
Work in Progress: GPU-assisted Surface Reconstruction and Motion
Analysis from Range Scanner Data

Daniel Wessĺen∗

University of G̈avle
Stefan Seipel†

University of G̈avle

Figure 1: Reconstructed surfaces from two scans of the same door and exaggerated, color coded difference.

Abstract

We present a method for rapid GPU-assisted surface reconstruction
from range scanner data producing meshes suitable for visualiza-
tion and analysis of very slow-moving objects from multiple scans
of the same area.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques—Graphics data structures and data types, Interaction
techniques

Keywords: surface reconstruction, meshing, point clouds, laser
scanner

1 Introduction

Usually, range scanners or other point measuring equipment is used
to sample an object from which a surface will be generated, reduced
or otherwise processed. The final model is expected to be used
on many occasions and therefore the time spent on constructing it
is considered expendable. [Amenta et al. 2002; Bajaj et al. 1995;
Curless and Levoy 1996]

We are facing a different situation—scans are to be acquired at reg-
ular intervals and the difference between them used to detect mo-
tion. Analysis will be both manual and automatic. A display will
be provided for users to look at the data, which will have to be ex-
aggerated for differences to become detectable. Automatic analysis
will run continuously, alerting a user when potentially interesting
data is detected.

∗e-mail: dwn@hig.se
†e-mail: ssl@hig.se

In this scenario meshes become irrelevant when new data is avail-
able, so time spent on creating a perfect mesh is wasted—especially
if nobody is looking at the display, in which case it will be used only
once for automated analysis.

It is also desirable to quickly be able to bring up a mesh repre-
senting changes between any two previous scans, providing further
incentive to find a solution that executes as fast as possible.

1.1 Previous Research

Automated surface reconstruction from point cloud data sets and
depth images has seen much research, though usually focused on
finding meshes that optimally fit the input point set in some way
or that use as few triangles as possible. We have found no existing
method suited for our conditions.

2 Surface Reconstruction

Surfaces are generated as regular grids, much like the input data.
Optionally, meshes may be generated from multiple point sets at
once, in which case corresponding vertices in the two meshes will
correspond to the same direction from the scanner. This is the most
common mode of operation since it facilitates motion analysis.

Reconstruction is fairly strightforward—input data is cleaned up,
matched to the target raster, cleaned up again, and normals are then
generated—the interesting part is that this process is almost entirely
performed on the graphics card.

2.1 Cleanup

Input point sets may contains both valid points, invalid points where
no measurement was recorded, points where the light was reflected
from multiple surfaces, and spurious incorrect values which do not
correspond to any surface. When light is reflected from more than
one surface the reported distance will lie between the correct alter-
natives, disconnected from both surfaces.

51

The first task is thus to clean the data by removing invalid points.
Apart from actually loading the data, this is the only part of the
algorithm that is currently performed by the CPU.

A simple sweep of the data is performed, replacing the values of
all points which are invalid or disconnected from the surface. Val-
ues are considered disconnected if their distance from neighbouring
values in all directions is greater than a threshold. Coordinates are
also restored to scanner-centered spherical coordinates to ease pro-
cessing in later stages.1

2.2 Matching and Meshing

For motion analysis to work, vertices in one mesh must match cor-
responding vertices in the other. This would be trivial if all data sets
were sampled from exactly the same directions, but different scans
may use differing areas of interest and resolution, meaning that the
advantage of a regular grid input is lost at this point.

We calculate the spherical coordinate bounds of the two meshes
and use it to calculate the raster size of the final mesh. Two float-
ing point frame buffers which will be used for further processing
are created at this size. Linearization of the data and is then per-
formed by splatting points at one of the floating point buffers, start-
ing with single pixel points and followed by successively larger
points. Depth testing is used to avoid overwrites of pixels that have
already been set at smaller sizes.

At this stage the offscreen framebuffer contains only valid points
located at mostly correct positions. Some pixels will contain dupli-
cate values from when larger points were drawn. To remove dupli-
cates and place all points in a regular grid, the frame buffer is copied
to a vertex buffer and used to draw a triangle mesh. Interpolation
over the triangles will give all covered points a linearly weighted
depth corresponding to their position in the mesh. Duplicate points
will result in degenerate triangles and simply disappear.

Some cleanup is also performed—the points created here could be
used as a mesh directly, but drawing triangles blindly will result
in artifacts where surfaces are disconnected as triangles connecting
the edge verices will still be drawn. Such triangles are eliminated
by alpha testing—the test is set toα > 0 and vertices located near
discontinuities in the mesh have theirα set to 0. Interpolation will
cause triangles near discontinuities to haveα ∈ (0,1), which will
still keep them visible. Only triangles where all vertices haveα = 0
will be invisible.

Some errors are always introduced in the scanning so the penulti-
mate step is a smoothing of the mesh, performed by simple averag-
ing of adjacent depth values.

