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Abstract 
 
This paper presents a method of computing snow accumulation as 
a per pixel effect while rendering the scene. The method is similar 
to the shadow mapping method for shadow calculations. A depth 
buffer is used to find out how much snow a particular surface 
should receive. The amount of snow is then modified depending 
on the slope of the surface. To render the snow in a convincing 
way 3D noise is utilized for the lighting of the snow surface. 
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1. Introduction 
 
Snow is a common phenomenon in nature. It has the ability to 
completely transform the mood of a scene, turning a rocky 
landscape into a gentle sear of white tranquillity. But even though 
snow is a common occurrence in many places of the world, snow 
accumulation in real-time seems to be an area that has still to be 
explored. Few attempts have been made, and the methods demand 
lots of work do be done on the scene modelling before they can be 
used.  
Usually when snow occurs in interactive simulations it is either 
modelled by an artist, or just plain textures drawn upon the 
original scene. 
The ability to automate the snow accumulation process in real-
time would give us the ability to add snow to any scene, and by 
doing this produce beautiful settings for any kind of interactive 
environment. This would enable artists to just create non snow 
scenes and then let the algorithm create a snow cover, effectively 
creating two scenes. It would greatly decrease the amount of work 
needed to model a snow covered scene.  
 
 
 
 
 
 
 

2. Related Work 
 
The subject of offline snow rendering has been looked into quiet 
throughout.  
Paul Fearing [2000] presented a method to create beautiful snow 
scenes in ‘Computer Modelling Of Fallen Snow’. Unfortunately 
each frame took very long time to render making the method not 
viable for adaptation to any kind of real-time situation. It worked 
by first tracing snow paths from the ground upwards towards the 
sky, and by that accumulating the snow. In a second stage the 
stability of the snow was calculated, moving snow from unstable 
areas to stable, 
In the paper “Animating Sand, Mud and Snow” Summer et al. 
[1998] describe a method for handling deformations of surfaces 
due to external pressures. In their algorithm the surface is divided 
into voxels containing different height values indicating the height 
of the current surface. This grid is used to calculate the 
deformation of the surface when interacting with objects. 
Nishita et al. [1997] use metabals and volume rendering for their 
snow accumulation and rendering, taking into account the lights 
path and scattering through the snow. All this makes it less 
suitable for real-time modification. 
 
Snow rendering in real-time has received less attention. 
Haglund et al. [2002] propose a method where each surface is 
covered with a matrix containing the snow height at that position. 
The snow accumulation is handled by dropping snow flakes, 
represented by particles, from the sky. In the place where a snow 
flake hits the ground the height value gets increased. 
Triangulations describing the snow are then created from the 
matrices containing the height values. 
This method demands lots of work to be made by the modeller, by 
creating the matrices by hand, before a scene can be used. 
 
Although not about snow Hsu and Wong [1995] presented a 
method for dust accumulation in their “Visual Simulation of Dust 
Accumulation”. In this paper they use an exposure function to tell 
whether the surface should be covered in dust or not. The 
exposure function is calculated by sampling the surrounding area 
with rays to find any occluders. 
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A variant of this method turned out to be a viable way to handle 
the process of snow accumulation. The method we will present 
uses [Hsu and Wong 1995] as a basic foundation. 
 
 
3. Snow Accumulation 
 
The process of rendering accumulated snow can be split into two 
parts. The first part is to decide what regions should receive snow. 
The second is to actually render the snow in a convincing way at 
the places decided by the first part of the algorithm. 
To accomplish the first step a function called the Snow 
Accumulation Prediction Function is introduced. This function 
should take a point in space and calculate how much snow that 
point has received. Factors that should be taken into account are 
surface inclination and exposure to the sky. 
 
3.1. Snow Accumulation Prediction Function 
 
Due to gravity a surface facing upwards should receive more 
snow than a vertical surface. However, even a horizontal surface 
does not accumulate any snow if it is occluded from the 
perspective of the sky. It seems like the task of calculating the 
prediction function can also be separated into two mutually 
independent parts. One part should calculate the snow 
contribution due to the inclination of the surface and another part 
should calculate the effect of occlusion. 
Let us formulate a Prediction function in terms of these two parts: 
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where  p is the point of interest 

fp is the prediction function 
 fe is the exposure component 

finc is the component giving the snow contribution due 
to inclination 

  
The exposure part (fe) should vary between 0 and 1 indicating the 
amount of occlusion that would prevent snow from falling on the 
surface. This value should vary gracefully to achieve a smooth 
transition from an area with snow to an occluded area. Hsu and 
Wong [1995] calculates this value by sampling the surrounding 
area with rays uniformly distributed over the upper hemisphere in 
order to search for potential occluders. Unfortunately this is not a 
viable way of doing it if we want to calculate this in real-time 
without lots of pre-processing for all surfaces. An alternative way 
of implementing this function based on the shadow mapping 
technique will be examined later in this paper. 
 

