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Welcome to SIGRAD2004 in Gävle! 
 
The annual Sigrad conference has established itself as the venue in Sweden for researchers and 
industry in the field of computer graphics, visual simulation and visualization. As in previous 
years, the Sigrad conference is held as a two-day event and is this year hosted by the University 
of Gävle. The special theme of SIGRAD2004 is Environmental Visualization. Two invited 
speakers and several paper contributions are aimed at this topic and are presented during day one 
of the conference. As is tradition, the scientific program is completed by quality contributions 
from other fields in computer graphics spanning both days of the event. 
 
The goal of the SIGRAD2004 conference is to provide a Nordic (yet international) forum for 
communication of recent research and development results in computer graphics, visual 
simulation and visualization. SIGRAD2004 provides a forum for established researchers in the 
field to exchange their experiences with industry. SIGRAD2004 invites students and researchers 
in computer graphics to establish and deepen their academic networks as well as to foster new 
blood in the field.  
 
During the past years computer graphics research has progressed dramatically and has created its 
own public image with impressive cinematic and game effects.  
Likewise, computer graphics and visualization has evolved into powerful visual tools, which 
support us in daily work and decision-making. Visualizations of processes and information 
related to our environment have become ubiquitous though less spectacular. Urban and landscape 
planning, communication of weather forecasts and presentation of geographically related 
information are only few examples, where we visually explore environmental information.  
We are proud to have Professor Oliver Deussen from the University of Constance as keynotes 
speaker at SIGRAD2004. He is one of the leading researchers in the field of vegetation 
simulation and landscape rendering. He is co-founder of Greenworks Organic Software, which 
produces xFrog, a highly successful software for procedural organic simulation. We are also 
pleased to have Dr. Tomas Landelius as invited speaker under the conference special theme. He is 
researcher at the Swedish Meteorological and Hydrological Institute and represents a field of 
expertise that uses various forms visualizations to convey complex information.Our third invited 
speaker is Professor Ken Museth at Linköpings University, campus Norrköping. In a session 
during the second day, he will present some of his latest research in the area of visualizing large 
unstructured datasets generated from computational fluids dynamics and structural mechanics 
simulations. 
 
We would like to express our gratitude and warm welcome to the keynote speakers, authors of 
contributed papers, and other participants. We would also like to thank our sponsors, University 
of Gävle, Linköping University, The County Council of Gävleborg, EU Structural Funds, 
SIGRAD, Creative Media Lab, and the University of Linköping. 
 
We wish you a most pleasant stay in Gävle. 
 
 
Stefan Seipel Anders Backman 
Chair, Program committee Chair, SIGRAD 
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SIGRAD2004 Program Committee 
 
The SIGRAD2004 program committee consisted of experts in the field of computer 
graphics and visualization from all over Sweden. We thank them for their comments and 
reviews. 
 
Dr. Mike Connell, CKK, Chalmers 
Dr. Matthew Cooper, Linköping University, ITN 
Dr. Mark Eric Dieckmann, Linköping University, ITN  
Dr. Hans Frimmel, Uppsala University 
Dr. Anders Hast, University of Gävle 
Dr. Kai-Mikael Jää-Aro, KTH 
Docent Lars Kjelldahl, KTH 
Claude Lacoursière, Umeå University and CMLabs 
Professor Haibo Li, Umeå University 
Professor Ken Museth, Linköping University, ITN 
Professor Stefan Seipel, Uppsala University and Gävle University 
 
 
SIGRAD2004 Organizing Committee 
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Interactive landscape visualization  
 

Oliver Deussen 
 

University of Constance 
 

 
Abstract 
 
In recent years the development of graphics hardware and efficient rendering algorithms enabled 
researchers and game developers to create and render large landscapes with interactive rates. However, the 
shown scenes are still rough approximations that do not reach the complexity of real nature. To obtain 
sufficient simulations, a couple of problems have to be solved. 
 
Creating a good scene requires powerful modelling algorithms on different levels. First a sufficient set of 
plant models has to be created. Nature is very diverse: modelling the most important plants that are found 
in Europe requires thousands of different models, and this is why efficient modelling algorithms for plants 
have to be found. In the talk I will present our xfrog modelling system, which was designed for that task. 
 
The plant models then have to be combined to a virtual landscape. At this stage another modelling program 
is needed that enables the user to edit a huge number of small objects. Even a small garden consists of tens 
of thousands of plants, one square kilometre incorporates billions of single plants, and even storing the 
plant positions is here a problematic task. The plants interact with each other; complex patterns arise due to 
seeding mechanisms and the fight for resources. Sometimes, the development of a landscape has to be 
simulated.  
 
Having modelled plant models and positions, we end up with tons of geometry even for a small landscape. 
A single tree model consists sometimes of millions of surfaces, a forest of billions. Efficient level-of-detail 
algorithms are necessary to obtain interactive rendering with these scenes. This can be done by representing 
the plant models by billboards or point clouds. The size of the representation is computed for each model 
and frame and thus allows us to carefully adapting the shown geometry to what is necessary. 
 
Rendering the models is also an interesting problem. The interaction of light with the plant surfaces and 
especially leaves is not trivial. Subsurface scattering and different optical properties of plant tissues makes 
it necessary to adapt standard rendering techniques to these models. Especially for hardware rendering this 
is a complex task. 
 
In the talk I will outline our modelling and rendering pipeline and show some of the algorithms we 
implemented. Also I will review the problems and frontiers we currently focus while solving our goal of 
rendering one square kilometre of nature at interactive frame rates. 
 
 
Speaker Bio 
 
Oliver Deussen graduated in 1996 at the University of Karlsruhe about graphical simulation techniques. 
From 1996 to 2000 he was research assistant at the Department of Simulation and Computer Graphics at 
the University of Magdeburg.  
In 2000 he received an associate professorship at the Dresden University of Technology. Since 2003 he is 
full professor at the University of Constance and chair head for computer graphics and media informatics. 
His research topics include modelling and visualization of complex landscapes, non-photorealistic 
rendering and information visualization. 
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Visualization at SMHI 
 

Tomas Landelius 
 

Swedish Meteorological and Hydrological Institute 
SE 601 76 Norrköping 

 
 

Abstract 
 
Like most other national weather services the Swedish Meteorological and Hydrological Institute (SMHI) 
was established in the late 19th century. The reason for this was the development of the telegraph. In order 
to make a weather forecast one need information about the current weather situation within a large area and 
the telegraph made this possible. As an illustration, todays 24 hour weather forecasts for Sweden use 
information from all of Europe, the northern Atlantic as well as the eastern parts of northern America. 
Accordingly SMHI gathers vast quantities of data around the clock from land-based weather stations, 
balloons, ships, buoys, aircraft, weather radar, satellites and lightning localization systems. This 
information is the base for further processing in complex numerical models, tailored for applications in 
meteorology, hydrology and oceanography (MHO). 
 

 
Left: First public weather bulletin from SMHI in 1874. Right: Modern TV weather presentation with 

superimposed radar image sequence.  
 

SMHI operates under the auspices of the Swedish Ministry of the Environment and uses its MHO expertise 
to promote efficiency, safety and a better environment. In order to do this forecasts, severe weather 
warnings and other model results need to be analyses, presented and visualized in ways that meet the 
specific needs of a wide spectra of audiences. These range from researches, developers and forecaster to 
customers in various areas of society.  
Weather information to the public has for a long time been an important task as illustrated in the figure 
above. This talk will serve a smorgasbord with several examples of how visualization techniques are used 
at SMHI. It will become evident that although the processes in the atmosphere and ocean take place in four 
dimensions almost all visualizations at SMHI are done in 2-D. Some possible reasons why this is the case 
will be discussed in the talk. 
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Speaker Bio 
 
Tomas Landelius is a research scientist at the Atmospheric research group at SMHI where he applies his 
knowledge in multidimensional signal analysis, non-linear regression, optimal control and optimization to a 
diversity of problems: Assimilation of satellite micro wave data in weather prediction models (NWP), 
analysis of satellite cloud images and radar imagery as well as the development of solar radiation models 
for the UV, visible and near-infrared.  
His graduate work concerned the development of a novel algorithm for reinforcement learning in high-
dimensional signal spaces and he also made contributions concerning the use of canonical correlation in 
image analysis applications. He received his M.Sc. in Computer Science and Technology (1990) as well as 
his Ph.D. in Computer Vision (1997) from Linköping University, Sweden. 
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TetSplat: Real-Time Rendering and Volume Clipping of Large 
Unstructured Tetrahedral Meshes 

 
Ken Museth 

 
Linköping University 

 
 

Abstract 
 
Museth will present a novel approach to interactive visualization and exploration of large unstructured 
tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics 
simulations, and typically sample multiple field values on several millions of unstructured grid points. Our 
method relies on the preprocessing of the tetrahedral mesh to partition it into non-convex boundaries and 
internal fragments that are subsequently encoded into compressed multi-resolution data representations. 
These compact hierarchical data structures are then adaptively rendered and probed in real-time on a 
commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but 
highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input 
mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric 
data-set through constructive solid geometry operations as well as interactive editing of color transfer 
functions for an arbitrary number of field values. 
Thus, the presented visualization technique allows end-users for the first time to interactively render and 
explore very large unstructured tetrahedral meshes on relatively inexpensive hardware.  
 
Further information on the research group can be found at www.gg.itn.liu.se and a paper presenting the 
current work is available at www.gg.itn.liu.se/Publications/Vis04. 
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Incremental Spherical Linear Interpolation

Tony Barrera∗

Barrera Kristiansen AB
Anders Hast†

Creative Media Lab,
University of Gävle

Ewert Bengtsson‡

Centre for Image Analysis
Uppsala University

Abstract

Animation is often done by setting up a sequence of key orienta-
tions, represented by quaternions. The in between orientations are
obtained by spherical linear interpolation (SLERP) of the quater-
nions, which then can be used to rotate the objects. However,
SLERP involves the computation of trigonometric functions, which
are computationally expensive. Since it is often required that the an-
gle between each quaternion should be the same, we propose that
incremental SLERP is used instead. In this paper we demonstrate
five different methods for incremental SLERP, whereof one isnew,
and their pros and cons are discussed.

1 Introduction

We propose that two approaches previously published for spherical
linear interpolation (SLERP) [Shoemake 1985] of vectors and in-
tensities [Barrera 2004; Hast 2003], also are used for SLERPof
quaternions, a technique often used in animation. We also demon-
strate two other ways of performing incremental SLERP by using
quaternion multiplication and by using matrices directly.Further-
more we propose a new way of doing incremental SLERP by pos-
ing the problem as solving a differential equation using theEuler
method.

1.1 Quaternions and Animation

Animation is often done by setting up a sequence of key orienta-
tions, represented by quaternions. The in between orientations are
obtained by spherical linear interpolation of the quaternions, which
then can be used in order to rotate the objects [Svarovsky 2000]

p′ = qpq−1 (1)

whereq is a unit quaterion andp is a position i 3D in quaternion
form

p = (x,y,z,0) (2)

Unit quaternions are simply another representation of rotation
matrices. It is possible to convert quaternions into matrices and
vice versa. Actually it can be proven that a unit quaternion will be
the eigenvector of the corresponding orthonormal rotationmatrix

∗e-mail: tony.barrera@spray.se
†e-mail: aht@hig.se
‡e-mail: ewert@cb.uu.se

[Kuipers 1999]. The quaternion consists of four elements. The first
three are the sine of half the rotation angle multiplied by a unit
vectorn that the rotation is performed around. The last one is the
cosine of half the rotation angle

q = (v,s) = (nsin(θ/2),cos(θ/2)) (3)

For a unit quaternion, the conjugate is the same as the inverse,
which is defined as

q−1 = (−v,s) (4)

1.2 SLERP

The theory behind SLERP, was introduced to the computer graph-
ics society by Shoemake [Shoemake 1985] and an interesting proof
is given by Glassner [Glassner 1999]. SLERP is different from lin-
ear interpolation in the way that the angle between each quaternion
will be constant, i.e. the movement will have constant speed. Lin-
ear interpolation (lerp ) will yield larger angles in the middle of
the interpolation sequence. This will cause animated movements to
accelerate in the middle, which is undesirable [Parent 2002]. More-
over, will quaternions interpolated by lerp be shorter and normal-
ization is therefore necessary. However, quaternions obtained by
SLERP do not need to be normalized, since SLERP will always
yield unit quaternions as long as the quaternions being interpolated
in between are unit quaternions.

The formula used is

q(t) = q1
sin((1− t)θ )

sin(θ )
+q2

sin(tθ )

sin(θ )
(5)

wheret ∈ [0,1], andθ is the angle betweenq1 andq2 computed as

θ = cos−1(q1 ·q2) (6)

2 Fast incremental SLERP

It is shown in [Hast 2003] that equation (5) can be rewritten as

q(n) = q1 cos(nKθ )+qo sin(nKθ ) (7)

whereqo is the quaternion obtained by applying one step of Gram-
Schmidt’s orthogonalization algorithm [Nicholson 1995] and then
it is normalized. This quaternion is orthogonal toq1 and lies in the
same hyper plane spanned byq1 andq2. Furthermore, if there are

k steps then the angle between each quaternion isKθ = cos−1(q1·q2)
k .

In the subsequent matlab code examples, it is assumed thatq1 and
q2 are unit quaternions and that the following five lines are included
in the beginning of the code

qo=q2-(dot(q2,q1))*q1;
qo=qo/norm(qo);
t=acos(dot(q1,q2));
kt=t/k;
q(1,:)=q1;
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The code that follows on these three lines can be used for comput-
ing incremental SLERP. Usually SLERP is computed using trigono-
metric functions in the inner loop in the following way

b=kt;
for n=2:k+1
q(n,:)=q1*cos(b)+qo*sin(b);
b=b+kt;

end

The cost for computing SLERP in this way is one scalar addition,
one sine and one cosine evaluation, two scalar-quaternion multipli-
cations and one quaternion addition. This is not very efficient and
the following subsections will show how these trigonometric func-
tions can be avoided.

2.1 De Moivre

In [Hast 2003] it is shown that complex multiplication can beused
in order to compute SLERP efficiently. Hence, the computationally
expensive trigonometric functions are avoided.

Complex numbers are defined in an orthonormal system where
the basis vectors aree1 = 1 ande2 = i. The De Moivre’s formula
[Marsden 1996] states that

(cos(θ )+ isin(θ ))n = cos(nθ )+ isin(nθ ) (8)

The right part of the formula looks very similar to equation (7). In
fact is possible to compute the left part instead, by using one com-
plex multiplication. However, there are still some things to arrange
before we can compute SLERP of quaternions instead of complex
numbers.

Let Z be a complex number computed by

Z = cos(Kθ )+ isin(Kθ ) (9)

Furthermore, we treat complex numbers as if they were vectors in
2D-space, by defining a product which is similar to the ordinary dot
product

(q1,qo)• (ℜ(Z),ℑ(Z)) = q1ℜ(Z)+qoℑ(Z) (10)

Thus, we compute the SLERP as

q(n) = (q1,qo)•Zn (11)

Finally, we prove that this will yield the desired result. Rewrite
equation (11) by using equation (8)

q(n) = (q1,qo)•Zn (12)

= (q1,qo)• (cos(nθ )+ isin(nθ ))

Then, expand this equation by using equation (10)

q(n) = q1 cos(nKθ )+qo sin(nKθ ) (13)

The matlab code for this approach is

Z1=cos(kt)+i*sin(kt);
Z=Z1;
for n=2:k+1
q(n,:)=q1*real(Z)+qo*imag(Z);
Z=Z1*Z;

end

The cost for computing the intensity will be one complex mul-
tiplication and one two scalar-quaternion multiplications and one
quaternion addition.

2.2 Chebyshev

In [Barrera 2004] a faster approach is derived using the Chebyshev
recurrence [Burden 2001]. This will make the computation inthe
inner loop much more effective than using the complex multiplica-
tion.

The Chebyshev’s recurrence relation is

Tn+1(u) = 2uTn(u)−Tn−1(u) (14)

whereTn(u) are Chebyshev polynomials [Burden 2001] of the first
kind that can be written as

Tn(u) = cos(nφ) = cos(ncos−1 u) (15)

In order to obtain the Chebyshev recurrence for solving equation
(7) let

u = cos(Kθ ) (16)

φ = Kθ (17)

Then equation (15) gives

cos(nKθ ) = cos(ncos−1 u) (18)

This equation can be solved by equation (14). Since sin is just a
phase shifted cos it will also be solved by the proposed equation as
long as the angle is the same for both. Let

q(n) = q1 cos(nKθ )+qo sin(nKθ ) (19)

For the setup starting withn = 0, we subsequently have

q−1 = q1cos(−Kθ )+qo sin(−Kθ ) (20)

= q1cos(Kθ )−qo sin(Kθ )

and

q0 = q1 cos(0)+qo sin(0) (21)

= q1

Now, we can put together our algorithm. We can also optimize it
somewhat by removing the factor 2 from the loop

tm1=q1*cos(kt)-qo*sin(kt);
t0=q1;
u=2*cos(kt);
for n=2:k+1
tp1=u*t0-tm1;
q(n,:)=tp1;
tm1=t0;
t0=tp1;

end

The cost for this approach is one scalar-quaternion multiplica-
tion, one quaternion subtraction and two quaternion moves.

2.3 Quaternion Power Function

The power function variant of SLERP for quaternions [Shankel
2000]can also be used for incremental SLERP. It is defined as

q(n) = q1(q
−1
1 qa)

n (22)

We have to computeqa in such a way that we will obtain interme-
diate quaternions in betweenq1 andq2

qa = q1 cos(Kθ )+qo sin(Kθ ) (23)

then we obtain the following algorithm

8



q1i=[-q1(1), -q1(2), -q1(3), q1(4)];
qa=q1*cos(kt)+qo*sin(kt);
qb=qmul(q1i,qa);
q0=q1;
for n=2:k+1

q0=qmul(q0,qb);
q(n,:)=q0;

end

Here qmul is an implementation of quaternion multiplication,
which is defined as

q1q2 = (v1,s1)(v2,s2) (24)

= (s1v2 + s2v1 +v1×v2,s1s2−v1 ·v2) (25)

The cost for this approach is only one quaternion multiplication in
the inner loop.

2.4 Euler

Here we introduce how it is possible to perform incremental SLERP
by solving a ordinary differential equation using the Eulermethod
[Gerald 1994]. It is easy to show that

y = y1 cos(Kθ )+yo sin(Kθ ) (26)

is a solution to the ordinary differential equation [Simmons 1991]

y′′ = −k2y (27)

wherek is a constant. The Euler method gives an approximation to
the solution by the following forward difference

yi+1 = yi +y′ (28)

However, in order to make this an exact computation we shall com-
pute the derivate using Eulers method as well

y′i+1 = y′i +y′′ (29)

The trick is to use the fact thaty′′ = −k2y, then we can nest the
recurrence as

y′i+1 = y′i −k2yi (30)

yi+1 = yi +y′i+1 (31)

Substitute equation (30) into (31)

yi+1 = yi +y′i −k2yi (32)

Now, we make use of the fact thaty′i = yi − yi−1 and put that into
equation (32). Thus

yi+1 = yi +yi −yi−1−k2yi (33)

After rearranging the terms we get

yi+1 = (2−k2)yi −yi−1 (34)

If we let (2− k2) = 2u, whereu = cos(Kθ ) then equation (34) is
the same as the Chebyshev recurrence (14). This implies thatthe
nested Euler method can be used to compute incremental SLERP
exactly. Therefore

k2 = 2−2cos(Kθ ) (35)

In this case we have

y−1 = y1 cos(Kθ )−yo sin(Kθ ) (36)

y0 = y1 (37)

(38)

And

y′0 = y0−y−1 (39)

= y1−y1 cos(Kθ )+yo sin(Kθ ) (40)

= y1(1−cos(Kθ ))+yo sin(Kθ ) (41)

Putting it all together yields the following algorithm

p=1-cos(kt);
y=q1;
k2=2*p;
y1=qo*sin(kt)+p*q1;

for n=2:k+1
y1=y1-k2*y;
y=y+y1;
q(n,:)=y;

end

The cost is one scalar-quaternion multiplication, one quaternion
subtraction and one quaternion addition.

2.5 Matrix Multiplication

The previously presented algorithms can be useful if quaternions
are used to perform the actual rotation of the objects. However, if
the quaternions must be transformed into matrices it is better to do
the interpolation using matrices all along.

Let

M1 = quattomat(q1) (42)

Ma = quattomat(q1 cos(Kθ )+qo sin(Kθ )) (43)

wherequattomat [Watt 1992] is a function that transforms a quater-
nion into a matrix. The there must exist a matrix,M that transforms
M1 into Ma

M1M = Ma (44)

Thus
M = M−1

1 Ma (45)

The code is

M1=quattomat(q1);
Ma=quattomat(q1*cos(kt)+qo*sin(kt));
M=inv(M1)*Ma;
Q=M1;
for n=2:k+1

Q=Q*M;
end

3 Conclusions

It is possible to evaluate SLERP for quaternions used in anima-
tion in a very efficient way using incremental SLERP instead of
evaluating the original SLERP functions containing trigonometric
functions in the loop.

All presented algorithms will yield the same intermediate quater-
nions, or as in the case for the matrix version, the corresponding
rotation matrix. They are all interpolation approaches andnot ap-
proximations. The only error introduced is by the floating point
arithmetic itself. They are all therefore numerically stable algo-
rithms.

The fastest approach for quaternion SLERP is the one derived
from Chebyshev’s recurrence relation. The others may seem re-
dundant. However, the purpose of this paper is to show that there
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are many ways to avoid the computationally expensive trigonomet-
ric functions in the inner loop. Perhaps the other approaches might
have other uses in other contexts. The algorithm derived from De
Moivre’s formula might turn out to be useful if complex multipli-
cation is implemented in hardware. The same goes for the Quater-
nion power function approach. The one using the Euler methodis
interesting as an alternative to the Chebyshev approach since the
variable swap is replaced by a quaternion addition.

If the rotation is done by matrix multiplication instead of quater-
nion rotation, then the Matrix multiplication approach canbe even
faster than the Chebyshev approach since matrix multiplication of-
ten is implemented in hardware and quaternion multiplication (for
the rotation of the objects) is usually not. This of course heavily
depend of which platform is being used for animation.

Anyhow, many graphics applications and especially animation
could benefit from having quaternion arithmetics implemented
in hardware. That would make incremental SLERP very fast.
Nonetheless, a software implementation using any of the proposed
approaches for SLERP will still be much faster than using trigono-
metric functions in the inner loop.

References

T. BARRERA, A. HAST, E. BENGTSSON 2004. Faster shading
by equal angle interpolation of vectors IEEE Transactions on
Visualization and Computer Graphics, pp. 217-223.

R. L. BURDEN, J. D. FAIRES 2001. Numerical Analysis
Brooks/Cole, Thomson Learning, pp. 507-516.

C. F. GERALD, P. O. WHEATLEY 1994.Applied Numerical Anal-
ysis, 5:th ed. Addison Wesley, pp. 400-403.

A. GLASSNER 1999. Situation Normal Andrew Glassner’s
Notebook- Recreational Computer Graphics, Morgan Kaufmann
Publishers, pp. 87-97.

A. HAST, T. BARRERA, E. BENGTSSON2003.Shading by Spher-
ical Linear Interpolation using De Moivre’s Formula WSCG’03,
Short Paper, pp. 57-60.

J. B. KUIPERS 1999. Quaternions and rotation Sequences - A
Primer with Applications to Orbits, Aerospace, and Virtual Re-
ality Princeton University Press, pp. 54-57, 162,163.

