below:
between(100,100,102)
between(101,100,102)
between(102,100,102)

AT(P) is designed to perform a large number of tests. In the generated report,
however, it filters some of the detected errors for presentation. Several differ-
ent filters generating reports of different precision and length are available. In
the example above, a single representative for each kind of detected error was
selected.

34

Teaching Prolog Programming at the Eotvos
Lorand University, Budapest

Tibor /fsvcinyz’
Faculty of Informatics, Eotvés Lordnd Univ.
Budapest, Pazmdny Péter sétany 1/c, H-1117
asvanyi@inf.elte.hu

Abstract

At the Eotvos Lordnd University (Budapest) we have two courses on Prolog
programming, especially for program designer (MsC) students.

Our main objective is to help the students find the subproblems in their
projects to be solved with Prolog, and enable them to write the necessary
code. At first our main concern is to give clear notions. Next we focus on
the technical details of writing small programs. Then we incorporate the
questions raised by developing big applications.

In our first course we give an overview of the history of logic programming
(LP). We introduce the basic notions of this area, and we discuss the widely
used LP language, Prolog, emphasizing a kind of pragmatic programming
methodology which helps us to develop correct and effective programs. We
talk many short examples over, in order to make the students feel the taste
of LP in small.

In our second course we focus on writing bigger programs and using ad-
vanced Prolog programming techniques like generate and test techniques,
exception handling, writing and using second-order predicates, splitting our
programs into modules, using partial data structures, d-lists, and logic gram-
mars. We discuss many typical problems to be solved with logic programs.

1 Introduction

Logic programming is taught at our university from the early eighties.

In the beginning the legendary MProlog system of Péter Szeredi and his col-
leagues was used.

Later some of the author’s colleagues changed to Turbo Prolog, because of
its effectivity, good development environment and graphics. It is still used in the
teacher-training courses, although it is considered obsolete now.

35

The program designers’ Prolog courses are in the competence of the author, who
changed to SICStus Prolog in 1994, because it seemed to be the best implemen-
tation with affordable costs, available for many platforms.

However, during the semesters these questions are not in the centre. We focus
on the following aspects:

1. We present many problems which can be solved elegantly and effectively
with Prolog.

2. We show how to split the program into modules, taking advantage of exist-
ing code, especially of libraries.

3. We discuss how to refine the predicates while maintaining the finiteness of
the search tree, controlling the data flow, and organizing the deterministic
and nondeterministic parts.

On the language issues, first we concentrate on the standard features of SICStus,
but later we take into consideration the implementation specific details, like its
module system and libraries.

The Prolog courses are based on semesters about algorithms and data struc-
tures, about first order logic and resolution, and about artificial intelligence. It
is also supposed that the students have practice in developing structured, pro-
cedure based programs, they have written some programs consisting of many
components, they are familiar with some assembly language, and they have basic
knowledge on formal languages and compilers.

During the Prolog courses we use SICStus with Emacs interface. In such a
way we have a complete development evironment. First we constrain ourselves
to using the ISO standard [1] subset of this implementation, in order to help
the students write portable programs. But later we take into consideration the
implementation specific details, that is, the module system, the libraries, the DCG
rules, and the hook predicates of SICStus, in order to help the students write large
applications.

There are yet other two courses on logic programming at our university. The first
one is about the theoretical foundations of LP, the second is a comparative study
of LP languages.

2 Motivation: Why Prolog?

Given a set of logic statements defining a model, we can formulate queries on (un-
known) objects satisfying known relations. A constructive answering process can
be considered a computation: This is a fundemantal idea of logic programming.

36

Therefore a logic program is similar to a theorem proving system. It is a
set of axioms together with a control component. But its control component
is much simpler. The computation process can be followed and guided by the
programmer, its termination can be guaranteed, and its costs are predictable.

Prolog is a simple and old, but successful LP language. It offers the neces-
sary simplifications and additions compared to a pure LP system, so that the
programmer have an effective and flexible tool.

3 Beginner’s Course

We roughly follow the first two parts of The Art of Prolog [4], but we give less
theory, because we have a special theoretical course on this topic. Other main
sources are [1, 3, 5, 2].

Our own textbook is [6]. We concentrate on a practical Prolog programming
methodology, in order to help the students develop their own applications.

1. First — with a historical background — we introduce the notions of the logic
and control components of the logic programs. The logic component is
detailed first, because of the students’ theoretical background: It is shown
how a relation is refined.

2. The run of the program is a constructive proof of the query, and query-
driven (top-down) proof, that is, goal-reduction is to be preferred in general:
It corresponds to the refining of relations and it is usually more effective
than other strategies. In order to illustrate the run of the program we
introduce the search-trees and mention that there are the same solutions in
the different search-trees.

3. We introduce recursive programs and compound terms, especially lists. We
emphasize that usually the search tree of the queries must be finite, and
give examples how to prove this.

4. Next we go on to pure Prolog, define the Prolog machine, detail the occurs
check problem (explain why to omit this check), discuss how to turn STO
(subject to occurs check) programs into NSTO (not STO) programs, so
that the possible occurs checks are restricted to the calls to the predefined
predicate unify_with_occurs_check/2 [1].

5. Then we discuss two usual optimizations of the Prolog machine: first argu-
ment indexing and last call optimization. We write some simple programs
taking advantage of these. We emphasize that these optimizations are not
parts of the ISO standard.

37

6. Next we introduce disjunctions, conditionals ((If->Then;Else) and

(If->Then)), negation, green and red cuts, and discuss the safe use of
cuts, comparing it with conditionals, and used together with indexing. We
argue that the run of a deterministic predicate should never leave choice
point.

. Then we discuss the meta-logical (arithmetic, type-checking, term compar-

ing, term manipulating) predicates (with many examples), and the meta-
variable facility, especially with findall/3. We show that considering the
data flow of the program becomes especially important, if we use meta-
logical predicates.

. We finish the beginner’s course with the extra-logical predicates. First we

consider the I/O predicates needed in real applications. Second we dis-
tinguish the static and the dynamic predicates together with the standard
built-ins accessing and manipulating our programs. We emphasize that the
use of the modifications of the programs should be restricted to generating
lemmas and negative lemmas, and passing information among the branches
of the search-tree.

4 Advanced Course

We roughly follow the third and fourth parts of The Art of Prolog [4]. Other
main sources are [1, 3, 6, 5, 2]. Still we do not have our own textbook.

38

1. At the advanced course we start with some classical problems to be solved

with nondeterministic programming: the eight queens problem, map colour-
ing, and some logic puzzles. These problems are in the heart of LP, therefore
this chapter seems to be a good start at the advanced course.

Here we introduce exception handling in order to protect our programs
against incorrect input.

. Then we consider the second-order predicates of Prolog, especially those

collecting the solutions of a goal. These are useful in collecting the solutions
of a nondeterministic search, and will be needed in the advanced search
tecniques to be introduced soon.

. At this point our programs are going to become complex enough to be

divided into components. Therefore, next we discuss the different module
systems used in the Prolog implementations, and the problems with the
second-order predicates, while using the module system of SICStus [3].

4. Then we use partial data structures to define dictionaries, d-lists, and es-
pecially queues. Here we reconsider the problem of writing optimal Prolog
code in general, and especially in SICStus.

The use of partial data structures is not easy for the students, therefore it is
delayed until this point. However it is necessary for the subsequent themes,
which are illustrations of some widely used algorithms from the fields of
artificial intelligence, and of compiler writing.

5. Next we go on to different state-space problems. We introduce a set
of graph-searching techniques, especially backtracking, depth-first and
breadth-first search (with stacks and queues). We apply algoritm A and
algoritm A* to solve some problems like the classical fifteen puzzle, because
these algorithms provide safe heuristic search methods.

At this stage we split the programs into modules, and we define the graph-
searching modules independently from the actual problem.

6. Then we discuss some two-player games and apply the classical alpha-beta
pPruning.

7. Last we introduce logic grammars, especially DCG rules. We discuss the
whole compiler (consisting of six modules) of a simplified Pascal-like lan-
guage. The parser is defined with a DCG grammar generating the syntax
tree of the program (except if there are syntax errors: then these are han-
dled). The code generator is another DCG grammar. It takes the syntax
tree and generates an abstract assembly code, and a dictionary. Its result is
taken by the assembler (a third DCG grammar) which generates the object
code.

It may be unusual that we emphasize the module system of SICStus, although
there is no module system in the ISO standard [1]. But modularization and
writing generic purpose modules is a general trend in software development. For
example, let us see, how to define and use a generic graph-search module. In order
to concentrate on the organization of the program we can choose the simplest one,
the backtracking graph-search strategy.

:- module(bts, [init_graph_search/1, graph_search/1]).
:- use_module(library(lists), [member/2, reverse/2]).

init_graph_search(File) :-
use_module(File, [arc/2, start/1, goal/1 1).

39

graph_search(Path) :- start(A), gs(A,[],Path).

gs(A,Ancestors,Path) :- goal(A), reverse([A|Ancestors],Path).
gs(A,Ancestors,Path) :-

arc(A,B),

B \= A, \+ member(B,Ancestors), % no loop

gs(B, [AlAncestors] ,Path).

Module bts is a generic one. This means that it does not know the graph it
searches on. Somebody must call init_graph_search(File). Its run will import
the necessary predicates (arc/2,start/1,goal/1) into module bts.

Module graph contains the necessary predicates, that is, the description
of the graph. Again, it is independent from the graph-searching method
used. Somebody must call init_graph(File). Its run will import predicate
graph_search/1 into module graph.

:- module(graph, [init_graph/1, arc/2, start/1, goal/1l,
graph_search/3]).

init_graph(File) :-
use_module(File, [graph_search/1]).

:— dynamic(start/1). start(a).
:— dynamic(goal/1). goal(e).

graph_search(Start,Goal,Path) :-
retractall(start(_)), retractall(goal(_)),
asserta(start(Start)), asserta(goal(Goal)),
graph_search(Path).

arc(a,b). arc(b,c). arc(b,d).
arc(c,a). arc(c,e). arc(d,e).

40

% \ \

% a-———- >b———-—- >c
% | |
yA | |
pA v '
% d-———- >e

The main module just loads the components of the program, and makes them
known to each other.

:- module(main, [graph_search/1, graph_search/3]).

use_module(bts, [init_graph_search/1, graph_search/1]).
:— use_module(graph, [init_graph/1, graph_search/3]).

:- init_graph_search(graph), init_graph(bts).
Having loaded the main module, the program can be used as follows.

| ?7- graph_search(Path).
Path = [a,b,c,e]l 7 ;

Path = [a,b,d,e] 7 ;

no

| ?- graph_search(c,e,Path).
Path = [c,a,b,d,e] 7 ;

Path = [c,e] 7 ;

no

5 Final Remarks

We have two semesters on Prolog programming for program designer students
at our university. These cover the standard material of such courses with some
modification: There is an emphasis on how to develop effective, big programs
with Prolog.

Our semesters are special lectures. The students can choose them as parts of
their MsC program. Both of the courses take 20 hours of teaching, and are worth
2 ECTS credits. (There are 30 credits per semester in our system.) In a year,
approximately 80 students finishes the first, and 30 students finishes the second

41

course. In a year, 80-100 students receives MsC. This means that most of them
have some knowledge on LP. About the same number of students stop at BsC.
Unfortunately they do not hear about LP, and we do not see how to change this
situation.

We do not teach writing expert systems at the Prolog courses, because there
is a special course on expert systems, and (among other shells) we teach the
Prolog extension flex there. The theoretical foundations and the comparison of
LP languages are covered by other two semesters. Still we would like to start
a new course on constraint programming, with high emphasis on CLP. Another
possibility is to include Péter Szeredi’s special courses on LP (from the Technical
University of Budapest) in our selection.

References

[1] Deransart P., Ed-Dbali A.A., Cervoni L., Prolog: The Standard (Reference
Manual), Springer-Verlag, 1996.

