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Determining the Non-Existen
eof Compatible OSPF WeightsPeter Broströmpebro�mai.liu.se Kaj Holmbergkahol�mai.liu.seDepartment of Mathemati
s, Linköping university, SE-58183 LINKÖPING, SwedenAbstra
tMany tele
ommuni
ation networks use the OSPF proto
ol (Open Shortest PathFirst) for de
iding the routing of tra�
. In su
h networks, ea
h router sends tra�
on all shortest paths to the destination. The links in the network are assignedweights to be used by the routers when 
al
ulating the shortest paths.An interesting question is whether or not a set of desired routing patterns 
anbe used in an OSPF network. We investigate this problem, and �nd new ne
essary
onditions for the existen
e of weights making the desired patterns shortest. Apolynomial algorithm that for most 
ases veri�es the non-existen
e of 
ompatibleweights is presented. The algorithm also indi
ates whi
h parts of the tra�
 patternsthat are in 
on�i
t. Some 
omputational tests of the algorithm are reported.Key words: Tele
ommuni
ation networks, Internet Proto
ol, OSPF, routing, 
om-patible weights.1 Introdu
tionIn tele
ommuni
ation networks using IP (Internet Proto
ol) and the routing proto
olOSPF (Open Shortest Path First), tra�
 is routed on the shortest paths from ea
h routerto ea
h destination. The routers 
al
ulate themselves the shortest paths to all possibledestinations. The shortest path 
al
ulations are based on link weights set by the networkoperator. If the shortest path is not unique, tra�
 leaving a router is split equally on theleaving ar
s that belong to a shortest path to the destination. This is 
alled ECMP (theequal-
ost multipath prin
iple), and means that all shortest paths are used.We will here study the problem of �nding weights that give 
ertain spe
i�ed tra�
patterns in a dire
ted graph. We will also study the more important question of whetheror not there exists a set of weights giving the desired tra�
 patterns. Tra�
 patterns arerepresented by the paths to be used. (If the paths are known, it is a simple matter to
al
ulate the a
tual tra�
.)Similar problems have previously been treated as optimization problems in [4℄, [9℄, [2℄,and [5℄, and in a larger model for network design in [8℄. Most of this work is done forundire
ted graphs and for single shortest paths. Restri
ting the tra�
 patterns to 
ontainonly single paths yields a simpli�
ation of the more general 
ase we are treating. Theusage of dire
ted graphs (i.e. allowing di�erent weights in di�erent dire
tions) is also animportant generalization.
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Apart from that, our main 
ontribution is the way in whi
h we verify and 
hara
terizethe non-existen
e of weights. This is done by identifying 
ombinations of tra�
 patternsthat prohibit the existen
e of weights. This yields ne
essary 
onditions for the existen
e ofweights, that are stronger than the 
onditions previously known. In addition, we presenta polynomial method that explains why the spe
i�ed patterns 
an not be used in anIP/OSPF network. This 
ould be very useful in a planning pro
ess, sin
e it identi�es theparts of the patterns that need to be modi�ed.The paper is organized as follows. Se
tion 2 is used for presenting the problem indetail, and for presenting a linear model whi
h is used for �nding appropriate weights.The LP-dual is formulated in se
tion 3, and one type of unbounded solution to the LP-dual is 
lassi�ed in se
tion 4. The solution method is presented in se
tion 5, while possiblemodi�
ations of SP-graphs are dis
ussed in se
tion 6. The method is exempli�ed in se
tion7, while 
omputational results are presented in se
tion 8. The last se
tion 
on
ludes thepaper and identi�es parts that will be studied further.2 Problem formulationWe 
onsider a dire
ted graph G = (N;A) with a set of nodes N and a set of ar
s A. Anumber of subsets of the ar
s, Al � A for l = 1; : : : ; m, 
alled SP-graphs (shortest pathgraphs), are given. We assume that ea
h set Al 
ontains a spanning tree (ignoring thedire
tion of the ar
s) and that no set Al 
ontains a dire
ted 
y
le. (These assumptionsare motivated below.)An SP-graph 
ontains a number of paths, and these paths are the desired shortestpaths. We wish to �nd weights wij for all ar
s (i; j) 2 A, so that the paths in Al haveminimal sum of the weights (i.e. are shortest). Thus if Al 
ontains a path from node sto node t, this path should have a minimal sum of weights. All paths from s to t not
ompletely in Al should have larger sums of weights. If Al 
ontains more than one pathfrom node s to node t, all these paths should have (the same) minimal sum of weights.Let us byW (p) denote the sum of weights of all ar
s in path p, i.e.W (p) =P(i;j)2pwij.If p(s; t) and q(s; t) are two paths from node s to node t, and p(s; t) � Al while q(s; t) 6� Al,we require thatW (p(s; t)) < W (q(s; t)). If both p(s; t) and q(s; t) lie in Al, then we shouldhave W (p(s; t)) = W (q(s; t)).The 
ase when there is at most one path in Al between a pair of nodes is 
alled thesimple path 
ase. More work has been done on the simple path 
ase (see e.g. [4℄ and [5℄)than on the more general 
ase. However, in order to enable the use of load balan
ing,whi
h is important in pra
ti
e, an SP-graph must be allowed to 
ontain several pathsbetween a pair of nodes.An SP-graph is meant to be the result of a router's shortest path 
al
ulations to allpossible destinations, so usually an SP-graph is an out-graph with a single origin, spanningall nodes. Di�erent SP-graphs then have di�erent origins.The weights wij must be integers greater or equal to 1. In prin
iple there is an upperbound, namely the largest integer that 
an be represented by the router, for example 216,but this upper bound is 
onsidered to be redundant. In this 
ontext, we might mentionthat in [6℄ only weights up to 20 are 
onsidered when demonstrating the advantages ofoptimizing over the weights.De�nition 1 The weights w are said to be 
ompatible with Al if W (p(s; t)) = W (r(s; t))for any two paths p(s; t) � Al and r(s; t) � Al, and W (p(s; t)) < W (q(s; t)) for any twopaths p(s; t) � Al and q(s; t) 6� Al.
8



We will use the term 
ompatible weights for a set of weights w that are 
ompatiblewith ea
h Al for l = 1; : : : ; m. This means that 
ompatible weights simultaneously giveall the desired shortest paths for all SP-graphs. Our �rst obje
tive is to �nd a set of
ompatible weights.Note that the weights do not depend on l, so the existen
e of 
ompatible weights implysome sort of similarities between the sets Al. Given the sets Al for l = 1; : : : ; m, thereare two possibilities, either 
ompatible weights exist or they don't. If 
ompatible weightsexist, the di�eren
e between two di�erent sets of 
ompatible weights is often unimportant.Thus we will mainly address the following question: Does a set of 
ompatible weights exist?We are not only interested in the yes/no answer to this question. If the answer is yes,we wish to �nd 
ompatible weights. More importantly, if the answer is no, we wish toidentify the parts of the SP-graphs that prohibit the existen
e of 
ompatible weights. Thiswill open possibilities of modifying SP-graphs so that 
ompatible weights 
an be found.If the weights w are given, the routers determine the shortest paths to ea
h destinationby solving shortest path problems. The SP-graphs have di�erent origins/destinations, sowe need to solve one shortest path problem for ea
h SP-graph l.Let P l(w) denote the shortest path problem obtained for the weights w and the ori-gins/destinations given by SP-graph l. If we let bl denote the right-hand-side of the
onstraints of P l(w), then the di�eren
es between SP-graphs are restri
ted to bl. TheLP-dual of the shortest path problem P l(w) is given below.maxXi bliyi s.t.� yi + yj � wij 8(i; j)Here the obje
tive fun
tion depends on l, while the feasible set does not. The dual
onstraints state wij + yi � yj � 0 8(i; j), while the 
omplementary sla
kness 
onditionstell us that only ar
s with wij + yi � yj = 0 
an be used by the shortest paths.Sin
e a shortest path problem is an LP-problem, an optimal solution is a basi
 solution,and thus forms a spanning tree. This means that there is a spanning tree of ar
s withwij + yi � yj = 0. If the shortest paths are not unique, there are additional ar
s withwij+yi�yj = 0. The ar
s with wij+yi�yj = 0 will however never form a dire
ted 
y
le,sin
e the weights are positive.A �rst ne
essary 
ondition for the existen
e of 
ompatible weights is that no SP-graph
ontains a 
on�i
t in itself. In other words, we assume that there exists a set of weights
ompatible with ea
h SP-graph Al. Disagreement only o

urs as 
on�i
ts between two ormore SP-graphs. We assume that ea
h SP-graph has been obtained by solving a shortestpath problem (for some given weights). This motivates the assumtions that ea
h SP-graphspans all nodes and that no SP-graph 
ontains a dire
ted 
y
le.Let us now 
onstru
t a mathemati
al model for the problem of �nding 
ompatibleweights. The problem is really only a feasibility problem, but let us add the goal ofminimizing the sum of the weights. This is no important goal, but there is no point inletting the weights be
ome unne
essarily large.min X(i;j)2Awijs.t. wij + �li � �lj = 0 8(i; j) 2 Al; l = 1; : : : ; m (1:1)wij + �li � �lj � 1 8(i; j) 62 Al; l = 1; : : : ; m (1:2)wij � 1 8(i; j) 2 A (1:3) (P1)Constraints 1.1 ensure that the ar
s in Al are in minimal weight paths, while 
onstraints1.2 ensure that ar
s outside of Al are not in minimal weight paths. The 
oe�
ients in the
9



obje
tive fun
tion are unimportant, and 
ould be repla
ed by any nonnegative 
oe�
ients.The solution of P1 will be rational, and by multiplying w and � by a 
onstant ofappropriate size, it 
an be made integral. It is easy to show that this retains feasibilityin P1. (For details, see [3℄.)Lemma 1 If there exists a feasible solution to P1, there exists a feasible integer solutionto P1.For a 
ertain l ea
h ar
 appears on
e in 
onstraint set 1.1 or on
e in 
onstraint set 1.2,sin
e an ar
 is either in the SP-graph or not in it. Therefore any feasible solution to P1will satisfy wij + �li � �lj � 0 8(i; j); 8l. Summing these 
onstraints over any path p(s; t)yields W (p(s; t)) = X(i;j)2p(s;t)wij � X(i;j)2p(s;t)(�lj � �li) = �lt � �ls,so we have W (p(s; t)) � �lt � �ls for any path p(s; t) and any l. (1.4)The number of variables in P1 is jAj +mjN j, and the number of 
onstraints is equalto (m + 1)jAj, so the size of P1 is quite reasonable.Theorem 1 P1 has a feasible solution if and only if there exists a set of 
ompatibleweights.Proof: Consider a 
ertain SP-graph Al and two nodes s and t su
h that there exists apath p(s; t) in Al from node s to node t. Now assume that P1 has a feasible solution, wand �. The sum of weights for a path p(s; t) � Al isW (p(s; t)) = X(i;j)2p(s;t)wij = X(i;j)2p(s;t)(�lj � �li) = �lt � �ls,due to 
onstraints 1.1. Let dst be the minimal sum of weights w on any path from nodes to node t. Sin
e p(s; t) is one possible path from s to t, we have W (p(s; t)) � dst, sodst � �lt � �ls.There must exist a path q(s; t) from node s to node t with minimal sum of weights.For su
h a path we get dst = W (q(s; t)) � �lt � �ls due to 1.4, i.e. dst � �lt � �ls.Combining these results yields dst = �lt � �ls. Above we noted that if p(s; t) � Al thenW (p(s; t)) = �lt � �ls, so then W (p(s; t)) = dst, whi
h means that p(s; t) is a minimalweight path. We have thus proved that any path in Al is a minimal weight path.Now 
onsider another path r(s; t) 6� Al between the same two nodes. Constraints 1.1and 1.2 yields the following.W (r(s; t)) = X(i;j)2r(s;t)wij = X(i;j)2r(s;t)\Al wij + X(i;j)2r(s;t)nAl wij � X(i;j)2r(s;t)\Al(�lj � �li) +X(i;j)2r(s;t)nAl(�lj � �li + 1) = X(i;j)2r(s;t)(�lj � �li) + jr(s; t) n Alj = �lt � �ls + jr(s; t) n Alj =dst + jr(s; t) n Alj > dst.This shows that any path with jr(s; t) nAlj > 0 (i.e. at least one ar
 outside of Al) hasW (r(s; t)) > dst, i.e. is not a minimal weight path. So for any l, we have shown that thepaths in Al are minimal weight paths, and paths not 
ompletely in Al are not minimalweight paths. This veri�es that the weights w are 
ompatible with all SP-graphs, so thereexists a 
ompatible set of weights if P1 has a feasible solution.
10



Let us now assume that there exists a set of 
ompatible weights, w � 1. Then we 
ansolve the shortest path problems P l(w) for ea
h l, and get the dual solutions yl. Sin
ethe weights are 
ompatible, all ar
s in the SP-graphs will be in
luded in minimal weightpaths, while ar
s outside of the SP-graphs will not.This means that wij+yli�ylj = 0 for ea
h ar
 in Al, while wij+yli�ylj > 0 for ea
h ar
outside of Al. If wij+yli�ylj < 1 for some (i; j) 62 Al, then w and � 
an be multiplied witha positive 
onstant of appropriate size, in order to make the solution satisfy 
onstraints1.2. (See also lemma 1.) This veri�es that there exists a feasible solution to P1 if thereexists a 
ompatible set of weights. 2Comments: It may be noted that that in the �rst part of the proof, no additionalassumptions were made on the stru
ture of the SP-graphs. In the se
ond part, however,we note that shortest path problems yield spanning shortest path trees, so if the SP-graphswere not spanning, not 
onne
ted or 
ontained dire
ted 
y
les, 
onstraints 1.2 might notbe satis�ed.In 
on
lusion, if P1 has a feasible solution, no further assumptions on the SP-graphs arene
essary. Verifying that P1 has a feasible solution if 
omptaible weights exist, however,requires that ea
h SP-graph 
an be obtained by solving a shortest path problem.It should be pointed out that nothing in the proof prohibits SP-graphs from 
ontainingseveral paths between a pair of nodes.3 Using LP-dualityAs mentioned above, our main interest lies in whether or not there exists 
ompatibleweights. This question 
an now be reformulated to whether or not P1 has a feasiblesolution. We start by formulating the LP-dual to P1.Let 
lij be the dual variables to 
onstraint sets 1.1 and 1.2 (note that for any l, ea
har
 appears on
e, either in 
onstraint set 1.1 or in 
onstraint set 1.2), and let Æij be thedual variables for 
onstraint set 1.3. The LP-dual 
an be formulated as follows.max mXl=1 X(i;j)62Al 
lij + X(i;j)2A Æijs.t. mXl=1 
lij + Æij = 1 8(i; j) 2 A (2:1)Xj:(i;j)2A 
lij � Xj:(j;i)2A
lji = 0 8i 2 N; l = 1; : : : ; m (2:2)Æij � 0 8(i; j) 2 A (2:3)
lij � 0 8(i; j) 62 Al; l = 1; : : : ; m (2:4) (P2)
Note that 
lij is free (not sign-restri
ted) for (i; j) 2 Al; l = 1; : : : ; m, and that thesevariables do not appear in the obje
tive fun
tion.Let us �rst eliminate Æ. Constraint set 2.1 immediately gives Æij = 1 �Pml=1 
lij, and
onstraint set 2.3 yields Pml=1 
lij � 1. Doing the substitution in the obje
tive fun
tionyields mXl=1 X(i;j)62Al 
lij + X(i;j)2A(1� mXl=1 
lij) = jAj � mXl=1 X(i;j)2Al 
lij.We now ignore the 
onstant jAj and 
hange from maximization to minimization. (Thea
tual obje
tive fun
tion value is unimportant.) We have now simpli�ed P2 to the fol-lowing.
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min mXl=1 X(i;j)2Al 
lijs.t. mXl=1 
lij � 1 8(i; j) 2 A (3:1)Xj:(i;j)2A 
lij � Xj:(j;i)2A
lji = 0 8i 2 N; l = 1; : : : ; m (3:2)
lij � 0 8(i; j) 62 Al; l = 1; : : : ; m (3:3) (P3)
Let v be the optimal obje
tive fun
tion value of P3. The only di�eren
e between P3and a standard multi
ommodity network �ow problem, see for example [1℄, is that somevariables are free (not nonnegative). Our goal at the moment is not to solve this problem
omputationally, but rather to investigate its properties.Constraint set 3.2 states that the in�ow to ea
h node must equal the out�ow, for ea
h
ommodity. This means that we are looking for a 
ir
ulating �ow, as there are no sour
esor sinks. Constraint set 3.1 
orresponds to 
apa
ity 
onstraints, and all 
apa
ities areequal to one. (Note that these ones are the obje
tive fun
tion 
oe�
ients for w in P1,and 
ould, as mentioned, be other non-negative 
onstants.)We note that a feasible solution is obtained by setting 
lij = 0 8(i; j) 2 A; 8l. Thismeans that Æij = 1 8(i; j) 2 A, and a qui
k look at the 
omplementary sla
kness 
onditionsreveals that this 
orresponds to setting wij = 1 8(i; j) 2 A. This is unlikely to be a feasiblesolution in P1, but sin
e it is a feasible solution to P3, an upper bound to the optimalobje
tive fun
tion value of P3 is zero. A better solution 
an be found if some of the (free)variables in the obje
tive fun
tion 
an be de
reased. Lemma 1 and LP-duality gives thefollowing result (see [3℄ for details).Lemma 2 P1 has a feasible integer solution if and only of P3 has a bounded optimalsolution.Thus there is no feasible integer solution to P1 if P3 has an unbounded solution, so we
an study P3, in order to draw 
on
lusions about the existen
e of 
ompatible weights.4 Unbounded multi
ommodity �ow solutionsLet us now study unbounded solutions to P3. We start at a feasible solution, for example�
 = 0, and 
hange it su
h that some variables go toward in�nity.Constraints 3.2 only allows 
ir
ulating �ow, so we must 
hange the �ow in 
y
les.Consider a 
y
le C � A, C = F [ B, where F are the ar
s used forwards (in theirdire
tions) and B are the ar
s used ba
kwards (against their dire
tions). We 
hange the�ow of 
ommodity l0 in the 
y
le C by in
reasing 
lij with the amount � on forward ar
s,and by de
reasing 
lij with the amount � on ba
kward ar
s. To get an unbounded solution,we need to in
rease � in�nitely.Constraint set 3.1 says that Pml=1 
lij � 1, so if one variable in the left-hand-side is tobe in
reased in�nitely, another variable must be de
reased in�nitely. Spe
i�
ally, if the�ow of a 
ommodity l0 in ar
 (i; j) is in
reased by �, then the �ow of another 
ommodity,l00, in that ar
 must be de
reased by the same amount. This 
an be easily a