J. E. MARSDEN, M. J. HOFFMAN 1996. Basic Complex Analysis
W. H. Freeman and Company, pp. 17.

W. K. NICHOLSON 1995.Linear Algebra with Applications PWS
Publishing Company, pp. 275,276.

R. PARENT 2002. Computer Animation - Algorithms and Tech-
niques Academic Press, pp. 97,98.

J. SHANKEL 2000.Interpolating Quaternions Game Programming
Gems. Edited by M. DeLoura. Charles River Media, pp. 205-213

K. SHOEMAKE 1985.Animating rotation with quaternion curves
ACM SIGGRAPH, pp. 245-254.

G. F. SIMMONS 1991. Differential Equations with Applications
and Historical Notes, 2:nd ed. MacGraw Hill, pp. 64,65.

J. SVAROVSKY 2000.Quaternions for Game Programming Game
Programming Gems. Edited by M. DeLoura. Charles River Me-
dia, pp. 195-299.

A. WATT, M. WATT 1992.Advanced Animation and Rendering
Techniques - Theory and Practice Addison Wesley, pp. 363.

10



Dynamic Code Generation for Realtime Shaders
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Figure 1: Tori shaded with output from the Shader Combiner system in Maya

Abstract

Programming real time graphics has been made more efficient by
introducing high level shading languages such as Cg and GLSL.
Writing shader programs can be redundant since the same func-
tions appear in many shaders. This article suggests a method to
combine single functions and create compound shaders in runtime.
Redundancy is avoided by dividing programs into smaller, reusable
parts. An algorithm is presented for joining these parts into working
shaders based on just a few parameters.

CR Categories: I.3.0 [Computer Graphics]: General— [I.4.8]:
IMAGE PROCESSING—Shading D.1.2 [Software]: Programming
Techniques—Automatic Programming

Keywords: Graphics hardware, GLSL, GPU programming, pro-
gramming efficiency, real time shaders, dynamic code generation,
meta programming, computer graphics

1 Introduction

Real time graphics have become significantly faster and better with
the introduction of programmable graphics cards (GPU:s) for the
consumer market. The first of these GPU:s were released in 2001
[Fernando and Kilgard 2003]. Since these only could be pro-
grammed on an assembly level, the work of creating faster real
time graphics became a lengthy and expensive procedure. In 2002,
Nvidia Corporation released a high level shader language for pro-
gramming this type of hardware, Cg (C for Graphics) [Mark et al.
2003], and during 2003 this was followed by the release of The
OpenGL Shading Language, GLSL [Kessenich et al. ].

∗e-mail: nfd@hig.se
†e-mail: dwn@hig.se

With the introduction of high level shader languages, the work of
creating high end real time graphics has become faster, easier and
more comprehensible. But for large scale projects, where many dif-
ferent shaders are used, the process of writing shader programs still
takes an unnecessary amount of time. The main reason for this is
redundancy — even though many shaders share the same concepts,
they still have to be written into each individual program. It would
be preferrable if each concept only had to be written once, thus
making the choice of concepts the relevant task in shader creation.

This article aims to present a solution where a complete shader
program is created dynamically from short sections of code, rep-
resenting the various concepts of shading algorithms. Hopefully,
this solution will make using shader languages for implementation
of hardware based real time graphics simpler and more efficient.

2 Background

2.1 Shader Languages

Most shader languages resemble C, but are specialized for simple
computations involving vectors and matrices. The languages ad-
dress the construction of the graphics hardware, where each vertex
is sent through a pipeline where the position and material properties
of the vertex are extracted and transformed to be used in calculat-
ing the colour of the fragments. Therefore the shader languages
can affect the look of the graphics in two steps of the computations:
before the vertex is transformed into fragments, and before the frag-
ment is transformed into a pixel [Fernando and Kilgard 2003; Rost
2004].

Shader languages support run-time compilation. The application
using shader languages as a support system for graphics computa-
tions can store the code as strings and call a built-in compiler when
the program is needed. In most cases, just one program of each type
may be on the GPU, but the application can easily swap shader pro-
grams in run-time [Fernando and Kilgard 2003; Rost 2004].

2.2 Automatic Creation of Shaders

One of the many benefits of shader languages like GLSL and Cg is
that they make the borders between CPU and GPU based compu-
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tations clear. In order to uphold this clarity some traditional meth-
ods for reducing code redundancy, such as procedural abstraction,
must be omitted. Each shader program must be sent to the GPU
as one unit, and as soon as it has started there is no good way to
return to the CPU to call external functions. Because of these lim-
itations, shader programs have typically been written as one big
main-function where common concepts have been manually en-
tered wherever they have been needed, thus bringing redundancy
to any project of size.

Adding to the complexity of the problem, there is also the issue of
combinatorics. Recent research has shown that it is possible to find
faster computations for some cases of shading [Hast 2004]. This
brings a need for a system able to handle many implementations
of the same concept, and the ability to choose which implementa-
tion to use based on the properties of the rendering task at hand.
Adding this kind of flexibility to a project with all hand-written
shader programs would make it necessary to write duplicates of
each shader using these concepts. The work load could easily be-
come overwhelming when the number of alternative implementa-
tions increase.

There are ways to overcome the problem, however. By divid-
ing the code of shader programs into smaller parts and providing
some means by which these parts can be joined to form new pro-
grams, the work of creating shader effects can be made less redun-
dant. Concepts can easily be defined in one place, and reused in
many. While there are some implementations of this idea [Blei-
weiss and Preetham 2003; LightWorks 20/05/2004; McCool et al.
2004; RTzen inc. ], the solutions available do not fully encompass
the following goals:

• code redundancy reduction

• ability to choose from many different implementations of the
same concept

• ability to automatically include necessary, intermediate code

• clear borders between CPU and GPU

The solution presented in this article will show a way to overcome
some of the limitations of established shader languages, without
inventing a new language or restricting the artist to work with pre-
defined algorithms.

3 Shader Combiner

This section will present a system that, based on a few parame-
ters, automatically links parts of shader code together to form work-
ing shader programs. Manually created by the programmer, these
shader code parts should be made globally available in the system.
By specifying the criteria for a particular shader a working solution
should be constructed by the system. If there are many solutions to
the same query it should be possible to choose which one of the so-
lutions to use. The implementation which this article is based on is
made using GLSL, but the ideas expressed can easily be transferred
to any shading language with similar properties.

3.1 Dividing Code into Parts

A shader program can be seen as consisting of operations that need
to be performed in a certain order. Some operations set the value
of certain variables, while others use these variables as part of their
computations. Looking at shader programs this way, it becomes
obvious that a program can be divided into parts as long as we can

make sure that these parts appear in the right order whenever they
are rejoined to form a new program. To ensure this it is necessary to
provide each part with some properties that can be used for linking
it to other parts. Taking into account that each part actually does
something useful as well, we end up with three important properties
that define a part:

1. inputs, or preconditions, representing the concepts needed by
a part

2. computations, or operations, representing the actual work of
a part

3. outputs, or postconditions, representing the result of the com-
putations that might be useful for other parts

To add flexibility and ease of use, the implementation uses a larger
set of properties for its parts, but these three properties are all that
are conceptually needed. From this description it is possible to cre-
ate parts representing the concepts needed for shading.

3.2 Combination Complexity

Today’s programmable GPU’s afford operation control in two
stages of computations — in vertex computations and in fragment
computations. Thus a solution could mean that two separate pro-
grams should be used, one in each stage. Consequently it is useful
to consider a solution as being a pair of programs, where both parts
of the pair should be used to reach the desired result. The system
needs to make sure that two separate programs work without con-
flicting with each other, and it needs to do this even when none of
the two programs is fully constructed.

A part can provide any number of outputs and require any number
of inputs, a fact that could slow down the process of construction. In
a small project there might be just one part for each concept, making
the work of combining the parts easy. For larger projects, however,
there could be many different parts that all need to be considered
by the system. The many parts and their many connections can also
form circular dependencies, where partA needs input from partB,
while B needs input fromA, thus making an infinite loop.

3.3 Rejoining Code Parts

To reach a solution the user should state the conditions to be met by
the program pair. The system will then search through the available
parts and return a program pair fulfilling the conditions stated. In
order to achieve this we need an algorithmgetShader(C) that from
a set of conditionsC will return nought or one working program
pair. This section will present such an algorithm.

3.3.1 Solution parts

The operations in each part are specific for a certain state in the
programmable graphics pipeline. A fragment part can only fulfill
conditions for other fragment parts, while a vertex part can fulfill
conditions for other vertex parts as well as for fragment parts. In the
future other parts of the pipeline are likely to be accessible for pro-
gramming and parts of a future type will thus have their own rules
for how they affect other types in the system. However, to simplify
this explanation we just note that there is a difference between how
different types of operations affect each other, and assume that the
system can handle these rules in a way invisible to the user.
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The user can provide the system with solution parts as he/she finds
necessary, and these parts will be used by the system. Note that
the conditions are global, e.g. if a partP1 has a precondition called
normal and a partP2 has a precondition that is also callednormal
they will both benefit from a partP3 having a postcondition called
normal. Therefore the parts can be connected to each other, so that
one or more parts fulfill all preconditions of another part. A part
having no preconditions is complete and will need no more help
from the other parts in the system. Listing 1 shows a selection of
solution parts from the implementation.

Listing 1: Solution parts

#vertex 10 ”stdVertex” manual

gl Position = gl ModelViewProjectionMatrix ∗ gl Vertex;

out vec3 viewer=normalize(vec3(gl ModelViewMatrix ∗ gl Vertex));

out vec3 vNormal = normalize(gl NormalMatrix ∗ gl Normal);

#vertex 10 ”stdDiffuse” manual

out vec3 diffuseMat = gl FrontMaterial.diffuse.rgb;

#vertex 10 ”stdLight0” manual

out vec3 light0Pos = gl LightSource[0].position.xyz;

out vec3 diffuseLight = gl LightSource[0].diffuse.rgb;

#vertex 10

in vec3 viewer;

in vec3 light0Pos;

out vec3 vLight0 = normalize(light0Pos − viewer);

#vertex 10

in vec3 vLight0;

in vec3 vNormal;

out float vNdotL = dot(vLight0 , vNormal);

#vertex 10 ”stdLambert” manual

in float vNdotL;

in vec3 diffuseMat;

in vec3 diffuseLight;

out vec3 lambert = vec3(diffuseMat ∗ max(0.0, vNdotL) ∗
diffuseLight);

#fragment 100 ”fLambertOut”

in vec3 lambert;

gl FragColor = vec4(lambert, 1.0);

3.3.2 Representation of the problem

Knowing the structure of the solution parts, it is now possible to
represent the shader program requested by the user. If we take a
solution partP and let its preconditions consist of the conditionsC
specified by the user (the caller of the algorithmgetShader(C)), and
in all other aspects leave this part empty, we will have a solution
part demanding the functions specified by the user but not doing
anything in itself. If we perform a search through the system using
this part as a starting point, it will be connected with other parts
fulfilling the preconditions. When the part is complete we have a
solution.

In reality it is not all that simple. As mentioned earlier today’s
hardware have two programmable stages — the vertex stage and
the fragment stage — and since we do not know which type of
solution part will fulfill certain preconditions there is always a risk
that the system returns two separate programs. Moreover, these
programs must work together in an optimal way (for example, as
many operations as possible should be performed in the vertex stage
since this stage is used less frequently). Since the desired solution
may be a pair of vertex and fragment programs, the problem will
throughout this explanation be called aprogram pair. We also note

that, like the solution parts, a program pair having no preconditions
is complete.

3.3.3 Linking parts into a solution

Initially, a program pair is created whose preconditions correspond
to the user’s demands. The system can now search for solution
parts that fulfill these preconditions. If it is possible to connect this
program pair with solution parts fulfilling all initial preconditions
we have apossiblesolution, but new preconditions may arise from
the parts found and it is not until all preconditions are fulfilled that
we have a complete solution.

The parts that are found helpful are connected to the program pair
by letting the preconditions of each helpful partP become part of
the preconditions of the program pair. At the same time, the post-
conditions of each partP eliminate preconditions of the program
pair. By this operation we get a new set of preconditions affecting
how future search is done. If the set of preconditions is empty, we
consider the program pair complete.

3.3.4 Finding possible solutions

Finding suitable solution parts should be fast and easy. Each time
a solution part is found, new preconditions might be added, and
each time multiple parts fulfill the same precondition the search
path would branch. The best thing would be if we quickly could
find a set of solution parts fulfilling all preconditions that are cur-
rently unfulfilled. This could be done by mapping each available
postcondition in the system to the corresponding parts.

If the system only has one solution part for each entry in such a
map, a list of preconditions could easily be converted to a list of
matching solution parts. But the system could have mapped any
number of parts in each entry. We need to find the different com-
binations of solution parts fulfilling all current preconditions. The
internal order of the elements is of no importance. In this stage we
are only concerned with whether a part isuseful, not in which order
it will be used.

If we do not find a set of solution parts fulfilling all preconditions
of the program pair, we will not find a solution. If we find many
sets, the search will branch.

3.3.5 Putting operations together into working programs

The program pair is built as a collection of solution parts needed to
make it complete. As soon as it is, we need to transform this col-
lection into working shader code. Each part has an element repre-
senting its operations, and this is now used to build the final shader
programs. From the collection, all parts having no preconditions
are added. The added parts provide some postconditions and gives
us a new state. Now we can add all collected parts whose precondi-
tions are fulfilled by this new state. This process goes on until the
collection is emptied.

Note that this method will not be able to put together parts with
circular dependencies. This behavior is desired, since such depen-
dencies mean that the code is inoperable. If we in any step cannot
put in new code we have a case where the parts cannot be joined
into working code, and the current solution will fail. In this stage
it is also possible to perform other tests on the code (e.g. we might
want to try and compile the code, or test it against the state of the
calling application).
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If the search has branched, we will end up with many program pairs.
What remains is selecting one of these solutions. Here it is possible
for the user to decide the criteria to be used in the selection process.
If no criteria are provided, the system will pick whichever solution
it regards as the fastest, based on the sum of part costs.

3.3.6 The final algorithm

The algorithm initially sought for,getShader(C) , is now easy to
define (see Algorithm 1). It will search the system, generate as
many program pairs as possible and choose one of them to return.

Algorithm 1 getShader(C)
procedure GETSHADER(C)

Construct a program pairα0 whose preconditions areC
for eachαn in the systemdo

while αn has preconditionsdo
Find all sets of solution parts whose postconditions

fulfill all preconditions ofαn
for each set founddo

Add a new program pairαm to the system
Eliminate all preconditions ofαm
Add the parts in the set toαm
Add the preconditions of all parts in the set to

αm
end for

end while
end for
for eachαn in the systemdo

while αn has partsdo
Mark all added parts whose preconditions are ful-

filled by the postconditions ofαn
Add the postconditions of all marked parts toαn
Add the code of all marked parts toαn
Eliminate all marked parts fromαn

end while
end for
return the bestαn generated

end procedure

3.3.7 Public and explicit parts

In the description above, a global set of solution parts is assumed
for the search. Cases may arise where some solution parts are not
useful, even though they provide functionality demanded by the
user. For instance, all variables built into GLSL assume a stan-
dardized format, and each solution part providing functionality by
using these variables belong to a set of solution parts not suitable
for global accessibility since we cannot assume that all objects ren-
dered are standardized.

The solution to this problem is simple. In the previous we have
assumed that searching is done in a global set. Now this set is
divided into apublicset consisting of parts that can always be used,
and aprivateset consisting of solution parts that can only be used
when they are explicitly asked for. Searching will thus be done in
the public set and the set of parts explicitly asked for.

It is also possible that a user needs certain parts to be included in
a solution. This too is easily attended to. We simply connect these
parts to the initial program pair before starting the search. That
way the preconditions will be updated to represent a stage where
the demanded parts are included.

3.4 Implementation

3.4.1 Description

The implementation [Folkegard 03/06/2004] is GLSL specific,
which most of all is seen in how it handles types and modifiers
of global variables. In the algorithm, handling global variables has
been avoided, but in the implementation it is an important part. Val-
ues assigned throughconstor uniform do not require operations
in the shader program, and are therefore regarded as the fastest
method. Vertex shader values used in a fragment shader must be
passed by declaringvarying variables. The implementation takes
care of this handling.

The user writes the code for the parts in a simple syntax where
preconditions, global variables, operations and postconditions are
clearly indicated. The parts are then added to the system and stored
in structures supporting fast finding. Searching is done by specify-
ing three parameters(a,b,c). The parameters are lists of requested
functions (a), explicitly demanded parts (b), and parts that should
be made available in searching (c). The system can return strings
with the code found by the system, as well as lists of global vari-
ables. Output from the implementation can be found in listings 2
and 3.

Listing 2: Simple Lambert Vertex Shader Automatically Created
varying vec3 lambert ;

void main()

{
vec3 diffuseMat;

diffuseMat = gl FrontMaterial.diffuse.rgb ;

vec3 vNormal;

vec3 viewer;

gl Position = gl ModelViewProjectionMatrix ∗ gl Vertex;

viewer=normalize(vec3(gl ModelViewMatrix ∗ gl Vertex));

vNormal = normalize(gl NormalMatrix ∗ gl Normal) ;

vec3 diffuseLight;

vec3 light0Pos;

light0Pos = gl LightSource[0].position.xyz ;

diffuseLight = gl LightSource[0].diffuse.rgb ;

vec3 vLight0;

vLight0 = normalize(light0Pos − viewer) ;

float vNdotL;

vNdotL = dot(vLight0 , vNormal) ;

lambert = vec3(diffuseMat ∗ max(0.0 , vNdotL) ∗ diffuseLight) ;

}

Listing 3: Simple Lambert Fragment Shader Automatically Created
varying vec3 lambert ;

void main()

{
gl FragColor = vec4(lambert, 1.0);

}

3.4.2 Search performance

The implementation has been run with 1 to 5 different variants for
8 parts (totalling 8 to 85 solution parts). The tests have been made
on a computer with 2.00 GHz Intel P4-processor and 1 GB RAM,
and show that the system can get a solution within1

50 of a second if
all parts have two different variants. With three variants the search
will give a small but noticeable decrease in rendering speed (see
table 1). It should be noted that it is not very likely that many parts
have different variants. Nor is it likely that searching will be done
inside a critical render loop.

14



Parts Variants of each part Run time in seconds
8 1 0.156
8 2 2.109
8 3 11.907
8 4 43.719
8 5 128.719

Table 1: Search time for 100 searches with varying number of part
variants

3.4.3 Maya extension

The implementation has also been added as an extension to Alias
Systems Maya 6.0 [Folkegard 30/09/2004], allowing a user to work
directly with hardware shading in the Maya work environment. The
extension connects the Shader Combiner system to the Maya user
interface. Solution parts can be created, viewed and selected to
generate the desired effects on polygon objects. The result of each
generated shader is immediately visible in the work environment,
and the final code can be read and exported from within Maya. All
global variables of each shader can be connected to the rest of the
Maya system, including the expression and scripting engine and the
animation functions. The main use for this extension is as a tool for
graphics algorithm artists developing real-time effects for games
and research purposes, but it can also be used to enhance hardware
rendered effects for film and TV.

4 Discussion

The algorithm is sufficient for the purpose of finding working pro-
gram pairs for real time shaders. By focusing only on solution parts
useful at a given moment the algorithm works faster than it would
have done if it had gone through all existing parts. The algorithm
can improve by rejecting unsuitable solutions before all solutions
are found, but finding such an optimized search algorithm is out-
side the domain of this work.

The system is well suited to quickly create shaders. For easy control
of the result it has been useful to create a node representing the
preconditions and final operations of the result, and then to require
that part in all solutions. Since the system generates directed acyclic
graphs, the user is urged to design shaders in the same fashion. That
way the design is easier to grasp, and circular dependencies are
avoided.

4.1 Future development

For substantial usefulness in large scale development of real time
shaders, the system needs to be independent of language. The
search algorithm should be modified so it rejects unsuitable solu-
tions in earlier steps of the search, thereby avoiding the problem of
huge time costs when encountering many alternative search paths.
Shaders being too large to run in hardware could also be divided
by the system, much as the method suggested by Chan et. al [Chan
et al. 2002].

Currently all solution parts consist of static functions. If output
from one shader shall be used as input for another, the receiving
shader must state this. In order to be fully flexible the system should
be able to generate compound shader trees where the connection
between nodes and their internal order can be specified arbitrar-
ily. This can be made possible if the solution parts are allowed to
receive and give out arbitrary parameters, which would mean that

the system creates its own static functions from a description of a
general function. If this succeeds there is a possibility to use the
system to assemble other data, for example regular procedural code
in systems for visual programming.

5 Conclusion

Shader programming can be made less redundant by dividing pro-
grams into parts. Thereby hardware shading is made more modular
and more flexible. By using the shader combiner system presented
here, an application can use a richer set of real time shaders without
having to put a lot of time into developing these. Dividing shader
programs in smaller parts can make the different concepts of shad-
ing very clear. Work can thereby be focused on using the concepts
for one’s own artistic purposes and for quickly trying out new shad-
ing ideas. The implementation has a sufficient speed for efficient
use in real-time applications, making it useful for both shader devel-
opment purposes and as a subsystem in games and visualizations.
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The programmability of modern graphics processing units (GPUs)
provide great flexibility for creating a wide range of advanced ef-
fects for interactive graphics. Developing such effects requires writ-
ing not only shader code to be executed by the GPU but also sup-
porting code in the application where the effect is to be used. This
support code creates dependencies between effects and the applica-
tions that use them, making it harder to evolve applications and to
reuse effects. Existing effect frameworks, such as DirectX Effects
and CgFX, can only provide partial encapsulation because they con-
sider effects as passive data structures. In this paper we present an
effect framework written in an ordinary scripting language where
effects are active entities. This makes it possible to completely en-
capsulate both shaders and support code thereby minimizing the
dependencies to the application.

T UWV P-QJX�Y[Z\S*P1]^X V

The availability of programmable graphics processors has made
procedural effects a key ingredient in real-time graphics produc-
tions. Where content creation previously was mainly the combina-
tion of a wide range of different kinds of artwork such as geometric
models, textures, and motion data, it now also has to include algo-
rithmic development. Writing the shader code to be executed on
the graphics processors is something which traditionally is not part
of an artist’s skill set. Instead this new development model requires
a closer relationship between artists and shader programmers. Pre-
viously programmers of interactive graphics applications were pri-
marily concentrated with loading and displaying content created by
the artists in an efficient and correct manner, a task which is handled
fairly independent of the actual content. But with programmable
graphics processors the roles of artists and programmers become
more intertwined. When the artist conceives of a visual effect it is
the programmers job to supply shader programs and the necessary
modifications to the application for achieving that effect. But once
written, the shader program typically requires actual textures and
parameter values and it is the artists job to supply that.

For efficient collaboration it is important, to both artists and pro-
grammers, that the graphical effect is a well-defined entity. It
should include all relevant resources and functionality, both shader
code and application support, required for correct operation. This
need for encapsulation is the motivation behind technologies such
as the DirectX Effects by Microsoft and CgFX by NVIDIA. In these
frameworks the notion of an effect is used as the key unit of abstrac-
tion. But although these technologies provide a number of features
which improve the handling of effects they still require a substantial
amount of application support. All but the most trivial effects have
dependencies in the application that use them.

The effect framework presented in this paper aims to provide com-
plete encapsulation of effects in the sense that specific support code
avoided and parameter passing is made with the most unobtrusive
mechanism possible. We have implemented a prototype which uses

Python both for the implementation of the framework and to ex-
press the effects themselves. This paper is focused on the imple-
mentation of the framework and its application interface, whereas
the benefits of writing effects in Python is described in more detail
elsewhere [Lejdfors and Ohlsson 2004].