[2] O’Keefe R. A., The Craft of Prolog, The MIT Press, Cambridge, Mas-
sachusetts, 1990.

[3] SICStus Prolog 3.11 User’s Manual, Swedish Institute of Computer Science,
PO Box 1263, S-164 28 Kista, Sweden, 2003.

(http://www.sics.se/isl/sicstuswww/site/documentation.html)

[4] Sterling L., Shapiro E., The Art of Prolog (Second Edition), The MIT Press,
London, England, 1994.

[5] Szeredi P., Benk6 T., Deklarativ programozds: Bevezetés a logikai pro-
gramozasba (Declarative Programming: Introduction into Logic Program-
ming), BME, Budapest, 2000.

[6] Asvényi T., Logikai programozds (Logic Programming), in: “Programozasi
nyelvek (Programming Languages)”, (editor: Nyékyné Dr. Gaizler Judit),
pp. 637-684. Kiskapu Kft. Budapest, 2003.

42

Prolog as Description and Implementation
Language in Computer Science Teaching

Henning Christiansen
Roskilde University, Computer Science Dept.,

P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: henning@ruc.dk

Abstract

Prolog is a powerful pedagogical instrument for theoretical elements of com-
puter science when used as combined description language and experimen-
tation tool. A teaching methodology based on this principle has been devel-
oped and successfully applied in a context with a heterogeneous student pop-
ulation with uneven mathematical backgrounds. Definitional interpreters,
compilers, and other models of computation are defined in a systematic way
as Prolog programs, and as a result, formal descriptions become running
prototypes that can be tested and modified by the students. These pro-
grams can be extended in straightforward ways into tools such as analyzers,
tracers and debuggers. Experience shows a high learning curve, especially
when the principles are complemented with a learning-by-doing approach
having the students to develop such descriptions themselves from an infor-
mal introduction.

1 Introduction

Teaching of theoretical aspects of computer science to university students that
do not necessarily possess a solid mathematical background may sound like a
contradiction. The Advanced Studies in Computer Science at Roskilde University,
Denmark, is a part of long tradition of interdisciplinary studies in which the
same courses often are offered for classes of students with different backgrounds
such as Natural Science, Humanities, or Social Sciences. Certain issues that
are important for all sorts of teaching become extra critical in this context, and
furthermore stressed by the fact that a tradition of 50% student project work
throughout the studies leaves only very little time for regular courses. First of
all, the presentation needs to be appealing and fruitful for every single student
in this heterogeneous audience. Secondly, extreme care must be made in the
selection of topics in order to provide a coherent course with a reasonable covering,

43

considering that each course has few nominal hours. Finally, each course must be
designed as a component of a full education comparable with any other five-year
university education with computer science as a major subject.

This paper gives an overview of a teaching methodology developed under these
conditions in which Prolog plays the combined role of as a study object and, more
importantly, as a meta-language for describing and experimenting with different
models of computation, including programming language semantics and Turing
machines, and tools such as tracers and debuggers. The approach has been
developed and successfully applied during the 1990s and used in courses until
recently; a full account of the approach can be found in a journal paper [2] that
also gives a more comprehensive set of references to related approaches; a locally
printed textbook in Danish is available [1].

In the following, we analyze the qualities of Prolog that we have relied on
in this approach, and we show how definitional interpreters, compilers and other
models of computation can be defined in a systematic way as Prolog programs
based on a general model of abstract machines. In this way, formal descriptions
become running prototypes that are fairly easy to understand and appealing for
the students to test and modify. The approach has turned out to be highly
effective when combined with learning-by-doing which has been applied for type-
checking and implementation of recursive procedures. A brief listing is given of
other items treated in a course based on the these principles, and a sample course
schedule is shown.

2 Qualities of Prolog in relation to teaching

Prolog is a wonderful programming language for any teacher of computer science:
Students with or without previous programming experience can learn to write in-
teresting programs with only a few hours of introduction and guided experiments
in front of a computer. A substantial subset of Prolog exposes a mathematically
and intuitively simple semantics and makes a good point to emphasize the dis-
tinction between declarative and procedural semantics, and thus also to isolate
various pragmatic extensions from the core language.

Computer science as university subject contains many aspects where Prolog
can be interesting, independently of whether the students intend to use Prolog
in their future careers. First of all, Prolog is an obvious second programming
language that shows the diversity of the field for student brought up with a
language such as Java. Prolog is a type-less language in which any data structure
has a denotation and with no need for constructors and selection methods as
these are embedded in Prolog’s unification. Java, on the other hand, requires the

44

programmer to produce large collections of classes, interfaces, methods, and a test
main method before anything can be executed. The conflict between flexibility,
conciseness, and semantic clarity on the one hand, and security and robustness
on the other is so obviously exposed in this comparison. Prolog’s application as a
database language is well-known and we shall not go into details here; in section 5
we mention briefly how an introduction to databases has been incorporated in
our approach.

A study of Prolog motivates also considerations about the notion of a meta-
language: assert and retract take arguments that represent program text, the
same goes for Prolog’s approximation to negation-as-failure which essentially is a
meta-linguistic device within the language. The problematic semantics of these
features gives rise to a discussion of what requirements should be made to a
meta-linguistic representation. Operator definitions in Prolog comprise syntactic
meta-language within the language, and are also a perfect point of departure for a
detailed treatment of priority and associativity in programming language syntax.

In general, we have relied on the following detailed properties of Prolog.

e Prolog terms with operator definitions provide an immediate representa-
tion of abstract syntax trees in a textually pleasing form; see the following
expression which with an operator definition for “:=" is a Prolog term:

a:= 221; b:= 493; while(a =\= b, if(a>b, a:= a-b, b:= b-a))

e Structurally inductive definitions are expressed straightforwardly in Prolog
by means of rules and unification, e.g.,
stmnt (while(C,S),---):- condition(C,---), stmnt(S,---), ---

e Data types for, say, symbol tables and variable bindings, are easily imple-
mented by Prolog structures and a few auxiliary predicates.

e Specifications are directly executable and can be monitored in detail using
a tracer; they can be developed and tested incrementally and interactively.
Students can easily modify or extend examples and test their solutions.

Prolog invites to an interactive and incremental style of program develop-
ment, not only for students but also for the teacher to do this during the
lecture using a computer attached to a projector.

e The characterization of various pragmatic issues can be developed in di-
rect relation to “ideal” formal descriptions. An interpreter, for example,
is easily extended into a tracer or debugger, and code optimization can be
incorporated in a small compiler written in Prolog.

45

e Last but no least: Prolog appears as an easily accessible framework com-
pared with, say, set and domain theory. Although basically representing
the same universal concepts, the combined logical and operational nature
of Prolog-based specifications gives an incomparable intuitive support.

3 A basic model of abstract machines

An unsophisticated model of abstract machines is a central element in our
methodology, used for the general characterization of computer languages and
computational models.

A particular abstract machine is characterized by its input language which is
a collection of phrases or sentences, a memory which at any given time contains
a value from some domain of values, and finally a semantic function mapping a
phrase of the input language and memory state into a new memory state. For
simplicity, output is not explicit part of the definition but considered as part of
the “transparent” memory whenever needed.

The framework includes a general notion of implementation of one machine
in terms of another, and three different modes are defined, interpretation, trans-
lation and use of abstraction mechanisms in standard programming languages.
Interpreters and translators themselves, as well as program modules, can be ex-
plained as particular abstract machines.

Abstract and concrete syntax are introduced and distinguished in an informal
way, and the representation of abstract syntax trees by Prolog terms (as above)
is emphasized. The abstract syntax of a context-free language is characterized
by a recursive Prolog program consisting of rules of the form

catoCop(T1,..., Tp)):— cat1 (T1),...,cat, (T,) .

where op names an operator combining phrases of syntactic categories caty, ...,
cat, into a phrase of category caty.

Syntax-directed definitions can be specified by adding more arguments corre-
sponding to the synthesized as well as inherited attributes of an attribute gram-
mar [5]. Consistent with our abstract machine model, we introduce what we call
a defining interpreter which to each syntax tree associates its semantic relation
of tuples (si,...,sk) by predicates of the form

cat; (syntaz-tree ,81,. .. ,Sk)

As an example, a defining interpreter for an imperative language may associate
with each statement a relation between variable state before and after execution,
which for a statement such as “x:= x+1” contains among others the following

tuples: ([x=71, [x=8]), ([x=1,y=3211, [x=2,y=32]),

46

4 Imperative and procedural languages

In the following we show how standard programming languages are characterized
in our Prolog-based style, indicating the spirit in which it is communicated in
the teaching. We proceed by introducing a defining interpreter for a simple
machine-like language giving a continuation-style semantics for jumps and control
points. This serves the dual purposes of making the semantics of such languages
explicit and of introducing continuations as programming technique and semantic
principle. Next is shown a defining interpreter for while-programs and a compiler
of while-programs into machine language. Finally we describe an assignment
where the students developed type checker and interpreter for a simple Pascal-
like language from a brief, informal introduction.

4.1 A defining interpreter for a machine language

The following Prolog list is an abstract syntax tree for a program in a simplified
machine language. Presenting this sample to the students is sufficient to indicate
the existence of an abstract machine, and it gives good sense to execute this
program by hand on the blackboard from the intuition provided by the instruction
names.

[push(2),
store(t),
7, fetch(x),

equal,
n_jump(7)]

The semantics of such programs assumes a stack (that we can represent as a Pro-
log list) and a storage of variable bindings (represented conveniently as lists of
“equations”, e.g., [a=17,x=1,y=32]). The central predicate in a defining inter-
preter is the following. The first argument represents a sequence of instructions
(a continuation) to be executed and the second one passes the entire program
around to all instructions to give the contextual meaning of labels.

sequence(Seq, Prog, Stack.yrrent> Storecyrrents Stackﬁml,
StO’I’Eﬁnal)

The meaning of simple statements that transform the state is given by tail-
recursive rules such as the following: Do whatever state transition is indicated by
the first instruction and give the resulting state to the continuation. Example:

47

sequence([add|Cont], Prog, [X,Y[SO], LO, S1, L1):-
YplusX is Y + X,
sequence(Cont, Prog, [YplusX|SO], LO, S1, L1).

The unconditional jump instruction is defined as follows; it is assumed that
the diverse usages of the append predicate have been exercised thoroughly with
the students at an earlier stage.

sequence ([jump(E)|_], P, SO, LO, S1, L1):-
append(_, [E|Cont], P),
sequence(Cont, P, SO, LO, S1, L1).

Executing a few examples, perhaps complemented by a drawing on the black-
board — and within a few minutes the students have grasped the principle of a
continuation and continuation semantics.

The remaining rules that complete the interpreter are straightforward.

A little aside can be made, turning the interpreter into a functioning tracer
by adding the following rule as the first one to the interpreter:

sequence([Inst|_1,_,_,_,_,_):- write(Inst), write(’ ’), fail.

Students are given the following exercises that serve the twofold purpose of famil-
iarizing them with the material and introducing other important aspects: extend
language and interpreter with instructions for subroutines; write a Prolog pro-
gram checking that labels are used in a consistent way; write a Prolog predicate
that optimizes selected subsequences of instructions; design and implement an
extension of the tracer with debugging commands.

4.2 A defining interpreter for while-programs

As a next step up the ladder of languages moving away from the machine and
closer to “problem-oriented” languages, we consider while-programs whose se-
mantics also can be specified in terms of a defining interpreter. A defining inter-
preter consists of the following predicates.

program(program, final-storage)

statement (statement, storage-before, storage-after)
expression(expression, storage, integer)
condition(condition, storage, {true, false})

Most rules are straightforward, the most complicated one being the following
defining the meaning of a while statement.

48

statement (while(Cond, Stm), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement((Stm ; while(Cond, Stm)),L1,L2)
; L1=1L2).

