
Fast surface rendering for interactive medical image segmentation with
haptic feedback

Erik Vidholm∗ Jonas Agmund†

Centre for Image Analysis
Uppsala University

(a) Initialization of a seed-region inside
the liver.

(b) Initial segmentation result that con-
tains artifacts due to the low contrast be-
tween the liver and the surrounding tis-
sues.

(c) Result after editing.

Figure 1: Screenshots from the interactive segmentation environment.

Abstract

In this work, we present a haptic-enabled application for interactive
editing in medical image segmentation. We use a fast surface ren-
dering algorithm to display the different segmented objects, and we
apply a proxy-based volume haptics algorithm to be able to touch
and edit these objects at interactive rates. As an application exam-
ple, we show how the system can be used to initialize a fast march-
ing segmentation algorithm for extracting the liver in magnetic res-
onance (MR) images and then edit the result if it is incorrect.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques—Graphics data structures and data types, Interaction
techniques. I.4.6 [Image processing and computer vision]: Seg-
mentation.

Keywords: marching cubes, surface tracking, volume haptics

1 Introduction

Image segmentation is the task of finding a certain object in an
image and label all the voxels inside the object as foreground,

∗e-mail:erik.vidholm@cb.uu.se
†e-mail:jonas.agmund.4911@student.uu.se

and all other voxels as background. In medical segmentation, ob-
jects should be extracted from different data sets obtained through,
e.g., Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI). An object to be segmented could typically be a part of the
brain or the liver. Even though many methods have been proposed
for automatic segmentation, it is still seen as an unsolved problem
since the methods are not general enough. In semi-automatic meth-
ods, some degree of manual interaction is involved to improve the
result. Ideally, the user should give an initialization to the algorithm
and then examine the final result and if necessary edit it. The ef-
ficiency of this interactive part is highly dependent on the quality
of the user interface. The user needs to be provided with proper
tools for the specific task, and the learning threshold should not be
too high. When working with volume images it is a huge step just
to map interaction in 2D to events in 3D. By using more advanced
input devices combined with different depth cues (e.g., stereo), it is
possible to overcome this problem.

Interactive editing and manipulation of volume data for design and
modeling purposes has been referred to assculptingby previous au-
thors. In general, a sculpting system consists of a set of modeling
tools together with fast surface rendering and/or haptic rendering al-
gorithms for data display. In [Galyean and Hughes 1991], a sculpt-
ing system with various free-form tools was developed. An octree-
based system was proposed in [Bærentzen 1998] where “spray-
tools” and constructive solid geometry (CSG) tools were used. The
use of haptic feedback in volume sculpting was suggested already
in [Galyean and Hughes 1991], but realized first in the work de-
scribed in [Avila and Sobierajski 1996]. In the recent paper [Kim
et al. 2004], a combined geometric/implicit surface representation
is used along with tools for haptic painting based on texture tech-
niques. The connection between haptic volume sculpting and in-
teractive volume image segmentation is close, but not much work
has been done in this area. Haptic interaction was used by [Harders
and Sźekely 2002] for centerline extraction during segmentation of

33

tubular structures, and in [Vidholm et al. 2004] haptic feedback was
used to facilitate the placement of seed-points in MR angiography
data sets for vessel segmentation. Examples of non-haptic interac-
tive segmentation tools for volume images that have inspired our
work are found in [Kang et al. 2004].

In this paper, we propose the use of editing tools based on mor-
phological image processing operators in combination with haptic
feedback, stereo graphics, and a fast surface rendering algorithm
to interactively edit and manipulate segmented data. Haptics pro-
vides the possibility of simultaneous exploration and manipulation
of data. In our work, realistic feedback is not the most important
issue. More important for us is that the user works more efficiently
with guidance by haptic feedback than without. The aim is to con-
siderably reduce the amount of user time required in the segmenta-
tion process.