 
 

Figure 1: Inclined surface 
 
The finc should work in a similar way to the Dust Amount 
Prediction Function in [Hsu and Wong 1995]. A surface facing 

towards the snow direction should receive more snow than a 
surface facing away from it. The amount should depend on the 
angle, with a rather step falloff when the angle between the 
normal and a vector pointing upwards grows (Figure 1). Surfaces 
facing away from the sky should not receive any snow. This 
implies that the function should decrease from 1, when the angle 
is 0, to 0 when the angle is 90 degrees. If the angle is greater than 
90 finc should be 0. 
This gives a function like this: 
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where θ is the angle between vector N and U 
 n is a small positive noise value  
 
A small noise value [Perlin 1985], typically between 0 and 0.4, is 
used to get a more natural look, and to account for the phenomena 
called flake dusting [Fearing 2000], where snow dust clings to a 
steep uneven surface. 
 
3.2. Snow Colour Function 
 
After the snow accumulation of a certain surface is determined 
it’s time to calculate the correct shading of the snow. The light 
model that is used is the normal Phong illumination model.  
To get the typical look of snow a noise function is used to distort 
the normal of the surface. This way a realistic approximation of 
the look of a snow cover is achieved. To get the glittering effect 
of snow the normal is distorted slightly more for the specular part 
of the light calculation than for the diffuse part. The derivative of 
the exposure function is also used to transform the normal to get 
an illusion of actual snow depth around any occlusion boundaries 
that may exist in the scene. In the implementation the normals are 
calculated in this way: 
 

dEnNN −+= αα  
 
where N is the original normal 

α is a scalar value indicating how much distortion 
should be applied  
n is a normalized vector containing three noise values 
dE is a vector containing a scaled value of the exposure 
derivatives in respective direction of screen space 

 
A distorted valueα of 0.4 was used in the images presented in this 
paper. This was chosen through testing different values and 
deciding on what looked best. 
The renormalized resulting normal is then used in the diffuse part 
of the lighting equation. For the specular part another distortion 
term was added with the α value 0.8 to get a more glittering 
effect on the snow.  
To calculate dE the derivative of the exposure function in both x 
and y direction of the screen is needed. In this implementation the 
derivative operations of Cg is used. The derivative with respect to 
x is placed as the x-component and the derivative with respect to 
y in the z-component, assuming that the y-axis points upwards. 
The resulting vector is then scaled to obtain a suitable impression 
of decreasing height when the exposure function decreases. 
When calculating the snow colour as above a white colour should 
be used in the Phong equation. The blue part of the colour should 
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N 
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be slightly higher than the rest to give the snow a more glittering 
effect. 
 
3.3. Full Snow Equation 
 
The full equation to calculate the colour of accumulated snow 
then becomes 
 

npsp CfCfC ⋅−+⋅= )1(  
 

where Cs is the snow colour calculated with the distorted 
normal, as explained above 

 Cn is the surface colour without snow 
 
To obtain an impression of thickness to the snow each vertex 
should be displaced depending on the fp value. The amount to 
displace the vertices depends on the scene and needs to be tested 
to achieve the best result. The displacement introduces the 
restraint on the geometry that it should be closed to give the 
impression of actual height of the snow. 
 
4. Implementation  
 
The above algorithm where implemented in a pair of vertex/pixel 
shaders. Most of the equations can be implemented in a straight 
forward way when implementing the standard shading equations, 
as described by [Everitt et al. 2002]. 
 
4.1. Implementing the exposure function 
 
The exposure function did not lend itself to the same easy 
implementation as the other components of the equation. To 
calculate the exposure of a surface, knowledge about the 
surrounding world is needed. This does not suit well with the 
limitations inherent when working with the pixel shader on a 
modern GPU. To solve this, a solution is taken from the way 
shadows are implemented with the aid of a depth buffer. This 
image space algorithm is very suitable for what we are trying to 
do here. 
As a pre-processing stage the whole scene is rendered with 
respect to the sky, using a parallel projection. The depth buffer is 
then saved for later usage. 
 