ommodatedby using the same 
y
le C for 
ommodity l00 as for 
ommodity l0, but doing the 
hange inreversed dire
tion. Thus we get the following 
hange.
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l0ij = �
l0ij + � 8(i; j) 2 F; 
l0ij = �
l0ij � � 8(i; j) 2 B
l00ij = �
l00ij � � 8(i; j) 2 F; 
l00ij = �
l00ij + � 8(i; j) 2 BA

ording to 
onstraint set 3.3, 
lij � 0 8(i; j) 62 Al 8l, some variables 
an not bede
reased in�nitely. The �ows that are de
reased are 
ommodity l0 in ar
s B and 
om-modity l00 in ar
s F , so these variables must not appear in any non-negativity 
onstraint.In other words, all (i; j) 2 B must also be in
luded in Al0 and all (i; j) 2 F must also bein
luded in Al00 . This means that it is ne
essary that B � Al0 and F � Al00. This 
an alsobe written as jB \Al0j = jBj and jF \Al00 j = jF j. Furthermore, sin
e jB \Al0 j � jBj andjF \ Al00 j � jF j, an equivalent statement is that jB \ Al0 j+ jF \ Al00 j = jBj+ jF j.Lemma 3 The �ow in a 
y
le C = F [B 
an only be in
reased in�nitely if B � Al0 andF � Al00.We 
all su
h a 
y
le a feasible 
y
le, while if jB \Al0 j+ jF \Al00 j < jBj+ jF j, the 
y
leis 
alled infeasible.In order for P3 to have an unbounded solution, the obje
tive fun
tion value must bede
reased in�nitely. Inserting the parameterized solution into the obje
tive fun
tion yieldsv = mXl=1 X(i;j)2Al 
lij = mXl=1 X(i;j)2Al �
lij + X(i;j)2F\Al0� � X(i;j)2B\Al0� � X(i;j)2F\Al00� + X(i;j)2B\Al00�= � + (jF \ Al0 j � jB \ Al0 j � jF \ Al00j+ jB \ Al00j)� = � + r̂C�;where r̂C = jF \Al0 j � jB \Al0j � jF \Al00 j+ jB \Al00 j is 
alled the redu
ed 
ost for 
y
leC, and � =Pml=1P(i;j)2Al �
lij, whi
h is a 
onstant.In order for v ! �1 as � ! 1, the redu
ed 
ost r̂C must be negative. Now weremember that this unbounded solution is feasible only if jB \Al0 j = jBj and jF \Al00j =jF j, so the redu
ed 
ost be
omes r̂C = jF \ Al0j + jB \ Al00 j � jF j � jBj and a negativeredu
ed 
ost is obtained if jF \Al0 j+ jB \Al00 j < jF j+ jBj. Sin
e jF \Al0j 
an never belarger than jF j and jB \ Al00 j 
an never be larger than jBj, the only possibility for thisinequality not to hold (i.e. r̂C = 0) is that jF \ Al0j = jF j and jB \ Al00 j = jBj. In otherwords, in order for the redu
ed 
ost to be negative, it is enough if there is one element inF not in Al0 or one element in B not in Al00 .We 
all ar
 (i; j) eligible if either (i; j) 2 F and (i; j) 62 Al0 or (i; j) 2 B and (i; j) 62 Al00.Moreover, a 
y
le with jF \Al0 j+ jB\Al00j < jF j+ jBj is 
alled an improving 
y
le, whileif jF \ Al0 j+ jB \ Al00 j = jF j+ jBj, the 
y
le is 
alled non-improving.Lemma 4 A feasible 
y
le C = F [ B indi
ates an unbounded solution of P3 only ifjF \ Al0j+ jB \ Al00 j < jF j+ jBj, i.e. if there is at least one eligible ar
 (an ar
 in F notin Al0 or in B not in Al00).Summing up these 
on
lusions, we wish to �nd a 
y
le C = F[B, and two 
ommoditiesl0 and l00 su
h that B � Al0 and F � Al00 while jF \ Al0 j + jB \ Al00j < jF j + jBj, whi
hmeans that the 
y
le is both feasible and improving.De�nition 2 A 
y
le C = F [ B is 
alled valid if there exist two indi
es l0 and l00 su
hthat jB \ Al0 j = jBj, jF \ Al00 j = jF j and jF \ Al0 j+ jB \ Al00j < jF j+ jBj. Equivalently,for a valid 
y
le, B � Al0 and F � Al00, while B 6� Al00 and/or F 6� Al0.Theorem 2 If there exists a valid 
y
le, then there exists no 
ompatible set of weights.
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Theorem 2 
an also be proved by dire
t arguments in P1, not using LP-duality. Bywalking around the 
y
le, one 
an sum up all 
onstraints en
ountered, and from this drawthe 
on
lusion. The details of this are given in [3℄.A previously known ne
essary 
ondition for the existen
e of 
ompatible weights is thatif two desirered paths use the same two nodes in the same order, then the paths betweenthe two nodes must be identi
al. Paths that satisfy this are 
alled sub-optimal. It is in [3℄shown that if two SP-graphs 
ontain paths that are not sub-optimal, then a valid 
y
leexists. Furthermore, in se
tion 7 we give an example with sub-optimal paths where avalid 
y
le exists. Thus, the absen
e of valid 
y
les is a stronger ne
essary 
ondition forthe existen
e of 
ompatible weights than sub-optimality.One 
an easily show the following (for details, see [3℄).Lemma 5 A valid 
y
le must 
ontain at least three nodes and three ar
s.If all SP-graphs are trees, there does not exist any 
y
le within an SP-graph, even if wedisregard the ar
 dire
tions. Sin
e a feasible 
y
le has B � Al0 , we 
an draw the 
on
lusionthat F 6� Al0 for any feasible 
y
le. Also, sin
e F � Al00 , we know that B 6� Al00 . Thisimmediately tells us that any feasible 
y
le is improving, i.e. valid.Theorem 3 If the SP-graphs Al0 and Al00 are trees, then any feasible 
y
le (i.e. withB � Al0 and F � Al00) is also valid.5 A method for �nding valid 
y
lesLet us now 
onsider pra
ti
al ways of �nding valid 
y
les. We wish to �nd a valid 
y
leC = F [ B and two indi
es l0 and l00 verifying its validity, i.e. su
h that jB \ Al0 j = jBj,jF \ Al00 j = jF j and jF \ Al0j+ jB \ Al00j < jF j+ jBj.We enumerate all pairs of 
ommodities, i.e. try to �nd a valid 
y
le for ea
h l0 =1; : : : ; m and l00 = 1; : : : ; m. There are (m � 1)2 possibilities, but as soon as we �nd avalid 
y
le, we stop. So assume now that l0 and l00 are given.First we note that Al0 [Al00 must 
over the 
y
le, so ar
s not belonging to any of thesesets are dis
arded, i.e. removed from the graph. Then, sin
e we require B � Al0 andF � Al00 , we label ea
h ar
 in Al0 with B, and ea
h ar
 in Al00 with F. This is 
alled thelabeling phase.After this, all remaining ar
s are labeled at least on
e. Ar
s labeled only with B mustbelong to the set B, if they are in
luded in the 
y
le, and ar
s labeled only with F mustbelong to the set F , if they are in
luded in the 
y
le. Ar
s labeled with B or F are eligible,while ar
s labeled with both B and F are not eligible.The next step is to remove parts of the remaining graph that 
an not be a part of avalid 
y
le. This is 
alled the redu
tion phase. In this stage we must obey the ar
 labels,so that an ar
 labeled F 
an only be used forwards, and an ar
 labeled B 
an only beused ba
kwards, and an ar
 labeled both with B and F 
an be used in both dire
tions.For example, an ar
 �entering� a node i 
an be an ar
 ending in node i with label F, anar
 starting in node i with label B, or an ar
 labeled with both F and B (regardless oforiginal dire
tion).The redu
tion phase aims at ensuring that all remaining nodes have at least one en-tering ar
 and at least one leaving ar
 (di�erent from the entering ar
).� For any node with only one adja
ent ar
: Dis
ard the node and the ar
.
14



1

2

3 4

5

6Figure 1: A graph with an ar
 not in
luded in any 
y
le.� If there are no ar
s entering (leaving) a node: Dis
ard the node and all adja
entar
s.� If there is only one ar
 entering (leaving) a node, and this ar
 is labeled with bothB and F: Keep the label that enables entering (leaving) the node, and remove theother label.Furthermore we note that there must be at least three nodes and three ar
s in a valid
y
le, see lemma 5, so any graph smaller than that may be immediately eliminated.� For any 
onne
ted graph 
omponent with less than three nodes or less than threear
s: Dis
ard all nodes and all ar
s in the 
omponent.These graph redu
tions should be repeated until no more 
hanges o

ur. We need toinvestigate ea
h node at least on
e, 
he
king all its adja
ent ar
s. As soon as a 
hangeis made in the graph, all a�e
ted nodes have to be 
he
ked again. As the 
hanges areeither removing an ar
 label or removing a node, at most jN j+ jAj 
hanges 
an be made.If we keep a list of the in-degree and out-degree of every node, this list 
an easily beupdated when 
hanges are made, espe
ially if the 
hange only a�e
ts one ar
. An simpleestimation of the 
omplexity of the redu
tion phase is O(jN j3).Lemma 6 If the graph is 
ompletely eliminated by the redu
tion phase, there exists novalid 
y
le with the two SP-graphs 
onsidered.If the graph is not 
ompletely eliminated, a graph with at least three nodes remains,and it 
ontains at least one feasible 
y
le. A

ording to lemma 4, a feasible 
y
le is validif it 
ontains an eligible ar
, i.e. one ar
 in F outside of Al0, or one ar
 in B outside ofAl00 . If there are no eligible ar
s in the graph, there is no valid 
y
le in the graph, and weare �nished with this 
ommodity pair.Let us start with an eligible ar
. A 
y
le is found simply by traversing nodes, using aleaving ar
 that is di�erent from the entering. After at most jN j steps, we will return toa node previously visited, and have thus found a 
y
le.It is not 
ertain that our starting ar
 is in
luded in the 
y
le we �nd. A
tually, it isnot 
ertain that there exists a 
y
le in
luding our starting ar
. See the graph in �gure 1,whi
h might be the result of the redu
tion phase. Note that the graph has two 
y
les,and that regardless of whi
h ar
 we start with, one of them will be found. However, if westart with ar
 (3,4), and hope to �nd a 
y
le with it in, we will fail. We will instead �ndthe 
y
le 4-6-5.In general there are two possibilities. Either there exists a 
y
le 
ontaining an eligiblear
, or there does not exist one. In the �rst 
ase, we wish to �nd the 
y
le. In the se
ond
ase, we wish to verify that there is no su
h 
y
le, and 
on
lude that there exists no valid
y
le for this pair of 
ommodities. We try to make the 
y
le as large as possible, sin
ethat might in
rease the probability that our starting ar
 will be in
luded in the 
y
le. If
15



there is more than one outgoing ar
 from a node, we avoid if possible ar
s going to alreadyvisited nodes.As soon as we �nd a 
y
le in
luding our starting ar
 or another eligible ar
, we havesu

eeded in �nding a valid 
y
le, and 
an terminate the pro
edure. If there is no eligiblear
 in the 
y
le, we have found a 
y
le with F � Al0 and B � Al00, i.e. a 
y
le with redu
ed
ost equal to zero. Su
h 
y
les are not valid, and should if possible be removed from thegraph.If the 
y
le is �isolated�, in the sense that the total out-degree from the 
y
le is equalto zero (see 
y
le 4-6-5 in �gure 1) or the total in-degree into the 
y
le is equal to zero(see 
y
le 1-3-2 in �gure 1), it 
an be eliminated. The reason is that the ar
s in the 
y
le
an not be a part of another 
y
le, sin
e either we 
an not leave the 
y
le on
e we are init, or we 
an not enter it from nodes outside the 
y
le. This reasoning 
an be extendedto any subgraph as follows.De�nition 3 A subgraph 
ontaining no eligible ar
s and with either total in-degree equalto zero or total out-degree equal to zero, is 
alled an isolated subgraph.Lemma 7 No node in an isolated subgraph 
an be a part of a valid 
y
le.All nodes in an isolated subgraph (and all adja
ent ar
s) 
an thus be dis
arded. Wethen return to the redu
tion phase, sin
e this 
ould enable additional redu
tions in thegraph.Let us now assume that a graph with at least three nodes and at least one eligible ar
remains. We also assume that no valid 
y
le has been found, no more redu
tion of thegraph is possible and that the heuristi
 
y
le sear
h fails to �nd a 
y
le.Suppose that we 
hoose an eligible ar
 (i; j), say a forward ar
 not in Al0 . A 
y
lein
luding this ar
 
onsists of ar
 (i; j) and a path from node j to node i. Therefore wesear
h for a path from j to i (or a path from i to j if (i; j) is a ba
kward ar
). We set
ost zero on all eligible ar
s and one on all others. Ar
s labeled with both F and B aredupli
ated, one in ea
h dire
tion.Then we �nd the shortest path from node j to i with a standard shortest path method,for example Dijkstra's method, whi
h has the 
omplexity O(jN j2). The result is either apath from j to i, or a proof (a 
ut separating j from i) that there exists none. If we havefound a path, a 
y
le is formed by adding ar
 (i; j), and we have su

eeded in �nding avalid 
y
le. If there is no path, we know that there exists no 
y
le in
luding ar
 (i; j).Then this ar
 