_B`a_ bdc1egf/h?c/ikj�l1m5n

The focus on complete effects is different from most other ap-
proaches. Most real-time shading language research has been fo-
cused on mapping high-level shading languages to real-time shad-
ing hardware. Research was initiated by Cook [Cook 1984] with
the introduction of shade trees, which spawned a number of shad-
ing languages such as RenderMan [Hanrahan and Lawson 1990]
or Perlins image synthesizer [Perlin 1985]. These languages were
originally used for off-line shading but with advances in hardware
Peercy et al showed that it was possible to execute RenderMan
shaders on an extended OpenGL 1.2 platform by viewing the graph-
ics hardware as a SIMD pixel processor [Peercy et al. 2000]. Olano
et al presented an alternative approach with the pfman language
[Olano and Lastra 1998] for the Pixelflow rendering system [Mol-
nar et al. 1992], a flexible platform based on image composition
which, unfortunately, bears little resemblance to the GPUs of to-
day.

The computational model of separating per-vertex and per-pixel
computations was introduced by Proudfoot et al [Proudfoot et al.
2001] which allowed the to efficiently map shader programs to
hardware. This separation is used explicitly the in real-time shading
languages used in the industry today: Cg by NVIDIA [Mark et al.
2003], HLSL by Microsoft [Gray 2003] and OpenGL shading lan-
guage [3D 2002] introduced with OpenGL 2.0. This is also the case
with the Sh language [McCool et al. 2002][McCool et al. 2004]; a
shading language embedded in C++ which provides a number of
powerful high-level features for shader construction. Another em-
bedded shading language is Vertigo [Elliott 2004] which uses the
purely functional language Haskell as a host language to provide a
clean model for writing shaders for generative geometry.

All these efforts have focused on various aspects of shader program-
ming but the writing of effects containing multiple shaders have not
received the same amount of attention. The Quake3 shader model
[Jaquays and Hook 1999] provides a rudimentary interface for con-
trolling the application of multiple textures. DirectX Effects [Dir
] extend the HLSL shading language and introduce a richer, more
powerful interface for controlling the rendering pipeline. NVIDIA
provide a superset of this functionality with their CgFX framework
[CgF ], based on Cg. This is further elaborated on in Section 1.3.

_B`po q>r-f1iBc1m[s/mtl1u*mtfBvwvyx^z/u

To demonstrate the issues involved in the implementation of shader
based effects and how an active framework like PyFX can allevi-
ate these problems we will use a running example throughout this
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Figure 1: Hemispheric lighting on bunny

paper. The description of this example will be fairly detailed be-
cause the causes of application dependencies and need for support
can often be found in those details which would usually be omitted
in a more concise description. The example we use is the lighting
model known as hemispheric lighting, where the idea is to give a
contribution of indirect light as a mixture of light from the sky and
light from the ground. A given point is colored depending on ori-
entation of its surface normal, the more it is oriented towards the
sky the more light from the above light source it receives, and vice
versa. The effect of using this model can be seen on the bunny in
Figure 1. A shader program which implements this model can be
written in Cg as
{J|~}t�����?}����p�~�?|E�E�~�%��|~�~}W�J}5|W���>�J�E�?�t�J�5�W���

�~�?|E�E�~�%��|W�t���5� �>���W�5�?�E�!�
|W�~���~�?|E�E�~���5�?}��?�?|?�5}W��}E|t�w�d�?�E�J�W���E�W�;�
|W�~���~�?|E�E�? ��~|E�?|W� ��¡~�W���W�!�

�5��}W�J|W�W�¢�~�?|E�E�~�5£~�[�J|E�~¤~�t¥�}E¤t¦?�E�J|5§¨�
�5��}W�J|W�W�¢�~�?|E�E�~�5£~�[�J|E�~¤~�t¥�}E¤t¦��W�A�
�5��}W�J|W�W�¢�~�?|E�E�~�5£~�[©J|t�?�5�E¥�}E¤t¦��
�5��}W�J|W�W�¢�~�?|E�E�? ª�?�5�~¤E��}t�~�5¡?|E�~|t�A�
�5��}W�J|W�W�¢�~�?|E�E�?  �W«J¬~¡?|E�~|t���
�5��}W�J|W�W�¢�~�?|E�E�? ®­E��|W�~�~�~¡?|E�?|W��¯°
�E�J}��?�?|~�~}W��}E|W��±����?�²�p�J|E�~¤5�E¥�}E¤t¦~�5�J|5§��O�J|?�5}t�J}E|t��¯¨³
�~�?|E�5�5�5£~�[��|t�~¤~�t©�|W�?�5�J�t�%±��J�?�²�p©J|t�?�5�E¥�}E¤t¦A�´��|t�?¤5�t¥�}t¤E¦��W�J¯¨³
�~�?|E�5�~ �¦�|W�J�E�E��|W�t���5��±��J�?�²�µ�J|E�~¤5�E©J|t�?�E���W�²�´��|W�t���5��¯¨¶g£~¬5·�³
¦J|t�?�5�E�J|t�W���5��±[�J|t�W���5�?}t·~¤¸�µ¦�|W�J�E�E��|W�t���5�?¯¨³
�~|E�~|t��±��5¤E�5���p­E�J|t�5�?�~¡~|5�~|t�A���t«?¬~¡?|E�?|W���

�p¦J|t�?�5�E�J|t�W���5�²¶µ¬�¹»º5¯t¼E½�¯t¾¿�?�E�?¤t��}t�5�~¡~|5�~|W�A³À
Listing 1: Hemispheric lighting in Cg

This shader program is a vertex shader. It computes the vertex
normal in world-space ¦¸|~���J�J�¸|~�~�²��� by using the inverse trans-
pose of the model-world transform �¸|?��¤��?©¸|~���J�¸�~� . The amount
of incident light of the vertex is then computed by linear interpo-
lation lerp of the sky and ground color where the weighting fac-
tor is determined the y-component world-space normal. The in-
cident light is weighted by the material properties of the object.
Finally, as required by all vertex programs the clip-space coor-
dinates �J��}5����|���}~�¸}J|~� are computed using the projection matrix�¸|?��¤��?¥¨}?¤?¦��J�¸|J§ .

The parameters to the program which are marked as ���¨}~��|~�~� are
those which are constant for the duration of the shader program,

whereas the other parameters vary over the vertices of the mesh.
The extra field ( ���J���~�¸�J�~� , �¸�~�����J� , and ¡��~�¸�~� in this example),
known as the semantic of the parameter specify how they are
mapped to application data. For example, an }5� parameter with
semantic �¸�~�����J� is specified using OpenGL’s Á �?�¸|~�~�²���¨¾ calls from
the application.

Shaders require application programmers to write support code for
every shader to be used. In order to access shader program pa-
rameters an application level identifier is needed. Accessing the
parameter identifiers of our example shader from C++ would be as
follows.
� ÁJÂ ��{E�Ã±�� Á ­~¤5�E�J����¤5�5�?�t�?����¤5�~¤t���a� Á?Â �~�J| Á ��Ä^��|t�~¤~�t¥�}t¤t¦?�E��|E§JÄE¯¸³� ÁJÂ ��{J}W��±�� Á ­?¤E�E�J����¤E�5�?�t�J����¤5�~¤E���Å� Á?Â �5��| Á �WÄÆ�J|t�?¤5�E¥�}t¤E¦��t��ÄE¯�³� ÁJÂ ¦?{�±�� Á ­~¤E�5�?����¤E�~�~�E�?����¤E�?¤t�¸�Æ� ÁJÂ �5��| Á �WÄÆ©J|t�?�5�E¥�}E¤t¦�Ä5¯�³� ÁJÂ ���E�~¤E��}E�5�5¡?|E�?|W�%±�� Á ­?¤E�5�?����¤E�~�~�t�J����¤E�~¤E�¸�a� ÁJÂ �5��| Á �ÄÆ�?�5�~¤E��}t�~�5¡?|E�~|t��ÄE¯�³
� ÁJÂtÁ �J|W�~�~�?¡~|E�?|W��±�� Á ­~¤E�5�?����¤E�~�~�E�?����¤E�?¤t�¸�a� ÁJÂ �~�J| Á �Äa­5�J|W�~�~�?¡~|E�?|W��Ä5¯�³
� ÁJÂ ��«?¬~¡?|E�?|W��±�� Á ­~¤E�5�?����¤E�~�~�E�?����¤E�?¤t�¸�a� ÁJÂ �~�J| Á �WÄÅ�W«J¬~¡?|E�~|t��ÄE¯¸³

Listing 2: Finding parameter identifiers

Each time the shader is used it must be bound after which each
parameter has to be set to its current value using the corresponding
Cg parameter identifier. The target for which the shader program
has been compiled, called the profile of the program, must also be
enabled.
� Á ­E�~Ç�}��?�5�5�J| Á �?�����Æ� Á?Â �5��| Á ¯¨³
� Á ­E�J�5¤E�?�E�?�E�~¤E�?�5�E��}t£5�?�t�?����¤5�~¤t���Æ� ÁJÂ ��{5�;�¡5­ Â ­E� Â �J�tÈ~ÉE�~¥��tÉE© Â �~�~�E���tÊ��µ¡5­ Â ­E� Â �~�~�E���tÊ Â ��È~É5�~���W�EË?¯¨³� Á ­E�J�5¤E�?�E�?�E�~¤E�?�5�E��}t£5�?�t�?����¤5�~¤t���Æ� ÁJÂ ��{�}W�;�¡5­ Â ­E� Â �J�tÈ~ÉE�~¥��tÉE© Â �~�~�E���tÊ��¡5­ Â ­E� Â �~�~�E���tÊ Â ���5¥?ÉE�J�EÉ Â �E�?�E�?�5�?�5�EÉW¯¨³� Á ­E�J�5¤E�5�?�5�E��}t£5�?�t�?����¤5�~¤t�?�E���a� ÁJÂ ¦~{;��5����¤t�?��Ì�Í5}W�~{~¤E���E¤E�E�J�t���W�?|t�W�²��¯~¯�³
� Á ­E�J�5¤E�~�~�E�?����¤E�?¤t�? 5�5{��Æ� ÁJÂ ���E�~¤E��}E�5�5¡?|E�?|W�²�>�J�E�~¤E��}E�5�5¡?|E�?|W��¯¨³� Á ­E�J�5¤E�~�~�E�?����¤E�?¤t�? 5�5{��Æ� ÁJÂtÁ �J|W�~�~�?¡~|E�?|W�²��­E�J|t�5�?�~¡~|5�~|t��¯¸³� Á ­E�J�5¤E�~�~�E�?����¤E�?¤t�? 5�5{��Æ� ÁJÂ ��«?¬~¡?|E�?|W�A�\�W«?¬?¡~|5�~|W��¯¨³
� Á ­E�?ÉE�?�EÎ?�~¤E�E��|t��}t�5¤��Æ� Á?Â �~�J|E�J}t�~¤J¯¨³

Listing 3: Binding shader program and setting parameters

Changing the parameters of the effect at run-time amounts to chang-
ing the local variables used here, for example ���J��¤?�¨}?����¡�|J��|~� ,�~«�¬�¡�|J��|~� , and ­J�¸|~������¡�|J��|~� .

This code can be compiled and delivered together with the shader
code as a complete package which can be used by the artist. How-
ever, there are limitations with this approach. All but the most triv-
ial shaders require support code for setting parameters and renderer
pipeline states. This support code is specific to each application due
to differences in how textures are loaded and accessed, renderer
pipeline state are set, etc. This gives unwanted dependencies be-
tween shaders and applications. Encapsulating these dependencies
is a difficult problem since different applications have very differ-
ent notions of what is important, for instance an artist’s tool must
be able to provide GUI components for manipulating the shader
whereas an engine is primarily concerned with efficiency.

This encapsulation is made even more difficult when using shaders
written by an external party. Externally written shaders use dif-
ferent interfaces but must still be accessible in the same manner
as in-house developed ones in order to provide a unified working
model for both artists and developers. The amount of work needed
to adapt such shaders can often be too large.
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The problems associated with using shaders as shown above are
caused by a lack of encapsulation. Information associated with the
shader and necessary for the shader to work is mixed with applica-
tion code and not packaged together with the shader itself. This has
called for a new level of abstraction and a new kind of entity to do
the encapsulation. These entities are known as effects.

Today there are two major effect frameworks in use, the DirectX
Effects by Microsoft [Dir ] and CgFX by NVIDIA [CgF ]. Both
provide a text-based format where shader code, parameters and pass
specifications are written in one file. This file is loaded by the ap-
plication and compiled for the current run-time platform. The two
formats are very similar and can in many instances be used inter-
changeably. Using CgFX the hemispheric lighting example can be
implemented as:
�?�~|5�E�~ [�?�5�~¤t��}t�~�5¡~|5�~|t�%± ° º¸¶pÔ¸��º¨¶pÔ¸��º¸¶^Ô À ³
�?�~|5�E�~ ��W«J¬~¡~|5�~|t��± ° Ô�¶^Õ��4Ô;¶pÕ¸��º¸¶^Ô À ³
�?�~|5�E�~ %­E��|W�5�?�~¡?|E�~|t��± ° Ô�¶^Ô��4Ô;¶ÅºJ�4Ô�¶^Ô À ³
�?�~|5�E�5�~£5����|t�?¤5�t¥�}t¤E¦~�E��|E§��Ö�J�tÈ~É5�5¥��tÉE©?�E�J�5×²³
�?�~|5�E�5�~£5����|t�?¤5�t¥�}t¤E¦��W� �Ö�J�tÈ~É5�5¥��tÉE©��W�A³
�?�~|5�E�5�~£5�%©J|W�J�E�5¥�}t¤E¦ �>©��W�5�~È5¥��WÉE©;³
Ø~Ù¸Ú�Û�Ü?ÝwÞJß�Û�ÜyÚ�ØáàEâäã5à?Ø²å~àEâJækç
�?¤~�tè5��}téE�J¤�ê?¤��¸}5�W�5èJ¤t��}5� °
�J�?�5����Ô °
¥?¤E�~�~¤5£~�Eè?�E�?¤t��±��5|��J��}t�5¤%{J� Â º Â º\���?}W�A�µ�J|E�~¤~�t¥�}E¤t¦?�E�J|5§¨��J|E�~¤~�t¥�}E¤t¦��W�A�

©J|t�?�5�E¥�}E¤t¦��
�W«J¬~¡?|E�~|t���
­E��|W�~�~�~¡?|E�?|W��¯¨³À

À
Listing 4: Hemispheric lighting in CgFX

This effect declares three parameters which are intended to be set at
design time, ���J��¤?�¨}?����¡�|J��|~� , �~«�¬�¡�|J��|~� , and ­J�¸|~������¡�|J��|~� , and three
parameters that are intended to be set at run-time by the application:�¸|?��¤��?¥¨}?¤?¦��J�¸|J§ , �¸|?��¤��?¥¨}?¤?¦¨�~� , and ©¸|~���J�J¥¨}?¤?¦ . The design-time pa-
rameters, also known as tweakables, may have associated annota-
tions which can be used by design tools to automatically provide
a suitable user interface for setting the parameter. For example a
color picker control may be used to set the value of a color param-
eter. Run-time parameters on the other may have semantic iden-
tifiers associated with them, and similar to shader semantics, their
purpose is to specify the mapping to application data without rely-
ing on parameter name. Instead an application can define a number
of semantic identifiers which may be used in the effect.

Following the declaration of the effect parameters is the shader
code. It is identical to Listing 1 and is therefore omitted here. Fi-
nally the effect declares a so called technique which describes num-
ber of rendering passes needed and the render states to be used in
each pass. In this case there is a single rendering pass and in that
pass the vertex shader �²��}5� is to be compiled for the shader profile{¸� Â º Â º and the uniform shader parameters should have the values
of the corresponding effect parameters.

Once loaded an effect can be used in the application like this
�5���5} Á �?¤5�Ã}W�~�%�5�W���~�J�5�t¤J�¸³¤5�5�~¤?�t��ÌWÍWÇ?¤ Á }W�²�aëW�~�W���~�?�~�t¤J���\Ô�¯�³�J|W�á�µ�5���5} Á �?¤5��}��?����±ÃÔA³O�¢ì��~�W���?�?�~�t¤?�¨³O�~¹5¹�¯°
¤E�~�~¤~�E��Ì�Ít�~�?�~���Æ��¯¸³

�?¤t�?�~¤E�5�?¤J��è²�´��¤?�Wè�¯¨³À
¤E�~�~¤?�t��ÌWÍWÉE�?�²��¯¸³

Listing 5: Effect usage with CgFX

The textures used by an effect are generally declared as tweakables
where an annotation is used to specify the filename.

�~¤5£5�5�5�?¤��5|5�~|W�?�~¤5£5�E�~�?¤��ÖÈ�}t�5�5���t¤E�?�E�Ãì
�W�5��}W� Á�í }t�~¤%±�ÄÆ�?¤E�~�E�?�5� Â �~|E�?|W�;¶g�~�J�JÄ¸³Í�³

Using a texture in a shader program is done indirectly through
something called a sampler which specifies how the texture is ac-
cessed. Declaring a simple 2-dimensional sampler using linear
minification and magnification filters for the above texture we write

�t���J�J�5¤t�J½tÈ��~|E�?|W�?�~�����?�5¤E��±Ã�t���J�?�~¤t� Â �W�?�E�?¤ °�~¤5£5�E�~�?¤�±¢ìt�5|E�?|W�?�~¤E£~�E�~�?¤tÍA³
��}�� í }E�E�~¤E��±���}W�?¤~�t��³�?� Á5í }E�E�~¤E��±���}W�?¤~�t��³À ³

This sampler is then passed to a shader program just as any other
parameter.

Effects provide a number of mechanisms for separating applica-
tions from shaders. First, the effect format give a clear, high-level,
and concise specification of shader programs, textures, and render
states. This includes a unified method for handling multipass ef-
fects as well as having multiple implementations (fixed-function
fall backs etc.) of the same visual effect. This specification is inde-
pendent of the target architecture on which the effect is to run.

Second, tweakables provide the artist with a method for setting pa-
rameters at design time. This reduces support code since the en-
gine only needs to concern itself with providing run-time parame-
ters such as projection matrices etc.

Third, user-defined semantics provides a method for the engine to
provide such run-time parameters. The application defines a num-
ber of semantic identifiers which it support and this creates an rudi-
mentary interface to effects which, together with default values for
parameters, relieves the effect developers of writing per-effect sup-
port code (cf. listings 2 and 3).

However, as in the case with using shaders directly, there still exist
a problem of encapsulation. The application defines an interface for
the effects by using user-defined semantics. This interface is fixed,
and this limits the number of shaders that may be expressed and
used within a single application.

î ïÃð4ñóò

The limitations in encapsulation of existing effect frameworks is
due to the fact that effects are passive entities, text files, which are
operated on by the application, which is the active party. If this
relationship could be reversed so that effects are active instead, a
better interface can be built where they can be responsible for re-
trieving the data they need from applications rather than the other
way around. To achieve this reversed flow of control the effects
must be embedded in a context which can do actual execution on
their behalf.
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We have used Python, an existing scripting language to develop an
active effect framework called PyFX. The current implementation
supports applications using OpenGL and shaders written in Cg and
its feature set closely resembles that of CgFX. In PyFX however,
Python is used both to implement the framework and to write the
effects themselves.

In an object-oriented language, it is natural to represent different
effects as subclasses to a common effect base class. The subclasses
implement specific functionality whereas functionality common to
all effects are inherited from the base class. The object-oriented
model also provides a natural mapping to the collaborative work-
flow between programmers and artists. Effect programmers write
new effects by making new effect subclasses, whereas the artist pro-
vides textures, sets parameters, etc. to make effect instances from
existing classes.

Below is the hemispheric lighting example written in PyFX. It
shows the Python class ê�¤E��}��5��è�¤?�¨}J� as a subclass of the generalÉ�����¤��?� class.
�5�5�J�5�óêJ¤��¨}5���~è?¤E��}E�¸�pÉ5�5�?¤~�E��¯²�

{��[±�¡ Á �WÄ~Ä5ÄØ~Ù¸Ú�Û�Ü?ÝwÞJß�Û�Ü�Ú�ØáàEâMã5à?Ø²å~àEâJæMç
Ä~Ä5Ä5¯
�t«?¬?¡~|E�?|W� ±á�aÔ�¶^Õ¸�4Ô�¶pÕ¸�[º¨¶pÔ�¯
­5�J|t�5�~�?¡~|5�~|W��±��aÔ�¶^Ô¸�DÔ�¶^ ��4Ô;¶pÔ�¯
�~¤E� Â5Â }���}t� Â~Â �¿�5¤~�~�¸��?�5�~¤E��}t�~�5¡?|E�~|t�%±���º¨¶pÔ¸��º¸¶^Ô���º¨¶pÔ�¯5¯¸�

É5�~�~¤~�E�;¶ Â~Â }���}W� Â5Â �a�E¤5�5��¯
�t¤~�E�;¶´�?�E�?¤t��}t�5�~¡~|5�~|W��±[�J�E�~¤E��}E�5�5¡?|E�?|W�
�t¤~�E�;¶µ�~¤~�tè5��}WéE�J¤[±kù �?�?�5�¸�µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�{�����¯~¯�ú

Listing 6: Hemispheric lighting in PyFX

The declaration has two main parts: the class variables and the con-
structor (the Â�Â }5�¨}~� Â�Â member). The first class variable {¸� contains
the shader program as a string wrapped by an instance of a Python
class called ¡ Á . and the other two class variables �~«�¬�¡�|J��|~� and­J�¸|~������¡�|J��|~� are simply effect parameters. The class constructor,
which creates new instances of the class, takes one additional effect
parameter ���J��¤?�¨}?����¡�|J��|~� as an argument. The ability to differenti-
ate between class variables and instance variables allows the effect
writer to indicate that some parameters are intended to be the same
for all instances of the class whereas other parameters may be dif-
ferent. The constructor body calls the superclass constructor and
sets the instance variable ���J��¤?�¨}?����¡�|J��|~� of the object. Finally, the
instance variable ��¤��~è��¨}~éJ��¤ is set to specify that this is a single pass
effect and that the pass should use the shader {¸� as its vertex shader.

Having instantiated this effect, for example like this
¤E�~�~¤?�t��±[êJ¤��¸}~���~è?¤t��}E���µ�J�E�?¤t��}E�5�~¡~|E�?|W�%±á�ÅÔ�¶^Ô��ÆÔ�¶^Ô���º¸¶^Ô�¯5¯

it can be applied to a mesh by
¦~è�}t�~¤%¤5�5�~¤?�t�!¶ è?�?�W�J|t�?¤E�?�?�~�t¤?���´��¤?�Wè�¯²�

�J¤t�?�~¤t�~�?¤J��è²�g��¤?�Wè�¯

The É�����¤��?� member function è����5�¸|~��¤J�������?¤�� does setup for each
pass of the effect and also specifies how many times the mesh needs
to be rendered.

Having applied effects to meshes the next issue is the passing of in-
formation from the application to the effect and its shader. In PyFX
this data can be passed through a number of different channels.

The most obvious way is through constructor parameters when the
Hemispheric effect is instantiated. The example above shows how���J��¤?�¨}?����¡�|J��|~� is set to the color blue.

In the hemispherical lighting example the constructor parameters
correspond exactly to an instance variable of the effect. Another
method of passing data to the shader is to assign new values to this
variable. For example
¤E�~�~¤?�t�;¶ �J�E�?¤t��}E�5�~¡~|E�?|W�%±á�ÅÔ�¶^Õ��4Ô;¶pÕ¸�[º¨¶pÔ�¯

changes material color so that it is now light blue. Similarly class
variables can also be assigned new values
ê?¤��¸}~���5èJ¤t��}E�²¶g­5�J|W�~�~�?¡~|E�?|W��±á�aÔ¸�DÔ¸�4Ô�¯

The framework then make sure that these changes are made avail-
able to the shader code.

Another type of parameters are the transformation matrices used by
the effect; �¸|?��¤��?¥¨}?¤?¦��J�¸|J§ , �¸|?��¤��?¥¨}?¤?¦¨�~� and ¥¨}?¤?¦�©¸|~���J� . The ma-
trices �¸|?��¤��?¥¨}?¤?¦��J�¸|J§ and �¸|?��¤��?¥¨}?¤?¦¨�~� can be retrieved from the
OpenGL rendering pipeline and in PyFX this is handled automati-
cally.

