
Real-time Rendering of Accumulated Snow

Per Ohlsson
Uppsala University

Stefan Seipel
Uppsala University

Abstract

This paper presents a method of computing snow accumulation as
a per pixel effect while rendering the scene. The method is similar
to the shadow mapping method for shadow calculations. A depth
buffer is used to find out how much snow a particular surface
should receive. The amount of snow is then modified depending
on the slope of the surface. To render the snow in a convincing
way 3D noise is utilized for the lighting of the snow surface.

Keywords: snow, computer graphics

1. Introduction

Snow is a common phenomenon in nature. It has the ability to
completely transform the mood of a scene, turning a rocky
landscape into a gentle sear of white tranquillity. But even though
snow is a common occurrence in many places of the world, snow
accumulation in real-time seems to be an area that has still to be
explored. Few attempts have been made, and the methods demand
lots of work do be done on the scene modelling before they can be
used.
Usually when snow occurs in interactive simulations it is either
modelled by an artist, or just plain textures drawn upon the
original scene.
The ability to automate the snow accumulation process in real-
time would give us the ability to add snow to any scene, and by
doing this produce beautiful settings for any kind of interactive
environment. This would enable artists to just create non snow
scenes and then let the algorithm create a snow cover, effectively
creating two scenes. It would greatly decrease the amount of work
needed to model a snow covered scene.

2. Related Work

The subject of offline snow rendering has been looked into quiet
throughout.
Paul Fearing [2000] presented a method to create beautiful snow
scenes in ‘Computer Modelling Of Fallen Snow’. Unfortunately
each frame took very long time to render making the method not
viable for adaptation to any kind of real-time situation. It worked
by first tracing snow paths from the ground upwards towards the
sky, and by that accumulating the snow. In a second stage the
stability of the snow was calculated, moving snow from unstable
areas to stable,
In the paper “Animating Sand, Mud and Snow” Summer et al.
[1998] describe a method for handling deformations of surfaces
due to external pressures. In their algorithm the surface is divided
into voxels containing different height values indicating the height
of the current surface. This grid is used to calculate the
deformation of the surface when interacting with objects.
Nishita et al. [1997] use metabals and volume rendering for their
snow accumulation and rendering, taking into account the lights
path and scattering through the snow. All this makes it less
suitable for real-time modification.

Snow rendering in real-time has received less attention.
Haglund et al. [2002] propose a method where each surface is
covered with a matrix containing the snow height at that position.
The snow accumulation is handled by dropping snow flakes,
represented by particles, from the sky. In the place where a snow
flake hits the ground the height value gets increased.
Triangulations describing the snow are then created from the
matrices containing the height values.
This method demands lots of work to be made by the modeller, by
creating the matrices by hand, before a scene can be used.

Although not about snow Hsu and Wong [1995] presented a
method for dust accumulation in their “Visual Simulation of Dust
Accumulation”. In this paper they use an exposure function to tell
whether the surface should be covered in dust or not. The
exposure function is calculated by sampling the surrounding area
with rays to find any occluders.

25

A variant of this method turned out to be a viable way to handle
the process of snow accumulation. The method we will present
uses [Hsu and Wong 1995] as a basic foundation.

3. Snow Accumulation

The process of rendering accumulated snow can be split into two
parts. The first part is to decide what regions should receive snow.
The second is to actually render the snow in a convincing way at
the places decided by the first part of the algorithm.
To accomplish the first step a function called the Snow
Accumulation Prediction Function is introduced. This function
should take a point in space and calculate how much snow that
point has received. Factors that should be taken into account are
surface inclination and exposure to the sky.