an be removed from the graph, and we return to the redu
tion phase,whi
h may yield new results in the absen
e of ar
 (i; j).A
tually, using Dijkstra's method, we will label all nodes that are rea
hable from nodej, and the 
ut will indi
ate a set of nodes, D, that has no leaving ar
. If there is noeligible ar
 in the subgraph spanned by D, we have found an isolated subgraph whi
h 
anbe eliminated.This way we will either �nd a valid 
y
le or eliminate the whole graph. Con
erningthe 
omplexity, at least one ar
 will be removed in ea
h main iteration, after whi
hthe redu
tion phase is redone. A 
rude estimation of the 
omplexity of the method isO(m2jAjjN j3), whi
h is O(jAjjN j5) if the number of SP-graphs equals the number ofnodes, and it is 
ertainly not more than O(jN j7). This 
an probably be de
reased, butour 
on
lusion is that the method is polynomial. Furthermore, this 
omplexity has littleto do with the pra
ti
al performan
e of the method.Let us summarize the Valid Cy
le (VC) method in a more algorithmi
 fashion.
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1. Choi
e of SP-graphs: If all pairs of SP-graphs have been 
ompared, go to 12.Otherwise 
hoose two SP-graphs l0 and l00 not previously 
ompared.2. Labeling phase: Label ea
h ar
 in Al0 with B and ea
h ar
 in Al00 with F. Ar
slabeled with only B or only F are marked eligible.3. Redu
tion phase: Repeat until no more 
hanges:Remove nodes with only one adja
ent ar
.Remove nodes with no entering (leaving) ar
s.Remove an ar
 label if the other label gives the only entering (leaving) ar
.Remove all isolated 
omponents with less then three nodes or ar
s.4. Elimination 
he
k: If all ar
s are eliminated, go to 11 .5. Eligible ar
: Sear
h the remaining graph for an eligible ar
. If no eligible ar
 exist,go to 11. Otherwise, let (i; j) be the eligible ar
 found, and L its label.6. Heuristi
 
y
le sear
h: Find a 
y
le by heuristi
: Start with ar
 (i; j) (in theproper dire
tion) and traverse nodes, using adja
ent ar
s. Never use the same ar
twi
e. Stop when a node is visited a se
ond time: A 
y
le is found.7. Evaluation of 
y
le: If the found 
y
le 
ontains an eligible ar
, go to 13. If thefound 
y
le has total in-degree or out-degree equal to zero, go to 10.8. Shortest path 
y
le sear
h: Set ar
 
ost equal to zero for eligible ar
s and equalto one for the other ar
s. Find shortest path from node j to node i if L is F, or fromnode i to node j if L is B. If a path exists, add ar
 (i; j) to form a 
y
le, and go to13.9. No path: Remove ar
 (i; j). If the rea
hable subgraph 
ontains some eligible ar
,go to 3.10. Isolated subgraph: An isolated subgraph is found. Eliminate all nodes in thesubgraph and all adja
ent ar
s. Go to 3.11. Graph eliminated: No valid 
y
le found. Go to 1.12. No valid 
y
le found: No valid 
y
le exists. Terminate the method. (Try to �nd
ompatible weights.)13. Valid 
y
le found: A valid 
y
le is found. Terminate the method. No 
ompatibleweights exist.Comments: Feasible dire
tions of the ar
s are given by the labels. When a node isremoved in the redu
tion phase, all adja
ent ar
s are also removed. When sear
hing for
y
les, the dire
tion is given by the label of the eligible starting ar
. A 
y
le found by theshortest path method always 
ontains an eligible ar
, so this does not need to be 
he
ked.For the spe
ial 
ase when all SP-graphs are trees, theorem 3 tells us that any feasible
y
le is also improving, and thus valid. A feasible 
y
le is always found in step 6, and weknow that it is valid, so we will go dire
tly to step 13. In this 
ase, steps 7, 8, 9 and 10will never be used, and 
an be removed from the algorithm.
17



Theorem 4 After a �nite number of steps, algorithm VC will terminate, either with avalid 
y
le, or with the whole graph eliminated, in whi
h 
ase there exists no valid 
y
le.The algorithm VC 
an be used to 
he
k if a number of SP-graphs agree. See se
tion6 for a dis
ussion about the possibilities of 
hanging SP-graphs to make them agree. It
an also be used in di�erent iterative pro
edures for determining whi
h SP-graphs to use,out of a larger number. One might also 
onsider to use it within an advan
ed ConstraintProgramming method, where algorithm VC is an implemented 
onstraint.6 Modi�
ations of SP-graphsIf no 
ompatible set of weights exist for a 
ertain set of SP-graphs, these SP-graphs 
annot be realized in an IP network using OSPF. In this 
ontext there is something �wrong�with this set of SP-graphs.If our task is to determine the values of the weights, and we are for
ed to use the weightsfound, we will get tra�
 patterns that are di�erent from what is desired. However, as P1is infeasible, solving it will not yield any useful information about how to set the weights.P1 
ould be made feasible by 
hanging some of the indata. The simplest possibility isto remove some SP-graph, whi
h means that some paths are no longer 
onsidered to bedesired. In su
h a 
ase, our method is dire
tly useful, sin
e it indi
ates two 
on�i
ting SP-graphs, l0 and l00. Removing one of these will remove that parti
ular 
on�i
t. Obviouslythis may have to be repeated, sin
e our method stopped when it found the �rst 
on�i
tingpair of SP-graphs.Another possibility is to modify an SP-graph. Again it is useful that our methodindi
ates whi
h SP-graphs to 
onsider. We even know whi
h set of ar
s in the SP-graphsto 
onsider. In su
h a situation, we get a 
y
le C = F [B and two indi
es l0 and l00, su
hthat B � Al0 and F � Al00 (sin
e it is feasible). We would also like to have B � Al00 andF � Al0, but there is at least one ar
 not ful�lling this, sin
e the 
y
le is improving. Thear
s making it improving are given by the sets F̂ = f(i; j) : (i; j) 2 F; (i; j) 62 Al0g andB̂ = f(i; j) : (i; j) 2 B; (i; j) 62 Al00g.In order to remove a valid 
y
le, we 
an either make it non-improving or make itinfeasible (or both). The following a
tions are possible to take.1. Add all ar
s in F̂ to Al0 and and all ar
s in B̂ to Al00 . This makes the 
y
le non-improving.2. Remove one ar
 in B \Al0 from Al0 or one ar
 in F \Al00 from Al00 in su
h way thatthe SP-graph remains 
onne
ted. This makes the 
y
le infeasible.3. Repla
e ar
(s) in Al0 or Al00 to make the 
y
le infeasible and/or non-improving.Unfortunately, these 
hanges might 
reate new 
on�i
ts between the SP-graphs. Addingar
s might make a previously infeasible 
y
le feasible, and if it is improving, it will be
omevalid. Removing ar
s might make a previously non-improving 
y
le improving, and if itis feasible, it will be valid. The development of a better method for 
hanging SP-graphsis a topi
 for future resear
h.
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FFigure 3: The graph after the labeling phase (left) and the graph after the redu
tionphase (right).7 A small exampleLet us now study an example with two SP-graphs (based on an example given in [7℄).SP-graph A1 is an in-tree entering node 6, while SP-graph A2 is an out-tree leaving node1, as shown in �gure 2. This pair of SP-graphs is suboptimal, sin
e the only node pair
onne
ted in both A1 and A2 is 
onne
ted by an identi
al path (node pair (1,6)).We label all ar
s in A1 with B and all ar
s in A2 with F. The left graph in �gure 3shows the situation after the labeling phase.In the graph redu
tion phase, ar
s (1,2) and (1,3) are labeled F so if it should bepossible to enter node 1, ar
 (1,6) must be labeled B. Therefore we remove label F fromar
 (1,6). However, now node 6 
an not be entered, so node 6 and all adja
ent ar
s aredis
arded. Sin
e ar
 (1,6) was removed, it is not possible to enter node 1, so it is dis
arded,together with all adja
ent ar
s. In the right part of �gure 3, we show the graph remainingafter the redu
tion phase.All ar
s are now eligible, sin
e both ar
s in F lie outside A1 and both ar
s in B lieoutside A2. The heuristi
 
y
le sear
h will �nd the 
y
le 2 - 4 - 3 - 5 - 2 and we 
on
ludethat there does not exist any 
ompatible weights for this pair of SP-graphs.If we wish to modify the SP-graphs so that 
ompatible weights exist, we 
ould add ar
s(2,4) and (3,5) to A1 and (2,5) and (3,4) to A2. There are now two paths in A1 betweennodes 2 and 6 (and nodes 3 and 6), so this introdu
es splitting of the tra�
. The samehappens in A2 between nodes 1 and 4, and between 1 and 5.We might instead 
onsider removing an ar
 from A1 or A2. However, as A1 and A2 aretrees, this is not possible sin
e the 
orresponding SP-graph will fall apart. It is possibleto repla
e an ar
 in one SP-graph, for example repla
e (2,5) by (2,4) in A1. This 
hangewill remove the valid 
y
le. Furthermore no new 
on�i
ts will appear, and there exists
ompatible weights after the 
hange.
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Table 1: Computational results.jN j P NV NW NO TT TI10 41 18 22 1 16 0.415 42 35 7 0 34 0.820 40 33 7 0 97 2.430 40 33 7 0 536 13.48 Implementation and 
omputational testsThe VC-algorithm has been implemented in T
l/Tk within the framework of the graph-i
al pa
kage VINEOPT (Visual Network Optimization) (www.vineopt.
om). T
l/Tk is as
ripting language, and the 
ode has been translated to C with the pa
kage MKTCLAPP.Nevertheless this implementation is probably mu
h slower than a proper implementationin C.A number of test problems have been generated in the following manner. We start withfour networks with 10, 15, 20 and 30 nodes and generate weights su
h that splitting isprobable. Shortest path trees to ea
h node are 
al
ulated, and SP-graphs are 
onstru
tedby in
luding all ar
s with redu
ed 
ost equal to zero. This means that the number ofSP-graphs is equal to the number of nodes, and that all SP-graphs are in-graphs spanningall nodes.The resulting SP-graphs obviously have 
ompatible weights. A goal of the problemgeneration is that it should not be known in advan
e if 
ompatible weights exist, so somemodi�
ations are made. The �rst modi�
ation is to in
lude one ar
 with redu
ed 
ostequal to one in a randomly 
hosen SP-graph. The se
ond modi�
ation is to add an ar
 toa randomly 
hosen SP-graph, su
h that the depth of the ending node of the ar
 is greaterthan the depth of the starting node. It 
an be shown that neither of these modi�
ationslead to dire
ted 
y
les in the SP-graphs.One solution approa
h is to �rst try to �nd 
ompatible weights by solving P1 with anLP-
ode, and if it fails to �nd a feasible solution, analyze the situation further with theVC-algorithm. Another approa
h is to �rst run the VC-algorithm, whi
h will either provethat no 
ompatible weights exist, or indi
ate that 
ompatible weights might exist. In thelatter 
ase, we try to �nd the weights by solving P1.The �rst approa
h is probably more e�
ient, sin
e all pairs of SP-graphs must be
onsidered by the VC-algorithm. However, sin
e the topi
 of this paper is to analyze aset of SP-graphs, we have 
hosen to use the se
ond approa
h. The largest part of thesolution time is therefore spent on 
omparing the SP-graphs, sin
e P1 is only solved whenno valid 
y
le is found. We use the 
ode lpsolve for solving P1.In table 1 the 
omputational results are summarized. P denotes the number of instan
esin the group, NV is the number of instan
es with valid 
y
les, NW is the number ofinstan
es with 
ompatible weights, NO is the number of instan
es without valid 
y
lesand 
ompatible weights (whi
h means that the unbounded solution of P3 is of a more
ompli
ated type). TT is the total time for all of the problems, and TI is the average timefor ea
h instan
e, both in se
onds. The 
omputer used is a 2.4 GHz PC running Linux.Table 1 shows that the solutions times are reasonable. Another important result is thatonly for one of the 163 di�erent instan
es solved, 
ompatible weights do not exist eventhough no valid 
y
le is found. This indi
ates that valid 
y
les seem to 
apture most 
aseswhere 
ompatible weights do not exist. We 
an therefore draw the 
on
lusion that valid
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y
les give a pra
ti
al and useful 
hara
terization of instan
es for whi
h no 
ompatibleweights exist.9 Con
lusionsWe have presented a new and useful way of �nding instan
es of shortest paths graphsthat together prohibits the existen
e of 
ompatible weights for IP networks using OSPF.The 
hara
terization is based on so 
alled valid 
y
les. A polynomial method for �ndingvalid 
y
les is proposed. Computational results 
on�rm that the solution method doesnot take ex
eedingly long time, and that it seems to 
apture most 
ases where 
ompatibleweights do not exist.Future resear
h will 
onsist of in
luding this method into a method for �nding the op-timal design of an OSPF network. We will also investigate and develop pra
ti
al solutionmethods for the more 
ompli
ated 
ases where neither 
ompatible weights nor valid 
y
lesexist.A
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Abstract 
 

Several computational decision analysis approaches have been developed 
over a number of years for solving decision problems when vague and 
numerically imprecise information prevails. However, the evaluation 
phases in the DELTA method and similar methods often give rise to 
special bilinear programming problems, which are time-consuming to 
solve in an interactive environment with general nonlinear programming 
solvers. This paper proposes a linear programming based global 
optimization algorithm that combines the cutting plane method together 
with the lower bound information for solving this type of problems. The 
central theme is to identify the global optimum as early as possible in 
order to save additional computational efforts. 
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1 Introduction
With the rapid development of graphical user interfaces, it is possible to bring the
use of sophisticated computational techniques for decision analysis to a broader
group of users, and many decision analytic tools have emerged. However, most
of them consist of some straightforward set of rules applied to precise numerical
estimates of probabilities and values no matter how unsure a decision maker is of his
or her estimates. The requirement to provide numerically precise information in such
models has often been considered unrealistic in real-life decision situations. Besides,
sensitivity analysis is often not easy to carry out in more than a few dimensions at
a time because of precise figures. When a decision maker is faced with a decision
problem that could not be directly judged by his or her empirical experience, or
according to available historical data, a module allowing imprecision is obviously of
great value.

A number of techniques allowing imprecise statements have been suggested, but
they are concentrated more on representation and less on evaluation. In spite of
several years of intense activities, only a few decision analytic tools, for example,
ARIADNE, DecideIT and Winpre, can evaluate imprecise estimates. Among these
tools, the DELTA method for decision analysis, described in [4, 5, 6, 7, 11], is an
approach towards analyzing decision problems containing imprecise information,
represented by intervals and relations. It has been implemented in the Decision
Analysis System (DAS) DecideIT [8], and has been used in various real-life con-
texts; e.g., [12]. Due to the introduction of interval and qualitative estimates, the
relaxation of classical decision theory in this respect gives rise to special Bilinear
Programming (BLP) problems, whose study is a sub-field of Nonlinear Programming
(NLP).

In Fig. 1 below, a decision tree is presented,

Figure 1: A Decision Tree

where D1 is a decision node, E1 and E2 are probability nodes, representing inde-
terminism, with associated probability distributions. The leaves are consequence
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nodes with convex sets of associated value or utility functions. In DELTA, a deci-
sion frame represents a decision problem of this type. The idea behind such a frame
is to collect all information necessary for the model in one structure. This struc-
ture is then filled in with user statements represented as linear inequalities. User
statements can be range constraints, core intervals, or comparative statements. In a
decision frame, a consequence ci is denoted by a variable vi and the user statements
can be of the following forms for the numbers a1, a2, b1, b2, d1, and d2.

• Range: vi is definitely between a1 and a2;

• Core interval: vi is likely to fall between b1 and b2; and

• Comparison: vi is larger than another variable, vj , by an amount between d1

and d2.

All value statements are translated and collected together in a value base (V-
base). On the other side, with the usual normalization constraints

∑
i∈I pi = 1

and
∑

j∈J pj = 1, where I and J are index sets labelling the consequences of two
alternatives, all probability statements in a decision problem are translated into a
probability base (P-base). The structure ≺ P,V Â is referred to as a decision frame.

Given a decision frame ≺ P,V Â, the primary evaluation rules in DELTA are
based on pair-wise comparisons using a generalization from the principle of maximiz-
ing the expected utility. A typical issue in this context is to maximize an expression,
such as max(

∑
i∈I pivi−

∑
j∈J pjvj), which is subject to a constraint set defined by

a decision frame. Similar evaluation rules apply in other analysis methods.
More generally, comparative decision rules in computational decision analysis

are variations of the following form:

1
2 [min(

∑
i∈I pivi −

∑
j∈J pjvj) + max(

∑
i∈I pivi −

∑
j∈J pjvj)] (1)

In a typical decision situation, imprecise estimates occur in both P- and V-
bases, which results in a special BLP problem. It should be noted that in (1), the
corresponding maximization problem is readily solved by minimizing the negation of
a minimization problem. Therefore, without losing any generality, throughout the
rest of this paper, the focus will be centered on developing a rapid BLP algorithm
for solving:

min f(p, v) =
∑

i∈I pivi −
∑

j∈J pjvj ,

s.t.