The third parameter ¥¨}?¤?¦�©¸|~���J� needs special treatment. It is
the inverse camera transform, used by the effect to compute the�¸|?��¤��?©¸|~���J� transform, neither of which can be automatically re-
trieved from the pipeline. It must therefore be provided by the ap-
plication. Since this parameter is the same for different instances it
makes sense to make it a class variable. However, it is even more
general than that since you could easily think of other effects that
might need it. In this case we can therefore set it as a class variable
on the É�����¤��?� base class, for example:
É5�~�~¤?�t�;¶ ¥�}t¤E¦5©J|t�?�5��±��E����¤t�J��¶p}��?{~¤E���t¤5�E�J�t���t�?|t�W�A�W¯

Yet another method for passing data from the application is when
the effect needs additional data at each vertex, i.e. non-standard
varying parameters. In our hemispherical lighting example this is
not the case, but a more advanced version of hemispheric lighting
can used to illustrate this case [Hem ]. This version use additional
per-vertex mesh data, called the occlusion factor, which determine
the amount of hemispheric light which reach the point in question.
If the shader program has the following prototype
{?|?}W�����J}��²��¶5¶5¶W�\�?�~|E�5���~�5�5�t���~}E|t� í �?�t�J|W���O¡~�W���W��¯

Then, if the mesh has an array member �����J�?�¨��}J|~� í ���?��|~� , PyFX
will automatically bind this to the varying parameter with the same
name.

o*`po ôdõGö ÷ûiBc!hJf1xµegÓ
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The structure of PyFX effects is inspired by that of DirectX Effects
and CgFX frameworks. As in these each effect contain one or more
techniques. Each technique contain a number of passes which are
to be run consecutively. Each render pass has associated render
states specifying the necessary pipeline states required to run the
pass. Specifying that back-face culling should be disabled while
alpha-blending is enabled is written in CgFX as
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�J�?�5����Ô °
¡t�J�5�t��|t�?¤%±����E�JÉ��
�~�E�5è?�EÇ?�~¤t�~�~ÉE�J�tÎ?�~¤�±%�5�5�J¤À

In PyFX the same render pass specification would look like
�?¤E�~�?¤t�A�a¡t�?�~�t��|t�~¤�±���|E�J¤��

�?�t�~è?�tÇJ�5¤E�~�5É5�?�EÎ?�5¤%±%�5�5�?¤�¯

A single technique effect for CgFX is shown in listing 4. The cor-
responding effect in PyFX is given in listing 6. Providing two tech-
niques ê�¤E��}��5��è�¤?�¨}J� and �5�¸Î¨}?¤?��� in CgFX is done by providing
multiple technique blocks
�~¤?�Wè~��}Wé5�?¤[ê?¤��¨}5�W�5è?¤E��}5� °
�?�J�5���JÔ °
¥J¤t�?�~¤E£?�tèJ�E�~¤E��±Ã�5|��J��}E�5¤%{J� Â º Â º����J}��²�W¯�³À

À

�~¤?�Wè~��}Wé5�?¤%���JÎ�}t¤E�~� °
�?�J�5���JÔ °
¡~|E�?|W�Ã±ÃìW���JÎ�}t¤E�~�~¡?|E�?|W�~Í�³À

À

The same would be written in PyFX as
�~¤?�Wè~��}Wé5�?¤�± °5À
�~¤?�Wè~��}Wé5�?¤�ù��µê?¤��¸}~���5èJ¤t��}E���púÃ± ù

�J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�{�����¯~¯�ú
�~¤?�Wè~��}Wé5�?¤�ù��p����Î�}E¤t�~�	�^úÃ± ù

�J¤t�?�~¤t���^����Î�}E¤t�~��±%�W�JÎ�}t¤t�?�~¡?|E�~|t��¯�ú

ü!ý ü!ý ü ÿ �������������

Texturing in PyFX is, as in CgFX, divided into textures and sam-
plers. Declaring the same texture and sampler as above (Section
1.3) in PyFX would be written as
�5|5�~|t�~�~¤5£5�5�5�?¤%±��?¤E£~�E�5�J¤¸�^��}t�5¤E�?����¤W±¨Äa�~¤E�?�t�J�E� Â �5|5�~|W��¶µ�5�J��Ä5¯�5|5�~|t�?�5���J�J�5¤t��±��~�����?�5¤E�²�a�~|E�~|t�~�?¤E£5�5�5�J¤¨�

��}�� í }t�5�~¤t��±%��}��J¤5�t�;��J� ÁEí }t�5�~¤t��±%��}��J¤5�t��¯

This sampler can then be used either by a shader program, using
parameter resolution, or in the fixed-function pipeline by
�?¤E�~�?¤t�A�Æ�~¤E£~�E�~�?¤5Ô�±��~|E�?|W�?�~�����?�5¤E��¯

Multi-texturing is naturally supported and when using multiple tex-
tures in a shader program this is automatically handled by the
shader parameter resolution code. For fixed-function effects the
different texturing-units are accessible via
�?¤E�~�?¤t�A�Æ�~¤E£~�E�~�?¤5Ô�±��~|E�?|W�?�~�����?�5¤E�A�

�~¤E£~�E�~�?¤�º�±��J} Á è~�E�J�t�J�5�����?�~¤t�J¯

where ��|J��|~�����E�¸����¤?� and ��} Á è��J���?�����E�¸����¤?� are two samplers with
appropriate settings.

ü!ý ü!ý ��� �
�	�	�����

Shaders are provided via strings wrapped with classes providing in-
formation on the type of shader code contained in the string. Some-
times it is useful to specify the target for which a given shader
should be compiled. This can be achieved via

�?¤E�~�?¤t�A�µ¥J¤t�?�~¤E£?�tèJ�E�~¤E��±�{����^�~�E� Á ¤5�5±E�E�5Î~{5��ºE¯?¯

Also, passing explicit parameters to shader programs can be done
by adding keyword arguments to the shader invocation. Suppose
we have an outlining effect which draws a gradually more transpar-
ent outline around an object. This effect should run multiple passes
with the same shader program (called |~������}5��¤ ) but with a parame-
ter |?���¸�?¤J� determining the size and opacity of the outline
ù �J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�|W�?�~�J}��?¤²�Æ|t�~�J�t¤5�E±�º¨¶pÔ�¯5¯��
�J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�|W�?�~�J}��?¤²�Æ|t�~�J�t¤5�E±~Ô;¶��~Õ�¯5¯J�
�J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�|W�?�~�J}��?¤²�Æ|t�~�J�t¤5�E±~Ô;¶pÕ�¯5¯��
�J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t��±�|W�?�~�J}��?¤²�Æ|t�~�J�t¤5�E±~Ô;¶p½~Õ�¯5¯�ú

Listing 7: Setting compile-time parameters

The same thing can be expressed in CgFX but the result is more
verbose since every shader parameter must be passed explicitly.

If a shader program source code �5è��J��¤?� contains multiple pro-
grams, say a vertex shader �5è��J��¤?¥�¤?����¤J£ and a pixel shader�5è��J��¤J�¸}~£�¤�� , these programs entries can be accessed by the corre-
sponding methods on the shader object
�?¤E�~�?¤t�A�µ¥J¤t�?�~¤E£?�tèJ�E�~¤E��±¢��èJ�E�~¤E�;¶^�Wè?�E�?¤t¥J¤t�~�?¤E£¸�t¯��

��}W£?¤5�5�Eè?�5�~¤t��±��Wè?�5�~¤t�/¶p��èJ�E�~¤5�J}t£~¤5���W¯5¯

ü!ý ü!ý �! ������"#�������$������%�& ���'� %��(�)�  +*�,�-

Application level variables having the same name as the shader
program parameters are used as arguments to the shader program.
These arguments are defined in one of the following places:

• Either it is a compile-time parameter to the shader program
(see listing 7), or

• an attribute of the effect object, or

• an attribute on the mesh currently being rendered, or, lastly,

• a member of a predefined set of state parameters giving access
to current pipeline states.

Attributes of the effect instance include both instance parameters,
such as the material color parameters above (Section 2.1), and class
parameters, �~«�¬�¡�|J��|~� and ­J�¸|~������¡�|J��|~� above. As usual the class
scope includes the scope of its superclass making the ©¸|~���J�J¥¨}?¤?¦
transform accessible to the shader programs. In the above examples
the �����J�?�¨��}J|~� í ���?��|~� is a mesh attribute and them �¸|?��¤��?¥¨}?¤?¦��J�¸|J§
and �¸|?��¤��?¥¨}?¤?¦¨�~� matrices are both pipeline state parameters.

If there are multiple variables with the same name the order of
precedence is that compile-time parameters take precedence over
instance attributes, which take precedence over class variables. Ef-
fect class variables take precedence over mesh attributes and state
parameters are used last.

This gives a natural correspondence between parameters to the
shader program and application data. Setting effect class-specific
values amounts to setting effect class-variables whereas effect
instance-specific values are set by setting the appropriate attribute
on the effect instance in question. Effects take a more active role
since they are allowed to extract information from the mesh cur-
rently being rendered thus minimizing the amount of application
level dependencies.

The mapping is recursive so the following Cg shader program
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�W�5�5���t����} Á è~� °�~�?|E�E�? ���|~�5}t�J}5|W��³
�~�?|E�E�~���~|E�~|t�;³À ³

{J|~}W�����J}��A��¶5¶~¶W�O�~��}t�?|W�t����} Á è?���J} Á è?��¯ ° ¶5¶5¶ À

will use �¸|���}~�¸}J|~� and ��|J��|~� member of the application level vari-
able ��} Á è�� .

ü!ý ü!ý .!/ �	"#�0"#�	1
�

The lookup scheme above gives great flexibility in both writing
and using effects. However when dealing, for instance, with third-
party effects a name-based lookup is not always sufficient since
naming conventions may differ. Suppose we wish to use an ef-
fect which uses the name È¨}~���J�¨�?¤?���?� where our application useÈ¨}~���J�¨�?¤J��¤J£ . An obviously unattractive solution would be to addÈ¨}~���J�¨�?¤?���?� to our code and make sure to update it each time we
change È¨}~���J�¨�?¤J��¤J£ .

PyFX solves this problem by having user defined name maps. TheÉ�����¤��?� class allows us to pass a dictionary of how parameter names
at the shader level should be mapped to parameter names at the
application level. Defining a dictionary containing our mappings
and passing it to the effect nicely handles this.
��¬5�?����¤t�J�t��± ° �gÈ�}t�5�5���t¤E�?�E���¢�#�gÈ�}W�5�5���E¤E�~¤5£	� À

¤E�~�~¤?�t��±��?|¿��¤5�~¤5£5�E�~�?¤¸�µ�J����¤t�?�E��±���¬5�?����¤t�J�t��¯

A request for the È¨}~���J�¨�?¤?���?� will now be automatically translated
to a requests for È¨}~���J�¨�?¤J��¤J£ .

ü!ý ü!ý 2!3 �	��45�
��4	�6��"67��������)��4

The fact that Python is used to write effects and not only for im-
plementing the framework is convenient but not strictly necessary.
It would have been possible to write an interpreter and for example
use the CgFX format. However, the complete embedded of effects
in Python has the advantage that all the ordinary language features
such as lists, tuples, loops, functions, dictionaries, list comprehen-
sion, etc. are available to the effect writer[Lejdfors and Ohlsson
2004]. As a very simple example we could have used a list compre-
hension to write the pass specification of the outline effect (listing
7) as
ù �J¤t�?�~¤t���µ¥?¤E�~�~¤5£~�Eè?�E�?¤t�5±5|t�~�?�?}��J¤¨�p�?�~�t�J|W�?±5��¯?¯

�J|W�Ã�Ã}t�wùÅº¸¶^Ô��4Ô;¶��~Õ��óÔ�¶pÕ¸�4Ô;¶p½5Õ5ú5ú

ü!ý ü!ý 8!9 %5����& ��:;�<� * & �6��=>���?���

When using concrete subclasses of É�����¤��?� the application needs to
know about every such class at compile-time, something known as
the library problem. This is clearly not desirable in a graphics ap-
plication and it was one of the problems effects where created to
alleviate. In traditional object-oriented design it is solved by in-
troducing an abstract factory for handling instantiation of concrete
subclasses [Gamma et al. 1994]. However, using the flexibility of
Python we can provide a method which simultaneous solves this
problem while giving a cleaner and more direct syntax for declar-
ing effects. Effects can be implemented simply as Python modules
which can be loaded by
¤E�~�~¤?�t��±%É~�5�~¤?�t�A�@�´ê?¤��¸}~���5èJ¤t��}E����¯

This loads the ê�¤E��}��5��è�¤?�¨}J� effect module which can be used just
as any other effect. Note however, that since the actual subclass is
not known setting class variables such as ­J�¸|~������¡�|J��|~� (cf. Section
2.1) is not possible.

ü!ý ü!ý ACB "D��4��61
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PyFX also provides a mechanism for specifying render targets other
than the frame buffer to which rasterization should occur. Further-
more it is possible to have passes which do not render geometry
but instead do shader based image processing. These two features,
which are not available in CgFX or DirectX, allow effects such as
blurring, edge detection, image compositing etc. to be expressed in
an application independent manner.

F U<GIHKJ�LMGNL V P�ROP1]^X V

PyFX is implemented on top of PyOpenGL [PyO ] and a SWIG
[SWI ] generated interface to the Cg runtime library. The imple-
mentation consists of about 800 lines of Python code. The bulk of
it is concerned with basic functionality needed in any effect frame-
work such as loading and binding textures, compiling shader pro-
grams, and initializing OpenGL extensions. The remaining part im-
plements the distinguishing features of PyFX, i.e. mapping declar-
ative state specification to function invocations and performing pa-
rameter resolution. This part is remarkably small, only about 10%
or 80 lines of code. This compactness is possible because of
Python’s dynamic object model and introspection facilities.

Ï*`a_ bdc-z-iBc1mWc/m�vyfBzBf;uGc1vyc1z1h

The entry point of the PyFX framework is provided by the top-levelÉ�����¤��?� class. It is essentially a container for other objects, i.e. tech-
niques, passes, textures, samplers, and shaders. These classes inter-
act with the underlying graphics API through a global ��¤?����¤?���J���J��¤
singleton class which implements manipulation of the renderer
pipeline state. The majority of its methods correspond one-to-one
to the available state variables. For instance the ¡?�����?�¸|?��¤ state is
implemented as
�E�~�?�~�ó�?¤E�~�?¤t�?�5�~�5�~¤A�
¶5¶~¶
�~¤5��¡t�J�5�E�J|t�?¤¨�Å�5¤?�5�¸�O{?�5��¯¨�

}E�%{?�5���
Á �EÉ5�?�tÎJ�5¤²�p­E� Â ¡�O~�5� Âtí �?¡EÉ�¯
Á � í �J|W�?� í �~�E¤¨�^{~�~��¯¤~�?�t¤;�
Á �tÈ�}5�t�EÎ?�~¤¨�p­E� Â ¡'O5�5� ÂWí �~¡EÉJ¯

When a ��¤?����¤?� is activated it instructs the ��¤?����¤?���J���J��¤ object�~���J��¤ to change the state of the rendering pipeline. This is done
by mapping every state specified in the pass object to a method in-
vocation. For example, a pass specified by
�?¤E�~�?¤t�A�^¡?|E�?|W�Ã±���º¸¶^Ô¸�óÔ�¶^Ô¸�4Ô�¶pÔ�¯J�

¡E�?�~�t�J|E�~¤�±%��|W�J¤�¯

will result in the following method calls on:
�W�?�E�?¤�¶µ¡?|E�~|t�¨�5�Wº¸¶pÔ¸�DÔ;¶pÔ¸�DÔ;¶pÔ�¯~¯
�W�?�E�?¤�¶´¡t�J�5�E�J|t�?¤¨�p��|W�J¤�¯
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Doing this mapping is the responsibility of the ��¤?����¤?� class and by
using the dynamic introspective features in Python, it can have a
very small implementation:
�5�5�?�~�ó�J¤t�~�?¤t�/�
�~¤5� Â~Â }���}W� Â5Â �Å�5¤?�5�¸�D¾5¾¿«?¦J|W�?�J�~¯²��E¤5�E�!¶ «~¦�|W�?�J�[±�«~¦�|W�?�J�
�~¤5�%���t¤¨���E¤?�~���4�W�?�E�~¤�¯¨�

�J|W�»�¸�^{Ã}t���t¤~�E�!¶ «~¦�|W�~���²¶p}t�~¤��¨����¯¨�
���t����èJ�5� í Ê¨�Å�t�~�E�?¤²�¿�¸�p{�¯

The �²�?�¨�5è���� í Ê maps the state name � to the proper method name
and calls this method with argument { . It is similar to the mar-
shaling used by RPC (remote procedure calls), whereby serialized
data (dictionary tuples) are converted to method invocations. Im-
plementing �²�?�¨�5è���� í Ê is a two-liner:
�?¤E�ó���t����è?�~� í Ê¨�Å|EÎJ§¸�O�J�W�¸¤��D¾W�E� Á �J¯¨���¤E�5èJ|t��± Á ¤E�?�E�~�E�A�Å|tÎ�§¨�g�?����¤�¯�J¤E�5�5�5�[��¤5�Eè�|t�¨��¾W�t� Á �?¯

Ï*`po P>cRQ;h�SBmWcwfBz-i Ó�fBvwsBe c1móÓ�hJf/hJc

The class ��¤J£��J����¤ provides an encapsulation similar to��¤?����¤?���J���J��¤ but for the available texture states such as fil-
tering, texture coordinate wrapping, etc. The texture state
information is maintained by the corresponding ���E�¸����¤?� and it is
responsible for marshaling this information to method invocations
on the ��¤J£��J����¤ object.

When a ���E�¸����¤?� is used by either the fixed-function pipeline or by
a shader the framework allocates a free texture unit and asks the
sampler to bind itself to that unit.

Ï*`pÏ q>r-f1iBc1mWÓ

Just as samplers are responsible for performing binding textures
and setting texture states, every �?è��J��¤?� object is responsible for
performing its own loading, binding, compilation, and parameter
resolution. This implementation is actually contained in subclasses
for different shader programming languages. Currently the only
subclass implemented is ¡ Á .
When the pass specifies a vertex or fragment shader the �~���J��¤ ob-
ject instructs the shader to bind itself. A shader binding itself in-
cludes setting the value of every parameter needed by the shader.
The mapping scheme of PyFX between parameters and application
variables is implemented by a ��¤��J|J�J{�¤?� object whose responsibility
it is to search the effect and mesh name spaces as well as providing
name mapping (Section 2.2.5). The resolver searches a list of ob-
jects for a given attribute, optionally transform the attribute name
via the name mapping dictionary:
�5�5�?�~�ó�J¤?�E|5�E{?¤t�;�

�?¤E� Â5Â }W��}t� Â5Â �Å�E¤?�~�¸�g�J����¤t�?�E���Å¾t|WÎ?§J�?¯²��t¤5�5�;¶ �J����¤E�?�E��±%�?����¤t�J�t�
�t¤5�5�;¶p|tÎ?§J��±Ã|WÎJ§?�

�?¤E� Â~ÂtÁ ¤E�~�5�5�5� Â5Â �Å�E¤?�~�¸�^�E�5�5��¯²�}t�Ã�t¤5�5�;¶g�J����¤t�?�E�;¶gèJ�?� Â «J¤5¬¨�Æ�E�~�E��¯²��E�5�5�Ã±��t¤~�E�!¶g�?����¤t�J�t�!ùµ�E�5�5�~ú
�?|W�¢|WÎJ§�}t�Ã�E¤5�5�;¶p|tÎ?§?�A�

}t�[è?�?�E�E�~�E�A�Å|tÎ�§¸���5�5�E�¸¯¨�
�?¤5�E�~�5� Á ¤E�?�E�5�5�A�a|EÎ�§��\�E�~�E�¸¯

The ¡ Á class use the resolver to locate shader parameters and set
these by invoking the corresponding CgGL functions. For simple
variables the � Á ­J����¤J�����?���E�²¤J��¤?� -family of functions are used. Ag-
gregate parameters, such as arrays and structs, are handled by iter-
ating over the members and setting each element recursively.

T U X V S J Z�NB]ÆX V N R V YWV²ZOP-ZDQ LYX XDQ
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The most prominent features provided by the PyFX framework is
the decoupling of effects from the application. This “activation”
of an effect, enabling it to obtain needed data from e.g. the cur-
rent mesh without the need to introduce application level support
code, greatly reduces dependencies between effects and the appli-
cation. Using this activation together with the introspection features
of Python gives a natural mirroring between data at the application
level and data at the level of shader programs. This also elimi-
nates the need for user-defined semantics since there is no longer
any need to provide ad hoc hooks for applications to provide spe-
cialized data and operations. Instead the object-oriented extensible
nature of the host programming languages can be used to provide
this functionality natively at the effect level.

There are some limitations however, in the current implementation
of PyFX. Support for manipulating fixed-function effect parameters
is limited. Consider a simple effect such as
�E�~�?�~���?}¿�J�J�5¤5¡?|E�?|W�;�

�~|E�?|W�Ã±á��º��ÆÔ¨�^Ô�¯
�?¤~�tè5��}téE�J¤[±kù �?¤E�~�?¤t�A�^¡?|E�?|W�~±?�5|E�?|W��¯Wú

Manipulating the ��|J��|~� attribute of this effect will not have the de-
sired effect, the color used for drawing will remain red. The reason
why the parameter resolution algorithm (Section 2.2.4) can not be
applied in this case is that it requires access to the parameter names.
These names are only available to shader based effects where they
are supplied by the Cg run-time library.

The overall purpose of PyFX is to be a flexible tool for investigating
what kind of features and functions are needed to make effect pro-
gramming as easy and productive as possible. Future work includes
investigating how effects can be combined efficiently at run-time
allowing, for instance, stencil-buffer shadow algorithms to coexist
with other visual effects.
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Abstract 
 
This paper presents a method of computing snow accumulation as 
a per pixel effect while rendering the scene. The method is similar 
to the shadow mapping method for shadow calculations. A depth 
buffer is used to find out how much snow a particular surface 
should receive. The amount of snow is then modified depending 
on the slope of the surface. To render the snow in a convincing 
way 3D noise is utilized for the lighting of the snow surface. 
 
Keywords: snow, computer graphics 
 
1. Introduction 
 
Snow is a common phenomenon in nature. It has the ability to 
completely transform the mood of a scene, turning a rocky 
landscape into a gentle sear of white tranquillity. But even though 
snow is a common occurrence in many places of the world, snow 
accumulation in real-time seems to be an area that has still to be 
explored. Few attempts have been made, and the methods demand 
lots of work do be done on the scene modelling before they can be 
used.  
Usually when snow occurs in interactive simulations it is either 
modelled by an artist, or just plain textures drawn upon the 
original scene. 
The ability to automate the snow accumulation process in real-
time would give us the ability to add snow to any scene, and by 
doing this produce beautiful settings for any kind of interactive 
environment. This would enable artists to just create non snow 
scenes and then let the algorithm create a snow cover, effectively 
creating two scenes. It would greatly decrease the amount of work 
needed to model a snow covered scene.  
 