 

 
Figure 2: Point p is not the closest point to the sky, it will not be 

covered b snow 
 
When rendering the scene each fragment is projected into the sky 
view frustum, as described in [Everitt et al. 2002], and compared 
with the stored depth value in the occlusion map. If the fragment 
is further away from the sky than the value indicated in the 
occlusion map, as in Figure 2, no snow should be drawn, 
otherwise snow should be drawn. This method works but is still 

unsatisfactory because it produces very sharp and sudden 
occlusion boundaries, as can be seen in the picture below. 
 

   
 

Figure 3:  One sampling from the occlusion map produces very 
sharp transitions. 

 
 To address this issue the depth map is sampled a number of 
times, with the first sample on the original fragment position and 
the others in a circle around it in the occlusion map. The number 
of snow covered fragment is then divided with the total number of 
samples to get a fractional value for the occlusion. This creates a 
better result, but it still leaves us with plateaus in the snow and 
possible artefacts on objects as seen in Figure 4. The length of the 
offset used for the different samples determines how big the 
occlusion boundary becomes. A larger offset produce a smoother 
occlusion boundary. The larger the occlusion boundary should be 
the more samples need to be done to get enough overlapping in 
the samplings. How big the offset should be is entirely dependent 
on the size of the scene the occlusion map covers, and the desired 
area of the occlusion boundary.  
To sample the depth buffer in the area surrounding the current 
fragment the change in z direction due to offsets in the depth map 
must be known. To get this value the derivative functions in cg 
are used to calculate the proper position of neighbouring 
fragment. 
All of the above mentioned offsets are performed in the projected 
space of the occlusion map. 
 
 

 
(a) (b) 

 
Figure 4: (a) 5 Samplings produces better transition but introduces 

artefacts. (b) Sampling pattern 
  
As can be seen this produces quite a bit of artefacts in the 
exposure value. To fix this the final result is combined with a 
noise value in the range of [0, 0.5], if it is bigger than 0, to 
produce a more natural looking boundary, and to conceal surface 
artefacts due to discontinuities in the surface. 
 
 
 

Occlusion  
map 

p 

Image 
plane 
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Figure 5: Same scene as figure 3 but with noise included. 
 

The adding of the noise value effectively removes all of the 
artefacts shown in figure 3. It also makes the occlusion boundary 
look much more natural.  
 
4.1.1. Vertex Displacement Method 1 
 
One problem with this method is that the vertex program can’t 
read from the occlusion texture. This means that we have to 
provide the snow values to the vertex program in some other way. 
One way is to introduce another pre-processing stage where the 
exposure map is first read back from the GPU. The position of 
each vertex in the exposure map must then be calculated. This is 
done by scaling the x and z coordinate according to the world size 
so that they can be used to index into the occlusion map, ignoring 
the y coordinate. This value should then be streamed to the vertex 
shader in the same way as position and normals. 
 
4.1.2. Vertex Displacement Method 2 
 
Another way of solving the problem with the vertex shaders 
inability to access the occlusion map is to split the rendering into 
2 passes. The first pass should draw the scene without snow and 
the second pass with the snow. When displacing the vertices for 
the snow pass no consideration should be taken to if the vertex is 
snow covered or not, only the inclination should be considered. 
The exposure value should instead be assigned as an alpha value 
to each fragment in the fragment shader. The second pass should 
then be blended onto the first, using alpha as blending factor for 
the second pass and one minus alpha for the first. This method is 
easier to implement than the first, and places less demands on the 
format of the scene. It does unfortunately create some artefacts 
where the snow floats above the scene that can be annoying in 
certain scenes where the user can view the scene from any 
perspective. Figure 6 show this artefact. 
 

 
 

Figure 6: Floating snow artefact seen on the ground. The snow 
layer floating some distance above the ground 

 
The artefact is extremely visible in the above picture because of 
the fact that the ground plane isn’t a closed geometry. But even 

when working with closed geometries artefacts as the above can 
still happen, especially with very sharp corners. 
Method one does completely eliminate this artefact but introduces 
the need for more pre-processing and the need to store the values 
which might be a problem when using already existing scenes and 
scene formats. 
 
4.2. Implementing noise 
 
All of the noise values used in this paper can be implemented in 
the fragment shader by using a 3D texture filled with random 3 
component values in the range [0, 1]. This texture is then used to 
draw random numbers that will always be the same for the same 
input. 
To get the correct noise appearance the random texture can be 
sampled a number of times, called octaves [Perlin 1985], each 
octave having double frequency of the last, and half the 
amplitude. The sum of these octaves can then be used for a noise 
value. 
The noise used in the pictures shown in this paper where created 
by reading 3 octaves from the 3D texture. The single noise value 
used in finc was calculated by adding the 3 components together 
and the dividing by 3 to bring the range back to [0, 1]. The noise 
vector read from the 3D texture was then expanded to the range [-
1, 1] and normalized to create a suitable vector for distortion of 
the normals used in the light calculation. 
 