The paper is organized as follows: In Section 2, we give an
overview of our visuo-haptic environment for interactive segmen-
tation. A brief description of the volume visualization based on 3D
texture mapping is given in Section 3. In Section 4, we present the
fast surface renderer and some implementation issues. Section 5
gives an introduction to volume haptics and describes how we use
haptic feedback for editing. An example application is given in
Section 6 and in Section 7 we present our results. Finally, we sum-
marize the paper with conclusions and future work in 8.

2 System overview

In this section, we give an overview of our environment and the
interactive segmentation application.

2.1 Hardware and software

Our setup consists of a Reachin desktop display [Thurfjell et al.
2002] which combines a 3 degrees of freedom (DOF) PHANToM
desktop haptic device with a stereo capable monitor and a semi-
transparent mirror to co-locate graphics and haptics. See Figure 2.
The workstation we use is equipped with dual 2.4 GHz Pentium 4

Figure 2: The Reachin desktop display.

processors and 1GB of RAM. The graphics card is a NVidia Quadro
900XGL with 128MB of RAM. For stereo display, Crystal Eyes
shutter glasses are used. The software has been implemented in the
Reachin API, a C++ API that combines graphics and haptics in a
scene-graph environment based on the VRML97 standard.

2.2 Interactive segmentation

Most of the user interaction is performed with the PHANToM de-
vice through 3D widgets and volume editing tools. A Magellan
space mouse is used for additional input. The haptic/graphic user
interface is used for interaction with the main parts of the system,
i.e., the 3D texture mapper, the image processor, the volume editor,
the surface renderer, and the haptic renderer. All of these share ac-
cess to a volume imageV that we want to extract objects from. This
image is typically obtained through MRI or CT. In the 3D texture
mapper, we visualize the data inV by utilizing the hardware accel-
erated 3D texture mapping features of the graphics card. The image
processor contains a set of different segmentation algorithms that
hasV as input and produce segmented volumesSas output. A seg-
mented volumeS is integer valued, and can contain several objects
labeled between 1 andN, whereN is the number of objects. Object
no. j consists of the voxelsΩ j = {x|S(x) = j}. The background is
labeled 0. In the surface renderer, fast surface reconstruction of the
segmented objects inS is performed. The haptic renderer computes
forces based on the data inS, and is closely connected to the vol-
ume editor which contains various editing tools. As an option, the
haptic feedback can also be based onV for enhanced navigation.
Figure 3 illustrates the structure of the system.

parameters

Image Processor

Haptic Renderer Surface Renderer3D Texture

Mapper

Force feedback

Graphic display

V S

Rendering
parameters

Haptic/Graphic user interface

Volume
editor

Filename

Function

Figure 3: An overview of the interactive segmentation system.

3 3D texture mapping

Two different volume visualizations are used in our system. The
surface rendering algorithm described in Section 4 is used to dis-
play segmentation results, while the original (medical) volume im-
ages are visualized through 3D texture mapping. The basic idea is
to regard the whole volume imageV as a texture map defined over
[0,1]3, and the texture mapping as the interpolation of the values in
this domain. The default visualization in our application is a multi-
planar reconstruction (MPR) consisting of three texture mapped or-

34

thogonal slice planes that can be moved along the corresponding
coordinate axis. It is also possible to view maximum intensity pro-
jections (MIPs) of the data. We construct the MIPs by mapping
the 3D texture onto a stack of view-plane aligned polygons that are
rendered in back-to-front order and blended together.

To adjust contrast and brightness in these different projections, we
use texture shading and the register combiner features of the graph-
ics card. Two textures are loaded into texture memory: the volume
V and a 1D textureCB that we use to store the contrast/brightness
transfer function. By re-programming the register combiners, we
can use the texture value fromV as a texture coordinate forCB,
and use that value in the rasterization. The same technique can
also be used in ordinary volume rendering to implement transfer
functions for opacity and color. Since the texture shading and reg-
ister combinations are performed before the blending operations,
any contrast/brightness adjustment affects both the slice planes and
the MIP.