 
 
 
 
 
 

2. Related Work 
 
The subject of offline snow rendering has been looked into quiet 
throughout.  
Paul Fearing [2000] presented a method to create beautiful snow 
scenes in ‘Computer Modelling Of Fallen Snow’. Unfortunately 
each frame took very long time to render making the method not 
viable for adaptation to any kind of real-time situation. It worked 
by first tracing snow paths from the ground upwards towards the 
sky, and by that accumulating the snow. In a second stage the 
stability of the snow was calculated, moving snow from unstable 
areas to stable, 
In the paper “Animating Sand, Mud and Snow” Summer et al. 
[1998] describe a method for handling deformations of surfaces 
due to external pressures. In their algorithm the surface is divided 
into voxels containing different height values indicating the height 
of the current surface. This grid is used to calculate the 
deformation of the surface when interacting with objects. 
Nishita et al. [1997] use metabals and volume rendering for their 
snow accumulation and rendering, taking into account the lights 
path and scattering through the snow. All this makes it less 
suitable for real-time modification. 
 
Snow rendering in real-time has received less attention. 
Haglund et al. [2002] propose a method where each surface is 
covered with a matrix containing the snow height at that position. 
The snow accumulation is handled by dropping snow flakes, 
represented by particles, from the sky. In the place where a snow 
flake hits the ground the height value gets increased. 
Triangulations describing the snow are then created from the 
matrices containing the height values. 
This method demands lots of work to be made by the modeller, by 
creating the matrices by hand, before a scene can be used. 
 
Although not about snow Hsu and Wong [1995] presented a 
method for dust accumulation in their “Visual Simulation of Dust 
Accumulation”. In this paper they use an exposure function to tell 
whether the surface should be covered in dust or not. The 
exposure function is calculated by sampling the surrounding area 
with rays to find any occluders. 
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A variant of this method turned out to be a viable way to handle 
the process of snow accumulation. The method we will present 
uses [Hsu and Wong 1995] as a basic foundation. 
 
 
3. Snow Accumulation 
 
The process of rendering accumulated snow can be split into two 
parts. The first part is to decide what regions should receive snow. 
The second is to actually render the snow in a convincing way at 
the places decided by the first part of the algorithm. 
To accomplish the first step a function called the Snow 
Accumulation Prediction Function is introduced. This function 
should take a point in space and calculate how much snow that 
point has received. Factors that should be taken into account are 
surface inclination and exposure to the sky. 
 
3.1. Snow Accumulation Prediction Function 
 
Due to gravity a surface facing upwards should receive more 
snow than a vertical surface. However, even a horizontal surface 
does not accumulate any snow if it is occluded from the 
perspective of the sky. It seems like the task of calculating the 
prediction function can also be separated into two mutually 
independent parts. One part should calculate the snow 
contribution due to the inclination of the surface and another part 
should calculate the effect of occlusion. 
Let us formulate a Prediction function in terms of these two parts: 
 

)()()( pfpfpf incep ⋅=  
 
where  p is the point of interest 

fp is the prediction function 
 fe is the exposure component 

finc is the component giving the snow contribution due 
to inclination 

  
The exposure part (fe) should vary between 0 and 1 indicating the 
amount of occlusion that would prevent snow from falling on the 
surface. This value should vary gracefully to achieve a smooth 
transition from an area with snow to an occluded area. Hsu and 
Wong [1995] calculates this value by sampling the surrounding 
area with rays uniformly distributed over the upper hemisphere in 
order to search for potential occluders. Unfortunately this is not a 
viable way of doing it if we want to calculate this in real-time 
without lots of pre-processing for all surfaces. An alternative way 
of implementing this function based on the shadow mapping 
technique will be examined later in this paper. 
 

 
 

Figure 1: Inclined surface 
 
The finc should work in a similar way to the Dust Amount 
Prediction Function in [Hsu and Wong 1995]. A surface facing 

towards the snow direction should receive more snow than a 
surface facing away from it. The amount should depend on the 
angle, with a rather step falloff when the angle between the 
normal and a vector pointing upwards grows (Figure 1). Surfaces 
facing away from the sky should not receive any snow. This 
implies that the function should decrease from 1, when the angle 
is 0, to 0 when the angle is 90 degrees. If the angle is greater than 
90 finc should be 0. 
This gives a function like this: 
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where θ is the angle between vector N and U 
 n is a small positive noise value  
 
A small noise value [Perlin 1985], typically between 0 and 0.4, is 
used to get a more natural look, and to account for the phenomena 
called flake dusting [Fearing 2000], where snow dust clings to a 
steep uneven surface. 
 
3.2. Snow Colour Function 
 
After the snow accumulation of a certain surface is determined 
it’s time to calculate the correct shading of the snow. The light 
model that is used is the normal Phong illumination model.  
To get the typical look of snow a noise function is used to distort 
the normal of the surface. This way a realistic approximation of 
the look of a snow cover is achieved. To get the glittering effect 
of snow the normal is distorted slightly more for the specular part 
of the light calculation than for the diffuse part. The derivative of 
the exposure function is also used to transform the normal to get 
an illusion of actual snow depth around any occlusion boundaries 
that may exist in the scene. In the implementation the normals are 
calculated in this way: 
 

dEnNN −+= αα  
 
where N is the original normal 

α is a scalar value indicating how much distortion 
should be applied  
n is a normalized vector containing three noise values 
dE is a vector containing a scaled value of the exposure 
derivatives in respective direction of screen space 

 
A distorted valueα of 0.4 was used in the images presented in this 
paper. This was chosen through testing different values and 
deciding on what looked best. 
The renormalized resulting normal is then used in the diffuse part 
of the lighting equation. For the specular part another distortion 
term was added with the α value 0.8 to get a more glittering 
effect on the snow.  
To calculate dE the derivative of the exposure function in both x 
and y direction of the screen is needed. In this implementation the 
derivative operations of Cg is used. The derivative with respect to 
x is placed as the x-component and the derivative with respect to 
y in the z-component, assuming that the y-axis points upwards. 
The resulting vector is then scaled to obtain a suitable impression 
of decreasing height when the exposure function decreases. 
When calculating the snow colour as above a white colour should 
be used in the Phong equation. The blue part of the colour should 

U 
N 

θ  
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be slightly higher than the rest to give the snow a more glittering 
effect. 
 
3.3. Full Snow Equation 
 
The full equation to calculate the colour of accumulated snow 
then becomes 
 

npsp CfCfC ⋅−+⋅= )1(  
 

where Cs is the snow colour calculated with the distorted 
normal, as explained above 

 Cn is the surface colour without snow 
 
To obtain an impression of thickness to the snow each vertex 
should be displaced depending on the fp value. The amount to 
displace the vertices depends on the scene and needs to be tested 
to achieve the best result. The displacement introduces the 
restraint on the geometry that it should be closed to give the 
impression of actual height of the snow. 
 
4. Implementation  
 
The above algorithm where implemented in a pair of vertex/pixel 
shaders. Most of the equations can be implemented in a straight 
forward way when implementing the standard shading equations, 
as described by [Everitt et al. 2002]. 
 
4.1. Implementing the exposure function 
 
The exposure function did not lend itself to the same easy 
implementation as the other components of the equation. To 
calculate the exposure of a surface, knowledge about the 
surrounding world is needed. This does not suit well with the 
limitations inherent when working with the pixel shader on a 
modern GPU. To solve this, a solution is taken from the way 
shadows are implemented with the aid of a depth buffer. This 
image space algorithm is very suitable for what we are trying to 
do here. 
As a pre-processing stage the whole scene is rendered with 
respect to the sky, using a parallel projection. The depth buffer is 
then saved for later usage. 
 
 

 
Figure 2: Point p is not the closest point to the sky, it will not be 

covered b snow 
 
When rendering the scene each fragment is projected into the sky 
view frustum, as described in [Everitt et al. 2002], and compared 
with the stored depth value in the occlusion map. If the fragment 
is further away from the sky than the value indicated in the 
occlusion map, as in Figure 2, no snow should be drawn, 
otherwise snow should be drawn. This method works but is still 

unsatisfactory because it produces very sharp and sudden 
occlusion boundaries, as can be seen in the picture below. 
 

   
 

Figure 3:  One sampling from the occlusion map produces very 
sharp transitions. 

 
 To address this issue the depth map is sampled a number of 
times, with the first sample on the original fragment position and 
the others in a circle around it in the occlusion map. The number 
of snow covered fragment is then divided with the total number of 
samples to get a fractional value for the occlusion. This creates a 
better result, but it still leaves us with plateaus in the snow and 
possible artefacts on objects as seen in Figure 4. The length of the 
offset used for the different samples determines how big the 
occlusion boundary becomes. A larger offset produce a smoother 
occlusion boundary. The larger the occlusion boundary should be 
the more samples need to be done to get enough overlapping in 
the samplings. How big the offset should be is entirely dependent 
on the size of the scene the occlusion map covers, and the desired 
area of the occlusion boundary.  
To sample the depth buffer in the area surrounding the current 
fragment the change in z direction due to offsets in the depth map 
must be known. To get this value the derivative functions in cg 
are used to calculate the proper position of neighbouring 
fragment. 
All of the above mentioned offsets are performed in the projected 
space of the occlusion map. 
 
 

 
(a) (b) 

 
Figure 4: (a) 5 Samplings produces better transition but introduces 

artefacts. (b) Sampling pattern 
  
As can be seen this produces quite a bit of artefacts in the 
exposure value. To fix this the final result is combined with a 
noise value in the range of [0, 0.5], if it is bigger than 0, to 
produce a more natural looking boundary, and to conceal surface 
artefacts due to discontinuities in the surface. 
 
 
 

Occlusion  
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p 
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Figure 5: Same scene as figure 3 but with noise included. 
 

The adding of the noise value effectively removes all of the 
artefacts shown in figure 3. It also makes the occlusion boundary 
look much more natural.  
 
4.1.1. Vertex Displacement Method 1 
 
One problem with this method is that the vertex program can’t 
read from the occlusion texture. This means that we have to 
provide the snow values to the vertex program in some other way. 
One way is to introduce another pre-processing stage where the 
exposure map is first read back from the GPU. The position of 
each vertex in the exposure map must then be calculated. This is 
done by scaling the x and z coordinate according to the world size 
so that they can be used to index into the occlusion map, ignoring 
the y coordinate. This value should then be streamed to the vertex 
shader in the same way as position and normals. 
 
4.1.2. Vertex Displacement Method 2 
 
Another way of solving the problem with the vertex shaders 
inability to access the occlusion map is to split the rendering into 
2 passes. The first pass should draw the scene without snow and 
the second pass with the snow. When displacing the vertices for 
the snow pass no consideration should be taken to if the vertex is 
snow covered or not, only the inclination should be considered. 
The exposure value should instead be assigned as an alpha value 
to each fragment in the fragment shader. The second pass should 
then be blended onto the first, using alpha as blending factor for 
the second pass and one minus alpha for the first. This method is 
easier to implement than the first, and places less demands on the 
format of the scene. It does unfortunately create some artefacts 
where the snow floats above the scene that can be annoying in 
certain scenes where the user can view the scene from any 
perspective. Figure 6 show this artefact. 
 

 
 

Figure 6: Floating snow artefact seen on the ground. The snow 
layer floating some distance above the ground 

 
The artefact is extremely visible in the above picture because of 
the fact that the ground plane isn’t a closed geometry. But even 

when working with closed geometries artefacts as the above can 
still happen, especially with very sharp corners. 
Method one does completely eliminate this artefact but introduces 
the need for more pre-processing and the need to store the values 
which might be a problem when using already existing scenes and 
scene formats. 
 
4.2. Implementing noise 
 
All of the noise values used in this paper can be implemented in 
the fragment shader by using a 3D texture filled with random 3 
component values in the range [0, 1]. This texture is then used to 
draw random numbers that will always be the same for the same 
input. 
To get the correct noise appearance the random texture can be 
sampled a number of times, called octaves [Perlin 1985], each 
octave having double frequency of the last, and half the 
amplitude. The sum of these octaves can then be used for a noise 
value. 
The noise used in the pictures shown in this paper where created 
by reading 3 octaves from the 3D texture. The single noise value 
used in finc was calculated by adding the 3 components together 
and the dividing by 3 to bring the range back to [0, 1]. The noise 
vector read from the 3D texture was then expanded to the range [-
1, 1] and normalized to create a suitable vector for distortion of 
the normals used in the light calculation. 
 
4.3. Performance Issues  
 
The implementation of the algorithm includes a lot of 
normalizations that affects the performance quiet thoroughly. To 
avoid this a cube map is used for normalization purposes.  
In a cube map only the direction of a vector is used for lookup, 
not the magnitude. This can be used for normalizations by storing 
a normalized version of the direction vector in each component of 
the cube map. The components of the normalized vectors must 
first be transformed to the range [0, 1] before they are stored in 
the cube map. This is done by multiplying the vector by 0.5, 
taking the elements into the range [-0.5, 0.5]. By then adding 0.5 
the range [0, 1] is achieved. The components are then encoded in 
the RGB components of the cube map texture. To use the cube 
map for normalization a texture lookup should be done as usual, 
with a vector as texture coordinates. The resulting vector must 
then be unpacked from [0, 1], the range in which colours are 
normally stored, to [-1, 1] by multiplying by 2 and subtracting 1. 
By using linear interpolation on the texture lookup the cube map 
turns into a smooth normalization function without needing very 
high resolution. A cube map of 64x64 or 128x128 is usually 
enough.  
 
5. Performance 
 
The implementation is tested on a machine with a Geforce FX 
5600 Ultra, using CG to compile the shaders to the 
NV_vertex_program2 and NV_fragment_program. 
The performance is directly dependent on the resolution and the 
amount of the screen covered with potential snow covered 
surfaces.  
In the demo presenting two instances of the Stanford bunny, 
Figure 7, each consisting of 16000 triangles an average frame rate 
of 13 frames per second were achieved. This was with a screen 
resolution of 600 x 600. When increasing the screen size to 900 x 
900 the frame rate dropped 11 frames per second. 
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Figure 7: Stanford bunny without and with snow
 

6. Discussion 
 
One problem with the snow accumulated in the way proposed in 
this paper is that it does not take into account the area of the 
region being covered in snow. This means that small parts, as the 
small twigs in the tree pictures in Figure 8 and Figure 9, can be 
loaded with an unnatural amount of snow. There isn’t really much 
to do about this, because it would demand additional knowledge 
about the scene that does not exist at the fragment level.  
The tessellation of the snow cover will be that of the underlying 
geometry. This leaves the scene modeller free do add polygons in 
places where a smoother curve is desired. 
There are several possible improvements that could make the 
proposed method faster. One is to save the four surrounding 
sample values of the occlusion map in the RGBA parts of a new 
texture to reduce the numbers of samples needed to two, non 
dependent lookups. This would be done as a pre-processing step 
when the occlusion map is created. 
Something that speaks for this method in the future is that it is 
independent of the number of objects in the scene, enabling the 
usage of complex and cluttered scenes without any extra work. 
And as the speed of fragment processing increases with the 
advantage of GPU, speed would cease to be an issue.  
Another problem with the method is if you want to have dynamic 
objects acquire snow as they move out in the scene. That would 
mean that when they move in to shelter the snow accumulated 
would be lost on them.   
 
7. Conclusion 
 
In this paper, a new method for calculating snow on a fragment 
level was presented. The method uses a depth map to find out 
what parts of the scene should be covered with snow. The snow is 
then calculated per fragment in the scene without needing any 
more pre-processing of the scene data. Although the method isn’t 
very fast as of today, increases in the computational power of 
today’s graphic hardware should make this method a good 
candidate for snow accumulation and rendering in the future. The 
advantage of not needing to modify or store any extra data about 
the scene except for the occlusion map means that it should be 
easy to implement and combine with other existing techniques for 
rendering. 
 
 

 
8. Future Work 
 
Something that would be an interesting extension to the above 
presented method is the usage of a control map where things as 
footsteps could be drawn. This could be done by using another 
texture map stretched in the same way as the occlusion map. Each 
fragment would then multiply its exposure value with the value in 
the control map. Footsteps could then be drawn in the control map 
as half occluded fragments. 
Another area that could prove interesting is the possibility to take 
into account the influence of wind on the falling snow. Perhaps 
this could be modelled by tilting the projection when calculating 
the occlusion map. 
 
References 
 
Everitt, C., Rege, A., and Cebenoyan, C., 2002. Hardware shadow 

mapping, ACM SIGGRAPH 2002 Tutorial Course #31: 
Interactive Geometric Computations using graphics 
hardware, ACM, F38-F51 

 
Fearing, Paul 2000. Computer Modelling Of Fallen Snow. 

Proceedings of the 27th annual conference on Computer 
graphics and interactive techniques, 37-46 

 
Haglund, H., Anderson, M., and Hast, A., 2002. Snow 

Accumulation in Real-Time, Proceedings of SIGRAD 2002, 
11-15 

 
Hsu, S.C, and Wong, T.T. 1995. Visual Simulation of Dust 

Accumulation, IEEE Computer Graphics and Applications 
15, 1, 18-22 

 
Nishita T., Iwasaki, H., Dobashi, Y., and Nakamae, F. 1997. A 

Modeling and Rendering Method for Snow by Using 
Metaballs. Computer Graphics Forum, Vol 16, No. 3, C357 

 
Perlin, Ken, 1985. An Image Synthesizer, Computer Graphics 

(Proceedings of ACM SIGGRAPH 85), 19, 3, 287-296 
 
Summers, Robert W., O’Brien, James F., and Hodgins, Jessica K. 

1998. Animating Sand, Mud, and Snow. The Proceedings of 
Graphics Interface’98, 125-132 

29



 
 

 
 

Figure 9: The algorithm tested on a more complex scene containing lots of small structures.  
As can bee seen in the picture the algorithm does not take into account the area of the surface  
being displaced. This results in the small twigs getting more snow than would look natural. 
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Figure 10: Another tree used for testing of the snow algorithm. As can be seen the area  
beneath the tree is partially covered depending on amount of branches above it. 
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Fast surface rendering for interactive medical image segmentation with
haptic feedback
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(a) Initialization of a seed-region inside
the liver.

(b) Initial segmentation result that con-
tains artifacts due to the low contrast be-
tween the liver and the surrounding tis-
sues.

(c) Result after editing.

Figure 1: Screenshots from the interactive segmentation environment.

Abstract

In this work, we present a haptic-enabled application for interactive
editing in medical image segmentation. We use a fast surface ren-
dering algorithm to display the different segmented objects, and we
apply a proxy-based volume haptics algorithm to be able to touch
and edit these objects at interactive rates. As an application exam-
ple, we show how the system can be used to initialize a fast march-
ing segmentation algorithm for extracting the liver in magnetic res-
onance (MR) images and then edit the result if it is incorrect.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques—Graphics data structures and data types, Interaction
techniques. I.4.6 [Image processing and computer vision]: Seg-
mentation.

Keywords: marching cubes, surface tracking, volume haptics

1 Introduction

Image segmentation is the task of finding a certain object in an
image and label all the voxels inside the object as foreground,

∗e-mail:erik.vidholm@cb.uu.se
†e-mail:jonas.agmund.4911@student.uu.se

and all other voxels as background. In medical segmentation, ob-
jects should be extracted from different data sets obtained through,
e.g., Computed Tomography (CT) or Magnetic Resonance Imaging
(MRI). An object to be segmented could typically be a part of the
brain or the liver. Even though many methods have been proposed
for automatic segmentation, it is still seen as an unsolved problem
since the methods are not general enough. In semi-automatic meth-
ods, some degree of manual interaction is involved to improve the
result. Ideally, the user should give an initialization to the algorithm
and then examine the final result and if necessary edit it. The ef-
ficiency of this interactive part is highly dependent on the quality
of the user interface. The user needs to be provided with proper
tools for the specific task, and the learning threshold should not be
too high. When working with volume images it is a huge step just
to map interaction in 2D to events in 3D. By using more advanced
input devices combined with different depth cues (e.g., stereo), it is
possible to overcome this problem.

Interactive editing and manipulation of volume data for design and
modeling purposes has been referred to assculptingby previous au-
thors. In general, a sculpting system consists of a set of modeling
tools together with fast surface rendering and/or haptic rendering al-
gorithms for data display. In [Galyean and Hughes 1991], a sculpt-
ing system with various free-form tools was developed. An octree-
based system was proposed in [Bærentzen 1998] where “spray-
tools” and constructive solid geometry (CSG) tools were used. The
use of haptic feedback in volume sculpting was suggested already
in [Galyean and Hughes 1991], but realized first in the work de-
scribed in [Avila and Sobierajski 1996]. In the recent paper [Kim
et al. 2004], a combined geometric/implicit surface representation
is used along with tools for haptic painting based on texture tech-
niques. The connection between haptic volume sculpting and in-
teractive volume image segmentation is close, but not much work
has been done in this area. Haptic interaction was used by [Harders
and Sźekely 2002] for centerline extraction during segmentation of
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tubular structures, and in [Vidholm et al. 2004] haptic feedback was
used to facilitate the placement of seed-points in MR angiography
data sets for vessel segmentation. Examples of non-haptic interac-
tive segmentation tools for volume images that have inspired our
work are found in [Kang et al. 2004].

In this paper, we propose the use of editing tools based on mor-
phological image processing operators in combination with haptic
feedback, stereo graphics, and a fast surface rendering algorithm
to interactively edit and manipulate segmented data. Haptics pro-
vides the possibility of simultaneous exploration and manipulation
of data. In our work, realistic feedback is not the most important
issue. More important for us is that the user works more efficiently
with guidance by haptic feedback than without. The aim is to con-
siderably reduce the amount of user time required in the segmenta-
tion process.

The paper is organized as follows: In Section 2, we give an
overview of our visuo-haptic environment for interactive segmen-
tation. A brief description of the volume visualization based on 3D
texture mapping is given in Section 3. In Section 4, we present the
fast surface renderer and some implementation issues. Section 5
gives an introduction to volume haptics and describes how we use
haptic feedback for editing. An example application is given in
Section 6 and in Section 7 we present our results. Finally, we sum-
marize the paper with conclusions and future work in 8.

2 System overview

In this section, we give an overview of our environment and the
interactive segmentation application.

2.1 Hardware and software

Our setup consists of a Reachin desktop display [Thurfjell et al.
2002] which combines a 3 degrees of freedom (DOF) PHANToM
desktop haptic device with a stereo capable monitor and a semi-
transparent mirror to co-locate graphics and haptics. See Figure 2.
The workstation we use is equipped with dual 2.4 GHz Pentium 4

Figure 2: The Reachin desktop display.

processors and 1GB of RAM. The graphics card is a NVidia Quadro
900XGL with 128MB of RAM. For stereo display, Crystal Eyes
shutter glasses are used. The software has been implemented in the
Reachin API, a C++ API that combines graphics and haptics in a
scene-graph environment based on the VRML97 standard.

2.2 Interactive segmentation

Most of the user interaction is performed with the PHANToM de-
vice through 3D widgets and volume editing tools. A Magellan
space mouse is used for additional input. The haptic/graphic user
interface is used for interaction with the main parts of the system,
i.e., the 3D texture mapper, the image processor, the volume editor,
the surface renderer, and the haptic renderer. All of these share ac-
cess to a volume imageV that we want to extract objects from. This
image is typically obtained through MRI or CT. In the 3D texture
mapper, we visualize the data inV by utilizing the hardware accel-
erated 3D texture mapping features of the graphics card. The image
processor contains a set of different segmentation algorithms that
hasV as input and produce segmented volumesSas output. A seg-
mented volumeS is integer valued, and can contain several objects
labeled between 1 andN, whereN is the number of objects. Object
no. j consists of the voxelsΩ j = {x|S(x) = j}. The background is
labeled 0. In the surface renderer, fast surface reconstruction of the
segmented objects inS is performed. The haptic renderer computes
forces based on the data inS, and is closely connected to the vol-
ume editor which contains various editing tools. As an option, the
haptic feedback can also be based onV for enhanced navigation.
Figure 3 illustrates the structure of the system.
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Image Processor

Haptic Renderer Surface Renderer3D Texture

Mapper

Force feedback

Graphic display

V S

Rendering
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Haptic/Graphic user interface

Volume
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Filename

Function

Figure 3: An overview of the interactive segmentation system.