[
LP

LV

]
≤

[
CP 0
0 CV

]
·
[

P
V

]
≤

[
UP

UV

]
(2)

where LP , CP and UP represent the lower bounds, constraint coefficients and upper
bounds in the P-base, respectively; P t = (pt

I , p
t
J) represents the variables in the

P-base; and by analogy, these definitions also exist in the V-base.
The next section will describe the optimization background employed in our

procedure, which is followed by developing a BLP algorithm that combines a cutting
plane method in a local optimization phase with a lower bounding method in a
global optimization phase. Then a numerical example is solved to illustrate the
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elements of the BLP algorithm. Computational results on more than four-hundred
randomly generated decision analysis problems indicate that the approach is very
effective for solving practical sized decision analysis problems in real time on a
laptop architecture computer. Two possible directions for future research on our
approach are suggested in the final section.

2 Optimization
Consider the standard disjoint BLP problem:

min f(x, y) = ctx + dty + xtCy,
s.t. x ∈ X0 = {x ∈ Rm : A1x ≤ b1, x ≥ 0},

y ∈ Y0 = {y ∈ Rn : A2y ≤ b2, x ≥ 0}
(3)

where c ∈ Rm and d ∈ Rn are linear parts for x and y, respectively, C ∈ Rm×n,
and X0 and Y0 are bounded polyhedral sets. In terms of (2), both c and d are zero
vectors, and C is always an indefinite square matrix with only +1 or −1 diagonal
elements. For example, in Fig. 1:

C =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




The disjoint BLP (3) is one type of general Quadratic Programming (QP) prob-
lems with a symmetric indefinite quadratic form matrix. The special cases (2) that
arise in computational decision analysis have the added property that the bilinear
form matrix C is indefinite. In both cases, the problem is non-convex and global
optimization strategies are required to find the absolute minimum objective value,
which is called the global minimum, and its corresponding solution point, which is
called the global minimizer. It should be noted that we distinguish between the min-
imal objective function value and the corresponding point at which it is achieved
as minimum and minimizer, respectively. A general framework for many global
optimization strategies is summarized in [18] as:

“Actually all methods for global optimization consist of two phases: a
global phase, aimed at thorough exploration of the feasible region or
subsets of the feasible region where it is known the global optimum will
be found, and a local phase aimed at locally improving the approxima-
tion to some local optima. Often these two phases are blended into the
same algorithm, which automatically switches between exploration and
refinement.”
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The procedure presented herein captures the spirit of this general framework by
proposing a refinement to an existing algorithm for the local phase blended with a
formulation for the global phase to produce a global optimization algorithm that
finds either an exact global minimizer or an epsilon-global minimizer with a specified
tolerance.

An important property of (3) to observe is that even though f(x, y) can be shown
to be not quasi-concave, an optimal solution (x∗, y∗) exists at an extreme point of
X0 × Y0, [2]; i.e., x∗ is an extreme point of X0 and y∗ is an extreme point of Y0.
However, this property is lost in the jointly constrained case such as:

min f(x, y) = ctx + dty + xtCy,
s.t. x, y ∈ {x ∈ rm, y ∈ rn : A1x + A2y ≤ b, x ≥ 0, y ≥ 0} (4)

To solve a jointly constrained BLP problem with a non-extremal boundary point
optimum poses the greatest computational difficulty. However, for those BLP prob-
lems exhibiting extreme point optimal solutions, it is relatively easy to solve. Some
computational results are reported in [20, 21].

The other important property of (3) is that any cuts involving variables associ-
ated with both X0 and Y0 sets will destroy their special structures. Problems do
exist where one of the sets has special structure that can be exploited by efficient
algorithms which can be used to solve sub-problems in the solution procedure, [23].
Accordingly, we prefer developing linear cuts within only one polyhedron.

3 Local Optimization
The local optimization phase aims at locating a local optimum. Any local opti-
mization technique for finding Karush-Kuhn-Tucker (KKT) solutions of quadratic
programs, such as Wolfe’s simplex method or an interior point method, can accom-
plish this task. Nevertheless, the structure of the disjoint BLP problem (3) itself
suggests a Linear Programming (LP) based vertex following algorithm, which is very
convenient and efficient, [16]. The approach consists in starting with an arbitrary
fixed x ∈ X0, and solving the related LP problem with y as the unknown. The
solution, y, is then used to solve another LP problem with x as the unknown. This
in turn yields a new solution for x. The procedure is repeated until a pair of values
(x, y) is found that solves both LP problems. It has been proved that the resulting
solution is a KKT point.

DEFINITION 1: Consider P : min f(x) subject to x ∈ S, where S is a com-
pact polyhedral set and f is non-convex. A local star minimizer of P is defined as a
point x such that f(x) ≤ f(x) for each x ∈ N(x), where N(x) denotes the adjacent
extreme points to x.

Extending the definition of N(x) into the disjoint BLP (3), an extreme point is
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adjacent to (x, y) if and only if it is of the form (xi, y) or (x, yi) where xi ∈ N(x)
and yi ∈ N(y).

DEFINITION 2: An extreme point is called a pseudo-global minimizer if f(x, y) ≤
f(x, y) for each x ∈ Bδ(x) ∩X0 and for each y ∈ Y0, where Bδ is a δ neighborhood
around x.

Intuitively, a pseudo-global minimizer is an extreme point that satisfies the KKT
conditions, has no descent directions within its neighborhood, and acts as a local
minimizer in x-space and a global minimizer in y-space. In order to obtain a pseudo-
global minimizer, we closely follow the algorithm described in [26].

ALGORITHM 1:

1. Find a feasible extreme point x1 in X0.

2. [a] Solve: min{f(x1, y)|y ∈ Y0}, to yield an optimal y1.
[b] Solve: min{f(x, y1)|x ∈ X0}, to yield an optimal x2.
Repeat until the procedure converges to a local star minimizer (x, y).

3. Let x1, . . . , xm be the adjacent extreme points of x.
Solve: min{f(xi, y)|y ∈ Y0}, to yield solutions y1, . . . , ym.

4. If f(x, y) ≤ f(xi, yi) for all i, terminate with (x, y) as a pseudo-global mini-
mizer.

5. Choose one f(xr, yr) ≤ f(x, y) and go back to 2[b] with y1 = yr.

The performance to locate a KKT point in the DELTAmethod has been reported
in [10]. Based on computational observations, a KKT point is found within four
iterations, on average. However, checking its adjacent extreme points is relatively
time-consuming, especially when we have to return to step 2[b] from step 5.

4 Global Optimization
Given a pseudo-global optimizer, a linear cut needs to be generated within only one
polyhedron. The cutting plane techniques for bilinear programs were inspired by
similar methods for concave problems, [19, 25]. One of the first such procedures was
proposed in [16] to delete local vertex solutions by using Ritter’s cut [19]. Another
cutting plane approach was developed in [13] by using Tuy’s cut [25]. The latter
used LP duality theory to reformulate the BLP problem as an equivalent concave
minimization problem with an implicitly defined objective function. The polar
cuts of [3] were applied in [26] to BLP, where it was proved that the polar cuts
uniformly dominate other similar cuts. This approach was further strengthened
in [22] by employing negative edge extension polar cuts and disjunctive face cuts,
whereupon finite convergence to an exact solution could be guaranteed. In [15], it
has been pointed out that [22] might be the most efficient approach for handling
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BLP problems. Accordingly, in this paper, we employ polar cuts to cut off local
vertex solutions.

Let x be an extreme point of X0 and let pj , j ∈ J , be the m nonbasic variables at
x, where J is the index set for the nonbasic variables. Denoting by ej the columns
of the simplex tableau in extended form, the m-vector x can be written as:

x = x−∑
j∈J ejpj .

Barring the degenerate case, X0 has precisely m distinct edges incident to x and
each half line

ξj = {x : x = x− ejλj , λj ≥ 0}, j ∈ J (5)

contains exactly one such edge, [3].

DEFINITION 3: The generalized reverse polar of Y0 for a given scalar α is given
by Y0(α) = {x : f(x, y) ≥ α} for all y ∈ Y0.

Following [22, 26], let (x, y) be a pseudo-global minimizer, let the rays ξj be
defined as in (5), let α be the current best objective value of f(x, y), and let λj be
defined by:

λj =

{
max{λj : f(x− ejλj , y) ≥ α for all y ∈ Y0} if ξj 6⊂ Y0(α),

−max{λj : f(x + ejλj , y) ≥ α for some y ∈ Y0} if ξj ⊂ Y0(α)
(6)

Then the inequality ∑
j∈J pj/λj ≥ 1 (7)

is a valid cutting plane. The second line in (6) is referred to as the negative extension
polar cuts. Inequality (7) is a valid cut in the sense that firstly, it does not contain
the current pseudo-global optimum; and secondly, it contains all the candidates
x ∈ X0 for which min{f(x, y)|y ∈ Y0} < α.

The cutting plane method searches for the global optimum by exhausting all
possibilities within one of the two bounded polyhedra. Although ALGORITHM 1
always generates a feasible solution, we have no way of knowing if we have found the
global solution until we have cut off all of the pseudo-global optima. Consequently,
the key idea is to obtain some lower bound information concerning the global solu-
tion. Then at least we can tell how close the current best solution is to the global op-
timality before an exhaustive search. We employ the convex and concave envelopes
of xiyi developed in [1, 2] to obtain such a lower bound. Consider the inner product
xty over the compact hyper-rectangle Ω = {(x, y) : l ≤ x ≤ L,m ≤ y ≤ M}. Define
Ωi = {(xi, yi) : li ≤ xi ≤ Li,mi ≤ yi ≤ Mi} so that Ω = Ω1 × Ω2 × · · · × Ωn. The
convex and concave envelopes of xiyi over Ωi are defined as:

V exΩi [xiyi] = max{mixi + liyi − limi,Mixi + Liyi − LiMi},
CavΩi [xiyi] = min{Mixi + liyi − liMi,mixi + Liyi − Limi} (8)
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Accordingly, in (2), we can calculate the convex envelopes for Cii = 1 and
concave envelopes for Cii = −1. Then we can say:

min f(p, v) =
∑

i∈{i:Cii=1} V exΩi [pivi]−
∑

i∈{i:Cii=−1}CavΩi [pivi],

s.t.

[
LP

LV

]
≤

[
CP 0
0 CV

]
·
[

P
V

]
≤

[
UP

UV

]
(9)

is an underestimating problem for (2), whose solution yields a lower bound on the
global minimum of our bilinear decision problem. In (9), the rectangles Ωi define
the bounds on pi and vi which are both readily available.

Since solving (9) yields a lower bound on the optimal objective value of (2), if
the algorithm cuts off a pseudo-global optimizer with a polar cut and proceeds to
search for another one in the smaller set, then we can solve the underestimating
problem with the convex and concave envelopes computed over the smaller region
to obtain a tighter bound on all global solutions in the reduced feasible set. If
the algorithm cuts off the global solution and the objective of the underestimating
problem is higher than the current best objective value, then we can stop and use
the current best solution as the global solution. If there are many global optimal
solution points, the objective of the underestimating problem will be smaller than
the global value until all global solution points have been cut off.

If the feasible region has not been exhausted and the underestimating problem
is still giving optimal values lower than the current best solution, then it is always
possible to stop the search procedure early with a known feasible point and a lower
bound on the global optimum. In that case, an error bound will be available to
show how far we are away from global optimality in the worst scenario.

Denote by X0 the original feasible region or its subset obtained after the intro-
duction of generated polar cuts. The global optimization algorithm for (2) can be
summarized as follows:

ALGORITHM 2:

1. Let the best objective value, obj, be a large positive number, and let an epsilon
tolerance, ε, be a prescribed small number.

2. Calculate the lower bound, bound, for Xi
0 by using (9).

3. If bound > obj or |bound− obj| ≤ ε, or the unexplored feasible region Xi
0 at

stage i is empty, terminate with obj as the global minimum.

4. Find a pseudo-global minimizer by using ALGORITHM 1, and update obj if
necessary.

5. If |bound− obj| ≤ ε, terminate with obj as the global minimum.

6. Solve m LP problems by using (6) to obtain λj , and generate the polar cut by
using (7), and introduce it into Xi

0.

7. increase i to i + 1, go back to 2.
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We do not employ the extreme face finding routine and disjunctive face cuts as in
[22] because they are relatively expensive to calculate. Instead, we take advantage
of ALGORITHM 1 to locate a pseudo-global optimizer. As pointed out in the last
section, ALGORITHM 1 is also time-consuming if it proves necessary to frequently
locate a new local star minimizer. Therefore, it is difficult to determine which
procedure is more efficient from a computational viewpoint. ALGORITHM 2 simply
adds the lower bound computation in order to more quickly identify when a global
optimizer has been found.

5 Numerical Example
In this section, a numerical example will be used to illustrate ALGORITHM 2. The
data for this experiment is randomly generated by Matlab to simulate a real-life
decision situation, [9].

Suppose now we have a decision situation consisting of two alternatives with six
consequences in each alternative. Correspondingly, P = (p11, . . . , p16, p21, . . . , p26)t

and V = (v11, . . . , v16, v21, . . . , v26)t. The matrices CP and CV are given below:

CP =




1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0
0 0 1 1 0 0 0 −1 0 0 0 −1
0 1 1 1 1 1 1 1 1 0 0 1




CV =




0 0 −1 0 0 0 0 0 0 1 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 1 1
0 1 0 0 0 −1 0 −1 0 0 1 0

−1 0 1 0 0 −1 0 0 1 0 0 0




In CP , each entry represents the coefficient of each variable. For example, the
first and second lines are normalization requirements,

∑
i∈I pi and

∑
j∈J pj , with

respect to each alternative, whereas the third line means p21 − p25, and etc. The
contents in CV are explained analogously. In practice, the value base does not
contain compound value statements since they lack semantic content.

The bounds LP , LV , UP and UV are listed in Table 1. In addition, each variable
in the P-base is restricted within the interval [0, 1], and each variable in the V-base
is in:
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


0.151
0.210
0.080
0.277
0.740
0.340



≤




v11

v12

v13

v14

v15

v16



≤




0.866
0.592
0.174
0.541
0.791
0.593




,




0.083
0.018
0.780
0.156
0.020
0.057



≤




v21

v22

v23

v24

v25

v26



≤




0.480
0.303
0.848
0.354
0.152
0.637




.

CP : Rows LP UP CV : Rows LV UV

1 1.000 1.000 1 -1.692 1.692
2 1.000 1.000 2 -0.576 0.061
3 -0.437 0.182 3 -0.141 0.510
4 -0.296 0.394 4 -1.182 -0.302
5 -0.131 0.313 5 -0.576 0.297
6 -0.543 0.376 6 -0.523 0.456
7 0.773 1.692

Table 1: Data

If we simply use the cutting plane method, the feasible region of the P-base will
be exhausted in four cuts. Nevertheless, the second lower bound information in
Table 2 is enough to guarantee the global optimum; i.e., the stopping rule, bound >
obj, is satisfied in ALGORITHM 2, step 3. Therefore, ALGORITHM 2 terminates
in one iteration; thus, saving the additional computational effort of performing three
more iterations.

Iteration Objective Value Lower Bound
1 -0.60742032702968 -0.61148735388339
2 -0.54069572061830 -0.54476274747200
3 -0.51501142176621 -0.51907844861991
4 -0.46983913868983 -0.47390616554353

Table 2: An Numerical Example

6 Computational Experience
We launched a number of simulated instances to test ALGORITHM 2. The ex-
periment is performed on a personal computer with Windows 2000, Matlab 6.5 &
Tomlab [24], Pentium-III 1000 MHz CPU and 512MB memory. The commercial LP
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solver is SQOPT [14] from Systems Optimization Laboratory, Stanford University.
In total, we tested 400 instances consisting of 10 groups, each of them including 40
data sets with the consequences from 11 to 50. If an instance has N consequences,
the corresponding BLP problem contains 4N variables and around 2N constraints.
Consequently, this experiment is trying to solve disjoint BLP problems sized up to
200 variables. Detailed numerical results are shown in Table 3.