4 Surface rendering

A common way to use surface rendering of volume images is iso-
surface extraction, i.e., a surface along which the volume image
is equal to a certain threshold value, or iso-value. Interpolation is
often used to achieve a smoother surface, and also shading where
the surface normals are based on the volume gradient. Iso-surface
extraction algorithms can be based on ray-casting methods or poly-
gonization like in [Wyvill et al. 1986] and the more well-known
marching cubes (MC) algorithm [Lorensen and Cline 1987]. We
have chosen the MC algorithm since it is straight-forward and fits
well into the already existing visualization environment.

In our application, we want to render the segmented and labeled
objects contained inS. This is done by using the label of each
object as iso-value.

4.1 Surface detection

The first step in the MC algorithm is to identify the cells in the
volume that are intersected by the iso-surface. A cell is a cube
consisting of eight(2×2×2) neighboring voxels.

In the original implementation, the whole volume is traversed and
all cells are examined for surface intersection. This is very ineffi-
cient if the surface only intersects a small part of the cells in the
volume, which usually is the case.

One way to speed up the surface extraction is to use alternative data
representations of the volume instead of an ordinary 3D array, e.g.,
an octree [Wilhelms and van Gelder 1992; Bærentzen 1998]. Draw-
backs of using octrees are that the tree needs to be re-generated
when the image is manipulated, and it is not straight-forward to
make use of shared vertices and normals during the triangle gener-
ation.

To facilitate image manipulation and sharing of vertices and nor-
mals, we decided to use an ordinary 3D array representation as
in [Galyean and Hughes 1991]. To avoid the traversal of non-
intersecting cells, surface tracking [Shekhar et al. 1996] is used.
This method takes advantage of surface connectivity. Given a seed-
cell, i.e., a cell in the volume which is intersected by the surface,
the surface is visited one cell at a time by following the connec-
tivity until all connected cells have been visited. The connectivity
for a certain MC configuration can be pre-computed and stored in a
lookup-table (LUT) for efficient tracking, see Section 4.3.2.

4.2 Triangle generation

Once the surface is detected, each cell intersected by the surface
should be triangulated according to the MC configurations. There
are several options to consider when creating the triangles. Each
vertex position of a triangle can be interpolated to give a more ac-
curate position of the surface, or it can simply be set to a midway
position on each cell edge. When dealing with binary data as in
our case, no interpolation is necessary since it will default to the
midway position. Regarding the normals, they can be calculated by
either using the geometric normal of the triangle, or by using the
gradient in the volume image. If the gradient is used in conjunction
with interpolation of vertices, the gradient needs to be interpolated
too. Computation of gradients and interpolation of positions are
time-consuming and should be avoided unless needed for accurate
visualization purposes.

One of the major drawbacks with MC is the excessive output of
triangles. Since each cell intersected by the surface can result in up
to five triangles, even a small volume image can result in surfaces
of a massive number of polygons. Different algorithms for triangle
decimation have been proposed [Montani et al. 1994; Shekhar et al.
1996],

4.3 Implementational aspects

The following was taken into consideration when implementing the
MC-based surface renderer:

• The volumeSshould be easy to access and manipulate for the
surface renderer, the haptic renderer, and the image processor.

• The renderer should be optimized for extraction and rendering
of segmented data, but interpolation of vertices and gradient
based normal computations should be included as an option.

• When the volume is manipulated, re-rendering of the surface
must be efficient.

More details can be found in [Agmund 2004].

4.3.1 Data structures

The following data structures are used by the surface renderer:

• The original volumeV of sizeW×H ×D.

• The segmented volumeS of the same size asV.

• A cell index arrayC of size(W−1)× (H−1)× (D−1) con-
taining the MC configuration index for each cell. Cells that
are intersected by the surface has an index between 1 and 254
and the non-intersected cells have index 0 or 255.