3.1. Snow Accumulation Prediction Function

Due to gravity a surface facing upwards should receive more
snow than a vertical surface. However, even a horizontal surface
does not accumulate any snow if it is occluded from the
perspective of the sky. It seems like the task of calculating the
prediction function can also be separated into two mutually
independent parts. One part should calculate the snow
contribution due to the inclination of the surface and another part
should calculate the effect of occlusion.
Let us formulate a Prediction function in terms of these two parts:

)()()(pfpfpf incep ⋅=

where p is the point of interest

fp is the prediction function
 fe is the exposure component

finc is the component giving the snow contribution due
to inclination

The exposure part (fe) should vary between 0 and 1 indicating the
amount of occlusion that would prevent snow from falling on the
surface. This value should vary gracefully to achieve a smooth
transition from an area with snow to an occluded area. Hsu and
Wong [1995] calculates this value by sampling the surrounding
area with rays uniformly distributed over the upper hemisphere in
order to search for potential occluders. Unfortunately this is not a
viable way of doing it if we want to calculate this in real-time
without lots of pre-processing for all surfaces. An alternative way
of implementing this function based on the shadow mapping
technique will be examined later in this paper.

Figure 1: Inclined surface

The finc should work in a similar way to the Dust Amount
Prediction Function in [Hsu and Wong 1995]. A surface facing

towards the snow direction should receive more snow than a
surface facing away from it. The amount should depend on the
angle, with a rather step falloff when the angle between the
normal and a vector pointing upwards grows (Figure 1). Surfaces
facing away from the sky should not receive any snow. This
implies that the function should decrease from 1, when the angle
is 0, to 0 when the angle is 90 degrees. If the angle is greater than
90 finc should be 0.
This gives a function like this:

⎩
⎨
⎧

≥
≤≤+

=
90,0
900,cos

θ
θθ n

finc

where θ is the angle between vector N and U
 n is a small positive noise value

A small noise value [Perlin 1985], typically between 0 and 0.4, is
used to get a more natural look, and to account for the phenomena
called flake dusting [Fearing 2000], where snow dust clings to a
steep uneven surface.

3.2. Snow Colour Function

After the snow accumulation of a certain surface is determined
it’s time to calculate the correct shading of the snow. The light
model that is used is the normal Phong illumination model.
To get the typical look of snow a noise function is used to distort
the normal of the surface. This way a realistic approximation of
the look of a snow cover is achieved. To get the glittering effect
of snow the normal is distorted slightly more for the specular part
of the light calculation than for the diffuse part. The derivative of
the exposure function is also used to transform the normal to get
an illusion of actual snow depth around any occlusion boundaries
that may exist in the scene. In the implementation the normals are
calculated in this way:

dEnNN −+= αα

where N is the original normal

α is a scalar value indicating how much distortion
should be applied
n is a normalized vector containing three noise values
dE is a vector containing a scaled value of the exposure
derivatives in respective direction of screen space

A distorted valueα of 0.4 was used in the images presented in this
paper. This was chosen through testing different values and
deciding on what looked best.
The renormalized resulting normal is then used in the diffuse part
of the lighting equation. For the specular part another distortion
term was added with the α value 0.8 to get a more glittering
effect on the snow.
To calculate dE the derivative of the exposure function in both x
and y direction of the screen is needed. In this implementation the
derivative operations of Cg is used. The derivative with respect to
x is placed as the x-component and the derivative with respect to
y in the z-component, assuming that the y-axis points upwards.
The resulting vector is then scaled to obtain a suitable impression
of decreasing height when the exposure function decreases.
When calculating the snow colour as above a white colour should
be used in the Phong equation. The blue part of the colour should

U
N

θ

26

be slightly higher than the rest to give the snow a more glittering
effect.

3.3. Full Snow Equation

The full equation to calculate the colour of accumulated snow
then becomes

npsp CfCfC ⋅−+⋅=)1(

where Cs is the snow colour calculated with the distorted
normal, as explained above

 Cn is the surface colour without snow

To obtain an impression of thickness to the snow each vertex
should be displaced depending on the fp value. The amount to
displace the vertices depends on the scene and needs to be tested
to achieve the best result. The displacement introduces the
restraint on the geometry that it should be closed to give the
impression of actual height of the snow.

4. Implementation

The above algorithm where implemented in a pair of vertex/pixel
shaders. Most of the equations can be implemented in a straight
forward way when implementing the standard shading equations,
as described by [Everitt et al. 2002].