C PV VV PC VC Time C PV VV PC VC Time
11 22 22 11 10 2.0901 31 62 62 31 30 7.7427
12 24 24 14 12 2.5595 32 64 64 34 32 13.3900
13 26 26 14 12 3.8995 33 66 66 34 32 8.8322
14 28 28 15 14 2.0418 34 68 68 35 34 11.1826
15 30 30 15 14 2.3370 35 70 70 35 34 12.1919
16 32 32 18 16 5.4044 36 72 72 38 36 12.6346
17 34 34 18 16 3.8734 37 74 74 38 36 15.7232
18 36 36 19 18 4.6272 38 76 76 39 38 12.4650
19 38 38 19 18 4.0508 39 78 78 39 38 18.9598
20 40 40 22 20 7.9871 40 80 80 42 40 20.8625
21 42 42 22 20 5.0642 41 82 82 42 40 16.7570
22 44 44 23 22 5.9443 42 84 84 43 42 12.0811
23 46 46 23 22 7.1294 43 86 86 43 42 19.5244
24 48 48 26 24 5.5255 44 88 88 46 44 17.6758
25 50 50 26 24 5.9522 45 90 90 46 44 25.3698
26 52 52 27 26 6.8825 46 92 92 47 46 22.2200
27 54 54 27 26 8.1232 47 94 94 47 46 30.8439
28 56 56 30 28 10.9514 48 96 96 50 48 19.9436
29 58 58 30 28 7.5786 49 98 98 50 48 20.9942
30 60 60 31 30 9.8275 50 100 100 51 50 19.3494

• C represents the number of consequences;
• PV = VV represent the number of variables in P-base and V-base;
• PC = VC represent the number of constraints in P-base and V-base;
• Time is the average CPU time in seconds.

Table 3: Detailed Results

As for the worst case, the global optimum might not be found until we cut off all
pseudo-global optimizers, and the lower bound information becomes useless. This
will make ALGORITHM 2 no different from a pure cutting plane approach. The
indefinite QP is a type of very difficult problem because it was demonstrated that
the indefinite QP is NP-hard even with only one negative eigenvalue, [17]. However,

33



according to the computational results obtained, we observed that they overall are
quite encouraging. Most of the problems are solved within the first three iterations
and the lower bound information obtained from (9) actually takes effects.

7 Further Research
For ALGORITHM 2 presented in this paper, some additional research directions are
suggested. In calculating a tight lower bound, other approaches exist. For example,
LINGO can generate a very tight lower bound (often it is the global optimum)
even though its best objective value always remains far from the lower bound for
a very long period. The Reformulation Linearization Technique (RLT) in [20, 21]
is also a promising method in the sense that RLT can generate feasible points as
well as lower bounds for BLP problems. Moreover, it has been proved that its
lower bounds are at least as good as those generated by [1, 2]. However, the main
drawback is that the amount of work required to construct the necessary matrix
increases very rapidly as the number of variables and constraints grow due to the
combinatorial number of cross products that must be considered. Therefore, RLT is
not particularly attractive for our BLP problem which contains so many lower and
upper bounds, although it would be interesting to test its relative merits for different
problem sizes. A worthwhile direction would be to search for a tighter lower bound,
than the one proposed herein, that is relatively inexpensive to compute.

The BLP problem in DELTA is very special; i.e., it only includes xiyi, which
makes the matrix C in (3) simply possess diagonal entries with +1 and−1. However,
as shown in [2], it is also possible to handle the case where the diagonal entries are
arbitrary real numbers, thus creating weighted utility objective functions.

Suppose b ∈ Rn and let B = diag(b). Then the convex envelope of B is:

V exΩi [bixiyi] = max{biϕ
1
i (xiyi), biϕ

2
i (xiyi)},

where

ϕ1
i (xiyi) =

{
mixi + liyi − limi if bi > 0
Mixi + liyi − liMi if bi ≤ 0

,

ϕ2
i (xiyi) =

{
Mixi + Liyi − LiMi if bi > 0
mixi + Liyi − Limi if bi ≤ 0

(10)

Moreover, the convex envelope of xiyi can also be extended to xiyj where i 6= j,
and thereby underestimate arbitrary bilinear objective functions.
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Topology Optimization of Navier–Stokes
Equations

Anton Evgrafov

Chalmers University of Technology, Göteborg, SE-412 80, Sweden

We consider the problem of optimal design of flow domains for
Navier–Stokes flows in order to minimize a given performance functional.
We attack the problem using topology optimization techniques, or con-
trol in coefficients, which are widely known in structural optimization of
solid structures for their flexibility, generality, and yet ease of use and
integration with existing FEM software. Topology optimization rapidly
finds its way into other areas of optimal design, yet until recently it has
not been applied to problems in fluid mechanics. The success of topology
optimization methods for the minimal drag design of domains for Stokes
fluids has lead to attempts to use the same optimization model for de-
signing domains for incompressible Navier–Stokes flows. We show that
the optimal control problem obtained as a result of such a straightfor-
ward generalization is ill-posed, at least if attacked by the direct method
of calculus of variations. We illustrate the two key difficulties with sim-
ple numerical examples and propose changes in the optimization model
that allow us to overcome these difficulties. Namely, to deal with impen-
etrable inner walls that may appear in the flow domain we slightly relax
the incompressibility constraint as typically done in penalty methods for
solving the incompressible Navier–Stokes equations. In addition, to pre-
vent discontinuous changes in the flow due to very small impenetrable
parts of the domain that may disappear, we consider so-called filtered
designs, that has become a “classic” tool in the topology optimization
toolbox. Technically, however, our use of filters differs significantly from
their use in the structural optimization problems in solid mechanics, ow-
ing to the very unlike design parametrizations in the two models. We
rigorously establish the well-posedness of the proposed model and then
discuss related computational issues.

I. Introduction

T
he optimal control of fluid flows has long been receiving considerable attention by
engineers and mathematicians, owing to its importance in many applications involv-

ing fluid related technology.1, 2 According to a well-established classification in structural
optimization (see Ref. 3, page 1), the absolute majority of works dealing with optimal
design of flow domains fall into the category of shape optimization. (See the bibliograph-
ical notes [2] in Ref. 3 for classic references in shape optimization.) In the framework
of shape optimization, the optimization problem formulation can be stated as follows:
choose a flow domain out of some family so as to maximize an associated performance
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functional. The family of domains considered may be as rich as that of all open subsets
of a given set satisfying some regularity criterion,4 or as poor as the ones obtained from a
given domain by locally perturbing some part of the boundary in a Lipschitz manner.5, 6, 7

Unfortunately, it is typically only the problems in the latter group that can be attacked
numerically. On the other hand, topology optimization (or, control in coefficients) tech-
niques are known for their flexibility in describing the domains of arbitrary complexity
(e.g., the number of connected components need not to be bounded), and at the same time
require relatively moderate efforts from the computational part. In particular, one may
completely avoid remeshing the domain as the optimization algorithm advances, which
eases the integration with existing FEM codes, and simplifies and speeds up sensitivity
analysis.

While the field of topology optimization is very well established for optimal design
of solids and structures, surprisingly little work has been done for optimal design of
fluid domains. Borrvall and Petersson8 considered the optimal design of flow domains
for minimizing the total power of the incompressible Stokes flows, using inhomogeneous
porous materials with a spatially varying Darcy permeability tensor, under a constraint on
the total volume of fluid in the control region. Later, this approach has been generalized
to include both limiting cases of the porous materials, i.e., pure solid and pure flow
regions have been allowed to appear in the design domain as a result of the optimization
procedure.9 (We also cite the work of Klarbring et al.,10 which however studies the
problem of optimal design of flow networks, where design and state variables reside in
finite-dimensional spaces; in some sense this is an analogue of truss design problems if one
can carry over the terminology and ideas from the area of optimal design of structures
and solids.)

Unfortuntely, applications of the Stokes flows are rather limited, while the Navier–
Stokes equations are now regarded as the universal basis of fluid mechanics.11 Therefore, it
has been suggested that the optimization model proposed in Ref. 8 (with straightforward
modifications), in particular the same design parametrization should be used for the
topology optimization of the incompressible Navier–Stokes equations.12 Essentially, in
this model we control the Brinkman-type equations including the nonlinear convection
term13 (which will be referred to as nonlinear Brinkman equations in the sequel) by
varying a coefficient before the zeroth order velocity term. Setting the control coefficient
to zero is supposed to recover the Navier–Stokes equations; at the same time, infinite
values of the coefficient are supposed to model the impenetrable inner walls in the domain.
In Section III we illustrate the difficulties inherent in this approach, namely that the
design-to-flow mapping is not closed, leading to ill-posed control problems.

It turns out that if we employ the idea of filter 14, 15 (which has become quite a stan-
dard technique in topology optimization, see Refs. 16, 17 for the rigorous mathematical
treatment) in addition to relaxing the incompressibility constraint (which is unique to the
topology optimization of fluids) we can establish the continuity of the resulting design-
to-flow mapping, and therefore the existence of optimal designs for a great variety of
design functionals; this is discussed in Section IV. Not going into details yet, we com-
ment that our use of filters significantly differs from the traditional one in the topology
optimization. Namely, not only do we use filters to forbid small features from appearing
in our designs and thus to transform weak(-er) design convergence into a strong(-er) one
(cf. Proposition 5), but also to verify certain growth conditions near impenetrable walls
[see inequality (4)], which later guarantees the embedding of certain weighted Sobolev
spaces into classic ones and finally allows us to prove the continuity of design-to-flow map-
pings in Section V. The existence of optimal designs, formally established in Section VI,
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is an easy corollary of the continuity of the design-to-flow mappings.
Some computational techniques are introduced in Section VII. Namely, we discuss a

standard topic of approximating the topology optimization problems with so-called sizing
optimization problems (also known as “ε-perturbation”), which in our case reduces to
approximation of the impenetrable walls with materials of very low permeability, and
then we touch upon techniques aimed at reducing the amount of porous material in the
optimal design. We conclude the paper by discussing possible extensions of the presented
results, open questions, and further research topics in Section VIII.

II. Prerequisites

A. Notation

Let Ω be a connected bounded domain of R
d, d ∈ { 2, 3 } with a Lipschitz continuous

boundary Γ. In this domain we would like to control the nonlinear Brinkman equations13

with the prescribed flow velocities g on the boundary, and forces f acting in the domain
by adjusting the inverse permeability α of the medium occupying Ω, which depends on
the control function ρ:





−ν∆u + u · ∇u + α(ρ)u + ∇p = f ,

div u = 0

}
, in Ω,

u = g, on Γ.

(1)

In the system (1), u is the flow velocity, p is the pressure, and ν is the kinematic vis-
cosity. Of course, owing to the incompressibility of u, the function g must satisfy the
compatibility condition ∫

Γ

g · n = 0, (2)

where n denotes the outward unit normal. If α(ρ(x)) = +∞ for some x ∈ Ω, we simply
require u(x) = 0 in the first equation of the system (1).

Our control set H is defined as follows:

H = { ρ ∈ L∞(Ω) | 0 ≤ ρ ≤ 1, a.e. in Ω,

∫

Ω

ρ ≤ γ|Ω| },

where 0 < γ < 1 is the maximal volume fraction that can be occupied by the fluid. Every
element ρ ∈ H describes the scaled Darcy permeability tensor of the medium at a given
point x ∈ Ω in the following (informal) way: ρ(x) = 0 corresponds to zero permeability
at x (i.e., solid, which does not permit any flow at a given point), while ρ(x) = 1
corresponds to infinite permeability (i.e., 100% flow region; no structural material is
present). Formally, we relate the permeability α−1 to ρ using a convex, decreasing, and
nonnegative function8, 9 α : [0, 1] → R+ ∪ {+∞}, defined as

α(ρ) = ρ−1 − 1.

In the rest of the paper we will use the symbol χA for A ⊂ Ω to denote the charac-
teristic function of A: χA(x) = 1 for x ∈ A; χA(x) = 0 otherwise.

B. Variational formulation

To state the problem in a more analytically suitable way and to incorporate the special
case α = +∞ into the first equation of the system (1), we introduce a weak formulation
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of the equations. Let us consider the sets of admissible flow velocities:

U = { v ∈ H1(Ω) | v = g on Γ },

Udiv = { v ∈ U | div v = 0, weakly in Ω }.

Let J S : U → R denote the potential power of the viscous flow:

J S(u) =
ν

2

∫

Ω

∇u · ∇u −

∫

Ω

f · u.

Let us further define the additional power dissipation J D : H× U → R ∪ {+∞}, due to
the presence of the porous medium (we use the standard convention 0 · +∞ = 0):

J D(ρ, u) =
1

2

∫

Ω

α(ρ)u · u.

Finally, let J (ρ, u) = J S(u) + J D(ρ, u) denote the total power of the Brinkman flow.
Then, the requirement “α(ρ) = +∞ =⇒ u = 0” is automatically satisfied if J D(ρ, u) <
+∞.

We will use epi-convergence of optimization problems as a main theoretical tool in
the subsequent analysis, thus it is natural to study the following variational formulation9

for Darcy-Stokes flows [i.e., obtained by neglecting the convection term u · ∇u in the
system (1)]: for f ∈ L2(Ω), compatible g ∈ H1/2(Γ), and ρ ∈ H, find u ∈ Udiv such that

u ∈ argmin
v∈Udiv

J (ρ, v).

Naturally, taking convection into account, this can be generalized to the following fixed
point-type formulation of the system (1): for f ∈ L2(Ω), compatible g ∈ H1/2(Γ), and
ρ ∈ H find u ∈ Udiv such that

u ∈ argmin
v∈Udiv

{
J (ρ, v) +

∫

Ω

(u · ∇u) · v

}
. (3)

III. Problems with the existing approach

When we allow impenetrable walls to appear and to disappear in the design domain,
we create two particular types of difficulties, each related to a corresponding change in
topology (see Subsections A and B). We note that in the “sizing” case, which can be
modeled by introducing an additional design constraint ρ ≥ ε, a.e. in Ω (for some small
ε > 0) these difficulties do not appear. (In fact, it is an easy exercise to verify that
under such circumstances the design-to-flow mapping is closed w.r.t. strong convergence
of designs, e.g., in L1(Ω), and H1(Ω)-weak convergence of flows.) Such a distinct behavior
of the sizing and topology optimization problems may indicate that the former is not a
useful approximation of the latter in this case.

A. Disappearing walls

For the sake of simplicity, in this subsection we assume that the objective functional in our
control problem (which is not formally stated yet) is the power J of the incompressible
Navier–Stokes flow. This functional is interesting from at least two points of view. Firstly,
in many cases the resulting control problem is equivalent to the minimization of the drag
force or pressure drop, which is very important in engineering applications.8 Secondly,
while it is intuitively clear that impenetrable inner walls of vanishing thickness change
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Figure 1. Flow domain for the backstep flow.

the flow in a discontinuous way, for the Stokes flows the total potential power is lower
semi-continuous w.r.t. such changes, which allows us to apply the Weierstrass theorem
and ensure the existence of optimal designs (see Theorem 3.3 in Ref. 9). In this subsection
we consider two examples illustrating the discontinuity of the flow as well as non-lower
semicontinuity of the power functional in the case of the incompressible Navier–Stokes
equations; this means that the corresponding control problem of minimizing the potential
power is ill-posed, at least from the point of view of the direct method of calculus of
variations.

Example 1 (Infinitely thin wall). We consider a variant of the backstep flow with
ν = 1.0 · 10−3 (which corresponds to the Reynolds number Re = 1000), as shown in
Fig. 1. We specify u on the inflow boundary to be (0.25− (y−0.5)2, 0.0)t, on the outflow
boundary we require uy = 0 as well as p = 0; on the rest of the boundary the no-slip
condition u = 0 is assumed. We consider a sequence of the domains containing a thin but
impenetrable wall of vanishing thickness (as shown in Fig. 1 by dashed line). The limiting
domain is the usual backstep shown with the solid line. Direct numerical computation in
Femlab (see Fig. 2 showing the flows) shows that for the domains with thin wall we have
J ≈ 0.8018, while for the limiting domain J ≈ 0.8263. This demonstrates the non-lower
semicontinuity of the total power functional in the case of incompressible Navier–Stokes
equations.

We note that while the “jump” of the power functional may seem negligible in this
example, other examples may be constructed where this jump is much bigger.