• Two 2D coverage arraysX− andX+ of size(H−1)×(D−1)
containing minimum and maximumx-coordinates for surface
intersected cells in each line inC. A value of zero inX+

means that the surface does not intersect any cell on the cur-
rent line.

• A vertex listvl for storing vertex positions.

• A normal listnl for storing vertex normals.

• An index list i l for triangle generation fromvl andnl .

• Three index cache arraysa1,a2,a3 used for caching already
computed indices during the triangle generation.

35

The main steps in the implementation of our surface renderer is
shown in Figure 4.

Surface Tracker

Triangle Generation

Cell Index Array

Volume Image

Index Array
Vertex Array
Normal Array

OpenGl Rendering

Efficient Re-Rendering

1

2

Figure 4: Overview of the surface renderer.

4.3.2 Surface tracking

The surface tracking can be started immediately if an intersected
seed-cell is known and the surface to be extracted is connected. In
cases where this is not true, the whole volume is scanned to find
all existing surfaces. The basic algorithm is as follows: First,C is
cleared and set to zero.X− is set toW andX+ is set to 0. A lin-
ear search throughS is performed until a given iso-value is found
(a simple equality test). If an index is found and the cell is not
previously visited (stored inC), surface tracking is started at the
seed-cell. This procedure is repeated until the whole volume is tra-
versed.

The surface tracking uses the values inC to keep track of already
visited cells, and the pre-calculated connectivity LUT to find in
which directions the surface is connected. See Figure 5. To be able

(A)

Index1

Index2

LUT[] = [1 2 3 4 5 6] Index2LUT[] = [2 4 6]

Index1

(B)

Figure 5: Example of information in the connectivity LUT for two
MC configurations with connectivity in 6 directions (A) and in 3
directions (B).

to know in which order and which cells to visit adequeis used. A
deque is a modified linked list, being efficient when elements are
to be added and removed only to the end and beginning of the list.
The algorithm is initialized by putting the seed-cell in the deque.
The algorithm continues in the following way:

1. Pop the first cell in the deque.

2. Calculate the MC index of the current cell and insert the index
into C for future use in the triangulation and to mark the cell
as visited.

3. Compare the currentx-position with the values inX− andX+

and update if necessary.

4. Use the connectivity LUT to determine which directions the
surface continues in and put these cells at the end of the deque,
if they have not already been visited.

5. Repeat from step 1 until the deque is empty.

4.3.3 Vertex and normal computations

When all surfaces are found, the triangulation is performed. This
is a separate process using the information stored inC and the cov-
erage arraysX− andX+. The original volumeV is not used here,
unless if interpolation is performed or if gradient-based normals are
used.

The triangle generation is performed through anxyz-order traver-
sal of C. During this process, the coverage arrays are consulted
to skip the first and last non-intersected cells on each line, respec-
tively. A LUT stores which edges for each MC configuration that
will contribute with a triangle vertex. Due to the scan direction,
there are only 3 of the 12 cell edges that can contribute with a new
vertex. For vertex and normal sharing between triangles, the cache
arrays store indices of already computed vertices and normals. This
is illustrated in Figure 6. Vertex normals can be calculated in two

Y

Z

X

Edges containing new vertices

Cache ArrayTraversing directions Cell

Figure 6: Illustration of the three edges that contribute with new
vertices. Information about vertices on the other nine edges are
already known and can be retrieved from the cache arrays.

different ways. The first, which is the most efficient, uses the av-
erage geometrical normal from each triangle that shares the vertex.
The efficiency lies in that the geometrical normals for each triangle
are pre-calculated and stored in a LUT for each MC configuration.
This is possible since we work with binary data and only use the
midway position on each edge. The second, more costly, method
to calculate normals is to use the gradients fromV at each vertex
position.