3 3D texture mapping

Two different volume visualizations are used in our system. The
surface rendering algorithm described in Section 4 is used to dis-
play segmentation results, while the original (medical) volume im-
ages are visualized through 3D texture mapping. The basic idea is
to regard the whole volume imageV as a texture map defined over
[0,1]3, and the texture mapping as the interpolation of the values in
this domain. The default visualization in our application is a multi-
planar reconstruction (MPR) consisting of three texture mapped or-
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thogonal slice planes that can be moved along the corresponding
coordinate axis. It is also possible to view maximum intensity pro-
jections (MIPs) of the data. We construct the MIPs by mapping
the 3D texture onto a stack of view-plane aligned polygons that are
rendered in back-to-front order and blended together.

To adjust contrast and brightness in these different projections, we
use texture shading and the register combiner features of the graph-
ics card. Two textures are loaded into texture memory: the volume
V and a 1D textureCB that we use to store the contrast/brightness
transfer function. By re-programming the register combiners, we
can use the texture value fromV as a texture coordinate forCB,
and use that value in the rasterization. The same technique can
also be used in ordinary volume rendering to implement transfer
functions for opacity and color. Since the texture shading and reg-
ister combinations are performed before the blending operations,
any contrast/brightness adjustment affects both the slice planes and
the MIP.

4 Surface rendering

A common way to use surface rendering of volume images is iso-
surface extraction, i.e., a surface along which the volume image
is equal to a certain threshold value, or iso-value. Interpolation is
often used to achieve a smoother surface, and also shading where
the surface normals are based on the volume gradient. Iso-surface
extraction algorithms can be based on ray-casting methods or poly-
gonization like in [Wyvill et al. 1986] and the more well-known
marching cubes (MC) algorithm [Lorensen and Cline 1987]. We
have chosen the MC algorithm since it is straight-forward and fits
well into the already existing visualization environment.

In our application, we want to render the segmented and labeled
objects contained inS. This is done by using the label of each
object as iso-value.

4.1 Surface detection

The first step in the MC algorithm is to identify the cells in the
volume that are intersected by the iso-surface. A cell is a cube
consisting of eight(2×2×2) neighboring voxels.

In the original implementation, the whole volume is traversed and
all cells are examined for surface intersection. This is very ineffi-
cient if the surface only intersects a small part of the cells in the
volume, which usually is the case.

One way to speed up the surface extraction is to use alternative data
representations of the volume instead of an ordinary 3D array, e.g.,
an octree [Wilhelms and van Gelder 1992; Bærentzen 1998]. Draw-
backs of using octrees are that the tree needs to be re-generated
when the image is manipulated, and it is not straight-forward to
make use of shared vertices and normals during the triangle gener-
ation.

To facilitate image manipulation and sharing of vertices and nor-
mals, we decided to use an ordinary 3D array representation as
in [Galyean and Hughes 1991]. To avoid the traversal of non-
intersecting cells, surface tracking [Shekhar et al. 1996] is used.
This method takes advantage of surface connectivity. Given a seed-
cell, i.e., a cell in the volume which is intersected by the surface,
the surface is visited one cell at a time by following the connec-
tivity until all connected cells have been visited. The connectivity
for a certain MC configuration can be pre-computed and stored in a
lookup-table (LUT) for efficient tracking, see Section 4.3.2.

4.2 Triangle generation

Once the surface is detected, each cell intersected by the surface
should be triangulated according to the MC configurations. There
are several options to consider when creating the triangles. Each
vertex position of a triangle can be interpolated to give a more ac-
curate position of the surface, or it can simply be set to a midway
position on each cell edge. When dealing with binary data as in
our case, no interpolation is necessary since it will default to the
midway position. Regarding the normals, they can be calculated by
either using the geometric normal of the triangle, or by using the
gradient in the volume image. If the gradient is used in conjunction
with interpolation of vertices, the gradient needs to be interpolated
too. Computation of gradients and interpolation of positions are
time-consuming and should be avoided unless needed for accurate
visualization purposes.

One of the major drawbacks with MC is the excessive output of
triangles. Since each cell intersected by the surface can result in up
to five triangles, even a small volume image can result in surfaces
of a massive number of polygons. Different algorithms for triangle
decimation have been proposed [Montani et al. 1994; Shekhar et al.
1996],

4.3 Implementational aspects

The following was taken into consideration when implementing the
MC-based surface renderer:

• The volumeSshould be easy to access and manipulate for the
surface renderer, the haptic renderer, and the image processor.

• The renderer should be optimized for extraction and rendering
of segmented data, but interpolation of vertices and gradient
based normal computations should be included as an option.

• When the volume is manipulated, re-rendering of the surface
must be efficient.

More details can be found in [Agmund 2004].

4.3.1 Data structures

The following data structures are used by the surface renderer:

• The original volumeV of sizeW×H ×D.

• The segmented volumeS of the same size asV.

• A cell index arrayC of size(W−1)× (H−1)× (D−1) con-
taining the MC configuration index for each cell. Cells that
are intersected by the surface has an index between 1 and 254
and the non-intersected cells have index 0 or 255.

• Two 2D coverage arraysX− andX+ of size(H−1)×(D−1)
containing minimum and maximumx-coordinates for surface
intersected cells in each line inC. A value of zero inX+

means that the surface does not intersect any cell on the cur-
rent line.

• A vertex listvl for storing vertex positions.

• A normal listnl for storing vertex normals.

• An index list i l for triangle generation fromvl andnl .

• Three index cache arraysa1,a2,a3 used for caching already
computed indices during the triangle generation.
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The main steps in the implementation of our surface renderer is
shown in Figure 4.

Surface Tracker

Triangle Generation

Cell Index Array

Volume Image

Index Array
Vertex Array
Normal Array

OpenGl Rendering

Efficient Re-Rendering

1

2

Figure 4: Overview of the surface renderer.

4.3.2 Surface tracking

The surface tracking can be started immediately if an intersected
seed-cell is known and the surface to be extracted is connected. In
cases where this is not true, the whole volume is scanned to find
all existing surfaces. The basic algorithm is as follows: First,C is
cleared and set to zero.X− is set toW andX+ is set to 0. A lin-
ear search throughS is performed until a given iso-value is found
(a simple equality test). If an index is found and the cell is not
previously visited (stored inC), surface tracking is started at the
seed-cell. This procedure is repeated until the whole volume is tra-
versed.

The surface tracking uses the values inC to keep track of already
visited cells, and the pre-calculated connectivity LUT to find in
which directions the surface is connected. See Figure 5. To be able

(A)

Index1

Index2

LUT[               ] = [ 1 2 3 4 5 6 ] Index2LUT[               ] = [ 2 4 6 ]

Index1

(B)

Figure 5: Example of information in the connectivity LUT for two
MC configurations with connectivity in 6 directions (A) and in 3
directions (B).

to know in which order and which cells to visit adequeis used. A
deque is a modified linked list, being efficient when elements are
to be added and removed only to the end and beginning of the list.
The algorithm is initialized by putting the seed-cell in the deque.
The algorithm continues in the following way:

1. Pop the first cell in the deque.

2. Calculate the MC index of the current cell and insert the index
into C for future use in the triangulation and to mark the cell
as visited.

3. Compare the currentx-position with the values inX− andX+

and update if necessary.

4. Use the connectivity LUT to determine which directions the
surface continues in and put these cells at the end of the deque,
if they have not already been visited.

5. Repeat from step 1 until the deque is empty.

4.3.3 Vertex and normal computations

When all surfaces are found, the triangulation is performed. This
is a separate process using the information stored inC and the cov-
erage arraysX− andX+. The original volumeV is not used here,
unless if interpolation is performed or if gradient-based normals are
used.

The triangle generation is performed through anxyz-order traver-
sal of C. During this process, the coverage arrays are consulted
to skip the first and last non-intersected cells on each line, respec-
tively. A LUT stores which edges for each MC configuration that
will contribute with a triangle vertex. Due to the scan direction,
there are only 3 of the 12 cell edges that can contribute with a new
vertex. For vertex and normal sharing between triangles, the cache
arrays store indices of already computed vertices and normals. This
is illustrated in Figure 6. Vertex normals can be calculated in two

Y

Z

X

Edges containing new vertices

Cache ArrayTraversing directions Cell

Figure 6: Illustration of the three edges that contribute with new
vertices. Information about vertices on the other nine edges are
already known and can be retrieved from the cache arrays.

different ways. The first, which is the most efficient, uses the av-
erage geometrical normal from each triangle that shares the vertex.
The efficiency lies in that the geometrical normals for each triangle
are pre-calculated and stored in a LUT for each MC configuration.
This is possible since we work with binary data and only use the
midway position on each edge. The second, more costly, method
to calculate normals is to use the gradients fromV at each vertex
position.

4.3.4 Efficient re-rendering

In the application, there are two ways of manipulating the seg-
mented volumeS. The first is to apply a global method (e.g., thresh-
olding of V) that requires a total update according to the surface
tracking algorithm. The second is to apply local editing operations
from the volume editor. Since these operations only affects a small
part of the image it is enough to traverse a sub-volume which extent
depends on the current editing tool, and to update the corresponding
values inC, X+, andX−. In the current implementation, we must
re-generate all triangles, but since all computations are reduced to
table lookups this is not a problem. However, in the future we will
try to improve the implementation to modify only parts ofvl , nl ,
andi l .
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5 Interactive editing with haptic feedback

One of the first attempts to use haptics for the display of volume
data was made in [Avila and Sobierajski 1996]. In their work, the
force feedback provided to the user is a direct mapping from the po-
sition of the haptic probe to a force computed from intensity values
and local gradients at that position. A drawback with this type of
method is instability. The rendering parameters can be hard to tune
correctly in order to avoid force oscillations. In surface haptics,
the stability problem was solved by introducing a virtualproxythat
is connected to the haptic probe through a spring-damper [Ruspini
et al. 1997].

5.1 Proxy-based volume haptics

The idea in proxy-based haptic rendering is to constrain the proxy
to certain movements in a local reference frame (LRF) and to pro-
vide a resulting force vector proportional to the displacement of the
haptic probe relative to the proxy. Proxy-based rendering of volu-
metric data was first proposed by [Lundin et al. 2002], where a LRF
for scalar volumes is obtained through tri-linear interpolation of the
volume gradient at the proxy position. The gradient is used as a sur-
face normal that defines a surface to which the proxy is constrained.
It is also shown how friction and viscosity can be rendered and how
different material properties can be simulated by using haptic trans-
fer functions. In [Ikits et al. 2003], a framework for more general
LRFs and proxymotion ruleswas presented.

5.2 Haptic feedback when editing

We have based our haptic rendering on the two works mentioned in
Section 5.1 combined with the idea of a tool with sample points on
the surface [Petersik et al. 2003].

The basic steps in the haptic loop are as follows: let{e0,e1,e2}
denote the LRF,pq the proxy position at time stepq, xq the probe
position, andd = (xq−pq−1) the displacement of the probe rela-
tive to the previous proxy position. In each iteration of the haptic
loop the proxy is moved in small steps according to user input and
rendering parameters such as stiffness and friction. Allowed proxy
movements are defined by certain motion rules for each axis in the
LRF. The proxy position at time stepq is computed as

pq = pq−1 +
2

∑
i=0

∆piei ,

where∆pi is a motion rule function of the displacementdi = d ·ei .
The resulting force is computed asf q = −k(xq−pq), wherek is a
stiffness constant.

We use a spherical tool with radiusr that is centered atp. In a pre-
computed array we store uniformly spaced sample pointsti , ||ti || =
1, so that the pointsTi = p+ r · ti are located on the tool surface.
The sample points that are in contact with the current object are
used to define the normal componente0 in our LRF:

e0 = − ∑i∈I ti
||∑i∈I ti ||

,

whereI = {i|S(Ti) > 0}. The tangential directione1 is constructed
by projectingd onto the plane defined bye0 [Lundin et al. 2002]:

e1 =
d− (d ·e0)e0

||d− (d ·e0)e0||
.

Sincee1 is constructed in this way, the third component of the LRF
is not needed, but it can easily be computed ase2 = e0×e1.

The motion rule for the normal directione0 is

∆p0 =
{

d0 if d0 > 0
−max(|d0|−T0/k,0) if d0 ≤ 0 ,

where the thresholdT0 is the force the user must apply to penetrate
the surface with the tool. For the tangential directione1, the motion
rule is

∆p1 = max(d1−T1/k,0),

whereT1 = µk|d0|, i.e., a friction force threshold with friction co-
efficientµ. This motion rule is used to avoid slippery surfaces. The
parametersk, µ, andT0 can be controlled through the user interface.
Figure 7 illustrates the idea behind the haptic rendering.

0e

(a) Computation ofe0 by finding the points
on the tool surface that are in contact with the
object.

e

xp

1e0

(b) e1 is constructed by projectingd = (x−p)
onto the plane defined bye0.

Figure 7: Idea behind the haptic rendering.

5.3 Editing operations

Editing of the volumeS is performed with the spherical tool de-
scribed in Section 5.2. The tool can be either active or inactive.
When the tool is active, all object voxels inS located within the tool
boundaries will be affected by the currently selected editing oper-
ation. So far, we have implemented four basic editing operations:
draw, erase, erode, and dilate. Erosion and dilation are binary mor-
phology operators [Gonzalez and Woods 2002, Chapter 9] that are
used to peel off a voxel layer and to add a voxel layer, respectively.
See Figure 8 for a simple erosion example. The editing operations
that are provided with haptic feedback is erase, erode, and dilate.
Haptic feedback for drawing can be turned on as an option and is
based on the gradient ofV for feeling object boundaries.

Drawing and erasing are simple operations that can work directly
onS, while erosion and dilation need an input volume and an output
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Figure 8: The smiley is constructed by erosion.

volume. Therefore, a temporary volumeS′ is used.S′ is a copy of
S that is not modified while the tool is active. When the tool is
deactivated,S′ is updated according to the currentS.

6 Application example

In a recently started project in co-operation with the Dept. of Radi-
ology at Uppsala University Hospital, we develop interactive seg-
mentation methods as a part of liver surgery planning. As an initial
part of the project, we have developed a method for segmentation of
the liver from MR images. The images are of size 256×256×100
voxels.

First, we apply pre-processing filters to the original data set, i.e.,
edge-preserving smoothing followed by gradient magnitude extrac-
tion. The gradient magnitude is used to construct a speed function
for input to a fast marching segmentation algorithm [Sethian 1999].
As the next step, we use our drawing tool to create an initial seed-
region inside the liver. The fast marching algorithm then propa-
gates this region towards the liver boundaries. The propagation is
fast where the gradient magnitude is low and vice versa. When the
algorithm has converged, we examine the result and, if necessary,
perform manual editing.

A screenshot from the application is shown in Figure 1. The initial
segmentation result contains several artifacts due to “leaking”, i.e.,
the contrast between the liver and the surrounding tissues is low.
After manual editing, most of the artifacts are removed.

7 Results

To test the surface renderer, we generated a test image by sampling
a 3D Gaussian function on a 128× 128× 128 grid. We loaded
the image into our enviroment and thresholded it at different levels
to produce triangle meshes consisting of 20,000–100,000 triangles.
We used the erosion operation to edit the mesh with tool radiir = 5
andr = 10 voxels. The resulting average update rates are given in
Table 1, where it can be seen that the time for triangle generation
increases linearly with the number of triangles. As a consequence,
the effect of different tool radii decreases as the objects become
larger. In the application example (Section 6), the marching cubes
surface of the segmented liver consisted of 95000 triangles and was
edited at frame rates between 10 and 12 frames per second. Tool
radii between 1 and 10 voxels was used, and the number of tool

Table 1: Average update rates when editing triangle meshes with an
erosion tool having a radius ofr voxels.

Update rate (frames/s)
#Triangles r = 5 r = 10

20,000 52 40
30,000 39 25
40,000 30 22
50,000 25 19
60,000 21 17
70,000 20 18
80,000 17 15
90,000 11 10

100,000 9 8

sample points was 340. The haptic update rate was kept constant at
1 kHz which is the rule of thumb for perceptually convincing haptic
feedback.

8 Conclusions and future work

The surface renderer that we have developed can be used for in-
teractive editing of segmented objects. The efficiency lies mainly
in the surface tracking and the index caching strategies. However,
we note that when complex objects are triangulated, the huge num-
ber of triangles considerably slows down the rendering. To over-
come this problem we will investigate how a triangle decimation
algorithm could be incorporated and how the re-rendering can be
improved to update only parts of the triangle mesh.

Regarding the haptic editing tools we are encouraged by these ini-
tial results, so we will extend the volume editor with several editing
operations, arbitrarily shaped editing tools, and more sophisticated
haptic rendering. Further more, we will investigate how to facili-
tate the creation of seed-regions by using haptic feedback based on
the original volumeV. Ideally, the haptic feedback would force the
user to draw inside the object, but using only gradient information
for this purpose is not enough since it is easy to lose track of object
boundaries when the contrast is low.

The segmentation method has shown promising results and we will
continue development of the method. Evaluation of the segmenta-
tion method and the usefulness of the haptic editing tools will be
conducted in coming work.

Acknowledgments

We would like to thank Doc. Ingela Nyström and Prof. Ewert
Bengtsson at the Centre for Image Analysis for proofreading and
useful comments. Prof. H̊akan Ahlstr̈om and Dr Hans Frimmel
at the Dept. of Radiology at Uppsala University Hospital are ac-
knowledged for providing the MRI data. This work was funded by
the Swedish Research Council, no. 2002-5645.

References

AGMUND, J. 2004. Real-time surface rendering for interactive
volume image segmentation in a haptic environment. Master’s

38



thesis, Uppsala University, Centre for Image Analysis. UPTEC
F04 071.

AVILA , R. S.,AND SOBIERAJSKI, L. M. 1996. A haptic interac-
tion method for volume visualization. InProceedings of IEEE
Visualization’96, 197–204.

BÆRENTZEN, J. A. 1998. Octree-based volume sculpting. InPro-
ceedings of Late Breaking Hot Topics. IEEE Visualization’98,
9–12.

GALYEAN , T. A., AND HUGHES, J. F. 1991. Sculpting: An inter-
active volumetric modeling technique. InProceedings of ACM
SIGGRAPH’91, 267–274.

GONZALEZ, R. C., AND WOODS, R. E. 2002. Digital image
processing, second ed. Prentice Hall, Inc.
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Abstract

We present a prototype command and control system that is based
on view-dependent co-located visualizations of geographically re-
lated data. It runs on a 3D display environment, in which several
users can interact with view consistent visualizations of informa-
tion. The display system projects four independent stereoscopic im-
age pairs at full resolution upon a custom designed optical screen.
It uses head tracking for up to four individual observers to gener-
ate distortion free imagery that is rendered on a PC based rendering
cluster. We describe the technical platform and system configura-
tion and introduce our unified software architecture that allows in-
tegrating multiple rendering processes with head tracking for mul-
tiple viewers. We then present results of our current visualization
application in the field of military command and control. The com-
mand and control system renders view consistent geographical in-
formation in a stereoscopic 3D view whereby command and control
symbols are presented in a viewpoint adapted way. We summarize
our experiences with this new environment and discuss technical
soundness and performance.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics

Keywords: Distributed Rendering, Networked Virtual Environ-
ment, Display Environments, Stereoscopic Projection, GIS

1 Introduction

The demand for visualization in command and control systems fol-
lows an increased focus on Network-Centric Warfare [Sundin and
Friman 2000]. Information from knowing exact positions and status
of individual military objects such as troops, tanks, airplanes, etc.
will only give an advantage if the information can be visualized in
an efficient and useful way in an environment suitable for collabo-
ration. In our work towards increasing the amount of directly avail-
able information to a user, we have chosen to focus on stereoscopic
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†e-mail:ulrik.spak@fhs.mil.se
‡e-mail:ssl@hig.se

visualization. The large amount of military information related to
spatial geographic data makes command and control systems suit-
able for stereoscopic visualization. We suggest that to achieve effi-
cient stereoscopic visualization in a collaborative environment each
user’s perspective of the display must be view-dependent with the
visualized model co-located in the same presentation volume. The
first characteristic, view-dependent perception is important for en-
hancing the visualization by presenting each user in the display
environment with textual tags and symbols oriented towards their
gaze. The second characteristic, the visualization of a co-located
model, ensure that all the users in the environment perceives the
model as one and can interact with it. To describe the visualiza-
tion technique based on these characteristics we use the term view-
dependent co-located visualization.

Computer generated stereoscopic visualization has a vast history.
Only a decade after the first computers were brought into existence,
volumetric displays were invented [Hirsch 1961; Ketchpel 1964]
and a few years after the head mounted display (HMD) [Sutherland
1968]. The stereoscopic visualization techniques developed since
then are to different degrees suitable for view-dependent co-located
visualization.

Autostereoscopic displays do not require the viewer to use a head
worn filter, since the display itself generates a stereoscopic visual-
ization. The two most common classes of autostereoscopic displays
for displaying general three-dimensional information are volumet-
ric displays and parallax displays [Halle 1997]. Volumetric dis-
plays can have an unlimited number of viewers due to their nature
of sweeping out a volume in space, but they do not allow for view-
dependent visualization since each point in visualization space can
be seen by several users. Parallax displays such as computer gener-
ated holograms and lenticular array displays makes view-dependent
co-located visualization theoretically possible but practically hard
to achieve. In the case with computer generated holograms the data
rate needed to produce a stereoscopic visualization is very high and
still not practically viable. Lenticular array displays uses an op-
tical layer that for each additional viewer reduces the resolution
of the image. For more than two face to face collaborating users
this technology will not suffice. HMDs used for displaying stereo-
scopic visualizations can either represent the surrounding environ-
ment through a virtual setup, a video see-through setup or an opti-
cal see-through setup [Azuma 1997]. Command and control work
is highly dependent on face to face collaboration. HMDs repre-
senting the surrounding environment by a virtual or video captured
stream will hinder the detection of subtle facial expressions used
in face to face collaboration. Optical see-through HMDs could be
an efficient alternative for collaborative work, but the technique is
sensitive to incorrect head tracking with the requirement of register-
ing six degrees of freedom (6DOF) at below 10 ms latency [Azuma
1997]. Compared to HMDs, stereoscopic screen visualization with

41



shutter glasses or passive polarizing glasses can be achieved effi-
ciently by means of three degrees of freedom tracking of the view-
point. It is therefore less affected by angular tracking errors and
net latency in the registration equipment. Stereoscopic presenta-
tion techniques based on active shutters generate frame rate depen-
dent flickering when two or more users share a presentation area
in a temporal multiplexing scheme [Agrawala et al. 1997]. In or-
der to avoid flickering when shutter glasses are used for more than
one independent observer, the display can be spatially divided into
separate viewing zones for each user [Kitamura et al. 2001]. This
approach works at the cost of significantly reduced effective resolu-
tion and spatial viewing area of the display. A recent paper [Hedley
et al. 2002] describes a technique for presentation of geographic in-
formation in a multiple-viewer collaborative setting. In their work,
view-dependent co-located visualization is accomplished by using
opaque head mounted displays for each independent observer. The
geographic information is presented in the environment using a
video see-through augmented reality (AR) system. The system cor-
relates geometries in a video based stream to fiducials where one
layer is used to present the geographic information and others as
lenses looking onto the geographic information. Another approach
to 3D visualization of geospatial information is VGIS [Lindstrom
et al. 1997]. Their work focuses on data handling and level of de-
tail algorithms and not on a multiple viewer collaborative setting.
Data is preprocessed and presented using a bottom up technique
which acquire and presents data in three stages: Preprocessing of-
fline, Intermediate online processing and Real-time online process-
ing. Their system interacts with simulations using Distributed In-
teractive Simulations (DIS) and can in the preprocess stage access
data from Arc/INFO GIS servers.