Finally, all points are converted to cartesian coordinates and nor-
mals are calculated.

3 Display

In order to display differences, vertex buffers from two meshes are
bound simultaneously and a vertex shader is used to interpolate
or extrapolate a coordinate from the provided two. Additionally,
a fragment shader samples a color ramp texture to provide color
based on the distance between the two meshes.

1Points are stored in cartesian coordinates in all formats supported by
the capture software used.

Figure 1 displays two different scans of the same door. The scans
use slightly differing areas of interest and the door is ajar in scan
number two. Image 3 displays color-coded and slightly exaggerated
difference in the area covered by both scans. This is the intended
main display mode in the final application.2

4 Performance

Graphics card locality is a major concern for performance. With
its drastically higher throughput we wish to offload as much work
as possible to the GPU, but reading this data back to the host is
a bottleneck. The current solution can be executed entirely on
the graphics card, given a card and drivers that support render-to-
vertex-array. Unfortunately, such drivers are not yet available for
the Radeon 9800 used in development so we have to copy data from
card to host and back again at multiple points during execution.

Only one stage in the vertex processing is currently performed on
the CPU—the cartesian to polar coordinate conversion. A bounding
box needs to be calculated from the polar coordinates, which is far
easier to do on the CPU, leading to a choice between performing
the conversion directly on the CPU or on the GPU followed by a
readback and loop for bounds calculation. The ideal solution would
perhaps be to calculate bounds on the GPU so that only a very small
readback is required.

The source data for the door displayed in Figure 1 contains 149211
points. The application generates a mesh from the point set in 0.22
seconds in its current state—crippled by unnecessary readbacks.

5 Discussion and Future Work

The weakest point is currently that polygons are generated between
disjoint surfaces. While these are never seen, fragments need to be
generated and processed for them. A solution would be to generate
new index sets that omit these triangles. Ideally, this would be per-
formed entirely by the GPU so that data must never be read back
to the host. Implementing this will likely be the next improvement
made.

Overall, the system works well for the intended use—it is optimized
for rapid mesh generation from two point sets and subsequent com-
parative display of these.

References

AMENTA , N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2002.
A simple algorithm for homeomorphic surface reconstruction.
International Journal of Computational Geometry and Applica-
tions 12, 1-2, 125–141.

BAJAJ, C. L., BERNARDINI, F., AND XU, G. 1995. Automatic
reconstruction of surfaces and scalar fields from 3D scans.Com-
puter Graphics 29, Annual Conference Series, 109–118.

CURLESS, B., AND LEVOY, M. 1996. A volumetric method for
building complex models from range images.Computer Graph-
ics 30, Annual Conference Series, 303–312.

2The door is used for testing and is not related to the final application.

52

	SIGRAD_2004_FrontalCover.pdf
	Gävle, Sweden

	SIGRAD_2004_Intro.pdf
	Edited by
	Stefan Seipel
	Linköping Electronic Conference Proceedings, No. 13
	Linköping University Electronic Press
	Print: UniTryck, Linköping, 2004
	Prologue
	Keynote and Invited Presentations

	Oliver Deussen
	Tomas Landelius

	TetSplat: Real-Time Rendering and Volume Clipping of Large U
	Ken Museth

	Research Papers
	Incremental Spherical Linear Interpolation 7
	Tony Barrera, Anders Hast and Ewert Bengtsson
	Dynamic Code Generation for Realtime Shaders 11
	Niklas Folkegård and Daniel Wesslén
	Py-FX An active effect framework 17
	Calle Lejdfors and Lennart Ohlsson
	Real-time Rendering of Accumulated Snow 25
	Per Ohlsson and Stefan Seipel

	Fast Surface Rendering for Interactive Medical Image Segment
	Erik Vidholm and Jonas Agmund
	Collaborative 3D Visualizations of Geo-Spatial Information f
	Lars Winkler Pettersson, Ulrik Spak and Stefan Seipel
	Work in Progress
	Context Aware Maps 49
	Anders Henrysson and Mark Ollila
	Sketches

	Towards Rapid Urban Environment Modelling 53
	Ulf Söderman, Simon Ahlberg, Åsa Persson and Magnus Elmqvist
	3D Reconstruction From Non-Euclidian Distance Fields 55
	Anders Sandholm and Ken Museth
	Improved Diffuse Anisotropic Shading 57
	Anders Hast, Daniel Wesslén and Stefan Seipel
	An Optimized, Grid Independent, Narrow Band Data Structure f
	Michael Bang Nielsen and Ken Museth
	Posters

	SIGRAD2004 Program Committee
	SIGRAD2004 Organizing Committee
	SIGRAD Board for 2004

	All-numbered.pdf
	SIGRAD_2004_Invited.pdf
	Interactive landscape visualization
	Abstract
	Speaker Bio
	Abstract
	Abstract