4.3.4 Efficient re-rendering

In the application, there are two ways of manipulating the seg-
mented volumeS. The first is to apply a global method (e.g., thresh-
olding of V) that requires a total update according to the surface
tracking algorithm. The second is to apply local editing operations
from the volume editor. Since these operations only affects a small
part of the image it is enough to traverse a sub-volume which extent
depends on the current editing tool, and to update the corresponding
values inC, X+, andX−. In the current implementation, we must
re-generate all triangles, but since all computations are reduced to
table lookups this is not a problem. However, in the future we will
try to improve the implementation to modify only parts ofvl , nl ,
andi l .

36

5 Interactive editing with haptic feedback

One of the first attempts to use haptics for the display of volume
data was made in [Avila and Sobierajski 1996]. In their work, the
force feedback provided to the user is a direct mapping from the po-
sition of the haptic probe to a force computed from intensity values
and local gradients at that position. A drawback with this type of
method is instability. The rendering parameters can be hard to tune
correctly in order to avoid force oscillations. In surface haptics,
the stability problem was solved by introducing a virtualproxythat
is connected to the haptic probe through a spring-damper [Ruspini
et al. 1997].

5.1 Proxy-based volume haptics

The idea in proxy-based haptic rendering is to constrain the proxy
to certain movements in a local reference frame (LRF) and to pro-
vide a resulting force vector proportional to the displacement of the
haptic probe relative to the proxy. Proxy-based rendering of volu-
metric data was first proposed by [Lundin et al. 2002], where a LRF
for scalar volumes is obtained through tri-linear interpolation of the
volume gradient at the proxy position. The gradient is used as a sur-
face normal that defines a surface to which the proxy is constrained.
It is also shown how friction and viscosity can be rendered and how
different material properties can be simulated by using haptic trans-
fer functions. In [Ikits et al. 2003], a framework for more general
LRFs and proxymotion ruleswas presented.

5.2 Haptic feedback when editing

We have based our haptic rendering on the two works mentioned in
Section 5.1 combined with the idea of a tool with sample points on
the surface [Petersik et al. 2003].

The basic steps in the haptic loop are as follows: let{e0,e1,e2}
denote the LRF,pq the proxy position at time stepq, xq the probe
position, andd = (xq−pq−1) the displacement of the probe rela-
tive to the previous proxy position. In each iteration of the haptic
loop the proxy is moved in small steps according to user input and
rendering parameters such as stiffness and friction. Allowed proxy
movements are defined by certain motion rules for each axis in the
LRF. The proxy position at time stepq is computed as

pq = pq−1 +
2

∑
i=0

∆piei ,

where∆pi is a motion rule function of the displacementdi = d ·ei .
The resulting force is computed asf q = −k(xq−pq), wherek is a
stiffness constant.

We use a spherical tool with radiusr that is centered atp. In a pre-
computed array we store uniformly spaced sample pointsti , ||ti || =
1, so that the pointsTi = p+ r · ti are located on the tool surface.
The sample points that are in contact with the current object are
used to define the normal componente0 in our LRF:

e0 = − ∑i∈I ti
||∑i∈I ti ||

,

whereI = {i|S(Ti) > 0}. The tangential directione1 is constructed
by projectingd onto the plane defined bye0 [Lundin et al. 2002]:

e1 =
d− (d ·e0)e0

||d− (d ·e0)e0||
.

Sincee1 is constructed in this way, the third component of the LRF
is not needed, but it can easily be computed ase2 = e0×e1.

The motion rule for the normal directione0 is

∆p0 =
{

d0 if d0 > 0
−max(|d0|−T0/k,0) if d0 ≤ 0 ,

where the thresholdT0 is the force the user must apply to penetrate
the surface with the tool. For the tangential directione1, the motion
rule is

∆p1 = max(d1−T1/k,0),

whereT1 = µk|d0|, i.e., a friction force threshold with friction co-
efficientµ. This motion rule is used to avoid slippery surfaces. The
parametersk, µ, andT0 can be controlled through the user interface.
Figure 7 illustrates the idea behind the haptic rendering.