The following exercises are given to the students: run a sample program including
a while loop with Prolog’s debugger switched on and record all primitive actions;
extend the language with expressions of the form result_is(statement, vari-
able) ; extend the language with a for loop; extend the interpreter with a simple
tracing facility.

4.3 A compiler for while-programs

The structure of our defining interpreters can also be adapted to describe com-
pilers. Above, we considered a semantics for while-programs defined in terms
of state transformations and now we consider an alternate semantics capturing
meanings by means of sequences of machine instructions.

Two auxiliary predicates are introduces, one for creating unused machine
language labels and another one to facilitate the composition of sequences of
instructions; illustrated below. The following rule specifies the compilation of a
while statement.

statement (while(Cond, Stm), C):-
condition(Cond, CondC),
statement (Stm, C1),
new_label(Lstart), new_label(Lend),
C <- Lstart + CondC +
n_jump(Lend) +
C1 +
jump(Lstart) +
Lend.

The compiled code for the while statement is composed by the code for its
constituents, two new labels created by new_label and specific instructions; the
predicate denoted by “<-” puts together the sequence indicated by “+” in its
second argument and unifies it with the first argument. Notice that n_jump is a
conditional jump to the specified label whenever the previous computation has
placed a value representing false on top of the stack. The code produced can be
executed by the interpreter shown in section 4.1. As before, exercises are given
that involve testing and extending this compiler in various ways.

49

4.4 A learning-by-doing approach to recursive procedures and
type-checking

The detailed semantics and implementation of recursive procedures and type-
checking are usually consider very difficult by students. We have had good success
with these topics by means of a larger learning-by-doing assignment continuing
the material presented so far.

The students were presented for a simple Pascal-like language by means of
example programs with a recursive quicksort program as a prototypical represen-
tative. Type requirements and a standard stack-based implementation principle
for recursive procedures were described informally, and the assignment was to
implement both type-checker and compiler in Prolog.

The prescribed time for the work was one week on half time, including writing
a small report documenting the solutions. The most experienced students had
type checker and interpreter running after four or five hours, and all students in a
class of some 30 students solved the task within the prescribed time. All solutions
were acceptable and there was no obvious difference between those produced by
students with a mathematical background and by those without.

5 Other course elements

Here we list other topics integrated with the previous material in different versions
of our course; more details including program samples can be found in [2].

Logic circuits modeled in Prolog is a standard example used in many Prolog
text books. This is obvious to apply in our context due to the meta-linguistic
character (modeling the language of logic circuits).

LISP modeled with assert-retract. Function definitions and variable bind-
ings are implemented using Prolog’s assert-retract. Illustrates dynamic binding
and different levels of binding times plus introduces functional programming. The
use of assert-retract as opposed to explicit state arguments makes it possible to
model an interactive Lisp environment with few lines of codes.

Turing machines. An introduction to computability theory is given, based on
Turing machines and Turing completeness. An interpreter made up by a few
lines of Prolog is an excellent way to illustrate a Turing-machine and to provide
a truly dynamic model, especially when a tracing facility is added. The existence
of the interpreter shows that Prolog is Turing-complete, and having played with
it makes it easier for the students to understand the proof of undecidability of
the halting problem.

50

Vanilla and Prolog source-to-source compilation. The familiar Vanilla
self-interpreter for Prolog [7] is a perfect example to illustrate the notion of a
self-interpreter.

Appearing a bit absurd and useless to the students in the first place, they
begin to see the point of a self-interpreter when a few lines of additional code
makes it into a tracer and debugger. Source-to-source compilation is illustrated
in terms of a profiling tool that inserts additional code to record the number of
entrances, successes and failures of each clause in a Prolog program.

Relational algebra in Prolog. The course described here has in some years
been integrated with a standard database course. As an introduction to relational
database technology, students were given the assignment of implementing an
interpreter for relational algebra. The conditions were the same as for the task
on type-checking and recursive procedures described above, one week on half time,
including writing a small report documenting the solutions. This task has been
given to several classes of students and all students usually succeed in producing
an acceptable solution, although join often causes problems.

Syntax analysis. Traditional methods for lexical analysis and parsing are in-
tegral components of our course. Prolog is used as a ready-at-hand tool for the
students to implement finite state machines, deterministic as well as nondeter-
ministic. Top-down parsing is illustrated perfectly by Prolog’s built-in Definite
Clause Grammars [6], and bottom up-parsers by an analogous grammar formal-
ism CHRG [3] developed on top of Constraint Handling Rules [4] which is a recent
extension to some Prolog versions that provides a natural paradigm for bottom-
up evaluation. Now quick and effective introductions can be given to standard
implementation principles for finite state machines and parsing.

Dissecting a Prolog implementation in Java. As a conclusion of the course,
the students are shown a full implementation in Java of a subset of Prolog, in-
cluding lexical analysis, parsing, representation of abstract syntax trees in an
object-oriented language, and an interpreter which exposes a detailed implemen-
tation of Prolog’s unification procedure.

6 A sample course schedule

The following table shows the schedule for a version of a course designed according
to our methodology as it was given in spring 2001. The actual course has changed
slightly from semester to semester so not all items mentioned above are included.
The course corresponds to 25% of a student’s work in one semester (7.5 ECTS)
and is concentrated on 10 full course days. Each course day consists of lectures

o1

and practical problem solving related to the day’s lecture. A considerable amount
of homework is expected from the students.

Introduction: Abstract and concrete syntax, semantics, pragmatics, lan-
1 | guage and meta-language. Prolog workshop I: The core language, incl.

structures.

9 Prolog workshop II: Lists, operators, assert/retract, cut, negation-as-
failure.

3 Abstract machines: Definitions of a.m., interpreter, translator, etc.

Prolog workshop II contd.

Language and meta-language, Prolog as meta-language. Semantics of
4 | sequential and imperative languages; defining interpreters and a small
compiler.

Declarations, types, type checking, context-dependencies,

recursive procedures.

Introduction to and practical work with large exercise: do-it-your-self
recursive procedures, interpreter and type checker.

Conclusion and comments to large exercise. Turing-machines, decidabil-
7 | ity and computability, Turing universality, the halting problem, Turing
machines in Prolog.

Constraint logic programming: Introduction to CLP(R) and CHR; CHR
Grammars for bottom-up parsing.

9 | Syntax analysis: Lexical analysis and parsing; recursive-descent parsing
10 Overview of phases in a traditional compiler. Dissection of an imple-
mentation of Prolog in Java. Evaluation of the course.

7 Conclusion

We have explained a methodology based on a combination of a simple, underlying
model of abstract machines and the use of Prolog as general definition and imple-
mentation language. Prolog is well suited for this purpose: Conceptual simplicity
and high expressibility with a core language consistent with a subset of first-order
logic; syntactic extensibility that allows a direct notation for abstract syntax trees
in a textually acceptable form; a rule-based structure that fits perfectly with an
inductive style of definition. Last but not least: Prolog is an interactive language
that appeals to incremental development, testing, and experimentation with an
extremely short turn-around time from idea — implementation — observation
— revision or extension of idea.

Our experience have shown that theoretical issues of computer science can be
taught in this way in an entertaining and concrete way which, unlike traditional

52

approaches, appeals to a wide range of students for which a uniform mathematical
background cannot be taken for granted.

A critical remark may be that this form of learning is very compact, with
many important aspects covered by one minimalist and seemingly innocent ex-
ample as was the case with the interpreter for machine language. One might fear
that students tend to remember only the example and not the points that the
teacher had in mind. We have not applied any scientifically based evaluation prin-
ciple, but it is our clear impression that the practical work in exercises and larger
assignments serves fully to avoid this potential danger. Informal evaluations with
the students have indicated a high degree of satisfaction with the teaching prin-
ciple. Especially the larger learning-by-doing assignments (type-checking plus
recursion; relational algebra in Prolog) were characterized as difficult and chal-
lenging, but also some of the most interesting ones from which the students had
learned quite a lot.

Acknowledgment: This research is supported in part by the IT-University of Copen-
hagen.

References

[1] Henning Christiansen. Sprog og abstrakte maskiner, 3. rev. udgave [in Danish;
eqv. “Languages and abstract machines”]. Datalogiske noter 18, Roskilde
University, Roskilde, Denmark, 2000.

[2] Henning Christiansen. Teaching computer languages and elementary theory
for mixed audiences at university level. Computer Science Education Journal,
14, 2004. To appear.

[3] Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Practice
of Logic Programming, 2005. To appear.

[4] Thom Frithwirth. Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming. Journal of Logic Programming, 37(1—
3):95-138, October 1998.

[5] Donald Knuth. Semantics for Context-Free Languages. Mathematical Systems
Theory, 2:127-145, 1968.

[6] F. C. N. Pereira and D. H. D. Warren. Definite clause grammars for language
analysis — a survey of the formalism and a comparison with augmented tran-
sition networks. Artificial Intelligence, 13:231-278, 1980.

53

[7] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs
— Volumes 1 & 2. D.A.I. Research Report 39, 40, University of Edinburgh,
May 1977.

54

Teaching Logic Programming at the
Budapest University of Technology

Péter Szered:

szeredi@cs.bme. hu

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics
H-1117 Budapest, Magyar tudésok koritja 2.

Abstract

The paper describes courses related to Logic Programming at the Bu-
dapest University of Technology and Economics. We present the layout and
the contents of the main such course, entitled Declarative Programming, as
well as the tools used in teaching this subject. We then give a brief outline
of the elective courses and other educational activities in the subject area.

1 Introduction

Logic Programming and the Prolog language has been taught at several Hungar-
ian universities since the mid 1970’s. I have been involved in teaching LP from
the very beginning, first at the E6tvos Lorand University, Budapest, and later at
the Budapest University of Technology and Economics (BUTE).

The paper gives an overview of courses related to Logic Programming at the
Faculty of Electrical Engineering and Informatics at BUTE. These courses are
primarily intended for undergraduate students of informatics, although students
of mathematics and electrical engineering sometimes also take these courses.!

In Section 2 the declarative programming course is discussed in detail. Sec-
tion 3 describes the elective courses related to LP. Note that details of one of these
courses, on constraint programming, have recently been published in [11]. Sec-
tion 4 discusses educational activities other than courses, such as student projects,
student conference papers, as well as theses related to LP. The paper is concluded
with a brief summary discussion.

Note that at present the undergraduate studies at BUTE span 5 years and lead to an MSc
degree.

95

2 The Declarative Programming course

Declarative programming is part of the compulsory studies for students of infor-
matics at BUTE. The course is scheduled in the fourth semester, i.e. the spring
semester of the second year, although the students are allowed to take the course
earlier or later. It is preceded by programming language courses on C, C++,
and Java, as well as by a course on mathematical logic, which introduces, among
others, the theory of logic programming.

The Declarative Programming (DP) course covers the two main declarative
paradigms. Péter Handk teaches functional programming, using the MOSML
dialect of the SML language, while Péter Szeredi is responsible for the logic
programming part, which focuses on Prolog and uses the SICStus Prolog imple-
mentation [9].

The course in this setup has been taught in every semester since 1994. It
evolved from a wider subject entitled “Programming Paradigms”, which involved
imperative, object-oriented and functional programming styles.?

The semester normally consists of 14 weeks. The DP course has two lectures
of 2*45 minutes each week. The structure of the course is the following:

Lecture 1: Introducing the declarative programming paradigm
Lectures 2-8: Logic Programming, part 1

Lectures 9-15: Functional Programming, part 1

Lectures 16-21: Logic Programming, part 2

Lectures 22-27: Functional Programming, part 2

Lecture 28: Summary, outlook

Very unfortunately, the DP course has no laboratory exercises. In order to
encourage students to do some programming tasks we hand out during the course
several minor assignments as well as a single major assignment (see 2.2). We
have also developed a computer tool, called ETS (Electronic Teaching aSsistant,
or Elektronikus TandrSegéd in Hungarian) [3], to support Web-based student
exercising, assignment submission/evaluation, marking, etc.

