
Incremental Spherical Linear Interpolation

Tony Barrera∗

Barrera Kristiansen AB
Anders Hast†

Creative Media Lab,
University of Gävle

Ewert Bengtsson‡

Centre for Image Analysis
Uppsala University

Abstract

Animation is often done by setting up a sequence of key orienta-
tions, represented by quaternions. The in between orientations are
obtained by spherical linear interpolation (SLERP) of the quater-
nions, which then can be used to rotate the objects. However,
SLERP involves the computation of trigonometric functions, which
are computationally expensive. Since it is often required that the an-
gle between each quaternion should be the same, we propose that
incremental SLERP is used instead. In this paper we demonstrate
five different methods for incremental SLERP, whereof one isnew,
and their pros and cons are discussed.

1 Introduction

We propose that two approaches previously published for spherical
linear interpolation (SLERP) [Shoemake 1985] of vectors and in-
tensities [Barrera 2004; Hast 2003], also are used for SLERPof
quaternions, a technique often used in animation. We also demon-
strate two other ways of performing incremental SLERP by using
quaternion multiplication and by using matrices directly.Further-
more we propose a new way of doing incremental SLERP by pos-
ing the problem as solving a differential equation using theEuler
method.

1.1 Quaternions and Animation

Animation is often done by setting up a sequence of key orienta-
tions, represented by quaternions. The in between orientations are
obtained by spherical linear interpolation of the quaternions, which
then can be used in order to rotate the objects [Svarovsky 2000]

p′ = qpq−1 (1)

whereq is a unit quaterion andp is a position i 3D in quaternion
form

p = (x,y,z,0) (2)

Unit quaternions are simply another representation of rotation
matrices. It is possible to convert quaternions into matrices and
vice versa. Actually it can be proven that a unit quaternion will be
the eigenvector of the corresponding orthonormal rotationmatrix

∗e-mail: tony.barrera@spray.se
†e-mail: aht@hig.se
‡e-mail: ewert@cb.uu.se

[Kuipers 1999]. The quaternion consists of four elements. The first
three are the sine of half the rotation angle multiplied by a unit
vectorn that the rotation is performed around. The last one is the
cosine of half the rotation angle

q = (v,s) = (nsin(θ/2),cos(θ/2)) (3)

For a unit quaternion, the conjugate is the same as the inverse,
which is defined as

q−1 = (−v,s) (4)

1.2 SLERP

The theory behind SLERP, was introduced to the computer graph-
ics society by Shoemake [Shoemake 1985] and an interesting proof
is given by Glassner [Glassner 1999]. SLERP is different from lin-
ear interpolation in the way that the angle between each quaternion
will be constant, i.e. the movement will have constant speed. Lin-
ear interpolation (lerp) will yield larger angles in the middle of
the interpolation sequence. This will cause animated movements to
accelerate in the middle, which is undesirable [Parent 2002]. More-
over, will quaternions interpolated by lerp be shorter and normal-
ization is therefore necessary. However, quaternions obtained by
SLERP do not need to be normalized, since SLERP will always
yield unit quaternions as long as the quaternions being interpolated
in between are unit quaternions.

The formula used is

q(t) = q1
sin((1− t)θ)

sin(θ)
+q2

sin(tθ)

sin(θ)
(5)

wheret ∈ [0,1], andθ is the angle betweenq1 andq2 computed as

θ = cos−1(q1 ·q2) (6)

2 Fast incremental SLERP

It is shown in [Hast 2003] that equation (5) can be rewritten as

q(n) = q1 cos(nKθ)+qo sin(nKθ) (7)

whereqo is the quaternion obtained by applying one step of Gram-
Schmidt’s orthogonalization algorithm [Nicholson 1995] and then
it is normalized. This quaternion is orthogonal toq1 and lies in the
same hyper plane spanned byq1 andq2. Furthermore, if there are

k steps then the angle between each quaternion isKθ = cos−1(q1·q2)
k .

In the subsequent matlab code examples, it is assumed thatq1 and
q2 are unit quaternions and that the following five lines are included
in the beginning of the code

qo=q2-(dot(q2,q1))*q1;
qo=qo/norm(qo);
t=acos(dot(q1,q2));
kt=t/k;
q(1,:)=q1;

7

The code that follows on these three lines can be used for comput-
ing incremental SLERP. Usually SLERP is computed using trigono-
metric functions in the inner loop in the following way

b=kt;
for n=2:k+1
q(n,:)=q1*cos(b)+qo*sin(b);
b=b+kt;

end

The cost for computing SLERP in this way is one scalar addition,
one sine and one cosine evaluation, two scalar-quaternion multipli-
cations and one quaternion addition. This is not very efficient and
the following subsections will show how these trigonometric func-
tions can be avoided.