0e

(a) Computation ofe0 by finding the points
on the tool surface that are in contact with the
object.

e

xp

1e0

(b) e1 is constructed by projectingd = (x−p)
onto the plane defined bye0.

Figure 7: Idea behind the haptic rendering.

5.3 Editing operations

Editing of the volumeS is performed with the spherical tool de-
scribed in Section 5.2. The tool can be either active or inactive.
When the tool is active, all object voxels inS located within the tool
boundaries will be affected by the currently selected editing oper-
ation. So far, we have implemented four basic editing operations:
draw, erase, erode, and dilate. Erosion and dilation are binary mor-
phology operators [Gonzalez and Woods 2002, Chapter 9] that are
used to peel off a voxel layer and to add a voxel layer, respectively.
See Figure 8 for a simple erosion example. The editing operations
that are provided with haptic feedback is erase, erode, and dilate.
Haptic feedback for drawing can be turned on as an option and is
based on the gradient ofV for feeling object boundaries.

Drawing and erasing are simple operations that can work directly
onS, while erosion and dilation need an input volume and an output

37

Figure 8: The smiley is constructed by erosion.

volume. Therefore, a temporary volumeS′ is used.S′ is a copy of
S that is not modified while the tool is active. When the tool is
deactivated,S′ is updated according to the currentS.

6 Application example

In a recently started project in co-operation with the Dept. of Radi-
ology at Uppsala University Hospital, we develop interactive seg-
mentation methods as a part of liver surgery planning. As an initial
part of the project, we have developed a method for segmentation of
the liver from MR images. The images are of size 256×256×100
voxels.

First, we apply pre-processing filters to the original data set, i.e.,
edge-preserving smoothing followed by gradient magnitude extrac-
tion. The gradient magnitude is used to construct a speed function
for input to a fast marching segmentation algorithm [Sethian 1999].
As the next step, we use our drawing tool to create an initial seed-
region inside the liver. The fast marching algorithm then propa-
gates this region towards the liver boundaries. The propagation is
fast where the gradient magnitude is low and vice versa. When the
algorithm has converged, we examine the result and, if necessary,
perform manual editing.

A screenshot from the application is shown in Figure 1. The initial
segmentation result contains several artifacts due to “leaking”, i.e.,
the contrast between the liver and the surrounding tissues is low.
After manual editing, most of the artifacts are removed.

7 Results

To test the surface renderer, we generated a test image by sampling
a 3D Gaussian function on a 128× 128× 128 grid. We loaded
the image into our enviroment and thresholded it at different levels
to produce triangle meshes consisting of 20,000–100,000 triangles.
We used the erosion operation to edit the mesh with tool radiir = 5
andr = 10 voxels. The resulting average update rates are given in
Table 1, where it can be seen that the time for triangle generation
increases linearly with the number of triangles. As a consequence,
the effect of different tool radii decreases as the objects become
larger. In the application example (Section 6), the marching cubes
surface of the segmented liver consisted of 95000 triangles and was
edited at frame rates between 10 and 12 frames per second. Tool
radii between 1 and 10 voxels was used, and the number of tool

Table 1: Average update rates when editing triangle meshes with an
erosion tool having a radius ofr voxels.

Update rate (frames/s)
#Triangles r = 5 r = 10

20,000 52 40
30,000 39 25
40,000 30 22
50,000 25 19
60,000 21 17
70,000 20 18
80,000 17 15
90,000 11 10

100,000 9 8

sample points was 340. The haptic update rate was kept constant at
1 kHz which is the rule of thumb for perceptually convincing haptic
feedback.