It may be argued that in the example above the thin wall may be substituted by the
complete filling of the resulting isolated subdomain with impenetrable material, and the
following example is more peculiar and demonstrates that we can control the behavior
of the Navier–Stokes flow with an infinitesimal amount of material. It is interesting to
note that the example is based on the construction of Allaire,13 which in some sense is
“opposite” to our design parametrization. Namely, we try to control the Navier–Stokes
equations by adjusting the coefficients in the nonlinear Brinkman equations, while the
sequence of perforated domains considered in Example 2 has been used to obtain the
nonlinear Brinkman equations starting from the Navier–Stokes equations in a periodically
perforated domain as a result of the homogenization process.

Example 2 (Perforated domains with tiny holes). We assume that the boundary
Γ is smooth and impenetrable (i.e., the homogeneous boundary conditions g = 0 hold),
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(a) (b)

(c) (d)

Figure 2. Backstep flow: Example 1. (a), (b): x- and y-components, respectively, of the flow
velocity when the impenetrable wall has arbitrary but positive thickness (only the part of
the domain with nontrivial flow is shown); (c), (d): x- and y-components, respectively, of
the flow velocity as the impenetrable wall disappears. Note the different color scales.

and that the viscosity ν is large enough relatively to the force f to guarantee the existence
of a unique solution to the Navier–Stokes system in Ω. Let Ωε denote a perforated
domain, obtained from Ω by taking out spheres of radius rd(ε) with centers εZ

d, where
limε→+0 rd(ε)/ε = 0; see Fig. 3. Let (ũε, p̃ε) denote a solution to the Navier–Stokes
problem inside Ωε with homogeneous boundary conditions ũ

ε = 0 on ∂Ωε. We extend
ũ

ε onto the whole Ω by setting it to zero inside each sphere; we further denote by uε

this extended solution. For every small ε > 0 it holds that uε solves the problem (3)
for ρε = χΩε . Allaire13 has shown that depending on the limit C = limε→+0 rd(ε)/ε

3 for
d = 3, or C = limε→+0 −ε2 log(rd(ε)) for d = 2, there are three limiting cases:

C = 0: {uε} converges strongly in H1(Ω) towards the solution to the Navier–
Stokes problem in the unperforated domain Ω, i.e., the solution to the
problem (3) corresponding to ρ = 1 (see Theorem 3.4.4 in Ref. 18);

C = +∞: {uε} converges towards 0 strongly in H1(Ω) (in fact, there is more infor-
mation about {uε} available, see Theorem 3.4.4 in Ref. 18);

0 < C < +∞: {uε} converges weakly in H1(Ω) towards the solution to the nonlinear
Brinkman problem in the unperforated domain Ω, i.e., the solution of
the problem (3) corresponding to ρ = σ, for a computable constant

42



ε

ε

εΩ

ε

2r(  )

ε

ε

(a) (b)

Figure 3. The perforated domain (a) and a periodic cell (b).

σ(d, ν, C) > 0 (see Main Theorem in Ref. 13).
We note that in all three cases the sequence of designs {ρε} strongly converges to zero in
L1(Ω), while only in the case C = 0 the corresponding sequence of flows converges to the
“correct” flow. As for the other two cases, we can either completely stop (C = +∞) or
just slow (0 < C < +∞) the flow using only infinitesimal amounts of structural material
(recall that rd(ε)/ε → +0). Moreover, the sequence of perimeters of ρε converges to zero,
and therefore the perimeter constraint cannot enforce the convergence of flows in this case
(contrary to the situation in linear elasticity, see p. 31 in Ref. 3). In the same spirit, the
regularized intermediate density control method considered by Borrvall and Petersson19

classifies the designs ρε as regular for all enough small ε > 0 (since they are indeed close
to a regular design ρ ≡ 0 in the strong topology of Lp(Ω), 1 ≤ p < ∞); thus the latter
method also fails to recognize the pathological cases illustrated in the present example.

B. Appearing walls

Walls that appear in the domain as a result of the optimization process may break the
connectivity of the flow domain (or some parts of it), so that the incompressible Navier–
Stokes system may not admit any solutions in the limiting domain (resp., some parts of
it). While obtaining such results may seem to be a failure of the optimization procedure,
completely stopping the flow might be interesting (or even optimal) with respect to some
engineering design functionals.

The following example is purely artificial and its only purpose is to demonstrate
the possible non-closedness of the design-to-flow mapping when new walls appear in the
domain. It essentially repeats Example 2.1 in Ref. 9, but we include it here for convenience
of the reader.

Example 3 (Domain with diminishing permeability). Let Ω = (0, 1)2, g ≡ (1, 0)t,
and f ≡ 0. Let further ρk ≡ 1/k in Ω, k = 1, 2, . . . , ρ ≡ 0 in Ω, so that ρk → ρ, strongly
in L∞(Ω) as k → ∞. Then, u ≡ (1, 0)t is a solution of the problem (3) for all k = 1, 2, . . . ;
clearly, (ρk, u) → (ρ, u), strongly in L∞(Ω)×H1(Ω). At the same time, it is not difficult
to verify that the problem (3) has no solutions for the limiting design ρ, which means that
the design-to-flow mapping is not closed even in the strong topology of L∞(Ω)×H1(Ω)!

The problem related to the appearence of walls completely stopping the flow in some
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domains has been solved for Stokes flows by (implicitly) introducing an additional con-
straint J (ρ, u) ≤ C, for a suitable constant C. Owing to the coercivity of J on H1

0 (Ω),
this keeps the flows in some bounded set. However, in view of the non-lower semiconti-
nuity of the power functional for the Navier–Stokes flows (see Example 1), this set is not
necessarily closed, making the problems with appearing walls much more severe in the
present case.

We consider the next example in some detail, even though it is quite similar to the
previous one, because we will return to it later in Subsection B of Section IV.

Example 4 (Channel with a porous wall). We consider a channel flow at Reynolds
number Re = 1000 (ν = 1.0 ·10−3) through a wall made of porous material with vanishing
permeability appearing in the middle of the channel (see Fig. 4). We specify u on the
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Figure 4. Flow domain of Example 4.

inflow boundary to be (1 − y2, 0.0)t, on the outflow boundary we require uy = 0 as well
as p = 0; on the rest of the boundary the no-slip condition u = 0 is assumed except that
on the “lower” edge we have slip (i.e., only uy = 0) due to the symmetry.

We choose ρ so that α(ρ) = 0 on Ω1∪Ω3 and α(ρ) = α on Ω2, where α assumes values
1.0, 1.0 · 102, 1.0 · 104, +∞. The corresponding flows (calculated in Femlab) are shown
in Fig. 5; the incompressible Navier–Stokes problem in the last (limiting as α → +∞)
domain admits no solutions.

To summarize, even though the sequence of designs ρα → χΩ1∪Ω3
, strongly in L∞(Ω),

the corresponding sequence of flows does not converge to the flow corresponding to the
limiting design, simply because the latter does not exist.

IV. Proposed solutions to the difficulties outlined

Difficulties inherent in the straightforward generalization of the methodology pro-
posed by Borrvall and Petersson8 for Stokes flows to incompressible Navier–Stokes flows
have been outlined in Section III. One possible solution, which allows us to avoid these
difficulties, is simply to forbid topological changes and to perform sizing optimization,
interpreting optimal designs as distributions of porous materials with spatially varying
permeability.13,18, 20 As it has already been mentioned the resulting designs may or may
not accurately describe the domains obtained by substituting the materials with high
permeability by void, and those with low permeability by impenetrable walls. Further-
more, if we decide to keep the porous material, it is questionable whether such designs
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Figure 5. Incompressible flow through the porous wall: (a) α = 1.0, (b) α = 1.0 · 102, (c)
α = 1.0 · 104, (d) α = +∞.

can be easily manufactured and thus it is unclear whether they are “better” from the
engineering point of view. Thus we do not employ this approach but instead try to
slightly modify the design parametrization as well as the underlying state equations with
the ultimate goal to rigorously obtain a closed design-to-flow mapping while maintaining
a clear engineering/physical meaning of our optimization model.

A. Filters in the topology optimization

In both examples in Subsection A of Section III we constructed the sequences of designs
having very small details, which disappear in the limit. Using the notion of a filter14, 15

we can control the minimal scale of our designs; we will employ this technique, which has
become quite standard in topology optimization of linearly elastic materials.3

Following Bourdin,16 and Bruns and Tortorelli,17 we define a filter F : R
d → R of

characteristic radius R > 0 to be a function verifying the following properties:

F ∈ C0,1(Rd), supp F ⋐ BR, supp F is convex,

F ≥ 0 in BR,

∫

BR

F = 1,

where BR denotes the open ball of radius R centered in origo. We denote the convolution
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product by a ∗ sign, i.e.

(F ∗ ρ)(x) =

∫

Rd

F (x − y)ρ(y)dy.

Owing to the Lipschitz continuity of F , F ∗ ρ is a continuous function.
In order to compute the convolution between the filter and a given design ρ the latter

must be defined not only on Ω, but also on the whole space R
d. Therefore, in the sequel

we consider the following redefined design domain:

H = { ρ ∈ L∞(Rd) ∩ L1(Rd) | 0 ≤ ρ ≤ 1, a.e. in R
d,

∫

Rd

ρ ≤ V },

for a given V > 0.
One of the consequences of the fact that F is Lipschitz continuous in R

d and not just
in BR is that the following important growth condition is verified:

(F ∗ χRd\supp F )(x) ≤ C|x|2, (4)

as |x| → 0, for some appropriate constant C > 0, which implies that α((F ∗ ρ)(·)) grows
at least as fast as dist−2(·, {F ∗ ρ = 0 }) arbitrarily near to impenetrable walls. It is this
condition that is the key ingredient in the proof of closedness theorems.

For notational convenience we set J F (ρ, u) = J (F ∗ ρ, u). As a consequence of the
introduction of the filter, we can demonstrate the following simple claim, which translated
to normal language says that impenetrable walls cannot disappear in the limit. In the
following Proposition, Lim sup is understood in the sense of Painlevé-Kuratowski.

Proposition 5. Consider an arbitrary sequence of designs {ρk} ⊂ H, such that ρk ⇀ ρ,
weakly in L1

loc(R
d), for some ρ ∈ H. Define a sequence {Ωk

0} of subsets of Ω as

Ωk
0 = {x ∈ Ω | (F ∗ ρk)(x) = 0 },

Ω∞
0 = {x ∈ Ω | (F ∗ ρ)(x) = 0 }.

Then, Lim supk→∞ Ωk
0 ⊂ Ω∞

0 ∪ Γ.

Remark 6. The convergence of flow domains Ω \ Ωk
0 induced by the weak convergence

of designs (which implies strong convergence of filtered designs) can be compared to the
convergence of domains in some topology defined for set convergence, e.g., the comple-
mentary Hausdorff topology. It is known, in general, that the latter topology is weaker
(see, e.g., [21, Section 2.6.2]). However, such a comparison is not quite fair in the present
situation, where the domains we deal with can be rather irregular (e.g., lie on two sides of
their boundaries), and, more importantly, the domains in the sequence may have different
connectivity compared to the “limiting” domain.

Later we will see that we need even stronger convergence of Ωk
0 → Ω∞

0 to obtain
closedness of the design-to-flow mappings.

The use of filtered designs F ∗ρ in place of ρ in the problem (3) allows us to overcome
the difficulties caused by disappearing walls. While we delay the formal statement of this
fact until Section V, at this point we can consider an example that illustrates the effect
of using filters.

Example 7 (Example 2 revisited). Consider an arbitrary filter F and a sequence of
designs {ρε} defined in Example 2. Let for every ε > 0 extend the definition of ρε (that
has been defined only on Ω) by setting ρε(x) = 1 for all x ∈ (Ω + supp F ) \ Ω, and
ρε(x) = 0 for all x ∈ R

d \ (Ω + supp F ). Then, F ∗ ρε → 1 as ε → +0, uniformly in cl Ω,
and the corresponding sequence of flows converges to a pure Navier–Stokes flow in the
domain Ω (case C = 0 in Example 2).
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B. Slightly compressible fluids

While it seems difficult to imagine a reasonable cure for Example 3, because the limiting
flow must be zero on Ω with nonzero trace on Γ, we can at least try to get a closed
design-to-flow mapping if impenetrable walls do not appear too close to the boundary
with non-homogeneous Dirichlet conditions on velocity, as in Example 4. The difficulty
in the latter example is that in our model the porous wall does not stop, or slow, the
incompressible fluid while we use material with positive permeability. At the same time,
the limiting domain does not permit any incompressible flow through it, because it is not
connected.

We can solve this problem by relaxing the incompressibility requirement div u = 0 in
the system (1) [of course, we do not need to require the compatibility condition (2) in this
case]. For example, we may assume that the fluid is slightly compressible, i.e., choose a
small δ > 0 and let div u+ δp = 0. In fact, it is known that for a fixed domain admitting
an incompressible flow, the difference between the regular incompressible and slightly
compressible flows is of order δ, i.e., we change model only slightly if δ is small enough.
The slightly compressible Navier–Stokes equations are often used as approximations of
incompressible ones in so-called penalty algorithms (see Chapter 5 in Ref. 22). On the
other hand, with the gained maturity of mixed finite element methods, the incompressible
system can be equally well solved to approximate the behavior of slightly compressible
fluids.23

Whether one considers slightly compressible Navier–Stokes fluids to be the most suit-
able mathematical model of the underlying physical flow (see Remark 9) or just an accu-
rate approximation of the incompressible Navier–Stokes equations, we make an assump-
tion of slight compressibility because it allows us to achieve the ultimate goal of this paper:
to obtain a closed design-to-flow mapping. Again, delaying the precise formulations until
Section V, we revisit Example 4 to illustrate our point.

Example 8 (Example 4 revisited). We choose δ = 1.0 · 10−3 and resolve the flow
problem of Example 4 for α ∈ { 1.0, 1.0 · 102, 1.0 · 104, +∞}. The corresponding flows
(calculated in Femlab) are shown in Fig. 6; in contrast with the incompressible Navier–
Stokes case we can see the convergence of flows as domains converge (i.e., as α increases)
to a limiting flow, which exists in the compressible case. Note that for small values of α
and δ the incompressible and the slightly compressible flows look similar.

Remark 9. It is known that the pseudo-constitutive relation div u + δp = 0 lacks an
adequate physical interpretation for many important physical flows.24 In particular, there
is no physical pressure field compatible with the flow shown in Fig. 6 (d). On the other
hand, the pseudo-constitutive relation resulting from the penalty method can still be used
as a mathematical method of generating flows approximating those of incompressible
viscous fluids. Moreover, the idea of relaxing the incompressibility contraint may also
be useful for topology optimization in fluid dynamics, where the corresponding relation
div u + δdp/dt = 0 is known to be physical.

V. Continuity of the design-to-flow mapping

A. Stokes flows

We start by showing the closedness of the design-to-flow mapping for slightly compress-
ible Stokes flows with homogeneous boundary conditions, and then show the necessary
modifications for the inhomogeneous boundary conditions. For the compressible Stokes
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(a) (b)

(c) (d)

Figure 6. Compressible flow through the porous wall: (a) α = 1.0, (b) α = 1.0 · 102, (c)
α = 1.0 · 104, (d) α = +∞. Compare with Fig. 5.

system the variational formulation is as follows. Given ρ ∈ H, find the solution to the
following minimization problem:

min
v∈U

{
J F (ρ, v) + (2δ)−1

∫

Ω

(div v)2

}
. (5)

We note that in the case of homogeneous boundary conditions we have U = H1
0 (Ω).

Remark 10. Since the condition div u = 0 is violated, we should replace the term∫
Ω
|∇u|2 in the definition of J S with

∫
Ω
|E(u)|2, where E(u) = (∇u + ∇ut)/2 is the

linearized rate of strain tensor (see Section 4.3 in Ref. 22). However, both quadratic forms
give rise to equivalent norms on H1

0 (Ω) and thus do not affect our theoretical developments
in any way. Therefore, we choose to keep the definition of J S for notational simplicity.