2.1 De Moivre

In [Hast 2003] it is shown that complex multiplication can beused
in order to compute SLERP efficiently. Hence, the computationally
expensive trigonometric functions are avoided.

Complex numbers are defined in an orthonormal system where
the basis vectors aree1 = 1 ande2 = i. The De Moivre’s formula
[Marsden 1996] states that

(cos(θ)+ isin(θ))n = cos(nθ)+ isin(nθ) (8)

The right part of the formula looks very similar to equation (7). In
fact is possible to compute the left part instead, by using one com-
plex multiplication. However, there are still some things to arrange
before we can compute SLERP of quaternions instead of complex
numbers.

Let Z be a complex number computed by

Z = cos(Kθ)+ isin(Kθ) (9)

Furthermore, we treat complex numbers as if they were vectors in
2D-space, by defining a product which is similar to the ordinary dot
product

(q1,qo)• (ℜ(Z),ℑ(Z)) = q1ℜ(Z)+qoℑ(Z) (10)

Thus, we compute the SLERP as

q(n) = (q1,qo)•Zn (11)

Finally, we prove that this will yield the desired result. Rewrite
equation (11) by using equation (8)

q(n) = (q1,qo)•Zn (12)

= (q1,qo)• (cos(nθ)+ isin(nθ))

Then, expand this equation by using equation (10)

q(n) = q1 cos(nKθ)+qo sin(nKθ) (13)

The matlab code for this approach is

Z1=cos(kt)+i*sin(kt);
Z=Z1;
for n=2:k+1
q(n,:)=q1*real(Z)+qo*imag(Z);
Z=Z1*Z;

end

The cost for computing the intensity will be one complex mul-
tiplication and one two scalar-quaternion multiplications and one
quaternion addition.

2.2 Chebyshev

In [Barrera 2004] a faster approach is derived using the Chebyshev
recurrence [Burden 2001]. This will make the computation inthe
inner loop much more effective than using the complex multiplica-
tion.

The Chebyshev’s recurrence relation is

Tn+1(u) = 2uTn(u)−Tn−1(u) (14)

whereTn(u) are Chebyshev polynomials [Burden 2001] of the first
kind that can be written as

Tn(u) = cos(nφ) = cos(ncos−1 u) (15)

In order to obtain the Chebyshev recurrence for solving equation
(7) let

u = cos(Kθ) (16)

φ = Kθ (17)

Then equation (15) gives

cos(nKθ) = cos(ncos−1 u) (18)

This equation can be solved by equation (14). Since sin is just a
phase shifted cos it will also be solved by the proposed equation as
long as the angle is the same for both. Let

q(n) = q1 cos(nKθ)+qo sin(nKθ) (19)

For the setup starting withn = 0, we subsequently have

q−1 = q1cos(−Kθ)+qo sin(−Kθ) (20)

= q1cos(Kθ)−qo sin(Kθ)

and

q0 = q1 cos(0)+qo sin(0) (21)

= q1

Now, we can put together our algorithm. We can also optimize it
somewhat by removing the factor 2 from the loop

tm1=q1*cos(kt)-qo*sin(kt);
t0=q1;
u=2*cos(kt);
for n=2:k+1
tp1=u*t0-tm1;
q(n,:)=tp1;
tm1=t0;
t0=tp1;

end

The cost for this approach is one scalar-quaternion multiplica-
tion, one quaternion subtraction and two quaternion moves.

2.3 Quaternion Power Function

The power function variant of SLERP for quaternions [Shankel
2000]can also be used for incremental SLERP. It is defined as

q(n) = q1(q
−1
1 qa)

n (22)

We have to computeqa in such a way that we will obtain interme-
diate quaternions in betweenq1 andq2

qa = q1 cos(Kθ)+qo sin(Kθ) (23)

then we obtain the following algorithm

8

q1i=[-q1(1), -q1(2), -q1(3), q1(4)];
qa=q1*cos(kt)+qo*sin(kt);
qb=qmul(q1i,qa);
q0=q1;
for n=2:k+1

q0=qmul(q0,qb);
q(n,:)=q0;

end

Here qmul is an implementation of quaternion multiplication,
which is defined as

q1q2 = (v1,s1)(v2,s2) (24)

= (s1v2 + s2v1 +v1×v2,s1s2−v1 ·v2) (25)

The cost for this approach is only one quaternion multiplication in
the inner loop.