8 Conclusions and future work

The surface renderer that we have developed can be used for in-
teractive editing of segmented objects. The efficiency lies mainly
in the surface tracking and the index caching strategies. However,
we note that when complex objects are triangulated, the huge num-
ber of triangles considerably slows down the rendering. To over-
come this problem we will investigate how a triangle decimation
algorithm could be incorporated and how the re-rendering can be
improved to update only parts of the triangle mesh.

Regarding the haptic editing tools we are encouraged by these ini-
tial results, so we will extend the volume editor with several editing
operations, arbitrarily shaped editing tools, and more sophisticated
haptic rendering. Further more, we will investigate how to facili-
tate the creation of seed-regions by using haptic feedback based on
the original volumeV. Ideally, the haptic feedback would force the
user to draw inside the object, but using only gradient information
for this purpose is not enough since it is easy to lose track of object
boundaries when the contrast is low.

The segmentation method has shown promising results and we will
continue development of the method. Evaluation of the segmenta-
tion method and the usefulness of the haptic editing tools will be
conducted in coming work.

Acknowledgments

We would like to thank Doc. Ingela Nyström and Prof. Ewert
Bengtsson at the Centre for Image Analysis for proofreading and
useful comments. Prof. H̊akan Ahlstr̈om and Dr Hans Frimmel
at the Dept. of Radiology at Uppsala University Hospital are ac-
knowledged for providing the MRI data. This work was funded by
the Swedish Research Council, no. 2002-5645.

References

AGMUND, J. 2004. Real-time surface rendering for interactive
volume image segmentation in a haptic environment. Master’s

38

thesis, Uppsala University, Centre for Image Analysis. UPTEC
F04 071.

AVILA , R. S.,AND SOBIERAJSKI, L. M. 1996. A haptic interac-
tion method for volume visualization. InProceedings of IEEE
Visualization’96, 197–204.

BÆRENTZEN, J. A. 1998. Octree-based volume sculpting. InPro-
ceedings of Late Breaking Hot Topics. IEEE Visualization’98,
9–12.

GALYEAN , T. A., AND HUGHES, J. F. 1991. Sculpting: An inter-
active volumetric modeling technique. InProceedings of ACM
SIGGRAPH’91, 267–274.

GONZALEZ, R. C., AND WOODS, R. E. 2002. Digital image
processing, second ed. Prentice Hall, Inc.

HARDERS, M., AND SZÉKELY, G. 2002. Improving medical seg-
mentation with haptic interaction. InProceedings of IEEE Vir-
tual Reality (VR’02), IEEE CS Press, IEEE Computer Society,
243–250.

IKITS, M., BREDERSON, J. D., HANSEN, C. D., AND JOHNSON,
C. R. 2003. A constraint-based technique for haptic volume
exploration. InProceedings of IEEE Visualization’03, 263–269.

KANG, Y., ENGELKE, K., AND KALENDER, W. A. 2004. Inter-
active 3D editing tools for image segmentation.Medical Image
Analysis 8, 1, 35–46.

K IM , L., SUKHATME , G. S., AND DESBRUN, M. 2004. A
haptic-rendering technique based on hybrid surface representa-
tion. IEEE Computer Graphics and Applications 24, 2, 66–75.

LORENSEN, W. E., AND CLINE , H. E. 1987. Marching cubes: A
high resolution 3D surface reconstruction algorithm.Computer
Graphics 21, 4 (July), 163–169.

LUNDIN , K., YNNERMAN, A., AND GUDMUNDSSON, B. 2002.
Proxy-based haptic feedback from volumetric density data. In
Proceedings of Eurohaptics 2002, 104–109.

MONTANI , C., SCATENI, R., AND SCOPIGNO, R. 1994. Dis-
cretized marching cubes. InProceedings of IEEE Visualiza-
tion’94, IEEE Computer Society Press, Washington D.C., USA,
R. D. Bergeron and A. E. Kaufman, Eds., IEEE Computer Soci-
ety, 281–287.