4.1. Implementing the exposure function

The exposure function did not lend itself to the same easy
implementation as the other components of the equation. To
calculate the exposure of a surface, knowledge about the
surrounding world is needed. This does not suit well with the
limitations inherent when working with the pixel shader on a
modern GPU. To solve this, a solution is taken from the way
shadows are implemented with the aid of a depth buffer. This
image space algorithm is very suitable for what we are trying to
do here.
As a pre-processing stage the whole scene is rendered with
respect to the sky, using a parallel projection. The depth buffer is
then saved for later usage.

Figure 2: Point p is not the closest point to the sky, it will not be

covered b snow

When rendering the scene each fragment is projected into the sky
view frustum, as described in [Everitt et al. 2002], and compared
with the stored depth value in the occlusion map. If the fragment
is further away from the sky than the value indicated in the
occlusion map, as in Figure 2, no snow should be drawn,
otherwise snow should be drawn. This method works but is still

unsatisfactory because it produces very sharp and sudden
occlusion boundaries, as can be seen in the picture below.

Figure 3: One sampling from the occlusion map produces very
sharp transitions.

 To address this issue the depth map is sampled a number of
times, with the first sample on the original fragment position and
the others in a circle around it in the occlusion map. The number
of snow covered fragment is then divided with the total number of
samples to get a fractional value for the occlusion. This creates a
better result, but it still leaves us with plateaus in the snow and
possible artefacts on objects as seen in Figure 4. The length of the
offset used for the different samples determines how big the
occlusion boundary becomes. A larger offset produce a smoother
occlusion boundary. The larger the occlusion boundary should be
the more samples need to be done to get enough overlapping in
the samplings. How big the offset should be is entirely dependent
on the size of the scene the occlusion map covers, and the desired
area of the occlusion boundary.
To sample the depth buffer in the area surrounding the current
fragment the change in z direction due to offsets in the depth map
must be known. To get this value the derivative functions in cg
are used to calculate the proper position of neighbouring
fragment.
All of the above mentioned offsets are performed in the projected
space of the occlusion map.

(a) (b)

Figure 4: (a) 5 Samplings produces better transition but introduces

artefacts. (b) Sampling pattern

As can be seen this produces quite a bit of artefacts in the
exposure value. To fix this the final result is combined with a
noise value in the range of [0, 0.5], if it is bigger than 0, to
produce a more natural looking boundary, and to conceal surface
artefacts due to discontinuities in the surface.

Occlusion
map

p

Image
plane

27

Figure 5: Same scene as figure 3 but with noise included.

The adding of the noise value effectively removes all of the
artefacts shown in figure 3. It also makes the occlusion boundary
look much more natural.

4.1.1. Vertex Displacement Method 1

One problem with this method is that the vertex program can’t
read from the occlusion texture. This means that we have to
provide the snow values to the vertex program in some other way.
One way is to introduce another pre-processing stage where the
exposure map is first read back from the GPU. The position of
each vertex in the exposure map must then be calculated. This is
done by scaling the x and z coordinate according to the world size
so that they can be used to index into the occlusion map, ignoring
the y coordinate. This value should then be streamed to the vertex
shader in the same way as position and normals.

4.1.2. Vertex Displacement Method 2

Another way of solving the problem with the vertex shaders
inability to access the occlusion map is to split the rendering into
2 passes. The first pass should draw the scene without snow and
the second pass with the snow. When displacing the vertices for
the snow pass no consideration should be taken to if the vertex is
snow covered or not, only the inclination should be considered.
The exposure value should instead be assigned as an alpha value
to each fragment in the fragment shader. The second pass should
then be blended onto the first, using alpha as blending factor for
the second pass and one minus alpha for the first. This method is
easier to implement than the first, and places less demands on the
format of the scene. It does unfortunately create some artefacts
where the snow floats above the scene that can be annoying in
certain scenes where the user can view the scene from any
perspective. Figure 6 show this artefact.

Figure 6: Floating snow artefact seen on the ground. The snow
layer floating some distance above the ground

The artefact is extremely visible in the above picture because of
the fact that the ground plane isn’t a closed geometry. But even

when working with closed geometries artefacts as the above can
still happen, especially with very sharp corners.
Method one does completely eliminate this artefact but introduces
the need for more pre-processing and the need to store the values
which might be a problem when using already existing scenes and
scene formats.