In fact, one can go one step further and replace the term
∫
Ω
|∇u|2 with

∫
Ω
P(|E(u)|),

where P is a positive convex function verifying certain growth assumptions, thus including
non-Newtonian flows into the discussion (see Chapters 3 and 4 in Ref. 25). For some
functionals this will not affect the discussion, while for others (e.g., Prandtl-Eyring fluids)
we must reconsider the very basic problem statements [such as the Eq. (5)]. Therefore,
in this paper we consider Newtonian fluids only (that is, the case P(x) = x2) and discuss
possible extensions in Section VIII.
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Proposition 11. For every design ρ ∈ H the optimization problem (5) has a unique

solution v ∈ H1(Ω) whenever its objective functional is proper w.r.t. U , in particular if

U = H1
0 (Ω).

Now we are ready to state the main theorem of this section, which establishes the
continuity of the design-to-flow mapping in the case of Stokes flow with homogeneous
boundary conditions.

Theorem 12. Consider a sequence of designs {ρk} ⊂ H and the corresponding sequence

of flows {uk} ⊂ H1
0 (Ω), k = 1, 2, . . . (i.e., uk solves the problem (5) for ρk). Assume

that ρk → ρ0, strongly in L1(Ω + BR), and uk ⇀ u0, weakly in H1
0 (Ω). Then, u0 is the

flow corresponding to the limiting design ρ0.

Remark 13. Theorem 12 shows the epi-convergence of the objective functionals of the
ρ-parametric optimization problem (5) as the parameters strongly converge in L1(Ω+BR).

Remark 14. We use strong convergence on the space of designs in order to guarantee
the Lipschitz continuity of the family of walls {x ∈ Ω | (F ∗ ρk)(x) = 0 }, parametrized
by k ∈ N, which is a stronger property than upper-semicontinuity (cf. Proposition 5).
We need Lipschitz continuity to prove Theorem 12.

In the case of non-homogeneous boundary conditions, the result is essentially the
same provided we can keep the walls away from the regions of the boundary where
injection/suction of the fluid is performed; see Subsection B of Section III and Example 3
for motivations.

Theorem 15. Consider a sequence of designs {ρk} ⊂ H and the corresponding sequence

of flows {uk} ⊂ U , k = 1, 2, . . . (i.e., uk solves the problem (5) for ρk). Assume that

ρk → ρ0, strongly in L1(Ω + BR), and uk ⇀ u0, weakly in H1(Ω). Further assume that

for some positive constants ε, τ it holds that

inf{ (F ∗ ρk)(x) | k ∈ N, x ∈ Ω ∩ (supp g + Bε) } ≥ τ. (6)

Then, u0 is the flow, corresponding to the limiting design ρ0 (i.e., u0 solves the prob-

lem (5) for ρ0).

Remark 16. We note that the condition (6) is automatically verified for Stokes problems
with homogeneous boundary conditions, because the infimum is taken over the empty set
in this case (supp g = ∅).

B. Navier–Stokes flows

In the case of the Navier–Stokes equations things get much more complicated, because we
do not seek a minimizer of some functional anymore, and we cannot apply epi-convergence
results directly. Nevertheless, we can utilize them to show the closedness of the design-
to-flow mappings even in the Navier–Stokes case.

We introduce a general fixed-point framework related to the optimization problem (5),
and then show (at least for the case of homogeneous boundary conditions) that the slightly
compressible Navier–Stokes equations can be considered in this framework.

Let A(u, v) : U×U → R be a weakly continuous functional, and consider the problem
of finding a fixed point of the point-to-set mapping Tρ : U ⇉ U defined for ρ ∈ H as

Tρ(u) = argmin
v∈U

{
J F (ρ, v) + (2δ)−1

∫

Ω

(div v)2 + A(u, v)

}
. (7)
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Theorem 17. Consider a sequence of designs {ρk} ⊂ H and the corresponding sequence

of fixed points {uk} ⊂ U , k = 1, 2, . . . (i.e., uk ∈ Tρk
(uk) for Tρk

defined by Eq. (7)).
Assume that ρk → ρ0, strongly in L1(Ω+BR), uk ⇀ u0, weakly in H1(Ω), and T (u0) 6= ∅.
Further assume that for some positive constants ε, τ the condition (6) is satisfied. Then,

u0 ∈ Tρ0
(u0).

Remark 18. In fact, weak continuity of A(u, v) is unnecessarily strong requirement.
We can prove Theorem 17 under the following weaker assumptions on A:

(i) A(u, u) ≤ lim infk→∞ A(uk, uk) whenever uk ⇀ u, weakly in U ; and
(ii) A(u, v) ≥ lim supk→∞ A(uk, vk) whenever uk ⇀ u, weakly in U , and vk → v,

strongly in U .

As an example application of Theorem 17, we consider a particular penalty formu-
lation of the incompressible Navier–Stokes equations with homogeneous boundary con-
ditions studied in Ref. 26. A more general treatment is of course possible, including
inhomogeneous boundary conditions and variants of slightly compressible Navier–Stokes
equations; the main difference is in the number of technical details to be covered.

To put the penalty formulation considered in Ref. 26 (of course, without the control
term α) into the fixed-point framework we define

A(u, v) =

∫

Ω

(u · ∇u) · v + 2−1

∫

Ω

(u · v) div u. (8)

We note that the last integral adds an additional stability to the penalty algorithm26 and
identically equals zero in the incompressible case; we can thus expect that the effects of its
presence can be almost neglected in the slightly compressible case. Owing to Lemma 2.7
in Ref. 26, the functional A defined in Eq. (8) is weakly continuous on H1

0 (Ω) × H1
0 (Ω),

and in order to apply Theorem 17 it remains to establish an analogue of Proposition 11.

Proposition 19. With U = H1
0 (Ω) and A defined in Eq. (8), the fixed-point problem

associated with the operator Tρ(u) given in Eq. (7) admits solutions for every ρ ∈ H.

Remark 20. While the mapping (ρ, u) → Tρ(u) is in many cases single-valued for every
pair (ρ, u), there might be more than one solution to the fixed point problem associated
with this operator. In other words, we do not assume that the compressible Navier-Stokes
system admits a unique solution.

Remark 21. We can use another popular weak formulation of slightly compressible
Navier–Stokes equations,27 identifying

A(u, v) =
1

2

( ∫

Ω

(u · ∇u) · v −

∫

Ω

(u · ∇v) · u

)
.

Our results hold even in this case without any changes.

Remark 22. Of course, the fixed-point framework is not bounded to Navier–Stokes
equations. For example, putting, for some u0 ∈ R

d,

A(u, v) =

∫

Ω

(u0 · ∇u) · v,

we can show continuity results for Oseen flows. This type of flow is probably not very
interesting in bounded domains Ω, but illustrates the possible uses of the fixed-point
formulation. Finally, we note that setting A ≡ 0 we recover the original Stokes problem.
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VI. Existence of optimal solutions

A. Ensuring strong convergence of designs and condition (6)

The results established in Section V all require strong convergence of designs in L1(Ω +
BR). In order to guarantee convergence we need to embed our controls H into some
space that is more regular than L∞(Rd) ∩ L1(Rd). The most appropriate choice, in
our opinion, is the space SBV (Rd), which is typically used for perimeter constrained
topology optimization (see p. 31 in Ref. 3 and references therein). Other choices are
possible, including W 1,1(Rd)∩L∞(Rd) (that is, imposing “slope constraints” on the design
space28). Bounds on the perimeter, or slope, may be introduced into the problem directly
as constraints, or added as penalties to the objective function.

Regardless of the particular method used, we get the required property: ρk ⇀ ρ,
weakly in H, implies ρk → ρ, strongly in L1(Ω + BR), allowing us to establish the
closedness of the design-to-flow mappings.

As for the condition (6), it can be easily verified if we require in addition that every
design ρ ∈ H, satisfying the bounds 0 ≤ ρ ≤ 1, a.e. on R

d, also satisfies ρ ≥ τ , a.e. on
supp g + BR+ε, for some positive constants ε, τ .

B. An abstract flow topology optimization problem

Now we are ready to formally discuss the well-posedness of an abstract flow topology
optimization problem:

min
(ρ,u)

F(ρ, u),

s.t.

{
(ρ, u) ∈ Z,

u ∈ Tρ(u).

(9)

The previous results imply the following theorem.

Theorem 23. Let Z be a nonempty weakly compact subset of H×U ⊂ SBV (Rd)×H1(Ω),
and let for all ρ ∈ H the assumption (6) be verified (see the discussion in Subsection A ).
We also assume that A [which defines the mapping Tρ via Eq. (7)] enjoys the conditions

of Remark 18, and that for every ρ ∈ H the fixed-point problem associated with Tρ admits

solutions. Finally, let F : SBV (Rd) × H1(Ω) → R be weakly lower semi-continuous.

Then, there exists at least one optimal solution to the abstract flow topology optimization

problem (9).

Remark 24. If the assumptions of Theorem 23 about the flow model are satisfied, we
may set

Z = { (ρ, u) ∈ Z0 × U | G(ρ, u) ≤ C },

where Z0 is a nonempty weakly compact subset of H ⊂ SBV (Rd) verifying condition (6),
G(ρ, u) is an arbitrary weakly l.s.c. functional, which is in addition coercive in u, uni-
formly w.r.t. ρ, and C ∈ R is an arbitrary constant but such that Z 6= ∅.

In particular, we may set G = J , or G = J F (see Lemma 3.2 in Ref. 9).

At last, we note that assumptions of Theorem 23 about the solvability of the fixed-
point problem for every feasible design ρ are verified in many practical situations. For
example, we have shown that they are satisfied for Stokes equations (see Proposition 11
and Remark 22) and for Navier–Stokes equations with homogeneous boundary conditions
(see Proposition 19).
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VII. Computational issues

In this section we briefly discuss two topics that are standard in topology optimization
with specialization to flow topology optimization problems. Throughout the section we
will use the problem (9) as a model example, and we assume that the assumptions of
Theorem 23 are verified without further notice.

A. Approximation with sizing optimization problems

Clearly, no finite element software can be applied to the minimization problem appear-
ing in Eq. (7) if α(F ∗ ρ) is allowed to become arbitrarily large; from the practical
point of view the theory of Section V implying the existence of optimal solutions to the
problem (9) is pointless, unless we can describe a computational procedure capable of
finding approximations of these optimal solutions. In fact, once we have proved Theo-
rem 17 the latter goal can be easily accomplished. For arbitrary ε > 0, consider the set
Zε = { (ρ, u) ∈ Z | ρ ≥ ε, a.e. }, i.e., only designs with porosity uniformly bounded away
from zero are allowed, implying in particular the uniform bound α(F ∗ ρ) ≤ ε−1 − 1, for
every (ρ, u) ∈ Zε.

Then, the following easy statement holds.

Proposition 25. Assume that the sequence {Zε} is lower-semicontinuous in Painlevé-

Kuratowski sense (topology in H× U being the strong one), namely

Lim inf
ε→+0

Zε = Z, (10)

(in particular, Zε 6= ∅ for all small ε > 0). Let further, for every small ε > 0, (ρε, uε)
denote a globally optimal solution of an approximating problem, obtained from the prob-

lem (9) substituting Zε in place of Z. Then, an arbitrary limit point of {(ρε, uε)} (and

there is at least one) is a globally optimal solution of the limiting problem (9).

The assumption (10) is probably easier to check in every particular case rather than
to develop a general sufficient condition implying it; we only mention that for typical
constraints in topology optimization, such as constraints on volume and on the perimeter,
it is easily verified.

In general, there is a substantial amount of literature on the topic of approximation
of topology optimization problems using sizing ones. (See the bibliographical notes [16]
in Ref. 3 for a survey of the situation in the topology optimization of linearly elastic ma-
terials; also see Section 6 in Ref. 9 for results on incompressible stokesian flows, and Ap-
pendix A.2 in Ref. 10 for a similar problem arising in the design of flow networks.) Cases
of interest in such literature are when some of the underlying assumptions of Proposi-
tion 25 are violated, such as the compactness of Z or Zε, or the assumption (10); in some
particular situations it is nevertheless possible to prove statements similar to Proposi-
tion 25. We do not try to generalize our result in this direction, because computationally
the problem (9) is already extremely demanding for realistic flows, and complicated con-
straints violating the assumption (10) are hardly necessary in practical situations.

B. Control of intermediate densities

Starting with the problem of distributing the solid material inside a control volume Ω so
as to minimize some objective functional dependent on the flow, we expect an optimal
design of the type ρ = χA, where A ⊂ Ω is a flow region (“black–white” designs).
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Usually, this is a very näıve expectation (see Section 1.3.1 in Ref. 3); however, there are
some exceptions, such as the minimum-power design of domains for Stokes flows,8, 9 or
the design of one-dimensional wave-guides for stopping wave propagation.29

However, if we use a filter, it is simply impossible to obtain optimal distributions of
material assuming only values zero or one (not counting the trivial designs F ∗ ρ ≡ 0
and F ∗ ρ ≡ 1), because F ∗ χA is a continuous function, and the “edges” ∂A will be
“smoothed out” by the filter. One possible way to reduce the amount of porous material
in the final optimal design F ∗ ρ is to use a filter of a smaller radius. This may or may
not work as expected — since the control problem (9) is non-convex, the optimal designs
may change significantly as we vary the radius only slightly.

Another possibility is to add a penalty term µJ D(F ∗ ρ, u), for some positive µ,
requiring that the power dissipation due to the flow through the porous part of the
domain should be relatively small (see Section 5 in Ref. 9). We must warn that increasing
penalty µ might lead to unexpected results, because as we have already mentioned, the
presence of the filter requires the presence of porous regions in the domain (except for
trivial cases), thus the sequence of designs may converge to either one of those trivial
designs, or µJ D(F ∗ ρ, u) may grow indefinitely. Therefore, suitable values of µ should
be obtained in each case experimentally.

At last, various restriction or regularization techniques that are designed to control
the amount of “microstructural material” in topology optimization of linearly elastic
structures may be used for similar purposes in our case. We already mentioned the
regularized intermediate density control method;19 other possible choices may be found
in bibliographical notes [8] in Ref. 3.

VIII. Conclusions and further research

We have considered the topology optimization of fluid domains in a rather abstract
setting, and established the closedness of design-to-flow mappings for a general family of
slightly compressible fluids, whose behavior is characterized by the fixed-point formulation
associated with the operator defined in Eq. (7). We used the notion of epi-convergence of
optimization problems as a main analytical tool that allows us to treat very ill-behaving
functionals, which arise due to the fact that we allow completely impenetrable walls to
appear in the design domain.

It is of course of great engineering interest to perform numerical experiments with
topology optimization of slightly compressible fluids for various objective functionals,
theoretical foundations for which are established in this paper. Provided a stable solver
of the underlying flow problem is available, it should not be a difficult task to combine it
with the optimization code; in the end, the ease of integration with FEM software is one
of the main reasons why topology optimization techniques are widely accepted and still
gain popularity in many fields of physics and engineering.3 In fact, one such successful
attempt of integrating topology optimization with Femlab is done for incompressible
Navier–Stokes fluids.12 Unfortunately, at the time of writing this code was not available
to the author. We hope to be able to perform numerical computations in the near future.

The motivation for relaxing the incompressibility requirement is found in Subsection B
of Section III; however, if one is not convinced, and for the sake of completeness it would
be interesting to prove Theorem 12 for divergence-free functions, from which the rest of
the theory should follow for incompressible fluids as well.

The method we used is of course not bound to Newtonian fluids. It seems that our re-
sults should hold for many common non-Newtonian fluids, including power-law, Bingham,
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and Powell-Eyring models (see Chapter 3 in Ref. 25), without any major modifications
(cf. Remark 10). Additional work is obviously needed for fluids of Prandtl-Eyring type
(see Chapter 4 in Ref. 25); we however feel that the special treatment this (mathemati-
cally) exotic type of fluids deserves lies well outside the scope of this paper.