2.4 Euler

Here we introduce how it is possible to perform incremental SLERP
by solving a ordinary differential equation using the Eulermethod
[Gerald 1994]. It is easy to show that

y = y1 cos(Kθ)+yo sin(Kθ) (26)

is a solution to the ordinary differential equation [Simmons 1991]

y′′ = −k2y (27)

wherek is a constant. The Euler method gives an approximation to
the solution by the following forward difference

yi+1 = yi +y′ (28)

However, in order to make this an exact computation we shall com-
pute the derivate using Eulers method as well

y′i+1 = y′i +y′′ (29)

The trick is to use the fact thaty′′ = −k2y, then we can nest the
recurrence as

y′i+1 = y′i −k2yi (30)

yi+1 = yi +y′i+1 (31)

Substitute equation (30) into (31)

yi+1 = yi +y′i −k2yi (32)

Now, we make use of the fact thaty′i = yi − yi−1 and put that into
equation (32). Thus

yi+1 = yi +yi −yi−1−k2yi (33)

After rearranging the terms we get

yi+1 = (2−k2)yi −yi−1 (34)

If we let (2− k2) = 2u, whereu = cos(Kθ) then equation (34) is
the same as the Chebyshev recurrence (14). This implies thatthe
nested Euler method can be used to compute incremental SLERP
exactly. Therefore

k2 = 2−2cos(Kθ) (35)

In this case we have

y−1 = y1 cos(Kθ)−yo sin(Kθ) (36)

y0 = y1 (37)

(38)

And

y′0 = y0−y−1 (39)

= y1−y1 cos(Kθ)+yo sin(Kθ) (40)

= y1(1−cos(Kθ))+yo sin(Kθ) (41)

Putting it all together yields the following algorithm

p=1-cos(kt);
y=q1;
k2=2*p;
y1=qo*sin(kt)+p*q1;

for n=2:k+1
y1=y1-k2*y;
y=y+y1;
q(n,:)=y;

end

The cost is one scalar-quaternion multiplication, one quaternion
subtraction and one quaternion addition.

2.5 Matrix Multiplication

The previously presented algorithms can be useful if quaternions
are used to perform the actual rotation of the objects. However, if
the quaternions must be transformed into matrices it is better to do
the interpolation using matrices all along.

Let

M1 = quattomat(q1) (42)

Ma = quattomat(q1 cos(Kθ)+qo sin(Kθ)) (43)

wherequattomat [Watt 1992] is a function that transforms a quater-
nion into a matrix. The there must exist a matrix,M that transforms
M1 into Ma

M1M = Ma (44)

Thus
M = M−1

1 Ma (45)

The code is

M1=quattomat(q1);
Ma=quattomat(q1*cos(kt)+qo*sin(kt));
M=inv(M1)*Ma;
Q=M1;
for n=2:k+1

Q=Q*M;
end

3 Conclusions

It is possible to evaluate SLERP for quaternions used in anima-
tion in a very efficient way using incremental SLERP instead of
evaluating the original SLERP functions containing trigonometric
functions in the loop.

All presented algorithms will yield the same intermediate quater-
nions, or as in the case for the matrix version, the corresponding
rotation matrix. They are all interpolation approaches andnot ap-
proximations. The only error introduced is by the floating point
arithmetic itself. They are all therefore numerically stable algo-
rithms.

The fastest approach for quaternion SLERP is the one derived
from Chebyshev’s recurrence relation. The others may seem re-
dundant. However, the purpose of this paper is to show that there

9

are many ways to avoid the computationally expensive trigonomet-
ric functions in the inner loop. Perhaps the other approaches might
have other uses in other contexts. The algorithm derived from De
Moivre’s formula might turn out to be useful if complex multipli-
cation is implemented in hardware. The same goes for the Quater-
nion power function approach. The one using the Euler methodis
interesting as an alternative to the Chebyshev approach since the
variable swap is replaced by a quaternion addition.

If the rotation is done by matrix multiplication instead of quater-
nion rotation, then the Matrix multiplication approach canbe even
faster than the Chebyshev approach since matrix multiplication of-
ten is implemented in hardware and quaternion multiplication (for
the rotation of the objects) is usually not. This of course heavily
depend of which platform is being used for animation.