2 The Multiple Viewer Display Environ-
ment

In our research we use a novel display environment that is com-
posed of several hardware and software components. At the very
bottom we find a display which presents simultaneously the content
of eight independent image sources. These images are presented
within the same physical area on-screen and can therefore be per-
ceived in the same locus by different viewers. The eight co-located
images can be used to either provide four independent viewers with
individual stereoscopic imagery or to serve eight independent ob-
servers with monocular views.

2.1 Display and graphics hardware

The physical display system is essentially an integrated retro-
projection display system, in which the projection screen is ori-
ented horizontally. This approach provides a viewing metaphor vir-
tual world that is perceived as a bird’s eye view. Similar viewing
configurations have been presented earlier for instance in medical
application scenarios. What is novel with the display environment
presented here is the fact that eight independent digital image pro-
jectors are used to rear-project images from eight independent im-
age sources upon the same physical screen area. Each two projec-
tors are projecting from one of the four main directions upon the
screen. The square screen has a size of 0.8 by 0.8 meters. Pro-
jection images are horizontally adjusted such that the digital image
centers align with the centre of the square screen. The visible pixel
resolution of each projection image on-screen is 768 by 768 pix-
els. All eight projection-images are superimposed upon the same
physical screen area, but pairs of two are rotated 90 degrees or 180
degrees, respectively in relation to one another. The separation of

Figure 1: Configuration of the multiple viewer co-located retro pro-
jection display.

Figure 2: View upon the co-located display as seen by one eye of
the observer. The picture shows the viewpoint corrected monocular
view as well as (subdued) the pictures aimed for the remaining other
viewers.

stereo image pairs is accomplished by using polarizing filters in
front of the image projectors rather than using an active shutter sys-
tem with temporal multiplexing. Figure 1 shows schematically the
configuration of the display system and the viewer’s eye positions
in relation to the horizontal screen. One component of the display
that is not further described in this place is a special optical design
for the retro-projection screen, which allows the projection images
to penetrate the screen primarily along the direction of the optical
axis without loosing polarization. In consequence, a viewer be-
ing located at one side of the screen perceives only two of the eight
projection images and, when using passive stereo glasses, perceives
only one of the two images on either eye. Figure 2 shows the view-
point adapted projection image for an observer looking from one
side of the horizontal display. In this picture, also the view of the
remaining three observers upon the same object is evident. The pic-
ture is taken without polarizing filters, and for each observer only
a monocular view has been rendered. This display system is driven
by a small cluster of four commercial off-the-shelf computers that
are interconnected with a Giga-Ethernet local area network. Each of

42



the four computers is equipped with a NVidia QuadroFX graphics
cards and renders two pipes. Hence, for a four-person configura-
tion, each computer renders the stereo image pair for one observer.
For the purpose of head position tracking, a magnetic tracking sys-
tem is used (Ascension Flock of Birds) that is connected to a sepa-
rate computer.

2.2 A model for distributed rendering

As is evident from the technical description of the display envi-
ronment, the rendering process must be delegated upon different
rendering nodes, which requires some means of synchronization of
both the scene updates and the viewer dependent rendering param-
eters (e.g. head position and viewport orientation). Distributed ren-
dering and networked VR systems have been described earlier and
in various places in literature. These approaches can be divided into
two classes: The first class are systems that support rendering into
tiled displays (e.g. for very large projection walls). The purpose of
these kind of rendering architectures is to distribute graphic states
and primitives at a very low level, whereby typically the nodes
in a rendering cluster render a sub-portion of one view upon the
same scene. A well-known system is the Chromium architecture
[Humphreys et al. 2002]. Since these systems work at the very low
end of the graphics rendering pipeline, they cannot be used in ap-
plications that require node specific 3D scene content. The second
class of networked based rendering systems tackles the problem
at the high level graphical API. Commonly found in scene-graph
programming tools, they provide fully transparent propagation of
changes in the scene objects and scene graph. Early typical exam-
ples are the DIVE system [Carlsson and Hagsand 1993] or more
recently Net Juggler [Allard et al. 2002]. The comfort of having a
transparently shared and consistent scene database distributed over
a network is achieved at the cost of performance. Still, in most net-
worked VR environments, where the rendering results of various
nodes are viewed at different physical locations, certain delays in
scene updates can be tolerated. However, for physically co-located
view-ports as in tiled displays or as in our case of superimposed
displays these distribution models are not feasible, because delay
becomes a strongly distracting visual artifact. Typical for our appli-
cation scenario is an unusual blend of shared data and node-specific
states that affect rendering in the local node. The combination of all
following requirements renders our application different from most
other networked or cluster based rendering applications:

• Large and complex parts of the scenario (e.g. terrain) are
static and do not require network propagation

• Only relative few shared objects in the scene do change/move
and need to be distributed among rendering nodes

• Some parts of the scene (observer dependent symbol orienta-
tion) are node specific content and pertain to the local node
only

• View-port orientation and off-axis projection parameters are
node/observer specific and change continuously

Due to these particular viewing conditions, none of the existing net-
worked rendering architectures show to be really efficient solutions
for these purposes. Systems like Chromium do not cope well with
node specific scene content since they forward the graphical primi-
tives from one host application to several rendering nodes. Here the
nodes render view-port selectively rather than scene specific con-
tent. The classical network based VR systems on the other hand
introduce too much overhead considering, in our application, the
very few required scene updates that must be maintained almost in-
stantly at all nodes. In order to solve this problem independently

from the underlying scene-graph toolkit used for application de-
velopment, we developed a very slim distribution model for fast
exchange of data that must be shared among rendering nodes and
among tracking devices connected to the environment. At the core
of this distribution model we implemented a virtual shared memory
model that allows for applications to allocate and subscribe to ar-
bitrary memory partitions. The shared data repository resides on a
server and uses either TCP/IP or UDP services for propagation of
state changes between clients and the shared repository. Applica-
tions can enforce strict data consistency, when utilizing the built-in
locking mechanisms of our shared memory API. However, strict
consistency is not always needed and can be sacrificed in favor of
improved overall network performance. One typical such example
is frequent state changes of animated 3D objects as a result of direct
user manipulation. In the practical situation it is more favorable to
have a low latency motion of that kind of objects that is visible si-
multaneously for all viewers even though some of the states along
the motion might be lost. Based on this virtual shared memory, our
distribution model implements so-called data pools, where informa-
tion is shared among the clients, that is relevant for distributed ren-
dering and eventually for communication with other applications.
Our distribution model encapsulates mainly three types of objects
into the shared data pool. They are:

Projectors A projector entity contains configuration parameters for
a specific viewing frustum to be rendered by one or several
rendering nodes in the cluster. This comprises projection frus-
tum parameters in physical real world coordinates as well ren-
dering pipe parameters (viewports) and references to sensors,
to which the viewing position is locked.

Sensors The sensor entity is an abstract object that pertains to the
values received by some specific input device. It keeps a de-
scription of the semantics of the data delivered by the input
device as well as the actual data values measured with the
device. A sensor can for instance be a representation of any
physical tracking device, but it could also be a logical device
that integrates data from different physical input devices

Messages Messages entities are used to communicate messages
between processes. Message passing is accomplished by sub-
scribing to message entities. Accessing a message entity
broadcast the content of that message entity to all subscrib-
ing clients.

More technical details on this distribution model can be found in
[Lindkvist 2002]. An experimental performance study of this distri-
bution model has been presented by [Seipel and Ahrenberg 2002].
In the following section we describe, how this distribution model
is used in order to integrate multiple rendering processes into one
visualization application. Figure 3 illustrates the relations between
the different processes involved into the visualization system.

Four rendering processes that run concurrently on either network
node generate the visual output in the horizontal display. These
rendering processes are identical processes and therefore provide
the same functionality in regard to scene behavior and user inter-
action. At startup these render processes initialize their local scene
graphs based on a common shared scene database. At this stage, the
only difference among the four rendering applications is the param-
eterization of the off-axis projections, their viewports on-screen and
the associated sensor entity for head tracking. This process specific
configuration is loaded from a local configuration file that keeps a
reference to the actual sensor and projector entities in the shared
repository containing the relevant data. The rendering applications
do not maintain the actual data by themselves. Instead, sensor and
projector data is read only by the rendering processes to update
the display appropriately. The actual manipulation of the current
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Figure 3: The drawing shows schematically how input and output device (gray), processes (red) and shared resources are communicating to
flexibly synchronize the distributed rendering process in the co-located visualization environment.

configuration data for different projectors as well as the update of
current tracking data in the shared repository is performed by sep-
arate processes. Dedicated device managers are running as inde-
pendent processes in the network and continuously translate track-
ing values from devices into sensor values shared in the repository.
In this process, hardware specific device parameters are abstracted
to logical sensor devices that have certain agreed upon properties
(e.g. representing a 3D position, or a set of three vectors). For
the proper operation of the entire visualization environment, it does
not matter what number and actual type of input devices are used
to capture the values of a sensor entity. In fact, a device manager
process could read measurements from different tracking systems
and combine them into a logical sensor entity with higher accu-
racy. Or it could combine several positional device values into on
position/orientation sensor. Also, switching or replacing input de-
vice hardware during operation of the visualization is only a matter
of starting up a new physical device with its corresponding device
manager process. The principle coordination of all visualizations
shown in this environment is carried out by a server process, which
in this context is called a simulation manager. The simulation man-
ager is the administrator of the shared repository and main negotia-
tor between the nodes. It continuously updates almost all entities
in the shared repository and it routes messages between the differ-
ent processes. One of the main tasks of the simulation manager
is to update projector entities as a consequence of updated sensor
values due to head motion of individual users. Since projector en-
tities are transparently shared through the repository, all applica-
tions that have subscribed to a currently updated projector entity
will autonomously update their output on screen. In that sense up-
dates of the viewpoints the individual rendering clients can be con-
trolled remotely and simultaneously by other processes. Changes
of projector entities (hence client viewing parameters) could also
be triggered by other external events. One relevant example is the
change of the geographic context and cartographic layers within
the 3D visualization. Using commercially available geographical
information systems (GIS), an operator can chose the desired geo-
graphic region and map content and export it to a predefined server
partition. The simulation manager monitors continuously all recent
updates in that partition and broadcasts messages to the rendering

applications to initiate reloading or updating of their local scene
data (maps). This is a rather simple and straightforward method
to control the flow of geographic visualizations in the environment
described here. It proves efficient because it does not require re-
programming of external applications and it uses established GIS
tools to retrieve the geo-spatial data. Other tasks performed by the
simulation manager are controlling of workflow within the 3D vi-
sualization by means of other user interfaces, or to interface with
other external programs, which in our case, simulate military sce-
narios. In all cases of simulations, the simulation manager acts
as a computing process and event dispatcher only. The actual vi-
sual simulation and animation of graphical objects is handled iden-
tically by the rendering clients, which administrate their local scene
graphs. Therefore, animated graphical processes in the distributed
visualization follow a dead-reckoning approach [Singhal and Zyda
1999], whereby animation of objects is performed autonomously
at the local clients without synchronization between the animation
steps.

3 View Dependent Content Visualization
in Geo-Spatial Context

Visualizations in command and control systems present geo-spatial
data as well as content visualization where symbols describing mil-
itary functions and objects have a prominent role. The described
multiple viewer display environment is capable of presenting mili-
tary entities using 3D objects but research suggests that classifica-
tion and identification of military entities using 3D objects in most
cases are more difficult and takes longer time to perceive than us-
ing traditional symbols [Smallman et al. 2001]. We have chosen
to use traditional military domain 2D symbols in a 3D environ-
mental setting. Since the multiple viewer display environment is
capable of view-dependent co-located visualization, the traditional
2D symbols can be presented independently for each user of the
display environment. A trivial but effective view-dependent ren-
dering technique has been used to separate the presentation of mili-
tary domain symbols from the presentation of geographic informa-
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Figure 4: The control program for military domain visualization

tion. The view-dependent rendering technique presents the military
domain symbols oriented orthogonally to the gaze of each viewer.
This presentation technique where an object is correctly rotated and
orthogonal to the viewers gaze is called frontoparallel presentation.
Frontoparallel presentation should as well be effective for present-
ing text labels and other geographically tied symbols.

In figure 5, two users are shown collaborating in the multiple viewer
display environment. They are provided with two perspectives of
the same geographic area. For each view the symbols are frontopar-
allel towards the head tracked position of the user. The two views
are the view from south, figure 5(a) and the view from the west,
figure 5(b). In this scenario the users are discussing one particular
symbol, and as can be seen in the figure, the symbol they point to
is frontoparallel to both users views while remaining in the same
position in the geographic area. The observable difference between
frontoparallel and flat horizontal presentation is used to represent
inactive objects, which are rendered flat in the horizontal plane but
still oriented towards the spectator.

4 Discussion and Conclusion

We have used our distribution model based on a shared repository
to develop different visualization scenarios for the multiple display
visualization environment. From a perceptional point of view, we
have encountered that latencies in our distributed rendering pro-
cess are at a very short time levels, which results in no perceived
delays of animated structures among different viewers. A support-
ing factor in this context is that individual observers in the viewing
environment do not actually perceive the views of the other col-
laborators. Still, the users must be able to get a common sense in
regard to the temporal alignment when objects have started moving
in the scenario and when they have terminated their motion. This
temporal alignment is the common sensation of a shared dynamic
scene is however, not as time critical and does not require strict
frame-to-frame synchronization of the shared scene graph. Given
our current configuration, whereby one rendering node renders the
two stereoscopic views for one observer, the rendering of the left-
eye and right-eye frames are always strictly frame synchronized,
since they are rendered into different viewports within the same
physical frame buffer. Hence, undesired parallax artifacts due to
potential frame delays on the left eye and right eye, respectively,

(a) South

(b) West

Figure 5: Two users discuss a situation in the same geographic area
with military domain symbols frontoparallel to each users perspec-
tive.

are not possible. In fact, the distribution model described in this pa-
per would allow for quickly scaling up the rendering process upon
8 independent rendering nodes. This would not even require a re-
compilation of the system. Instead eight rendering processes would
be instantiated on eight network nodes, whereby the configuration
file for the local rendering processes would be modified to spec-
ify which respective projector and sensor entity should be used.
In this configuration, there is a potential risk for frame delays be-
tween the observer’s left and right eye view. Since our distribution
model advocates a dead reckoning approach to distributed anima-
tion, asynchronous frames due to different rendering performances
of the local nodes are likely. Since this type of configuration is
only hypothetical, we have only conducted informal tests on this
setting, which showed, that perceivable artifacts become visible.
However, our shared repository approach is general enough such
as to be used for synchronization of objects animations, even if it
would not guarantee strict concurrency. Our measurements from
previous experiments showed [Seipel and Ahrenberg 2002], that the
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number of frame out-of-synch can be kept to as low as two frames
in a sequence of 100 animation frames for a modestly sized scene.
One main objective of our shared repository approach was to enable
and maintain flexible configurations of viewports and viewer posi-
tions. The shared memory model is based on small data packets that
are distributed asynchronously in order to minimize low latencies
in network propagation. For the viewpoint-dependent visualization
this is an important criterion to maintain the illusion of virtual 3D
objects. The tracking values supplied by various device managers
in our environment, are propagated rapidly to the local rendering
nodes in order to accomplish dynamic viewing conditions. Our
preliminary user studies indicate that delays in viewing frustum up-
dates using sensor objects are not perceivably longer as compared
to configurations that interface directly to the tracking equipment.
We measure this in terms of the user’s subjective experience of
the three dimensional appearance of objects, which is largely de-
pendent on dynamic parallax. In this context we can state, that
three-dimensional appearance of virtual objects is equal for config-
urations that use shared sensor-entities and for configurations that
interface immediately to the tracking hardware. Our visualization
system has been developed with the goal to support flexible view-
port handling and complex viewing parameterizations. This was
a property, which we have missed in other previously published
distributed rendering architectures (see section two). The solution
that we have described here allows for controlling the visualization
from other applications than the actual rendering processes. In our
current visualization application, different phases of a military sce-
nario are controlled with a pen-based wireless computer interface as
shown in figure 4. In fact, a separate process performs the selection
of the appropriate viewport and perspective to be rendered by a ren-
dering client at a given time. Rendering clients are naı̈ve processes
in regard to viewpoint control. This opens up for new opportunities
in collaborative work. The scenario presented above demonstrates
collaborative work in the same geographical context. Another po-
tential working situation would be that a workgroup coordinator
(from a separate user interface), delegates planning tasks in differ-
ent topographic regions to the four different users at a time. In this
situation, the views upon the geographical visualization would tem-
porarily be split up into distinct local regions, and after task comple-
tion, all observers would again gather around the same global view
upon the scenario. This feature as well as user triggered private de-
tail views into the geographic context can be managed very flexibly
by means of the projector-entities in the shared repository. Another
example that demonstrates the flexibility of the distribution model
is the case of a user walking around the horizontal display. While
walking from one side over to the next side of the screen, the user
will, due to the optical properties of the screen, leave one viewing
zone and enter the next one. Different rendering nodes will provide
the views within the respective viewing zones, and their viewport
orientation will shift 90 degrees. In the military domain visualiza-
tions it has been assumed that frontoparallel 2D symbols are easier
to perceive than 2D symbols presented in the plane of a horizon-
tal display. An experiment comparing the efficiency in identifying
frontoparallel and flat horizontal presentation has been carried out
and gathered data are being evaluated. Preliminary results indicate
that frontoparallel presentation indeed has a lower error rate and
faster recognitions times when compared flat horizontal presenta-
tion.

5 Future Work

The visualization environment as described in this paper suffers
from apparent crosstalk between stereo images pairs, as is the case
for most visualization systems that present different information for

multiple viewpoints in the same physical display area. However,
according to interview studies with domain experts using the visu-
alizations, stereoscopic crosstalk was not reported as major disturb-
ing artifact. In order to quantify this further it would be interesting
to study in more detail how tolerant the human visual system is in
regard to visual crosstalk between the stereo image pairs and other
visual noise. These studies would require a definition and setup
of a measuring procedure that is generalized and portable to other
display environments. In regard to the frontoparallel presentation
of 2D symbols, we are conducting further experimental research
on the human’s capability in reading this form of presentation as
compared to traditional flat presentations.
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Abstract

We look at how analog and digital maps can be augmented with
context related information. In the analog case we use Augmented
Reality to superimpose virtual objects onto the view of a printed
map. For user friendliness we use standard mobile phone for Aug-
mented Reality. To do this we have ported the ARToolkit to Sym-
bian. We have implemented two case studies where printed maps
are augmented with traffic-data by attaching markers to them.

1 Introduction

The importance and usage of printed map through history needs no
further introduction. Maps can be found almost everywhere to help
us orient in our environment. In their analog e.g. printed form they
provide us static geospatial information. In recent years we have
also seen the introduction of digital maps in applications such as
car navigation, services on the web that let you search for a par-
ticular address and so on. Digital maps are more dynamic but also
more expensive to employ and are overwhelmingly outnumbered
by analog ones.

Ordinary 2D maps can be extended into several dimensions using
Augmented Reality (AR) as shown in [Bobrich and Otto 2002]. AR
is about enhancing a users view of the real world by projecting com-
puter generated graphical information onto it. Another way to see
it is that the visualization domain is projected onto the problem do-
main. To do this the position and orientation of the uses head must
be tracked by the system. Tracking can be done with ultra sound,
GPS, magnetic sensors, video etc. We are working with the AR-
Toolkit [ARToolkit ], which is based on video tracking of markers.
A marker consists of a square with a pattern. The pattern is known
and is used to identify the marker while the square is used for calcu-
lating the camera position and orientation relative to the reference
coordinate system centered at the marker. These extrinsic param-
eters are used as the modelview matrix in a 3D graphics pipeline
while the intrinsic parameters obtained during calibration of the
camera are used for the projection matrix. The overlaid graphics
can thus be rendered with the correct perspective.

In our research we are looking at Ubiquitous Mobile Augmented
Reality [Henrysson and Ollila 2004]. We want the platform to be
mobile and ubiquitous. We have chosen to work with Smartphones,
which have the necessary capabilities for AR i.e. camera, CPU,
storage and display. We have ported the ARToolkit to Symbian,
which is one of the dominating Smartphone platforms. The purpose
of our research is to visualize context related information where AR

∗e-mail: andhe@itn.liu.se
†e-mail: marol@itn.liu.se

is one of the visualization modes. The idea is to retrieve information
based on personalization and context awareness data and present
this information using appropriate visualization mode considering
the spatial relationship between information and environment.

2 Context Aware Maps

The idea behind context aware maps is to augment analog and dig-
ital maps with context related information. Context Awareness is
an area where sensor data such as position, time, temperature etc.
is used to optimize configurations and services. We have focused
on time and position. To augment the maps, markers with known
sizes and patterns have to be added. We must know the scale of the
map and the position of the markers for the superimposed graphics
to have the correct scale and position.

3 Implementation

We have implemented two case studies; a tram station map aug-
mented with an animation showing the current tram positions and
a map of the Nordic region augmented with air traffic data. The
hardware setup consists of a Nokia 6600 running Symbian and Se-
ries 60. It has a 0.3 megapixel camera with a QQVGA viewfinder
resolution and 106 MHz ARM9 CPU.

The tram stop application is driven by timetable data and shows
the current positions of the trams trafficking the area shown on the
map. Since this map was originally in bitmap format the imple-
mentation was straightforward. First we obtained the positions of
the tram stops in pixels relative to the composited marker and then
we translated the distance in pixel space to distance in coordinate
space. The rendering is done in 2D with sprites representing the
trams (see Figure 1).

Figure 1: Map with marker and screenshot from mobile device.

The flight data application uses authentic flight data from the Air
Traffic Control (ATC) [Lange et al. 2003] project at NVIS. In ATC
flight trajectories are visualized together with weather information.
The trajectories can be manipulated interactively to avoid collisions
and bad weather conditions. As a first step we have augmented a
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printed map of the Nordic region with a 3D flight trajectory be-
tween Arlanda and Kastrup (see Figure 2). The plane is repre-
sented with a simple polygon to reduce complexity since we are
using pure OpenGL ES. The flight information is given in longi-
tude and latitude, which are also the coordinates of the map. We
have approximated with Cartesian coordinated to avoid spherical to
planar mapping.

Figure 2: Flight data

We have so far only used one marker, which limits our field of view,
but more markers can be used to enlarge the trackable area.

4 Discussion and Future Work

We have shown how to tie context-related computer generated in-
formation to printed maps using AR on such a ubiquitous device
as a Smartphone. This can be applied to any printed map provided
its coordinate system and the relative positions of the markers are
known. A drawback of our current solution is that markers have to
be known in advance, but there exist solutions [Spotcode ] where
the pattern consists of a sequence similar to a bar code that can be
translated to a number and used to fetch information from a server.
Such networking solutions are essential for context aware maps that
require up-to-date information.

The current plan for future work is to speed up the software us-
ing fixed-point math. After that we will look at how to extend the
tracking to be more independent of markers. One technique that
will be useful for augmented maps is texture tracking [Kato et al.
2003] where texture features can be used to track the camera. Other
methods that will be studied are GPS, optical flow and inertia sen-
sors.

We would also like to study the interaction capabilities of the Smart-
phone and compare it to using a wand in front of an immersive
workbench, which is the case with the current ATC implementa-
tion.
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Figure 1: Reconstructed surfaces from two scans of the same door and exaggerated, color coded difference.

Abstract

We present a method for rapid GPU-assisted surface reconstruction
from range scanner data producing meshes suitable for visualiza-
tion and analysis of very slow-moving objects from multiple scans
of the same area.