Although there is a clear division of the LP and FP parts of the course, these
build on each other. We reuse concepts and techniques introduced in the other
part, e.g. those of tail recursion, accumulators, construction and decomposition
of data structures using pattern matching (unification). The two parts are also
linked by the common major assignment, and occasionally by common minor
assignments and exam tasks, see 2.2.

2 Actually, the course run under the name “Programming Paradigms” until autumn 1999.

56

We will now focus on the common and logic programming parts of the DP
course.
2.1 The topics covered by the course

This section briefly describes the topics covered by the course, lecture by lecture,
following the schedule of the 2004 spring semester.

Lecture 1. Introducing the declarative programming paradigm. A very simple
declarative subset of the C language.?

Lecture 2. Introductory Prolog examples (family relations, summing numbers
in binary trees), Prolog as a subset of logic, declarative semantics.

Lecture 3. Procedural semantics of Prolog, execution models (goal-reduction
and procedure-box models).

Lecture 4. Data structures, unification, the logic variable.

Lecture 5. Operators, disjunction, negation, if-then-else.

Lecture 6. Lists, basic list handling library predicates.

Lecture 7. Example: finding paths in a graph, using various representations.
Lecture 8. Prolog syntax summary.

Lecture 16. Pruning the search space. Control predicates.

Lecture 17. Determinism, indexing, tail-recursion, accumulators.

Lecture 18. Rewriting imperative programs to Prolog, collecting and enumer-
ating solutions.

Lecture 19. Meta-logical built-in predicates.

Lecture 20. Modularity, meta-predicates, meta-programming, dynamic predi-
cates.

Lecture 21. Definite clause grammars, “traditional” built-in predicates.

Lecture 28. Brief outlook on LP extensions (external interfaces, coroutining,
constraints).

The material covered in the lectures is made available to the students in the
form of a textbook manuscript [12], updated every 2-3 years.

3The subset supports only integer types, function declarations and calls, if and return
statements, the +, -, *, /, and % arithmetic operators, and the six comparison operators.

o7

2.2 Programming examples and assignments

This section describes some of the programming examples and assignments used
in the course.

Examples. At the very first lecture we show a fairly limited natural language
conversation system (in Hungarian), which can remember statements and reply
to questions related to these. This example program is then discussed in detail
towards the end of the course (lecture 21, DCGs).

In lecture 4 we illustrate the symbolic processing capabilities of Prolog via a
simple example program for building arithmetic expressions using the four main
arithmetic operators (+, -, *, and /), each of which can be used zero or more
times. The task is to build such an expression, so that both its value and the
numbers it contains are given in advance (each given number should be used
exactly once). A specific instance of this task, building an expression valued 24
from numbers 1, 3, 4, and 6, seems to be quite a difficult puzzle for humans ...

In lecture 19 we present a two-slide program implementing the standard or-
dering relation of Prolog (@<) (with the exception of variable ordering). This
sample program re-iterates the definition of the standard ordering using a wide
range of meta-logical predicates (functor, arg, atom_codes).

Minor Assignments. The minor assignments are non-compulsory, and have
to be submitted via the ETS system. The solution of the student is then auto-
matically tested on a set of predefined test cases and the results are sent back to
the submitter via email.

The minor assignments can be re-submitted any number of times, up to the
deadline (which normally is about two weeks after the announcement). After the
deadline all submissions are re-tested on a new test-set.

The first minor assignment in the 2004 spring semester was related to the
declarative C language subset introduced in the first lecture. The students were
asked to write a fairly complex function in this C subset, palindrome (a), which
returns the smallest integer b such that a written in base b is a palindrome.

The next two minor assignments were about binary trees storing key-value
pairs, described by the following Mercury-style type declaration:

4As suggested by one of the reviewers, it would be better to show the results in the browser,
rather than by sending them in an email. The reason for the latter choice is that some assign-
ments (most notably the major ones) have longer running times (up to several minutes), so it
would be infeasible to have the student wait for the results. On the other hand, the exercising
facility of the ETS, see 2.3, is fully interactive, and provides immediate feedback for the student.

o8

:- type tree(T) ---> node(tree(T),tree(T),T)
| empty.

In assignment 2 we ask for a predicate tree_pair(Tree, Key, Value) to
be written. This predicate should enumerate all Keys and corresponding Values
stored in a given Tree of type tree(pair(KType,VType)).

In assignment 3 a predicate pairs_keys_values(Tree, TreeK, TreeV) has
to be submitted. All three arguments are isomorphic trees, each node of Tree
contains a Key-Value pair, where Key and Value are in the corresponding nodes
of TreeK and TreeV. The predicate (of course) should be capable of both splitting
a tree of pairs, and building such a tree from separate key- and value-trees.

The last and most complex minor assignment addresses issues related to meta-
logical predicates and meta-programming. A predicate is to be written, which is
capable of transforming an arbitrary Prolog term by wrapping all “good” lists GL
occurring in it (at any depth) into a good(GL) structure. A list is good if it is
ground and all its elements satisfy a condition. The condition is given as a term,
which should be called using the call/2 non-standard meta-predicate.

Major Assignment. There is a single, non-compulsory major assignment is-
sued in a given semester, which can be be submitted in Prolog, or SML, or both
languages. Solving the major assignment requires much more effort than the
solution of the minor ones.

The major assignment is very often a logic puzzle. Several such assignments
from earlier years have been published in the paper on the BUTE constraint
course [11] (as the DP major assignment is normally re-used in the constraint
course of the subsequent semester).

The major assignment issued in the 2004 spring semester was the Clouds
puzzle:

A rectangular board of size n * m units is given. The task is to mark
certain fields (unit squares) of the board as belonging to a cloud. The
following conditions are known to always hold:

1. Clouds occupy an area of rectangular shape and their width and
height is at least two units.

2. No clouds touch each other, not even diagonally.
To solve the puzzle one is given the following pieces of information:

1. the size of the board;

2. the number of cloudy fields in certain rows/columns of the board;

99

3. the presence or absence of a cloud at certain fields of the board.

Figure 1 shows an example puzzle and its (unique) solution.” A number is
given by each row and column. If this number is non-negative, it is equal to
the count of the cloudy fields, otherwise the count is not known. Cloudy fields
known in advance are represented by the ‘+’ character, while fields known to be
non-cloudy (clear) by ‘-’. In the solution (right hand side) ‘#’ represent cloudy
fields and ‘.’ clear sky.

et i 2

et e =

I I I I I | 4 L # 1 # 1 # 1 #1 .14
do——t———t———t———t———+ Fo——t———p———t———t———+

I I I I | -1 4 L # 1 # 1 # 1 #1-14
Fo——t———t———t———t———+ Fo——t———p———t———t———+
1 1 1 1 10 .. 0.1 .10
to——t———t———t———t———+ Fo——t—— bt ———t———+

I |+ | I I | -1 I # | + | | # | # | -1
to——t———t———t———t———+ Fo——t—— bt ———t———+

I I I I I | 4 I # | # | | # | # | 4
s S et to——t———pm— ==+

4 4 -1 4 2 4 4 -1 4 2

Figure 1: A Clouds puzzle and its solution

We use at least three distinct sets of test cases for assessing the students’
programs. The first set is distributed with the announcement of the assignment,
so that students can use it in the process of program development. The second
set is used when the students hand in their solutions. The results of this test
are sent back to the students via email. As for the minor assignments, students
can hand in as many versions of their programs as they wish, but only the latest
version will be used for the final test. This test is run on the third set of test
cases, which has a similar difficulty level as the earlier ones. Students also have
to submit a documentation via the ETS system.

The best solutions for the major assignment, which solve all the test cases of
the final test, participate in the so-called “ladder contest”. These programs are
tested against bigger and more difficult test cases. The authors of the programs
which achieve highest places in the ladder contest, get extra points.

In spring 2004 the largest test-case in the ladder test-set was of size 25*18,
with 92 given fields. Only a single student submission was capable of solving this

SNaturally, a puzzle can have multiple solutions.

60

test case within the prescribed 120 second timeout.

2.3 Teaching tools

We now briefly introduce the tools and utilities used by the students and/or the
lecturers during the DP course.

The ETS electronic teaching assistant. The web-based ETS system pro-
vides the following services:

e access to a database of students of the course, together with their results,
e assignment submission and automatic testing,
o facilities for student exercising.

The ETS system has been developed by the course lecturers together with several
talented students of the course, who devoted their student research work [1] or
Master’s Thesis [2] to this subject.

We now focus on the student exercising facilities of ETS. The system supports
various exercise schemes for both the Prolog and SML languages. As worked out
in [2], a scheme describes how the exercise is presented to the student as well
as how the student answer is processed. Correspondingly, a scheme is associated
with a web-form, which includes the generic text of the exercise. This form is
then specialised using a database of concrete exercise instances.

At present the following Prolog schemes are supported:

e Canonical form: the student is requested to type in the canonical form of
a Prolog term (as if printed by write_canonical).

e Execution: The student should decide what will be the result of executing
a given goal. There are three sub-schemes, depending on the determinism,
number of variables, etc.:

— Success/failure/error: The goal is deterministic and it can fail or raise
an exception. In case of success, the value of a single variable is asked
for.

— Multiple variables: The goal is deterministic and it always succeeds.
The student is asked to supply the substitutions of all variables. Typ-
ically used for unification exercises.

61

— All solutions: The goal is possibly non-deterministic with a single
variable. The student is asked to enumerate all solutions of the goal,
in proper order.5

e Programming: The student has to write a Prolog program following a given
specification.

Orthogonally to the schemes, the exercises are grouped into topics, which
correspond to sections of the material taught. For example, the topic of lists
may contain exercises in various schemes: canonical form (of lists), execution
and programming (of list processing predicates).

For most of the topics the exercises come in several difficulty levels: easy,
medium, and hard. Students can prescribe the difficulty level of exercises they
want to practice.

We now give a few examples of various exercises in the ETS system.

e “Canonical form” scheme, lists and operators topic, hard exercises:
[, il - (1,2) 1--1.
e “Success/failure/error” scheme, unification topic:

| 7- [X,11X]
| - [X,a’X]

..
[1,2,a,1,2].

e “Multiple variables” scheme, unification topic:

| 7= g(1+2+3, [a,b]) = g(X+Y, [UIV]).
| 7= h([H, G], H*G) = h([Q/1IR], P/Qx*3).

e “Success/failure/error” scheme, list processing and control predicates top-
ics:

| ?7- length(X, 1), member(a, X).
| ?- member(X, [1,2,3]), !, X < 3.

e “Multiple solutions” scheme, list processing topic:

5This sub-scheme could be eliminated in principle by encapsulating the goal into a findall.
However this type of exercise is issued much earlier than findall is taught.

62

Program: | app([XIL1], L2, [XIL3]) :-
app(L1, L2, L3).
app([], L, L).

Goal: | ?- app(L, [al], [a,b,a,b,al).

Task: List the substitution(s) of L separated by ;’s.

(The correct answer is: [a,b,a,b]; [a,b]; [].)

Further details and examples regarding the capabilities of ETS can be found
in [3].

Other tools. The declarative C language subset, used in the initial lecture
has also been implemented and its interpreter has been made available to the
students. This interactive implementation has been written in Prolog and it
works by translating the C code to Prolog predicates.” Students thus can get
acquainted with declarative programming and interactive function invocation in
an already familiar environment of the C language.

Further tools serve for the visualisation of Prolog execution. First I developed
a simple, non-graphical tool for drawing the search tree of a pure Prolog program.
Subsequently, as a student research project, this was extended to general Prolog
programs and a graphical interface was also provided [7].