Anyhow, many graphics applications and especially animation
could benefit from having quaternion arithmetics implemented
in hardware. That would make incremental SLERP very fast.
Nonetheless, a software implementation using any of the proposed
approaches for SLERP will still be much faster than using trigono-
metric functions in the inner loop.

References

T. BARRERA, A. HAST, E. BENGTSSON 2004. Faster shading
by equal angle interpolation of vectors IEEE Transactions on
Visualization and Computer Graphics, pp. 217-223.

R. L. BURDEN, J. D. FAIRES 2001. Numerical Analysis
Brooks/Cole, Thomson Learning, pp. 507-516.

C. F. GERALD, P. O. WHEATLEY 1994.Applied Numerical Anal-
ysis, 5:th ed. Addison Wesley, pp. 400-403.

A. GLASSNER 1999. Situation Normal Andrew Glassner’s
Notebook- Recreational Computer Graphics, Morgan Kaufmann
Publishers, pp. 87-97.

A. HAST, T. BARRERA, E. BENGTSSON2003.Shading by Spher-
ical Linear Interpolation using De Moivre’s Formula WSCG’03,
Short Paper, pp. 57-60.

J. B. KUIPERS 1999. Quaternions and rotation Sequences - A
Primer with Applications to Orbits, Aerospace, and Virtual Re-
ality Princeton University Press, pp. 54-57, 162,163.

J. E. MARSDEN, M. J. HOFFMAN 1996. Basic Complex Analysis
W. H. Freeman and Company, pp. 17.

W. K. NICHOLSON 1995.Linear Algebra with Applications PWS
Publishing Company, pp. 275,276.

R. PARENT 2002. Computer Animation - Algorithms and Tech-
niques Academic Press, pp. 97,98.

J. SHANKEL 2000.Interpolating Quaternions Game Programming
Gems. Edited by M. DeLoura. Charles River Media, pp. 205-213

K. SHOEMAKE 1985.Animating rotation with quaternion curves
ACM SIGGRAPH, pp. 245-254.

G. F. SIMMONS 1991. Differential Equations with Applications
and Historical Notes, 2:nd ed. MacGraw Hill, pp. 64,65.

J. SVAROVSKY 2000.Quaternions for Game Programming Game
Programming Gems. Edited by M. DeLoura. Charles River Me-
dia, pp. 195-299.

A. WATT, M. WATT 1992.Advanced Animation and Rendering
Techniques - Theory and Practice Addison Wesley, pp. 363.

10

	SIGRAD_2004_FrontalCover.pdf
	Gävle, Sweden

	SIGRAD_2004_Intro.pdf
	Edited by
	Stefan Seipel
	Linköping Electronic Conference Proceedings, No. 13
	Linköping University Electronic Press
	Print: UniTryck, Linköping, 2004
	Prologue
	Keynote and Invited Presentations

	Oliver Deussen
	Tomas Landelius

	TetSplat: Real-Time Rendering and Volume Clipping of Large U
	Ken Museth

	Research Papers
	Incremental Spherical Linear Interpolation 7
	Tony Barrera, Anders Hast and Ewert Bengtsson
	Dynamic Code Generation for Realtime Shaders 11
	Niklas Folkegård and Daniel Wesslén
	Py-FX An active effect framework 17
	Calle Lejdfors and Lennart Ohlsson
	Real-time Rendering of Accumulated Snow 25
	Per Ohlsson and Stefan Seipel

	Fast Surface Rendering for Interactive Medical Image Segment
	Erik Vidholm and Jonas Agmund
	Collaborative 3D Visualizations of Geo-Spatial Information f
	Lars Winkler Pettersson, Ulrik Spak and Stefan Seipel
	Work in Progress
	Context Aware Maps 49
	Anders Henrysson and Mark Ollila
	Sketches

	Towards Rapid Urban Environment Modelling 53
	Ulf Söderman, Simon Ahlberg, Åsa Persson and Magnus Elmqvist
	3D Reconstruction From Non-Euclidian Distance Fields 55
	Anders Sandholm and Ken Museth
	Improved Diffuse Anisotropic Shading 57
	Anders Hast, Daniel Wesslén and Stefan Seipel
	An Optimized, Grid Independent, Narrow Band Data Structure f
	Michael Bang Nielsen and Ken Museth
	Posters

	SIGRAD2004 Program Committee
	SIGRAD2004 Organizing Committee
	SIGRAD Board for 2004

	All-numbered.pdf
	SIGRAD_2004_Invited.pdf
	Interactive landscape visualization
	Abstract
	Speaker Bio
	Abstract
	Abstract