PETERSIK, A., PFLESSER, B., TIEDE, U., HOEHNE, K. H., AND
LEUWER, R. 2003. Realistic haptic interaction in volume
sculpting for surgery simulation. InProceedings of IS4TM’03,
Springer-Verlag Berlin Heidelberg, N. Ayache and H. Delingette,
Eds., no. 2673 in LNCS, 194–202.

RUSPINI, D. C., KOLAROV, K., AND KHATIB , O. 1997. The hap-
tic display of complex graphical environments. InProceedings
of ACM SIGGRAPH’97, ACM SIGGRAPH, 345–352.

SETHIAN , J. A. 1999.Level set methods and fast marching meth-
ods. Cambridge University Press.

SHEKHAR, R., FAYYAD , E., YAGEL, R., AND CORNHILL , J. F.
1996. Octree-based decimation of marching cubes surfaces. In
Proceedings of IEEE Visualization’96, 335–ff.

THURFJELL, L., MCLAUGHLIN , J., MATTSSON, J., AND LAM -
MERTSE, P. 2002. Haptic interaction with virtual objects: The
technology and some applications.Industrial Robot 29, 3, 210–
215.

V IDHOLM , E., TIZON, X., NYSTRÖM, I., AND BENGTSSON, E.
2004. Haptic guided seeding of MRA images for semi-automatic

segmentation. InProceedings of IEEE International Symposium
on Biomedical Imaging (ISBI’04), 278–281.

WILHELMS , J., AND VAN GELDER, A. 1992. Octrees for faster
isosurface generation.ACM Transactions on Graphics 11, 3,
201–227.

WYVILL , B., MCPHEETERS, C., AND WYVILL , G. 1986. Data
structure for soft objects.The Visual Computer 2, 4, 227–234.

39

	SIGRAD_2004_FrontalCover.pdf
	Gävle, Sweden

	SIGRAD_2004_Intro.pdf
	Edited by
	Stefan Seipel
	Linköping Electronic Conference Proceedings, No. 13
	Linköping University Electronic Press
	Print: UniTryck, Linköping, 2004
	Prologue
	Keynote and Invited Presentations

	Oliver Deussen
	Tomas Landelius

	TetSplat: Real-Time Rendering and Volume Clipping of Large U
	Ken Museth

	Research Papers
	Incremental Spherical Linear Interpolation 7
	Tony Barrera, Anders Hast and Ewert Bengtsson
	Dynamic Code Generation for Realtime Shaders 11
	Niklas Folkegård and Daniel Wesslén
	Py-FX An active effect framework 17
	Calle Lejdfors and Lennart Ohlsson
	Real-time Rendering of Accumulated Snow 25
	Per Ohlsson and Stefan Seipel

	Fast Surface Rendering for Interactive Medical Image Segment
	Erik Vidholm and Jonas Agmund
	Collaborative 3D Visualizations of Geo-Spatial Information f
	Lars Winkler Pettersson, Ulrik Spak and Stefan Seipel
	Work in Progress
	Context Aware Maps 49
	Anders Henrysson and Mark Ollila
	Sketches

	Towards Rapid Urban Environment Modelling 53
	Ulf Söderman, Simon Ahlberg, Åsa Persson and Magnus Elmqvist
	3D Reconstruction From Non-Euclidian Distance Fields 55
	Anders Sandholm and Ken Museth
	Improved Diffuse Anisotropic Shading 57
	Anders Hast, Daniel Wesslén and Stefan Seipel
	An Optimized, Grid Independent, Narrow Band Data Structure f
	Michael Bang Nielsen and Ken Museth
	Posters

	SIGRAD2004 Program Committee
	SIGRAD2004 Organizing Committee
	SIGRAD Board for 2004

	All-numbered.pdf
	SIGRAD_2004_Invited.pdf
	Interactive landscape visualization
	Abstract
	Speaker Bio
	Abstract
	Abstract