Regarding tools used by the lecturers, we should mention that the slide pre-
sentations of the whole course (both Prolog and SML) have been developed using
the xdvipresent tool [5]. Another, very important utility serves for detecting
plagiarism in the student assignments. This tool has been developed in a student
research project in 2000 [6] and since then it have excellently served the purpose
of deterring students from copying each others work. The basic idea is to trans-
form the programs into call-graphs and compare these graphs, rather than the
program texts. Of course, this tool can not be used for simple assignments, where
the code to be written consists of a few predicates or functions.

At present, the plagiarism detection tool contains front-ends for both SML
and Prolog, but there are plans to extend it for further languages.

3 Elective courses

There are two elective courses closely related to logic programming;:

"In the future we plan to hand out this compiler to students, and to use it in the second part
of the course for illustrating the advantages of Logic Programming in compiler writing, cf. [13].

63

e “Highly efficient logic programming” held each year since 1997,

e “Selected topics from logic programming”, student seminar, held in 2001
and 2003.

Both courses are single semester ones, with one lecture/seminar of 90 minutes
per week.

The “Highly efficient logic programming” (HELP) course tries to show two
facets of efficient logic programming:

e Making programs run faster by creating a streamlined and clean LP lan-
guage, as exemplified by the Mercury project [10].

e Making programs run faster by adding more reasoning capabilities as shown
by the constraint logic programming (CLP) approach.

However, the emphasis of the course shifted towards CLP, which takes about 11—
12 lectures, while the basic outline of Mercury is presented in the remaining 2-3
lectures. The CLP part is based on SICStus Prolog, discussing all four constraint
libraries present: CLP(R/Q), CLP(B), CLP(FD) and CHR.

There is an important link between the DP and the HELP course: the major
assignment of the DP course is re-issued in the subsequent semester as the HELP
assignment. It is not uncommon that the CLP program written as the HELP
assignment is two orders of magnitude faster than the Prolog solution of the same
student.

Further details on the HELP course can be found in [11].

In the seminar entitled “Selected topics from logic programming” students
themselves present their account on a topic of their interest, be it a paper, some
experience with an application or a programming language, etc. The lecture
themes come from various areas of logic programming: theory, parallelism, object-
oriented, graphical, and web-related extensions, abstract interpretation, tracing,
as well as overviews of concrete Prolog implementations.

In the first few weeks I hold the seminars, so that the students have time for
preparing their presentations. In both editions of the course so far, these lectures
were about Prolog implementation techniques, primarily discussing the WAM
approach. This is followed by student presentations of 45-90 minutes, depending
on the topic. The students are asked to prepare their presentation at least one
week in advance, and to discuss it with me; this ensures fairly good quality. The
seminars are often followed by a lively discussion. Overall, the students were
quite satisfied with the seminar.

In spring 2004 a new course on the Semantic Web was set up by myself and
Gergely Lukéacsy. Although this course is rather loosely related to LP, it is worth

64

mentioning that several students have prepared their assignment, a tableaux
based reasoner for a Description Logic, in Prolog.

4 Other educational activities

There are several types of activities at BUTE, where enthusiastic students can
explore some topics in greater depth.

Directed Projects. In semesters 8 and 9 all students of informatics have to
do a Directed Project with a weekly load equivalent to six 45 minute lectures.
I had the pleasure of leading about a dozen such student projects over the last
seven years, in various areas of logic programming. Some of the more interesting
ones are listed below:

e Applying CLP(FD) for scheduling plastic moulding machines — Tamds
Benké, 1997

Interfacing Prolog to Corba — Gébor Gesztesi and Gabor Marosi, 1997-98

Debugging CLP(FD) programs — Dévid Handk and Tamés Szeredi, 2000
(this led to the development of a new SICStus library [4])

Using CHR for reasoning in Description Logics — Bence Szasz, 2002

A Prolog based RDF reasoning system — Gergely Lukacsy, 2002

e A Prolog-Java interface using sockets — Péter Biener, 2003

Masters’ Theses. It is quite often the case that students chose their work in
the Directed Project as the basis for their MSc Thesis. In fact this happened to
all but the Corba project in the above list. Some further Theses I supervised are
listed below:

e Implementation of a constraint reasoning system — Tamaés Rozman, 1997
e Conversion of document description languages — Zsolt Lente, 2000
e Knowledge-based tools for information integration — Attila Fokt, 2000

e Computer Support for Declarative Programming Courses — David Handk,
2001

65

e Verification of object-oriented models using constraints — Péter Tarjan,
2001

e Transforming object-constraints to logic — Karoly Opor, 2002

e Logic-based methods for planning queries on heterogeneous data sources —
Tamas Lukécs Berki, 2003

Student Research Projects. There is a long tradition of Hungarian students
doing a research project, in addition to their curricular activities. Such student
research work is assessed at yearly Student Conferences, to which students have
to submit a paper (usually 40-60 pages) and also deliver a 20 minute oral pre-
sentation.

Separate Student Conferences are held every autumn within each Faculty
of BUTE. In November 2003, there were 118 presentations involving about 170
students in 11 sections, in the Student Conference of the Faculty of Electrical En-
gineering and Informatics. Best papers get first, second and third prizes, these
rewards are taken into account e.g. in the admission procedure of PhD stud-
ies. Paper which have received a first prize participate in the biennial National
Students Conference.

The following Student Conference papers were presented in the area of (con-
straint) logic programming:

e Solving a stock exchange allocation problem (using CLP), Déniel Varro,
1998, I. Prize.

e Conversion of SGML languages, Zsolt Lente, 1999, II. Prize.

e Comparison of source program structures, Gergely Lukacsy, 2000, I. Prize,
Rector’s Special Prize; 1. Prize at the National Student Conference, 2001

o Efficient access of an object-oriented database from logic programs, Ambrus
Wagner, 2000

e A Web-based student exercising system for teaching programming lan-
guages, Andras Gyorgy Békés, Lukacs Tamas Berki, 2001

e Intelligent querying and reasoning on the Web, Gergely Lukacsy, 2002, I.
Prize; Special Prize of the Hungarian W3C Office at the National Student
Conference, 2003

e Visualisation of Prolog program execution, Tamés Nepusz, 2003, II. Prize

66

e Using abstract interpretation in SICStus Prolog, Baldzs Leitem, 2003, III.
Prize

5 Summary

I think it is a very good thing that each and every student of informatics at BUTE
(which currently means about 400 students every year) has to get acquainted with
the basics of logic and functional programming. I only hope that this remains so
when the current five year curriculum (leading to an MSc degree) gets divided
into two parts, following the Bologna principles.

It looks that the introductory DP course can attract the attention of talented
students, who then get involved in further elective courses. A possible explanation
of this is that, as opposed to other programming courses, such as C, Java, etc., the
DP course introduces a programming style previously unknown to most students,
and at the same time it shows some problems where this new paradigm can
be successfully used. The major assignment, which is not compulsory, but is
practically required for achieving the highest grade, gets the attention of the best
students as a task which looks very difficult to solve using traditional, imperative
languages. The ladder contest for the major assignment adds to this the thrill of a
peer-to-peer competition. Consequently, quite a few students make an attempt to
solve the major assignment, and so get some practice in declarative programming.

The major assignment of the DP course has almost always been a constraint
problem. I often mention to students at the DP exam that their solution can
be made hundred times faster using constraint techniques, which they can get
acquainted with in the HELP course. This “advertisement” seems to work: for
example, there are now 59 students enrolled for the 2004 autumn HELP course
(as a reference, 480 students were enrolled in the 2004 spring DP course).

Both the logic programming and the CLP courses focus more on the practical
programming aspects, and less on the theoretical ones. Although I agree that it
would be beneficial to make the courses a bit more balanced in this respect, I
think that the primary interest of the students, at least here in Hungary, lies in
the practical applicability of LP, rather than in its theory. It may be interesting
to note, however, that in the last edition of the LP seminar there was a student-
initiated lecture on theoretical foundations of (C)LP, based on the first chapters
of [8].

The student evaluations® of the courses described in this paper have almost
always been positive. Nevertheless there are quite a few issues that need im-

8Students at BUTE are asked to fill in a questionnaire for each lecturer of each course every
semester.

67

provement.

Most importantly, the better integration of the functional and logic program-
ming parts of the DP course is always on the agenda. Teaching a single language
encapsulating both functional and logic programming aspects (such as Oz, or
Mercury) would help to avoid the (mostly syntactic) confusion of the present
Prolog + SML setup. On the other hand, the novel languages mentioned have
much less industrial acceptance at present. Also, switching to a new language
would require a major investment on the lecturers’ part, which we cannot afford
presently. Therefore, we now remain with the two languages, and try to link the
two topics in the lectures, pointing out the similarities and differences of Prolog
and SML.

There is also scope for improvement regarding the utilities and tools used in
the courses. Students without Internet access would prefer a stand-alone exercis-
ing tool to the present Web-based one. The set of exercise schemes and exercises
needs further expansion, especially regarding exercises involving program writing.
The administrative part of ETS supports a single course in a single semester, it
would be good to eliminate both limitations. Several improvements are underway
regarding the tool for Prolog execution visualisation. The plagiarism detection
tool has to be extended to support the declarative subset of the C language,
introduced recently.

As the referees rightly pointed out, the paper would have benefited from the
inclusion of more details on the mathematical logic course, as well as on the
functional programming part of the DP course. Unfortunately, the strict time
constraints did not allow for these to be included.

6 Conclusions

In the paper I tried to give an overview of the role logic programming plays in
undergraduate education and research at the Budapest University of Technology
and Economics. I hope that the experiences reported here can be of help in LP
education at other universities.

Acknowledgement

I am indebted to Péter Handk, who, exactly 10 years ago, invited me to teach
declarative programming at BUTE, and with whom I could share the joy and
troubles of this difficult task. I am also most grateful to all the enthusiastic
student helpers (we had about 50 of these!), and especially to those who helped
in the development of various utilities and tools: Andras Gyorgy Békés, Tamas

68

Benko, Lukacs Tamas Berki, David Handk, Gergely Lukacsy, Taméas Nepusz, and
Tamas Rozman.

Thanks are also due to the anonymous referees for their helpful remarks.

References

1]

Andréis Gyorgy Békés and Lukacs Tamés Berki. A Web-based student ex-
ercising system for teaching programming languages (in Hungarian), 2001.
Students’ Conference, BUTE, Budapest, Hungary.

Déavid Handk. Computer support for declarative programming courses (in
Hungarian), 2001. MSc Thesis, BUTE, Budapest, Hungary.

Déavid Handk, Tamas Benk6, Péter Handk, and Péter Szeredi. Computer
aided exercising in Prolog and SML. In Proceedings of the Workshop on
Functional and Declarative Programming in Education, PLI 2002, Pittsburgh
PA, USA, October 2002.

David Handk and Tamads Szeredi. FDBG, the CLP(FD) debugger library of
SICStus Prolog. In Susana Munioz Herndndez and José Manuel Gémez-Pérez,
editors, Proceedings of the Fourteenth International Workshop on Logic Pro-
gramming Environments (WLPE’04), Saint-Malo, France, September 2004.

Manuel Hermenegildo. Slide presentations using latex/xdvi, 2003. CLIP
Group, School of Computer Science, Technical University of Madrid,
http://clip.dia.fi.upm.es/Software/xdvipresent_html.

Gergely Lukécsy. Comparison of source program structures (in Hungarian),
2001. National Students’ Conference, Eger, Hungary.

Tamés Nepusz. Visualisation of Prolog program execution (in Hungarian),
2003. Students’ Conference, BUTE, Budapest, Hungary.

Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog (2nd ed).
John Wiley, 1995.

SICS, Swedish Institute of Computer Science. SICStus Prolog Manual, 3.11,
June 2004.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The execution
algorithm of Mercury: an efficient purely declarative logic programming lan-
guage. Journal of Logic Programming, 29(1-3):17-64, 1996.