4.3. Performance Issues  
 
The implementation of the algorithm includes a lot of 
normalizations that affects the performance quiet thoroughly. To 
avoid this a cube map is used for normalization purposes.  
In a cube map only the direction of a vector is used for lookup, 
not the magnitude. This can be used for normalizations by storing 
a normalized version of the direction vector in each component of 
the cube map. The components of the normalized vectors must 
first be transformed to the range [0, 1] before they are stored in 
the cube map. This is done by multiplying the vector by 0.5, 
taking the elements into the range [-0.5, 0.5]. By then adding 0.5 
the range [0, 1] is achieved. The components are then encoded in 
the RGB components of the cube map texture. To use the cube 
map for normalization a texture lookup should be done as usual, 
with a vector as texture coordinates. The resulting vector must 
then be unpacked from [0, 1], the range in which colours are 
normally stored, to [-1, 1] by multiplying by 2 and subtracting 1. 
By using linear interpolation on the texture lookup the cube map 
turns into a smooth normalization function without needing very 
high resolution. A cube map of 64x64 or 128x128 is usually 
enough.  
 
5. Performance 
 
The implementation is tested on a machine with a Geforce FX 
5600 Ultra, using CG to compile the shaders to the 
NV_vertex_program2 and NV_fragment_program. 
The performance is directly dependent on the resolution and the 
amount of the screen covered with potential snow covered 
surfaces.  
In the demo presenting two instances of the Stanford bunny, 
Figure 7, each consisting of 16000 triangles an average frame rate 
of 13 frames per second were achieved. This was with a screen 
resolution of 600 x 600. When increasing the screen size to 900 x 
900 the frame rate dropped 11 frames per second. 
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Figure 7: Stanford bunny without and with snow
 

6. Discussion 
 
One problem with the snow accumulated in the way proposed in 
this paper is that it does not take into account the area of the 
region being covered in snow. This means that small parts, as the 
small twigs in the tree pictures in Figure 8 and Figure 9, can be 
loaded with an unnatural amount of snow. There isn’t really much 
to do about this, because it would demand additional knowledge 
about the scene that does not exist at the fragment level.  
The tessellation of the snow cover will be that of the underlying 
geometry. This leaves the scene modeller free do add polygons in 
places where a smoother curve is desired. 
There are several possible improvements that could make the 
proposed method faster. One is to save the four surrounding 
sample values of the occlusion map in the RGBA parts of a new 
texture to reduce the numbers of samples needed to two, non 
dependent lookups. This would be done as a pre-processing step 
when the occlusion map is created. 
Something that speaks for this method in the future is that it is 
independent of the number of objects in the scene, enabling the 
usage of complex and cluttered scenes without any extra work. 
And as the speed of fragment processing increases with the 
advantage of GPU, speed would cease to be an issue.  
Another problem with the method is if you want to have dynamic 
objects acquire snow as they move out in the scene. That would 
mean that when they move in to shelter the snow accumulated 
would be lost on them.   
 
7. Conclusion 
 
In this paper, a new method for calculating snow on a fragment 
level was presented. The method uses a depth map to find out 
what parts of the scene should be covered with snow. The snow is 
then calculated per fragment in the scene without needing any 
more pre-processing of the scene data. Although the method isn’t 
very fast as of today, increases in the computational power of 
today’s graphic hardware should make this method a good 
candidate for snow accumulation and rendering in the future. The 
advantage of not needing to modify or store any extra data about 
the scene except for the occlusion map means that it should be 
easy to implement and combine with other existing techniques for 
rendering. 
 
 

 
8. Future Work 
 
Something that would be an interesting extension to the above 
presented method is the usage of a control map where things as 
footsteps could be drawn. This could be done by using another 
texture map stretched in the same way as the occlusion map. Each 
fragment would then multiply its exposure value with the value in 
the control map. Footsteps could then be drawn in the control map 
as half occluded fragments. 
Another area that could prove interesting is the possibility to take 
into account the influence of wind on the falling snow. Perhaps 
this could be modelled by tilting the projection when calculating 
the occlusion map. 
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Figure 9: The algorithm tested on a more complex scene containing lots of small structures.  
As can bee seen in the picture the algorithm does not take into account the area of the surface  
being displaced. This results in the small twigs getting more snow than would look natural. 
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Figure 10: Another tree used for testing of the snow algorithm. As can be seen the area  
beneath the tree is partially covered depending on amount of branches above it. 
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