4.2. Implementing noise

All of the noise values used in this paper can be implemented in
the fragment shader by using a 3D texture filled with random 3
component values in the range [0, 1]. This texture is then used to
draw random numbers that will always be the same for the same
input.
To get the correct noise appearance the random texture can be
sampled a number of times, called octaves [Perlin 1985], each
octave having double frequency of the last, and half the
amplitude. The sum of these octaves can then be used for a noise
value.
The noise used in the pictures shown in this paper where created
by reading 3 octaves from the 3D texture. The single noise value
used in finc was calculated by adding the 3 components together
and the dividing by 3 to bring the range back to [0, 1]. The noise
vector read from the 3D texture was then expanded to the range [-
1, 1] and normalized to create a suitable vector for distortion of
the normals used in the light calculation.

4.3. Performance Issues

The implementation of the algorithm includes a lot of
normalizations that affects the performance quiet thoroughly. To
avoid this a cube map is used for normalization purposes.
In a cube map only the direction of a vector is used for lookup,
not the magnitude. This can be used for normalizations by storing
a normalized version of the direction vector in each component of
the cube map. The components of the normalized vectors must
first be transformed to the range [0, 1] before they are stored in
the cube map. This is done by multiplying the vector by 0.5,
taking the elements into the range [-0.5, 0.5]. By then adding 0.5
the range [0, 1] is achieved. The components are then encoded in
the RGB components of the cube map texture. To use the cube
map for normalization a texture lookup should be done as usual,
with a vector as texture coordinates. The resulting vector must
then be unpacked from [0, 1], the range in which colours are
normally stored, to [-1, 1] by multiplying by 2 and subtracting 1.
By using linear interpolation on the texture lookup the cube map
turns into a smooth normalization function without needing very
high resolution. A cube map of 64x64 or 128x128 is usually
enough.

5. Performance

The implementation is tested on a machine with a Geforce FX
5600 Ultra, using CG to compile the shaders to the
NV_vertex_program2 and NV_fragment_program.
The performance is directly dependent on the resolution and the
amount of the screen covered with potential snow covered
surfaces.
In the demo presenting two instances of the Stanford bunny,
Figure 7, each consisting of 16000 triangles an average frame rate
of 13 frames per second were achieved. This was with a screen
resolution of 600 x 600. When increasing the screen size to 900 x
900 the frame rate dropped 11 frames per second.

28

Figure 7: Stanford bunny without and with snow

6. Discussion

One problem with the snow accumulated in the way proposed in
this paper is that it does not take into account the area of the
region being covered in snow. This means that small parts, as the
small twigs in the tree pictures in Figure 8 and Figure 9, can be
loaded with an unnatural amount of snow. There isn’t really much
to do about this, because it would demand additional knowledge
about the scene that does not exist at the fragment level.
The tessellation of the snow cover will be that of the underlying
geometry. This leaves the scene modeller free do add polygons in
places where a smoother curve is desired.
There are several possible improvements that could make the
proposed method faster. One is to save the four surrounding
sample values of the occlusion map in the RGBA parts of a new
texture to reduce the numbers of samples needed to two, non
dependent lookups. This would be done as a pre-processing step
when the occlusion map is created.
Something that speaks for this method in the future is that it is
independent of the number of objects in the scene, enabling the
usage of complex and cluttered scenes without any extra work.
And as the speed of fragment processing increases with the
advantage of GPU, speed would cease to be an issue.
Another problem with the method is if you want to have dynamic
objects acquire snow as they move out in the scene. That would
mean that when they move in to shelter the snow accumulated
would be lost on them.

7. Conclusion

In this paper, a new method for calculating snow on a fragment
level was presented. The method uses a depth map to find out
what parts of the scene should be covered with snow. The snow is
then calculated per fragment in the scene without needing any
more pre-processing of the scene data. Although the method isn’t
very fast as of today, increases in the computational power of
today’s graphic hardware should make this method a good
candidate for snow accumulation and rendering in the future. The
advantage of not needing to modify or store any extra data about
the scene except for the occlusion map means that it should be
easy to implement and combine with other existing techniques for
rendering.