69

[11]

[13]

70

Péter Szeredi. Teaching constraints through logic puzzles. In
Krzysztof R. Apt et al., editor, Recent Advances in Constraints, Joint
ERCIM/CoLogNET International Workshop on Constraint Solving and
Constraint Logic Programming, CSCLP 2003, Selected Papers, volume 3010
of Lecture Notes in Computer Science, pages 196-222. Springer, 2004.

Péter Szeredi and Taméas Benkd. Introduction to logic programming (in
Hungarian). Budapest University of Technology and Economics, Faculty
of Electrical Engineering and Informatics, 1998, 2001, 2004. Study-aid for
the Declarative Programming course. Manuscript.

David H. D. Warren. Logic programming and compiler writing. Software
Practice and Ezxperience, 10:97-125, 1980.

A Logic Programming E-Learning Tool For
Teaching Database Dependency Theory

Paul Douglas Steve Barker
Unwversity of Westminster, London, UK King’s College, London, UK
P.Douglas@umin.ac.uk steve@dcs.kel.ac.uk
Abstract

In this paper, we describe an “intelligent” tool for helping to teach the
principles of database design. The software that we present uses PROLOG
to implement a teaching tool with which students can explore the concepts of
dependency theory, and the normalization process. Students are able to con-
struct their own learning environment and can develop their understanding
of the material at a pace that is controlled by the individual student.

1 Introduction

We describe a tool that we have developed and have used to help university-level
students to learn certain essential notions in database schema design, specifically
the normalization [1] process, which is based on the underlying concept of depen-
dency theory [1]. We regard the learning tool as a piece of intelligent software,
where the term “intelligent” is interpreted by us as the capability of responding
to a student’s input (in the form of a database design problem chosen by the
student) with a solution based entirely on that input. There are no “standard”
problems or solutions provided with the software, and the software is able to
explain each step of the solution process if the student chooses to exploit this
option. It follows that the software is capable of providing either a quick check
of a student’s own work, or a fuller teaching facility.

PROLOG is used for the implementation of the software to provide the capa-
bility of checking a student’s work and either confirming that the work is correct,
or indicating why it is not. PROLOG has been widely used for implementing
items of educational software (see, for example, [2] and [3]) and is appropriate for
the teaching tool that we have developed because it permits a rule-engine to be
exploited to intelligently interpret and respond to student inputs. The database

71

design algorithms that we have chosen to implement also have a natural transla-
tion into PROLOG code.

A number of excellent textbooks on dependency theory already exist. Nev-
ertheless, although textbooks can offer very good coverage of the material on
dependency theory, they offer only limited forms of interactivity and limited
scope for students to test their own understanding of database design principles.
Many textbooks provide no practical exercises and, even when they do, these
exercises are often limited in size and sophistication. Moreover, textbooks that
do provide exercises do not necessarily provide “solutions”, so students cannot
determine whether they were able to “solve” the problems.

Some courses that teach relational databases take the approach that the use
of a schema design tool will almost always deliver a schema that is in third normal
form (3NF') [1], and that teaching dependency theory is not really necessary (see,
for example, [4]). However, we disagree with this point of view. There are many
aspects of relational database technology that are directly related to the data
dependencies that exist within a database, and students cannot properly consider
these issues without a proper understanding of dependency theory. The use of
design tools also suggests that a relational database schema has been somehow
finalized once it has been put into third normal form, leaving students with
even less understanding of normal forms beyond 3NF. Students will not be able
to critically evaluate alternative designs, or make informed choices about levels
of normalization, if they do not understand the principles upon which design
decisions have been based. Functional dependencies [1] are also important for a
proper understanding of the concepts of candidate keys, superkeys, constraints,
and the theoretical foundations of relational database systems.

The PROLOG programs that we have developed are able to lead a student
through the process of decomposing relations to satisfy the requirements of a
particular normal form for database design. The tool is able to explain the
steps that are being taken to generate a decomposition, and can thus provide a
solution to a given decomposition problem whilst also providing an explanation
about how it was achieved. A fairly simple interface program written in Java
allows the students to enter un-normalized relations and go through the steps of
normalizing the relations to a “higher” normal form without having to interact
directly with PROLOG themselves. In this way, students are able to compare not
only a solution to a problem with their own, but to see a whole method for the
problem worked out, step by step, and to call on a textual explanation facility at
any point at which they do not understand the processes that have taken place.
Because our tool enables students to freely select inputs, it enables them to work
on problems of their own devising, at a level of difficulty exactly appropriate to
their own level of understanding.

72

The remainder of this paper is organized as follows. In Section 2, a number of
preliminary issues are discussed. In Section 3, the implementation of the teaching
tool is described. In Section 4, a sample user session is described. In Section 5,
the evaluation of the software is considered. Finally, conclusions and suggestions
for further work are given in Section 6.

We assume that the reader has a knowledge of the basic notions and notations
that are typically used in discussions on dependency theory; otherwise, we suggest
[1] for all necessary background information.

2 Preliminaries

Our approach to developing our learning tool for database design initially in-
volved us adopting a phenomenographic method [5] for information gathering
on students’ understanding of concepts in dependency theory. By conducting
‘dialogue’ sessions with students we identified the strategies students used to un-
derstand the basic concepts. From our review of the notes taken at the dialogue
sessions, we were able to develop a prototype system for supporting students in
learning about dependency theory.

As the software evolved, we made increasing use of Gagne’s event-based model
of instruction [6] to decide what material a user of the tool should be offered and
the order in which information ought to be presented to a learner. Thus, different
levels of learning guidance are available to meet the requirements of an individual
student, and learning takes place in a student-centred, interactive way.

In overview, our learning tool includes implementations of the following algo-
rithms. We use Ullman’s FD-closure algorithm [1]; we use Beeri and Honeyman’s
algorithm [7] for checking dependency-preservation after decomposition; we use
Loizou and Thanisch’s approach [8] for checking for a lossless-join decomposition;
we use Ullman’s method for finding a minimal cover for a set of FDs [1]; we use
Gottlob’s method [9] for computing a cover for the projection of a set of FDs onto
a subschema of the decomposition; and we use Luchessi and Osborn’s key find-
ing algorithm [10] to identify candidate keys. For the decomposition algorithms,
we used the proposal in Ullman [1] for generating 3NF schemes, and Tsou and
Fischer’s approach [11] for generating BCNF schemes.

In our approach, an n-ary relational scheme of the form

R(A17' . aATL)

where R is the name of the relation and Aq,..., A, is a set of attributes is
represented in our PROLOG implementation by using a list: [Aq,..., A,].
Moreover, given a functional dependency of the form:

73

Al,...,AmHBl,...,Bn

where A; (i € {1,..,m}) and B; (i € {1,..,n}) are attributes, we use pairs of
lists and define an operator for —, to wit:

[A1,...,Ap] — [B1,..., By

3 Implementation

Our implementation of the database design tool includes a GUI that sits on top
of the PROLOG implementation of the database design algorithms.

The interface is intended to be simple to use; it is menu-based and all data
that is entered is case-insensitive. Users are prompted throughout a session for
the correct data to enter, and can return to the main menu at any time. It is
possible to enter multiple schemas, save them, and return to them later within a
session. Sessions can also be retained in a file, and can therefore be suspended
and resumed.

The interface program is written in Java. Java has many advantages for this
kind of application. It is widely used, it has comprehensive Internet support (see
below), and it is easy to access applications written in a variety of other languages
(through the Java Native Interface (JNI) mechanism).

We use XSB-Prolog [12] to implement the main logic programs that implement
the database design algorithms. XSB runs on a number of platforms and offers
excellent performance that has been demonstrated to be far superior to that of
traditional Prolog-based systems [13].

Calls to XSB from the interface program are handled by the YAJXB [14]
package. YAJXB makes use of Java’s JNI mechanism to invoke methods in the
C interface library package supplied by XSB. It also handles all of the data
type conversions that are needed when passing data between C and Prolog-based
applications. YAJXB effectively provides all the functionality of the C package
within a Java environment.

Although we have used YAJXB in our implementation, we note that a num-
ber of alternative options exist. Amongst the options that we considered were
Interprolog, a Java-based Prolog interpreter (e.g., JavaLog), or a Sockets-based,
direct communication approach. Unfortunately, each of these approaches has its
own distinct drawbacks when compared with the approach that we adopted. In-
terprolog does work with XSB, so we could still take advantage of the latter’s
performance capabilities. However, Interprolog is primarily a Windows-based ap-
plication. All of our development was done on a Sun Sparc/Solaris system; YA-
JXB, though primarily configured for Linux, compiles easily on Solaris. JavalLog

74

was discounted because we felt that it did not offer sufficient flexibility compared
with XSB. Finally, using sockets would give us a less portable application be-
cause it would involve considerably more application-specific coding. Overall, we
felt that the straightforwardness of the YAJXB interface makes it preferable to
the Interprolog approach so far as interfacing with XSB is concerned. Moreover,
XSB’s highly developed status and excellent performance make it more desirable
in this context than a Java/Prolog hybrid.

The C library allows the full functionality of XSB to be used. A variety of
methods for passing Prolog-style goal clauses to XSB exists. However, we gener-
ally found that the string method worked well. This method involves constructing
a string o in a Java String type variable, and using the xsb_command_string func-
tion (or similar) to pass o to XSB. This approach allows any string that could
be entered as a command when using XSB interactively to be passed to XSB by
the interface program. YAJXB creates an interface object; the precise method of
doing this is a call like:

i=core.xsb_command_string (command.toString());

where the assignment, as one would expect, handles the returned error code.
Variations on this method allow for the return of data where relevant.

4 A Learning Session

Users invoke the software by using the Java JRE. On invoking the software, the
system will respond with the opening menu:

MAIN MENU
1. Enter a Schema
2. Help
3. Exit

Enter Choice (1-3):

The “help” option gives some general guidance on how to use the system;
the “exit” option terminates the program. Having invoked the system, the user
will normally enter a schema. The system will first prompt the user to enter the
names of the attributes:

75

Enter attribute names, using spaces to separate them.
Names must be single characters or strings:

If the required schema attributes are (a, b, ¢, d) then the user will respond, to
the request for input, with something like:

abcd

The next step is for the functional dependencies to be entered. The user
is first prompted to enter a determinant, then its dependent attributes. The
process will be repeated for each determinant. The system loops around these
input processes until a blank line is entered: for each determinant the user is
repeatedly prompted to enter another dependent attribute until a blank line is
entered; the user is then invited to enter another determinant, and this process
in turn repeats until a blank line is entered. For example, for the functional
dependency a — bc we have:

Enter a determinant
If multivalued, use spaces as separators: a

Enter a dependent attribute
If multivalued, use spaces as separators: b

Enter a dependent attribute
If multivalued, use spaces as separators: c

Enter another dependent attribute
(return to end):

When the process of describing functional dependencies is complete, the
system will respond with a display of the information entered and another menu.
All functional dependencies are displayed in right reduced form i.e., with a single
set of attributes on the right-hand side of an FD. For example:

Your schema has attributes: [a,b,c,d]
and FDs: [a]—[b], [a]—[c], [c]—]d]

CHOOSE AN OPTION:

76

1. 3NF decomposition
2. BCNF decomposition
3. Help
4. Exit
Enter Choice (1-4):

The “exit” option returns the user to the previous menu; the “help” option
gives some general information about the decomposition process. The example
that follows gives some sample output if 3NF decomposition is selected from the
menu:

Finding a minimal cover

At each step, enter ? for help or CR to continue. ..
.. .checking right reduction

.. .checking left irreducibility

.. .checking redundant FDs

Decomposing. ..

.. .checking lossless join property

The following 3NF subschemata
give the dependency preserving
decomposition of your schema:

t1

[a,b,c]

one key: [a]
t2

[c.d]

one key: [c]

Having generated the 3NF decomposition, the user can then return to the
main menu, and either enter another schema, or exit the system.