CR Categories: I.3.6 [Computer graphics]: Methodology and
techniques—Graphics data structures and data types, Interaction
techniques

Keywords: surface reconstruction, meshing, point clouds, laser
scanner

1 Introduction

Usually, range scanners or other point measuring equipment is used
to sample an object from which a surface will be generated, reduced
or otherwise processed. The final model is expected to be used
on many occasions and therefore the time spent on constructing it
is considered expendable. [Amenta et al. 2002; Bajaj et al. 1995;
Curless and Levoy 1996]

We are facing a different situation—scans are to be acquired at reg-
ular intervals and the difference between them used to detect mo-
tion. Analysis will be both manual and automatic. A display will
be provided for users to look at the data, which will have to be ex-
aggerated for differences to become detectable. Automatic analysis
will run continuously, alerting a user when potentially interesting
data is detected.
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In this scenario meshes become irrelevant when new data is avail-
able, so time spent on creating a perfect mesh is wasted—especially
if nobody is looking at the display, in which case it will be used only
once for automated analysis.

It is also desirable to quickly be able to bring up a mesh repre-
senting changes between any two previous scans, providing further
incentive to find a solution that executes as fast as possible.

1.1 Previous Research

Automated surface reconstruction from point cloud data sets and
depth images has seen much research, though usually focused on
finding meshes that optimally fit the input point set in some way
or that use as few triangles as possible. We have found no existing
method suited for our conditions.

2 Surface Reconstruction

Surfaces are generated as regular grids, much like the input data.
Optionally, meshes may be generated from multiple point sets at
once, in which case corresponding vertices in the two meshes will
correspond to the same direction from the scanner. This is the most
common mode of operation since it facilitates motion analysis.

Reconstruction is fairly strightforward—input data is cleaned up,
matched to the target raster, cleaned up again, and normals are then
generated—the interesting part is that this process is almost entirely
performed on the graphics card.

2.1 Cleanup

Input point sets may contains both valid points, invalid points where
no measurement was recorded, points where the light was reflected
from multiple surfaces, and spurious incorrect values which do not
correspond to any surface. When light is reflected from more than
one surface the reported distance will lie between the correct alter-
natives, disconnected from both surfaces.
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The first task is thus to clean the data by removing invalid points.
Apart from actually loading the data, this is the only part of the
algorithm that is currently performed by the CPU.

A simple sweep of the data is performed, replacing the values of
all points which are invalid or disconnected from the surface. Val-
ues are considered disconnected if their distance from neighbouring
values in all directions is greater than a threshold. Coordinates are
also restored to scanner-centered spherical coordinates to ease pro-
cessing in later stages.1

2.2 Matching and Meshing

For motion analysis to work, vertices in one mesh must match cor-
responding vertices in the other. This would be trivial if all data sets
were sampled from exactly the same directions, but different scans
may use differing areas of interest and resolution, meaning that the
advantage of a regular grid input is lost at this point.

We calculate the spherical coordinate bounds of the two meshes
and use it to calculate the raster size of the final mesh. Two float-
ing point frame buffers which will be used for further processing
are created at this size. Linearization of the data and is then per-
formed by splatting points at one of the floating point buffers, start-
ing with single pixel points and followed by successively larger
points. Depth testing is used to avoid overwrites of pixels that have
already been set at smaller sizes.

At this stage the offscreen framebuffer contains only valid points
located at mostly correct positions. Some pixels will contain dupli-
cate values from when larger points were drawn. To remove dupli-
cates and place all points in a regular grid, the frame buffer is copied
to a vertex buffer and used to draw a triangle mesh. Interpolation
over the triangles will give all covered points a linearly weighted
depth corresponding to their position in the mesh. Duplicate points
will result in degenerate triangles and simply disappear.

Some cleanup is also performed—the points created here could be
used as a mesh directly, but drawing triangles blindly will result
in artifacts where surfaces are disconnected as triangles connecting
the edge verices will still be drawn. Such triangles are eliminated
by alpha testing—the test is set toα > 0 and vertices located near
discontinuities in the mesh have theirα set to 0. Interpolation will
cause triangles near discontinuities to haveα ∈ (0,1), which will
still keep them visible. Only triangles where all vertices haveα = 0
will be invisible.

Some errors are always introduced in the scanning so the penulti-
mate step is a smoothing of the mesh, performed by simple averag-
ing of adjacent depth values.

Finally, all points are converted to cartesian coordinates and nor-
mals are calculated.

3 Display

In order to display differences, vertex buffers from two meshes are
bound simultaneously and a vertex shader is used to interpolate
or extrapolate a coordinate from the provided two. Additionally,
a fragment shader samples a color ramp texture to provide color
based on the distance between the two meshes.

1Points are stored in cartesian coordinates in all formats supported by
the capture software used.

Figure 1 displays two different scans of the same door. The scans
use slightly differing areas of interest and the door is ajar in scan
number two. Image 3 displays color-coded and slightly exaggerated
difference in the area covered by both scans. This is the intended
main display mode in the final application.2

4 Performance

Graphics card locality is a major concern for performance. With
its drastically higher throughput we wish to offload as much work
as possible to the GPU, but reading this data back to the host is
a bottleneck. The current solution can be executed entirely on
the graphics card, given a card and drivers that support render-to-
vertex-array. Unfortunately, such drivers are not yet available for
the Radeon 9800 used in development so we have to copy data from
card to host and back again at multiple points during execution.

Only one stage in the vertex processing is currently performed on
the CPU—the cartesian to polar coordinate conversion. A bounding
box needs to be calculated from the polar coordinates, which is far
easier to do on the CPU, leading to a choice between performing
the conversion directly on the CPU or on the GPU followed by a
readback and loop for bounds calculation. The ideal solution would
perhaps be to calculate bounds on the GPU so that only a very small
readback is required.

The source data for the door displayed in Figure 1 contains 149211
points. The application generates a mesh from the point set in 0.22
seconds in its current state—crippled by unnecessary readbacks.

5 Discussion and Future Work

The weakest point is currently that polygons are generated between
disjoint surfaces. While these are never seen, fragments need to be
generated and processed for them. A solution would be to generate
new index sets that omit these triangles. Ideally, this would be per-
formed entirely by the GPU so that data must never be read back
to the host. Implementing this will likely be the next improvement
made.

Overall, the system works well for the intended use—it is optimized
for rapid mesh generation from two point sets and subsequent com-
parative display of these.
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Abstract 
This paper will give a brief introduction to airborne laser 
scanning. We will also give an overview of the current 
research activities at FOI Laser Systems in the fields of 
laser data processing and environment modelling.  

Introduction 
Modern airborne laser scanners (ALS) and digital cameras 
provide new opportunities to obtain detailed remote sensing 
data of the natural environment. This type of data is very 
suitable as basis for the construction of high fidelity 3D 
virtual environment models. There are many applications 
requiring such models, both civil and military. Applications 
relying on 3D-visualization, e.g. visual simulation, virtual 
tourism, etc. are perhaps the most common ones but there 
are many other important applications such as urban and 
environment management, crisis management, spatial 
decision support systems, command and control, mission 
planning, etc.  
To support these applications, new methods for processing 
ALS and camera data, extracting geographic information 
and supporting virtual environment modelling are needed. 
Applications such as disaster relief management, tactical 
mapping, etc. may also be supported depending on the 
turnaround time from data to information and models 
(McKeown, et al 1996).  
In our work, the long term goal is the development of new 
methods for rapid and highly automatic extraction of 
geographic information to support the construction of high-
fidelity 3D virtual environment models from remote 
sensing data. As remote sensing data we have used data 
from recent high resolution airborne laser scanners and 
digital cameras. Today, airborne laser scanning is a 
successful and established technology for terrain surveying 
(Wehr & Lohr, 1999). The integration of ALS and modern 
digital cameras for simultaneous data collection is also 
rapidly increasing. ALS systems are operated both from 
helicopters and airplanes today and measure the position, 
(x, y, z) of those points where the laser pulse is reflected 
from the terrain surface. The resulting data from laser 
scanner surveys are usually data sets consisting of a large 
number of irregularly distributed points representing a 
surface model of the survey area. Figure 1 below shows the 
laser point distribution from a forest area (top) and from a 
small urban area (bottom). Laser scanning and laser data 
processing are active and rapidly growing areas of research 
(ISPRS 1999, Annapolis  2001, Dresden 2003,) 

 
 

 

 
Figure 1: Laser point clouds. 

Overview of developed methods 
For the purpose of automatic generation of environment 
models, we have developed several novel methods for 
processing ALS data. For modelling the ground surface, we 
have developed a method based on active contours. The 
active contour is implemented as an elastic net that is 
pushed onto the laser data from below. Since the net has 
elastic forces, it will stick to the laser points that belong to 
the ground (Elmqvist, 2002). 

  
Figure 2: Ground modelling. 
The remainder of the laser points (ie the points which are 
not classified as “ground”) can then be segmented into a 
number of classes. With our methods it is possible to 
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separate eg. ground, vegetation, buildings, roads, lamp 
posts and power lines. For all these classes, further data 
processing can be performed to extract more feature 
parameters. For vegetation we have developed methods for 
identifying the position, width, height and in many cases 
even the species of individual trees (Persson & Holmgren 
2002), see Figure 3. The tree identification method has 
been verified using a ground truth dataset in collaboration 
with the Swedish University of Agriculture in Umeå. 

  
Figure 3: Laser point distribution within trees (left), tree 
species classification (right) 
For each segment that is classified as building, i.e. the 
building footprint, the elevation data is used to extract 
planar roof faces. Next, the relationships between the roof 
faces are analysed. Topological points are inserted where 
the face’s neighbours change. Sections between these 
points are defined as intersections, edges or both. A 
topological analysis is performed, where new points may 

be added and positions of points may be adjusted. In order 
to obtain building models with piecewise linear walls, the 
noisy edge sections are replaced by straight lines estimated 
using the 2D Hough transform. New points are also 
inserted at the intersections between the straight lines. 
Using these structures, 3D models of the buildings can be 
constructed, as illustrated in Figure 4 below. 

 
Figure 4: Building reconstruction process: Classification, 
data point extraction, topological analysis, 3D model. 
The output form all methods can be integrated in eg. 
commercial terrain database generation packages or in GIS 
applications to create a synthetic representation of the 
environment (Ahlberg & Söderman, 2002). This is 
illustrated in Figure 5.  
The data processing methods mentioned in this paper are 
automatic. This is a necessary requirement since the long 
term goal is to create an automated process from data 
collection to high resolution environment models.  
Future work includes improved classification and further 
refinement of the data processing methods. 

 
Figure 5: Extracted terrain features, an orthophoto mosaic and a DTM are integrated to create an environment model. 
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3D Reconstruction From Non-Euclidian Distance Fields

Anders Sandholm∗ Ken Museth†
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Figure 1: Left: Naive reconstruction by linear interpolation of 2D Euclidian distances to aliased (i.e. binary) input contours of a two-headed
dragon. Note the semi-transparent image plane corresponding to one of the horizontal sampling planes. Middle: Our improved spline
interpolation of Non-Euclidian distances. Right: Hight-field representations of the two distance fields shown as semi-transparent planes.
Green is the Euclidian distance and red is the non-Euclidian distance. Note how the smoothing suppresses the medial-axis on the red surface.

Introduction
We present preliminary results on a robust method for 3D recon-
struction from binary images of contours that sparsely sample 3D
geometry. Our approach consists of the following steps: First Eu-
clidian signed distance,Φ(x,y), is computed to each of the input
contours. Next we smooth these distance fields by convolution with
a filter kernel. The resulting non-Euclidian images are then inter-
polated to create a uniform volumetric implicit representation of
the geometry which is finally rendered indirectly by different mesh
extraction techniques.

Step 1: Deriving signed Euclidian distances
First we solving the Eikonal equation,|∇Φ| = 1, subject to the
boundary conditionΦ(x,y) = 0 for (x,y) ∈ the corresponding con-
tour. The Fast Marching Method[Sethian 1996] is a very efficient
algorithm to solve such Hamilton-Jacobi equations. This produces
implicit representations of the discrete contours in the whole image
plane. In regions of the image plane where a pixel is equidistant
from at least two other pixels on a contour∇Φ is undefined and
one has a so-called medial-axis, see green figure. Consequently
there typically only exist weak solutions to the Eikonal equation
which leads to the fact that the distance transform of the contours is
only Lipschitz continuous (i.e. not C1 everywhere). The presence
of such medial-axis singularities in the derivative typically create
noticeable kinks in 3D reconstructions directly from the Euclidian
fields. To address this problem our next step is to smooth the dis-
tance fields.

Step 2: Filtering the Euclidian distance fields
As explained above we need to suppress artifacts from the presence
of medial-axis in the signed Euclidian distance fields. Since the in-
put contours are binary we also need to anti-alias the corresponding
implicit representation. This all amounts to applying a smoothing
filter on the Euclidian distance fields. We have experimented with
the following different filter kernels:
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• Uniform and anisotropic Gaussian filters.

• Adaptive Gaussian filter where the width is a functions of
|φ(x,y)|, i.e. the Euclidian distance to the contour.

• Bi-Laplacian filter kernel, i.e.∆2Φ is minimized.

Step 3: Interpolation and mesh extraction
Once we have computed smoothed non-Euclidian distance fields
we can produce an implicit 3D representation of the corresponding
geometry by simple 1D interpolation between the 2D images to pro-
duce a uniform volume. The only constraint is that input contours
embedded in the 2D image have to overlap to produce connected
components in the 3D reconstruction. We have experimented with
the following different interpolation techniques:

• Simple linear interpolation.

• Natural Cubic Spline interpolation.

• Monotonicity constrained interpolation.

As the final step in our reconstruction scheme we use mesh extrac-
tion techniques on the volume to produce a final polygonal model.
We are experimenting with both Marching Cubes[Lorenson and
Cline 1987] and an Extended Marching Cubes[Kobbelt et al. 2001].

Result
Figure 1 shows our reconstruction technique on horizontal slices
of a two-headed dragon. Note that the contours in the slices are
binary and deliberately under-sampled by a factor of five. As can
be surmised from this figure our approach shows very promising
results, and we plan to further develop and exploit these ideas in
several exciting graphics applications.
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University of G̈avle
Stefan Seipel‡

University of G̈avle

Maximum normal Proposed method

Figure 1: Comparison between diffuse light calculated with maximum normal and proposed method for two directions of anisotropy.

Abstract

Cloth, hair, brushed metal, and other surfaces with small, regular
surface features exhibit anisotropic reflectance properties for which
common isotropic shading methods are not suited. Shading of such
materials is often implemented by computing the normal giving the
maximum light contribution instead of solving the integral that is
the sum of all reflected light. In this paper we show that this integral
can be simplified if the direction to the viewer and fibre geometry
is not taken into account. Still, this will give a more accurate result
than the very rough simplification of using the maximum contribu-
tion. This computation is simple for diffuse light. However, the
specular light still needs some more elaboration to work.

Keywords: anisotropic shading, diffuse light

1 Introduction

Anisotropic shading is a shading technique that could be used for
materials like hair and fabrics like silk [Banks 1994]. Such materi-
als have very small fibres with a main direction.

Poulin and Fournier [Poulin 1990] proposed a model for such ma-
terials that is rather complex and have so far been too expensive
to implement for real-time applications. Even with the processing
power available in graphics hardware today, a simpler model is still
required.

One such simplified and frequently used model proposes that the
light reflected by fibres is computed using the normal vector that
results in the largest contribution of reflected light [Heidrich 1998].
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This normal is obtained by projecting the light vector along the tan-
gent onto the normal plane, which is the plane spanned by the sur-
face normal and binormal. For the diffuse light the maximum nor-
mal is computed as

nmax =
l− t(l · t)

‖ l− t(l · t) ‖
. (1)

Poulin and Fournier compute the total light reflected from the fibre.
Moreover they take geometry and viewer position into account. The
total light can be computed by summing the dot products using an
integral, and this integral is modified by a factor depending on the
viewer position. None of these considerations are taken into ac-
count in the simple model.

2 Proposed Method

We propose a trade-off which will sum the light while not taking
geometry and viewer position into account. The surface normal
and binormal can be used as an orthogonal base for computing any
unit normal in the normal plane. This can be expressed as

n′ = ncosθ +bsinθ . (2)

However, the resulting integral will be simpler by usingnmax and
nmin as a base. Figure 2 illustrates these vectors.

The normal contributing least to the light is the one wherenmin · l =
0, it is obtained by

nmin =
l×nmax

‖ l×nmax ‖
. (3)

The minimum of a cosine function is offset byπ/2 from the max-
imum. This is excatly the case fornmin andnmax, hence these can
be used as a base. The light is computed by

Φ =
1
π

∫
ρ

0
Imin cosθ + Imaxsinθ dθ , (4)

ρ = cos−1(nmin ·b). (5)

Light is integrated over the portion of the fibre that would be visi-
ble if occlusion occured from the surface plane and not from other
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nmax
nminρ

Figure 2: Lit area and integration base vectors.

fibres, and then divided byπ as if no occlusion occured. Figure 2
illustrates the integration, the red area is actually lit but the red and
yellow areas are integrated.

The integral in (4) is very similar to what Poulin and Fournier pro-
pose, however

Imin = nmin · l = 0 (6)

Imax = nmax · l. (7)

The equation can therefore be reduced to

Φ =
1
π

∫
ρ

0
Imaxsinθ dθ , (8)

evaluation of which leads us to

Φ =
1
π

(−Imaxcosρ + Imaxcos0) . (9)

However, from (5) we haveρ = cos−1(nmin ·b), so the final formu-
lation is

Φ =
1
π

(l ·nmax)(1−nmin ·b). (10)

In this form all trigonometric functions are eliminated, leaving only
normalization, dot- and cross product, all of which are efficient op-
erations in fragment shaders on current hardware.

3 Discussion

The proposed method is a compromise between accuracy and speed
—far more accurate than and the simplistic maximum normal
method but faster and less accurate than the Poulin method.

Which method is most suitable naturally depends on the situation,
but we have presented a reasonable compromise in cases where
performance is required and the maximum normal method is not
enough.

Figure 1 compares our method with maximum normal lighting.
Keep in mind that only diffuse light is used.

Research continues in search of a comparable method for the spec-
ular component and a more accurate complete solution.
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1 Introduction

Level sets have recently proven successful in many areas of com-
puter graphics including water simulations[Enright et al. 2002] and
geometric modeling[Museth et al. 2002]. However, current imple-
mentations of these level set methods are limited by factors such as
computational efficiency, storage requirements and the restriction
to a domain enforced by the convex boundaries of an underlying
cartesian computational grid. Here we present a novel very mem-
ory efficient narrow band data structure, dubbed the Sparse Grid,
that enables the representation of grid independent high resolution
level sets. The key features our new data structure are

• Both memory usage and computational efficiency scales lin-
early with the size of the interface.

• The values in the narrow band can be compressed using quan-
tization without compromising visual quality.

• The level set propagation is independent of the boundaries of
an underlying grid. Unlike previous methods that use fixed
computational grids with convex boundaries our Sparse Grid
can expand and/or contract dynamically in any direction with
non-convex boundaries.

• Our data structure generalizes to any number of dimensions.
• Our flexible data structure can transparently be integrated with

the existing finite difference schemes typically used to numer-
ically solve the level set equation on fixed uniform grids.

2 Data Structure

Previously proposed methods for localizing level set computa-
tions[Peng et al. 1999]require the entire 3D grid and additional data
structures representing the narrow band to be present in memory.
However, our Sparse Grid data structure implements localized level
set computations on top of a dynamic narrow band storage scheme
to obtain both a time and space-efficient data structure.
Figure 1 shows a human head and a slice of its corresponding 3D
Sparse Grid representation. The values of all grid points in the nar-
row band, shown in red and green, are explicitly stored and may
additionally be quantized to further reduce the memory footprint.
The(x,y,z) index-vector of each grid point in the narrow band must
also be stored, however explicit storage does not scale well. Instead
we exploit the connectivity of the narrow band to develop an effi-
cient index-vector storage scheme with a compression. This com-
pact storage scheme is defined recursively in the dimensions of the
grid and allows the Sparse Grid to easily generalize to any dimen-
sion. For a 3D Sparse Grid, the scheme stores: 1) The start and
end z-index of each connected component in the z-direction. 2)
The start and end y-index of each connected component in the y-
direction contained in the projection of the 3D narrow band onto the
x-y plane. 3) The start and end x-index of each connected compo-
nent in the x-direction contained in the recursive projection of the
3D narrow band onto the x-axis. The actual grid point index-vector
of the values in the narrow band are decoded on the fly. Sequential
access to all grid points in the Sparse Grid can be done in linear
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Figure 1: Human head and slice of Sparse Grid representation.

time, thus providing constant time access to each grid point on aver-
age. Level set propagations typically require information about the
gradient, curvature etc. in each grid point, which requires knowl-
edge of neighboring points. Constant time access to neighboring
grid points within a stencil is provided by iterating a stencil of iter-
ators through the narrow band. Random access is logarithmic.
The N-dimensional Sparse Grid enables the narrow band to be re-
built in linear time using a fast algorithm that takes advantage of
the information about connected components readily available in
the storage format.

3 Evaluation

Figure 2: Morph time and memory usage on a193×356×251grid.

Figure 2 shows the time (left) and memory (right) usage for a level
set morph computed with the method of Peng(cyan), the method
of Peng improved with a memory efficient localized narrow band
update (red), the Sparse Grid (blue) and the Sparse Grid with a
16 bit quantization (green). The Sparse Grid methods are mostly
faster and use far less memory. The methods of Peng use the same
amount of memory. The improved method of Peng (red) does not
ensure cache coherency which explains the rapid increase in run-
ning time at the beginning. We plan to apply the Sparse Grid to
several research areas in computer graphics in the future.
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The Virtual Forest
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Figure 1: Screenshots from two different forest scenes.

1 Introduction

Offline rendering of computer generated trees has received much
research in the last decade, resulting in some impressive imagery
[Deussen et al. 1998]. Realtime rendering for simple cases has also
been explored, both for highly detailed trees viewable from a dis-
tance [Weber and Penn 1995] and the textured low-polygon ver-
sions seen in current games.

We present a system that renders an animated synthetic forest in
realtime for interactive walkthroughs. Up close, trees are detailed
enough that individual leaves are animated, while continuous level-
of-detail adjustments keep processing load low when viewed from
afar.

2 Creation

Tree creation is based on the algorithm described by Weber and
Penn [1995] but adapted to better suit nordic trees such as spruce
and pine, cleaned from many implementation artifacts, and gener-
ally made easier to handle for tree designers and developers.

The most important enhancement to tree creation is the addition
of a health parameter, which is required for modeling of realistic
pine trees. Moderate reductions in health cause leaves to be ran-
domly omitted from the creation process. Larger reductions remove
branches as well.

3 Display

A continuous level-of-detail algorithm keeps rendering running
smoothly independently of the distance from which trees are

∗e-mail: dwn@hig.se
†e-mail: ssl@hig.se

viewed. Up close, individual leaves and branches are rendered as
textured primitives. When the camera moves further away these are
gradually replaced by simple points and lines. Moving even further,
they are removed when the average projected size of the primitives
fall below one pixel.

Display differs from [Weber and Penn 1995] in two important as-
pects—the original algorithm had to traverse the entire tree to se-
lect which parts of it were to be rendered, and leaves were singly-
colored complex shapes. We use prearranged vertex buffers and
select parts of the tree by computing index ranges in these. Leaves
are rendered as textured quads, improving storage efficiency and
detail. Shapes may be applied to the leaves by alpha testing.

Entire trees are animated in a simple swaying motion around the
base by the vertex shader and leaves are individually animated in
a rotation around their parent stem. While this is simplistic, the
results are pleasing.

Shaders also increase the diversity of the forest by allowing slight
changes to the size and color of tress instanced from the same base
model and by reducing memory requirements due to per-tree rather
than per-vertex storage of some parameters.

4 Results

Figure 1 contains screenshots from our simulation, these were cap-
tured at 1600×1200, running in excess of 50 frames per second on
a Radeon 9800 XT. Since essentially all work is performed by the
graphics card the CPU is irrelevant during rendering.

The system allows for realtime frame rates on affordable consumer
cards for relatively complex scenes.
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