8. Future Work

Something that would be an interesting extension to the above
presented method is the usage of a control map where things as
footsteps could be drawn. This could be done by using another
texture map stretched in the same way as the occlusion map. Each
fragment would then multiply its exposure value with the value in
the control map. Footsteps could then be drawn in the control map
as half occluded fragments.
Another area that could prove interesting is the possibility to take
into account the influence of wind on the falling snow. Perhaps
this could be modelled by tilting the projection when calculating
the occlusion map.

References

Everitt, C., Rege, A., and Cebenoyan, C., 2002. Hardware shadow

mapping, ACM SIGGRAPH 2002 Tutorial Course #31:
Interactive Geometric Computations using graphics
hardware, ACM, F38-F51

Fearing, Paul 2000. Computer Modelling Of Fallen Snow.

Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, 37-46

Haglund, H., Anderson, M., and Hast, A., 2002. Snow

Accumulation in Real-Time, Proceedings of SIGRAD 2002,
11-15

Hsu, S.C, and Wong, T.T. 1995. Visual Simulation of Dust

Accumulation, IEEE Computer Graphics and Applications
15, 1, 18-22

Nishita T., Iwasaki, H., Dobashi, Y., and Nakamae, F. 1997. A

Modeling and Rendering Method for Snow by Using
Metaballs. Computer Graphics Forum, Vol 16, No. 3, C357

Perlin, Ken, 1985. An Image Synthesizer, Computer Graphics

(Proceedings of ACM SIGGRAPH 85), 19, 3, 287-296

Summers, Robert W., O’Brien, James F., and Hodgins, Jessica K.

1998. Animating Sand, Mud, and Snow. The Proceedings of
Graphics Interface’98, 125-132

29

Figure 9: The algorithm tested on a more complex scene containing lots of small structures.
As can bee seen in the picture the algorithm does not take into account the area of the surface
being displaced. This results in the small twigs getting more snow than would look natural.

30

Figure 10: Another tree used for testing of the snow algorithm. As can be seen the area
beneath the tree is partially covered depending on amount of branches above it.

31

	SIGRAD_2004_FrontalCover.pdf
	Gävle, Sweden

	SIGRAD_2004_Intro.pdf
	Edited by
	Stefan Seipel
	Linköping Electronic Conference Proceedings, No. 13
	Linköping University Electronic Press
	Print: UniTryck, Linköping, 2004
	Prologue
	Keynote and Invited Presentations

	Oliver Deussen
	Tomas Landelius

	TetSplat: Real-Time Rendering and Volume Clipping of Large U
	Ken Museth

	Research Papers
	Incremental Spherical Linear Interpolation 7
	Tony Barrera, Anders Hast and Ewert Bengtsson
	Dynamic Code Generation for Realtime Shaders 11
	Niklas Folkegård and Daniel Wesslén
	Py-FX An active effect framework 17
	Calle Lejdfors and Lennart Ohlsson
	Real-time Rendering of Accumulated Snow 25
	Per Ohlsson and Stefan Seipel

	Fast Surface Rendering for Interactive Medical Image Segment
	Erik Vidholm and Jonas Agmund
	Collaborative 3D Visualizations of Geo-Spatial Information f
	Lars Winkler Pettersson, Ulrik Spak and Stefan Seipel
	Work in Progress
	Context Aware Maps 49
	Anders Henrysson and Mark Ollila
	Sketches

	Towards Rapid Urban Environment Modelling 53
	Ulf Söderman, Simon Ahlberg, Åsa Persson and Magnus Elmqvist
	3D Reconstruction From Non-Euclidian Distance Fields 55
	Anders Sandholm and Ken Museth
	Improved Diffuse Anisotropic Shading 57
	Anders Hast, Daniel Wesslén and Stefan Seipel
	An Optimized, Grid Independent, Narrow Band Data Structure f
	Michael Bang Nielsen and Ken Museth
	Posters

	SIGRAD2004 Program Committee
	SIGRAD2004 Organizing Committee
	SIGRAD Board for 2004

	All-numbered.pdf
	SIGRAD_2004_Invited.pdf
	Interactive landscape visualization
	Abstract
	Speaker Bio
	Abstract
	Abstract