5 Evaluating The Software

Our database design teaching and learning tool has been formatively evaluated.
For the formative evaluation, we sought comments from several colleagues in-
volved in teaching database management at the University of Westminster; these

77

were our “expert reviewers” [15]). We additionally worked with a small group of
post-graduate students who were learning about dependency theory at the time
at which they used the software; these students tested the software during tuto-
rials over two consecutive weeks, and in several additional sessions. A number of
suggestions made by the expert reviewers and the volunteer students were used to
make minor modifications to our initial design e.g., modifications of the interface.

We then conducted a program of small-group testing with some final year
undergraduate students who were also studying dependency theory as part of
a database design module. We gathered feedback about the software by using
observations and informal “interviews”. This involved one of the authors sitting
with the students and asking them to articulate their feelings about the software,
and asking the students to complete a questionnaire at the end of the trial period,
which asked them how, in general, they had found the software to use, and how
they felt it compared with the traditional textbook alternative.

The students all reported that the software was useful in terms of helping
to develop their understanding of dependency theory, and all agreed that the
facility for testing their own solutions to normalization problems was motivating
to use and important in developing understanding. They were unanimous in
concluding that the tool was a major improvement, in terms of carrying out
practical exercises, over the textbook.

It is not perhaps surprising that the overall feedback was so positive. Using
something new is always more interesting and students like to use computers.
Because of our desire to get the feedback, the students probably found the tuto-
rials relating to the dependency theory material a more positive experience than
those provided to support the rest of the module (the use of a couple of volun-
teer helpers from the earlier post-graduate test group resulted in a much higher
staff-student ratio than usual).

6 Conclusions and Further Work

We have developed a teaching and learning tool for helping university students
to learn some aspects of dependency theory. The results of discussions with the
students who have used the software suggest that the tool is of value to students
learning about dependency theory. However, much more extensive testing of
the software will be necessary (e.g., a summative evaluation) before any firm
conclusions can be drawn about its educational value.

There are several ways in which the tool could be further developed. In
particular, we plan to produce a web-based interface, which will make the tool
both easier to use, and more widely accessible. It would additionally enable us to

78

improve the availability of the explanation facility, which could be read in pop-up
help windows at all stages of the normalization process. We also intend to develop
our tool to assist students in their learning of multivalued and join dependencies
and the normal forms that are associated with these types of dependencies.

7 References

[1] J. Ullman, Principles of Database and Knowledge-base Systems, Computer
Science Press, 1989.

[2] Yazdani, M., New Horizons in Educational Computing, Chichester: Ellis
Horwood, 1983.

[3] Nichol, J., Briggs, J., and Dean, J., Prolog, Children and Students, London:
Kogan-Page, 1988.

[4] B. Byrne, Top Down Approaches to Database Design Tend to Produce Fully
Normalised Designs Anyway, Proceedings of TLAD, 2003.

[5] F. Marton and P. Ramsden, What does it take to improve learning?,
Improving Learning: New Perspectives, Kogan Page, 1988.

[6] R. M. Gagne, The Conditions of Learning, Holt, Reinhart and Winston, 1970.

[7] C. Beeri and P. Honeyman, Preserving Functional Dependencies, SIAM
Journal of Computing, 10(3), 1981.

[8] G. Loizou and P. Thanisch, Testing a Dependency-preserving Decomposition
for Losslessness, Information Systems, 8(1), 1983.

[9] G. Gottlob, Computing Covers for Embedded Functional Dependencies,
PODS, 1987.

[10] C. Lucchesi and S. Osborn, Candidate Keys for Relations, Journal of
Computer and System Sciences, 17(2), 1978.

[11] D. Tsou and P. Fischer, Decomposition of a Relation Scheme into Boyce-
Codd Normal Form, SIGACT News 14(3), 1982.

79

[12] K Sagonas, T. Swift, D. Warren, J. Freire and P. Rao., The XSB System
Version 2.0, Programmer’s Manual, 1999.

[13] K Sagonas, T. Swift, and D. Warren., XSB as an Efficient Deductive
Database Engine, ACM SIGMOD Proceedings, 1994.

[14] S. Decker, Yet Another Java XSB Bridge, http://www-
db.stanford.edu/%7Estefan/rdf/yajxb/

[15] M. Tessmer, Planning and Conducting Formative Evaluations, Kogan-Page,
1993.

80

A Database Transaction Scheduling Tool in
Prolog

Steve Barker Paul Douglas
King’s College, London, UK University of Westminster, London, UK
steve@dcs.kcl.ac.uk P.Douglas@uwmin.ac.uk
Abstract

”

In this paper, we describe an item of “intelligent” educational software
that is intended to help students taking university computer science courses
to understand the fundamentals of transaction scheduling. The software,
implemented in PROLOG, empowers students to construct their own learn-
ing environment and is able to provide tailored forms of feedback to different
types of learner. We describe the development and evaluation of the soft-
ware, and we present details of the analysis of the results of our investigation
into the effectiveness of the software as a teaching and learning tool. Our
results suggest that our learning tool provides students with a different and
valuable type of learning experience, which traditional methods do not pro-
vide.

1 Introduction

In this paper, we describe an item of educational software that we have devel-
oped and used to help us to teach certain key notions from the realms of database
transaction processing to undergraduate computer science students. More specif-
ically, the software is an educational tool that is intended to “intelligently” assist
computer science students in developing their understanding of CRAS property
satisfaction [1]. In this context, “intelligently” may be interpreted as an ability
to respond to a student’s self-selected input by detecting and explaining his/her
errors to them or confirming that his/her understanding is correct.

Ours is one of the first pieces of courseware to provide students with help in
understanding the basic notions of database transaction processing and, to the
best of our knowledge, is the first piece of software that is specifically intended
for helping students to learn about the CRAS properties. The software provides
students with a tutorial aid that is able to respond to questions about CRAS

81

property satisfaction in the same way that an “expert tutor” might; it enables a
student to investigate the CRAS properties at his/her leisure and enables teaching
staff to use tutorial sessions to answer any “non-standard” questions that students
might have. This tool is also important because it provides students with a
learning experience that no textbook can provide. More specifically, the software
encourages students to learn about the CRAS properties by making and testing
hypotheses. This approach appears to be the most natural way for students
to learn about the CRAS properties (certainly it is the approach they naturally
adopt). The traditional, text-based method that we have previously used to teach
material on CRAS property satisfaction does not support learning by hypothesis
formulation.

The rest of the paper is organized in the following way. Section 2 provides a
brief introduction to the CRAS properties. In Section 3, some key features of the
software are outlined. In Section 4, the main results produced from the evaluation
of the software are described and discussed. In Section 5, some conclusions are
drawn, and suggestions are made for further work.

We assume that the reader has a basic knowledge of database transaction
processing; otherwise, we suggest [2] for introductory material.

2 The CRAS Properties

The CRAS properties are criteria that should be satisfied by a schedule.

Definition 2.1 A schedule o over a set of transactions 7 = {t1,ta,...,t,} is
a strict partial order (7,<) (where < is an “earlier than” relation) with the
following properties (where o; is an operation performed by transaction ¢; and
the allowed operations are r (read) and w (write)):

1. Yo; € o (where o € {r,w}), 3t; € T such that o; € t;;

2. If o; and o; are operations in t; € 7 and o; < o; holds in t; then o; < o;
holds in o;

3. For any two conflicting operations o; and o; in o, 0; < 0j xor 0j < o0;.

Remark 2.1 Our definition of a schedule implies that no duplicate operations
on a data item are possible, and assumes that a single CPU is used in transaction
processing. If parallel processing is possible then < can be replaced by < in
Definition 2.1.

82

Unfortunately, certain interleavings of the operations from different transac-
tions in a schedule can cause anomalous behaviours (which cause the integrity of
the data in a database to be compromised) and can raise a number of practical
difficulties. For instance, it is possible for the value of a data item which has
been updated by one transaction ¢; in a schedule to be overwritten by another
transaction ¢; before ¢;’s update is performed on the database (this phenomenon
is usually referred to as the lost update problem [2]). The principal sources of
problems that arise when concurrently processing transactions are conflicting op-
erations and read froms that involve reading uncommitted data.

Definition 2.2 Two operations o; and o; in a schedule o are a conflicting pair
(or are in conflict) iff the following conditions hold:

e 0; and o; are operations on a common data item;

e at least one of o; and o; is a write operation.

Definition 2.3 For each data item z, if (i) w;(z) < rj(z) holds in a schedule,
(ii) t; does not abort before r;(x), and (iii) every transaction (if any) that writes
x between w;(x) and r;(z) aborts before rj(x) then t; reads from ¢;.

The CRAS properties help to solve certain problems, that arise as a con-
sequence of interleaving of operations, by imposing certain constraints on the
order in which operations are performed in a schedule. By ensuring that these
constraints are satisfied, a database management system is guaranteed to pro-
duce schedules that are free of a class of potential problems that may violate
the integrity of the data contained in a database. Moreover, satisfaction of the
CRAS properties permits a DBMS to be configured to optimize the performance
of transaction management.

The CRAS properties are: conflict serializability, recoverability, avoids cas-
cading aborts and strictness. These properties are defined formally below. In
these definitions, ¢; and t; denote arbitrary transactions, 7'(c) denotes an arbi-
trary schedule o defined on a set of transactions 7', r;, w;, a; and ¢; are respectively
read, write, abort and commit operations by transaction ¢;, — is “implication”,
A is ‘and’, V is ‘or’, — is negation, and < denotes the “earlier than” relationship
between operations.

Definition 2.4 A schedule o on a set of transactions T is conflict serializable iff
the following holds:

Vti, t; € T(o) conflict(t;,tj) — —conflict(t;,t;)

83

where conflict is defined thus:

Vi, tj € T(o) ri(x) < wj(xz) — conflict(t;,t;)

Vi, t; € T(o) wi(x) < ri(x) — conflict(ty,t;)

Vi, t; € T(o) wi(zr) < wi(x) — conflict(t;,t;).

Definition 2.5 A schedule o on a set of transactions 7' is recoverable iff the
following holds:

Vti, t; € T(o) read_from(t;,t;) —c; €0 A ¢j <.

Definition 2.6 A schedule o on a set of transactions T" avoids cascading aborts
iff the following holds:

Vti, t; € T(o) read_from(ti, tj) — ¢j < ri(x) Va; <ri(x).

Definition 2.7 A schedule o on a set of transactions T is strict iff the following
holds:

Vi, t; € T(o) wi(x) < ri(z) Vw;(r) < wi(z) —
aj <ri(x) Ve <ri(z)V
a; < wi(z) Vej < wi(x).

Definition 2.8 The auxiliary predicate read_from is defined thus:

Vti, t; € T(o) 3xread_from(t;, t;) — w;(x) < ri(z) A=(a; < ri(x))A
Vi, € T(0) wi(z) < wi(x) < ri(z)
— ag < ri(z)]].

Conflict serializability is the principal schedule correctness criterion that is
used in practice by DBMS to avoid problems of inconsistent updating that arise
during concurrent transaction execution. The recoverability criterion must be
satisfied in order to preserve the semantics of commit operations in schedules.
The ACA condition is a practical criterion that, if satisfied, reduces the amount of
work that needs to be performed to recover from the effects of failed transactions.
As the name suggests, satisfying the avoiding cascading aborts condition ensures
that if a transaction aborts then it does not cause a chain (or cascade) of aborting

84

transactions to arise. That is, the failure of one transaction, ¢; (say), does not
cause another transaction, ts (say), to fail which causes another transaction ts
(say) to fail and so on. Strictness enables a particularly efficient method to be
employed to manage aborted transactions i.e., by reinstalling before images.

3 Some Key Features of the Software

Our teaching tool enables students to test any syntactically correct schedule that
they choose as input to the system. Students also have complete freedom to
choose to investigate the satisfaction of any of the CRAS properties by these
schedules.

The software that implements the system is written in PROLOG [3]. PRO-
LOG has been widely used for implementing items of educational software (see,
for example, [4] and [5]) and is appropriate for developing applications, like ours,
which require that some form of “intelligence” be captured. The fact that the
rules that define the CRAS properties can be directly translated into PROLOG’s
rule-based language was another reason for choosing the latter for the implemen-
tation of the software.

Our design of the software has been influenced by Gagne’s work [6]. Gagne’s
event-based model of instruction helped us to decide what an individual learner
ought to be offered and the order in which information ought to be presented to
them. Following Gagne’s suggestions, when students use the software they are
reminded what the learning task to be performed is, and what it is they are sup-
posed to be able to do once the learning task has been completed. Prominence is
given to the distinctive features that need to be learned, different levels of learn-
ing guidance are supported for different types of learners, informative feedback
is given, and learning takes place in a student-centred, interactive way, but with
support available to students as and when they need it.

When engaging with the software, a user enters a schedule and selects a CRAS
property to evaluate with respect to the schedule. The schedule is displayed to
the user who may then pose queries on the schedule to test it for satisfaction of
CRAS properties with respect to the set of axioms A that defines these properties
and the auxiliary predicates in terms of which the CRAS properties are defined
(see Definitions 2.4-2.8). The axioms in A are converted into PROLOG code for
implementation.

Each operation in a schedule may be represented by a 4-tuple, (o0,t;,5,ts). Here,
o denotes an operation (i.e. read or write), t; denotes a transaction performing
the operation, i denotes the data item read or written by ¢;, and ¢, is the time at
which o is performed i.e., the timestamp for 0. In the case where o is a commit

85

or an abort, the data item is null since these operations are not performed on
a data item. In our PROLOG implementation, each 4-tuple that describes an
operation is represented as a fact of the form o(a,t;,,t;) where a € {r,w}. In
this context, a schedule ¢ is a finite set of o operations, and a PROLOG program
is a pair (A", o) where A" is the PROLOG form of A.

Example 3.1 The representation of a conflicting pair (N, M) of transactions
may be expressed in PROLOG, thus (cf. Definition 2.2):

conflict(N,M) : —o(r, N,Y,T1),
o(w, M,Y,T2),
T1<T2 N =\ =M.

conflict(M,N) : —o(r,N,Y,T1),
o(w, M,Y,T2),
T2 < T1,N =\ = M.

conflict(N,M) : —o(w, N,Y,T1),
o(w, M,Y,T2),
T1<T2,N =\ = M.

An example of the output for a schedule o produced in a user session and an
example of engaging with the system follows next.

Example 3.2 Suppose that a user’s choice of schedule is as follows:
<’LU1((L'), w1 (y), TQ(U), wy (2)7 wQ(Z)v €1, wQ(x)ﬂ TQ(y)v w2 (y)7 02>

Then, the software displays the user schedule, thus:

Your chosen schedule was:

w,1,z,90
w,1,y,95
r,2,u,100
w,1,2,105
w,2,2,110

86

c,1,null,115
w,2,2,120
r,2,y,125
w,2,y,130

c,2,null, 135

Thereafter, the user may evaluate CRAS properties with respect to the sched-
ule. For example, the user may ask “is this schedule an ACA schedule?” i.e.,
?-aca.. In this case the output is “yes”. A user can ask for an explanation of this
result by posing the following query: ?-explainaca. To which the software will
respond:

Transactions in this schedule only read data items AFTER they have
been written by transactions that have committed.

Similarly, the query ?-st. for the schedule above (i.e. “is this schedule strict?”)
is answered “no” by the software. If the user then poses the query ?-explainnonst.
(i.e. why is this schedule not strict?) then the software will respond with the
following explanation:

Transaction 2 overwrites the data item z written by transaction 1 but
BEFORE transaction 1 reaches its commit point.

All CRAS property satisfaction questions are evaluated as described in the
previous example, and several levels of explanation are provided by the software.!

4 Evaluation of the Software

We have performed a formative evaluation and a summative evaluation of our
teaching tool.

In brief, the aim of the formative evaluation of the software was to provide
information that would enable us to develop the software to a point at which it
could be summatively evaluated. The summative evaluation was intended to help
us to decide whether the software was of value in helping students to understand
the details of CRAS property satisfaction; how the software compared in this
respect to the standard text on CRAS property satisfaction [7]; and the extent
to which each means of instruction was perceived by students to be motivating
to use (or otherwise), and of value in helping them to learn about the CRAS
properties.

1Several levels of explanation are offered in the sense that users are able to check the cor-
rectness of a query in respect of any of the CRAS properties. If the query is not correct they
can attempt to correct it; alternatively, they can ask the software why it is not correct.

87

Although our study was primarily concerned with comparing the software
with [7], it should be noted that we do not envisage that the two modes of
instruction should be used in a mutually exclusive way. The comparison of the
software and [7] in our evaluation was chosen merely to attempt to decide whether
there was any evidence to suggest that the former might have some “educational
value” when compared to the latter.

For the formative evaluation, comments on the software were sought from:
two members of the teaching staff at the University of Westminster (the “expert
reviewers”); a volunteer student from the university’s MSc course in Database
Systems (the one-to-one study); and a group of four volunteer students from the
same course (the small-group testing). The volunteer students were randomly
allocated to either the one-to-one or small-group testing (but not both). These
students were learning about the CRAS properties at the time at which the
formative evaluation of the software was being conducted.

In response to the feedback received from the users of the software, a number
of changes were made to the software over time. For example, the software
was changed from its initial form to display a user’s schedule together with the
explanations of the CRAS property satisfaction or violation by a schedule, and a
variety of modifications were made to the front-end to enhance its appeal. The
power to investigate any schedule and CRAS property was reported to be an
attraction of the software, and a major advantage it had over Bernstein et al’s
text. The students commented that they particularly liked the fact that they
could “interact” with the software, and that it “lets you decide what to learn”.

The software was summatively evaluated with the cohort of 27 students at the
University of Westminster who were taking the Database Administration (DBA)
module as part of their BSc Computer Science degree programme in the Second
Semester of the 2002/03 academic year.

A 5-point Likert scale, with 22 statements, was used to collect data about the
perceptions the students had of the software and [7] as methods for facilitating
understanding of the CRAS properties, and their attractiveness as learning in-
struments. To analyse the data produced from the Likert scale, we chose to use
a t-test; the idea was to compare the matched pairs of scores produced by each
respondent for the software and [7].

To analyze the information produced from the Likert scale, t-statistics were
computed to compare the mean scores for the perceptions students had of the
software and [7], overall and for three specific measures: perceived helpfulness
as a teaching aid, motivational appeal, and the value of the on-line exercises,
examples, and explanations.

The results produced from the Likert scale were very clear. In the overall
measure of the two methods, the average difference in the ratings of the software

88

and [7] was 17.24 in favour of the software, and only one student reported that
[7] was “better” than the software. The t-statistic for the comparison of average
differences was 7.75. This is statistically significant at the 1% level.

Not surprisingly, given the overall results, the software was also perceived to
be “better” than [7] in all three of the sub-categories of Likert scale items.

In terms of helping students to understand the CRAS properties, the aver-
age difference in scores between the software and [7] was 2.18, in favour of the
software, and all but two of the students reported that the software had been of
more value than [7] for helping them to learn about the CRAS properties. In the
t-test comparison of the average difference in the ratings of the software and [7],
the t-statistic was 3.48. This value is significant at the 2% level.

Our software was also perceived to have more motivational appeal than [7].
The average difference in the rating of the software and [7] in this case was 10.65
and every student reported that the software had been more motivating to use
than [7]. The t-value of 7.53 for the comparison of average differences in ratings
between the software and Bernstein et al. is significant at the 1% level.

The exercises, explanations and examples that are included in the software
were almost unanimously perceived by the students to be of more value than those
in [7] for helping them to understand the CRAS properties (for one student, how-
ever, the difference in their scores for the software and [7] was zero). The average
difference in scores on the value of the exercises, explanations and examples was
4.41 in favour of the software. The t-statistic for the average difference was 8.45
which is (again) significant at the 1% level.

5 Conclusions and Further Work

Our software shows that a suitable tool can be developed to help computer science
students to learn about the CRAS properties. The package enables students to
construct their own learning environments by using a piece of courseware that is
able to interpret and immediately explain a student’s mistakes as well as being
able to confirm it when his/her understanding is correct. As such, the software
provides students with “intelligent” tutorial support for learning about the CRAS
properties. The software is also based on sound principles of learning [7], is
able to deal with any syntactically correct schedule, and it can be extended to
accommodate any number of examples or exercises without requiring changes to
the core set of rules on which the software is based.

Using the software enables students to: choose to investigate any of the CRAS
properties using schedules of their own choice; make hypotheses about schedules
satisfying the CRAS properties; test these hypotheses; and explore the conse-

89

quences of CRAS property satisfaction by manipulating the operations included
in a schedule. As such, the software empowers students to take control of their
own learning, they can learn at their own preferred pace, they can investigate
their own misunderstandings and reinforce their own understanding of the CRAS
properties. The fact that the software encourages students to “learn by hypothe-
sizing” is particularly important because this is the approach students naturally
adopt to learn about the CRAS properties. Using textbooks does not enable this
type of learning to be supported, and can only offer students a limited number of
schedules and examples of CRAS property satisfaction; textbooks cannot provide
interactive feedback to students investigating schedules and schedule properties
of their own choosing. Unlike their human tutors, the software has the additional
attraction of providing students with tutorial support in their learning of the
CRAS properties whenever they require it.

The results produced by our summative assessment of the software indicate
that it was perceived by our students to be superior to [7] in a number of re-
spects. However, more work will be required on the issue of student perceptions
of the software and [7] before any definite conclusions may be drawn about their
relative value. Our experience of conducting this study has also revealed that
some students have a tendency to believe that a piece of educational software has
to invariably be better than a text; these students regard the former as being
“the future” whilst the latter is viewed as being distinctly passé. We intend to
investigate the implications of this attitude in the near future. Moreover, while
the Likert scale test revealed that the software was perceived to be helpful to
students learning about the CRAS properties, further research is required to try
to establish why this is the case.

A number of extensions to the software are possible. For example, it could be
extended to permit the investigation of other types of schedule properties (e.g.
rigour [8]) and with minor modifications the software can be used as a tutorial
aid for learning about optimistic concurrency control [9]. We would also like to
investigate the addition of a more “friendly” user environment.

6 References

[1] Barker, S., Proving Properties of Schedules, Proc. IEEE Workshop on
Knowledge and Data Engineering, 174-180, 1998.

[2] Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and
Techniques, San Mateo, CA: Morgan Kaufmann.

90

[3] Bratko, I. (1986) PROLOG Programming for Artificial Intelligence, Reading,
MA: Addison-Wesley.

[4] Yazdani, M. (1983) New Horizons in Educational Computing, Chichester:
Ellis Horwood.

[5] Nichol, J., Briggs, J., and Dean, J. (1988) Prolog, Children and Students,
London: Kogan-Page.

[6] Gagne, R. M. (1970) The Conditions of Learning, NY: Holt, Reinhart and
Winston.

[7] Bernstein, P., Goodman, N., and Hadzilacos, V. (1987) Concurrency Control
and Recovery in Database Systems, Menlo Park, CA: Addison Wesley.

[8] Briebart, Y., Georgakopoulos, D., Rusinkiewicz, M., and Silbershatz, A.
(1991) On Rigorous Transaction Scheduling, IEEE Transactions on Software
Engineering, 17, 954-960.

[9] El-Masri, R. and Navathe, S. (2003) Fundamentals of Database Systems,
Redwood City, CA: Benjamin Cummings.

91

LINKOPING UNIVERSITY
ELECTRONIC PRESS

http://www.ep.liu.se/