At last, but not the least, we feel it is important to establish the existence of solutions,
or construct a disproving counter-example, for the “original” problem of power minimiza-
tion for incompressible Navier–Stokes fluids without the use of filtered designs. While we
have shown that this problem looks ill-posed and is probably unsuitable for practical nu-
merical computations, knowing whether optimal solutions exist would greatly contribute
to the deeper understanding of Navier–Stokes flows and affect the further development
in the area of topology optimization of fluids.
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A Generating Set Sear
h Method ExploitingCurvature and Sparsity�Lennart Frimannslundy Trond SteihaugzAbstra
tGenerating Set Sear
h methods are one of the few alternatives for optimising high�delity fun
tions with numeri
al noise. These methods are usually only eÆ
ientwhen the number of variables is relatively small. This paper presents a modi�-
ation to an existing Generating Set Sear
h method, whi
h makes it aware of thesparsity stru
ture of the Hessian. The aim is to enable the eÆ
ient optimisationof fun
tions with a relatively large number of variables. Numeri
al results show ade
rease in the number of fun
tion evaluation it takes to rea
h the optimal solution,sometimes by signi�
ant margins, on noisy as well as smooth problems, for a modestas well as a relatively large number of variables.Keywords: Nonlinear programming, derivative{free optimization, pattern sear
h,generating set sear
h, sparsity.1 Introdu
tionWe 
onsider the un
onstrained optimisation problemminx2Rn f(x); (1)where f : Rn 7! R. Suppose that f is only available asef(x) = f(x) + �; (2)where the error term � is either sto
hasti
 or numeri
al in nature. By numeri
al noise wemean the noise whi
h 
an arise from, for instan
e, the dis
retisation involved if evaluating�This work was supported by the Norwegian Resear
h Coun
il.yDepartment of Informati
s, University of Bergen, Box 7800, N-5020 Bergen, Norway. E-mail:lennart.frimannslund�ii.uib.nozDepartment of Informati
s, University of Bergen. E-mail: trond.steihaug�ii.uib.no
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f requires 
omputing an integral, solving a di�erential equation or any other subproblemwhi
h is solved inexa
tly. The same input will always give the same output, but the fun
-tion will not be smooth. An example of su
h a fun
tion o

urs in [1℄, where the obje
tivefun
tion 
ontains an integral. The trun
ation error stemming from the 
omputation of theintegral makes the fun
tion look like the one in �gure 1. There is an underlying smoothfun
tion, but it is obs
ured by noise. On su
h methods derivative-based methods 
aneasily run into trouble, sin
e �nite di�eren
e-based derivatives may be very ina

urateand automati
 di�erentiation often is unhelpful as well. Generating Set Sear
h (GSS)Methods are a good alternative in this 
ase. GSS methods are 
omprehensively reviewedin [12℄. Although usually easy to implement, GSS methods in their most basi
 form often
onverge slowly. Modi�
ations to speed up 
onvergen
e were suggested as early as in1960 by Rosenbro
k [17℄. Two re
ent approa
hes using 
urvature information have beensuggested [2, 7℄. The main modi�
ation to basi
 GSS in these papers is that the sear
hdire
tions the methods 
onsider are dynami
. The introdu
tion of a dynami
 sear
h basisis shown to signi�
antly redu
e the number of fun
tion evaluations required to rea
h theoptimiser, in most 
ases.Apart from slow 
onvergen
e, GSS methods are often unsuitable for problems wherethe number of variables n is large. In [16℄, one proposes a method e�e
tive for theoptimisation of smooth fun
tions whi
h 
an be de
omposed into element fun
tions. Let�k � f1; 2; : : : ; ng ; k = 1; : : : ; n and let j�kj be the 
ardinality of the set �k. Letfk : Rj�k j 7! R; k = 1; : : : ; n, where �k are the indi
es of x on whi
h fk depend. If f is ofthe form f(x) = nXk=1 fk(x); (3)then f is said to be partially separable, or totally separable depending on the 
ardinality ofthe sets �k. Separability of f is 
losely related to the sparsity stru
ture of the derivatives,but we make the distin
tion be
ause separability stru
ture is de�ned even if the fun
tionis not di�erentiable. Theory on separability of fun
tions 
an be found in [11℄.Given a totally separable fun
tion one 
an obtain the value of f at as many as 3n� 1points at the 
ost of only 2 f -evaluations, as long as the points in question are alignedwith the 
oordinate axes. The optimisation algorithm in [16℄ exploits this fa
t to solvesmooth problems of the form (1) with f of the form (3) for up to more than 5000 variables.We wish to exploit separability of f , on noisy fun
tions.In [7℄ an algorithm whi
h solves (1) where the fun
tion is of the form (2) using average
urvature information to speed up 
onvergen
e was developed. However, as n grows,the algorithm be
omes in
reasingly unable to exploit this information. In this paper wepresent an extension to the algorithm of [7℄, whi
h utilises the sparsity pattern of theHessian of f in (2). Although noise 
an potentially eliminate any sparsity pattern fromr2f in r2 ef , a priori knowledge about r2f through knowledge about the separabilitystru
ture (3) or known Hessian sparsity stru
ture is assumed to be valid for r2 ef as well.
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Figure 1: ex � x2 with noise.This paper fo
uses on un
onstrained optimisation, but extensions toward 
onstrainedoptimisation dis
ussed in [4, 13, 14℄ are appli
able.2 Generating Set Sear
hGSS methods are a 
lass of methods whi
h sear
h along the ve
tors of a generating setor positive basis. A generating set 
onsists of ve
tors vi; i = 1; : : : ; r su
h that for anyx 2 Rn , x = rXi=1 
ivi; 
i � 0; i = 1; : : : ; r:In words, the ve
tors in the set positively span Rn . It is shown in [3℄ that to positivelyspan Rn , n + 1 � r � 2n, depending on the ve
tors. The positive and negative of theCartesian 
oordinate ve
tors, say ei; i = 1; : : : ; n are an example of a generating set with2n ve
tors. These methods are also known as pattern sear
h, the name Generating SetSear
h was 
oined in [12℄.Let the set of sear
h dire
tions D be de�ned asD = r[i=1 fpig :Asso
iate with ea
h pi a step length Æi. Then, a pseudo 
ode for a method we will 
allCompass Sear
h is:
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Compass Sear
hGiven x; Ætol; � � 1 > � > 0,Repeat until 
onvergen
e,For ea
h pi 2 D,If f(x + Æipi) < f(x);x x + ÆipiÆi  �Æielse,Æi  �Æiend.end.end.� and � need not be 
onstant throughout. We will 
all one run of the repeat-loop asweep. For this and other GSS methods one 
an expe
t linear 
onvergen
e, see [12℄ andthe referen
es therein.Rosenbro
k's method [17℄ is based on Compass Sear
h with 2n sear
h dire
tions. Itregularly rotates the sear
h ve
tors in D by aligning the prin
ipal sear
h dire
tion to anaverage gradient and generates (n � 1) additional dire
tions through the Gram-S
hmidtpro
ess. It uses the positive and negative of the resulting ve
tors as its new sear
hdire
tions.2.1 GSS Methods Using Curvature InformationWe look at two di�erent methods employing 
urvature information.The Method of Coope and Pri
e This method for un
onstrained optimisation ofsmooth fun
tions, is des
ribed fully in [2℄. It minimises the fun
tion on su

essively�ner grids whi
h are de�ned by the sear
h dire
tions vi; i = 1; : : : ; n and the step lengthsasso
iated with ea
h dire
tion. The method sear
hes along both the positive and negativeof these dire
tions, and hen
e has 2n sear
h dire
tions. In the pro
ess of sear
hing alongthe 
urrent dire
tion, say, vi, the method obtains the fun
tion values at three points alongthis line. From these three points it 
reates an interpolating quadrati
 fun
tion. The steplength Æi 
orresponding to vi is then based on the distan
e from the 
urrent iterate to theminimiser of the interpolating fun
tion.
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Using the parallel subspa
e theorem (see, e.g. theorem 4.2.1 of [6℄) the method gener-ates 
onjugate sear
h dire
tions, one dire
tion at a time from the n initially non-
onjugatesear
h dire
tions. On
e a 
onjugate dire
tion has been found, the algorithm deletes a non-
onjugate dire
tion, to maintain the number of sear
h dire
tions. The generated 
onjugatedire
tions are stored in a matrix V
, whi
h be
omes an indire
t approximation to (r2f)�1on
e n 
onjugate dire
tions have been found, by the relationV
V T
 � (r2f)�1:The method is able to perform a �nite di�eren
e Newton step from time to time. On
ethe entire inverse Hessian approximation is in pla
e, the algorithm starts building up anew approximation. The algorithm terminates exa
tly on quadrati
 fun
tions.A Method Exploiting Average Curvature Information This method is des
ribedfully in [7℄. Let the sear
h basis D 
onsist of the positive and negative of the 
olumnve
tors of the orthogonal matrixQ = � q1 q2 � � � qn � ;where qi is 
olumn i. By adaptively shu�ing the order of the dire
tions in D on
e persweep, the algorithm is able to gather average 
urvature information from the history offun
tion evaluations. The algorithm builds up what in [7℄ is 
alled a 
urvature informationmatrix, CQ, one element at the time, by the formula(CQ)ij = f(xij + Æiqi + Æjqj)� f(xij + Æiqi)� f(xij + Æjqj) + f(xij)ÆiÆj : (4)where Æi and Æj are the step lengths along the sear
h dire
tions qi and qj respe
tively, atany given time. The point xij is usually di�erent for ea
h (CQ)ij. CQ is required to besymmetri
, so only the lower triangle of CQ is 
omputed. The expression (4) equals adire
tional se
ond derivative, (CQ)ij = qTi r2f(exij)qj (5)for some exij in the re
tangle with the four points xij + Æiqi + Æjqj, xij + Æiqi, xij + Æjqjand xij as 
orner points. (See e.g. lemma 3.5 in [5℄.) If the step lengths are suÆ
ientlylarge then average 
urvature information is obtained, thus smoothing out the e�e
ts ofnoise. The method is able to obtain O(n) CQ-elements per sweep, so the entire matrix CQ
onsisting of n2+nn unique elements is 
omputed in O(n) sweeps. When CQ is determined,the matrix C, given by the formula C = QCQQT ; (6)is 
omputed. The positive and negative of the eigenve
tors of C are taken as the newsear
h basis, and Q is updated a

ordingly.
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3 A S
heme for Exploiting SparsityWe now propose an extension to the algorithm of [7℄. Assume f is separable. The indi-vidual fk and �k de�ne j�kj � j�kj Hessian stru
tural information, and by assembling allthe individual matri
es, we have a sparsity stru
ture for the entire Hessian. If sparsitystru
ture is not known a priori, it 
an be dete
ted by the te
hnique of [10℄, or it is pos-sible to obtain the information from 
omputational graphs, whi
h are used in Automati
Di�erentiation (AD). (See, e. g. [9℄ for more on AD.)However, sparsity is relative to the 
oordinate system. CQ will not be sparse if Q 6= I,and neither will the matrix C from (6) be unless the fun
tion is quadrati
, due to trun-
ation error in (4). Therefore, we impose the restri
tion that C have the same sparsitystru
ture as the Hessian.Whenr2f is full, we need to 
ompute n2+n2 CQ-elements by (4). If the Hessian is sparsewith, for instan
e, O(n) unique elements, we would like to 
ompute no more elements inCQ than there are unique elements in the Hessian itself. O(n) elements 
an be 
omputedin O(1) sweeps.We do this by writing (6) as the equationQTCQ = CQ; (7)where the unknown is the matrix C. Let D and B be n � n-matri
es. The Krone
kerprodu
t (D 
B) is an n2 � n2-matrix(D 
 B) = 264 D11B � � � D1nB... ...Dn1B � � � DnnB 375 : (8)See e.g. [8℄. Useful identities are(D 
 B)�1 = (D�1 
B�1); (9)and (D 
 B)T = (DT 
 BT ); (10)Using the Krone
ker produ
t, (7) 
an be rewritten as(QT 
QT )ve
(C) = ve
(CQ); (11)where ve
 is an operator ve
 : Rn�n 7! Rn2 whi
h sta
ks the entries of a matrix in ave
tor su
h that the equivalen
e between (7) and (11) holds. Denote the 
olumns of thematrix C by 
i; i = 1; : : : ; n; that is,C = � 
1 
2 � � � 
n � :
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Then ve
(C) = ( 
T1 
T2 � � � 
Tn )T : (12)If we examine the matrix (QT 
QT ) it reads(QT 
QT ) = 264 Q11QT � � � Qn1QT... ...Q1nQT � � � QnnQT 375 : (13)The �rst row 
onsists of produ
ts involving only the elements of q1. The se
ond row
onsists of produ
ts involving only the elements of q1 and q2. Similarly, ea
h of theremaining rows 
ontain produ
ts involving elements of only two q-ve
tors. Sin
e theve
-operator is also applied to CQ in the right-hand side of (11), the row made up ofthe ve
tors qi and qj 
orresponds to the element (CQ)ij in ve
(CQ). We now want toredu
e the number of variables in (11) based on our knowledge of symmetry and sparsitystru
ture. Sin
e we require C to be symmetri
 we 
an, for all r > s, add the 
olumns
orresponding to Csr to the 
olumns 
orresponding to Crs and delete the former 
olumns.This means we only 
onsider the elements in the lower triangle of C. A

ordingly, wedelete all the rows whi
h do not 
orrespond to 
omputation of elements in the lowertriangle of CQ. Furthermore, sin
e C has a 
ertain sparsity stru
ture, we 
an delete all
olumns whi
h 
orrespond to elements Crs we know are to be zero.Having removed the 
olumns 
orresponding to zero elements, we must also removethe same number of rows. We have some freedom when it 
omes to whi
h rows areto be removed. We want the resulting 
oeÆ
ient matrix after row removal to be well
onditioned. If we were working in a Cartesian 
oordinate system, then the two ve
torsused to 
ompute Crs by a di�eren
e formula like the one in (4) would be the 
oordinateve
tors er and es, and any nonsingular submatrix of (13) would be well 
onditioned. Sin
ewe are working in the 
oordinate system de�ned by the ve
tors qi; i = 1; : : : ; n, the 
losestwe 
an get to er and es are the ve
tors with their maximum absolute elements in positionr and s, that is, ve
tors qi and qj su
h thatmaxk j(qi)kj = j(qi)rj;and maxk j(qj)kj = j(qj)sj:So, for ea
h nonzero Crs we pi
k the ve
tors qi and qj and keep the 
orresponding row.Let � be the number of unique nonzero elements in the Hessian. Sin
e we want anequation system with � equations an unknowns, we need to modify the ve
 to take thisinto a

ount. Let ve
 be the operator whi
h sta
ks the nonzero elements of the lowertriangle of a matrix in a ve
tor. Let 
Q signify the �-ve
tor of CQ-entries that we 
ompute.The resulting �� � equation system be
omesAve
(C) = 
Q; (14)
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where A is the resulting matrix from modifying (QT 
 QT ). In our experiments, usingthe heuristi
 just des
ribed, A was usually very well 
onditioned.Sin
e we need to 
ompute � 
Q-elements and 
an 
ompute O(n) elements per sweep,the right-hand side 
Q will be available in O( �n) sweeps. Then we solve (14) and 
onstru
tC with the inverse of the operator ve
.3.1 The Relationship between C and the HessianIn this se
tion we examine the error kC �r2fk:First we need a te
hni
al result. De�ne
 = ve
(C);Then we have k
k � kCkF � p2k
k: (15)Too see this, suppose that C has n diagonal and 
 o�-diagonal nonzero elements. Wethen have k
k =  n+
Xi=1 
2i! 12 ; (16)and kCkF = 0�X8(r;s)C2rs1A 12 : (17)Not 
ounting terms C2rs where Crs is known to be zero, the sum in (17) 
ontains n + 2
nonnegative elements. All of the terms in the sum in (16) are present in (17), so 
learlyk
k � kCkF . As for the se
ond inequality, we havep2k
k = kp2
k =  n+
Xi=1 (p2
i)2! 12 : (18)This 
an be written  2 n+
Xi=1 
2i!12 =  n+
Xi=1 
2i + n+
Xi=1 
2i! 12 : (19)The �nal sum of (19) 
ontains a sum of 2n + 2
 nonnegative elements. All the n + 2
elements in (17), (still not 
ounting terms C2rs where Crs is known to be zero) are presentin (19), so the se
ond inequality of (15) holds as well.Now we 
an turn our attention to the relationship between C and the Hessian.
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Lemma 1 Let f be twi
e 
ontinuously di�erentiable. Assume A in (14) is invertible andlet 
 be the solution to (14). Let element l, l = 1; : : : ; � of 
Q in (14) be 
omputed by (4)and be equal to qTi r2f(exl)qj for the appropriate ve
tors qi and qj by (5). De�neN = �[l=1�exl	 ; (20)and let Æ = maxx;y2N kx� yk; (21)and N = �x 2 Rn ����maxy2N kx� yk � Æ� : (22)Let f be Lips
hitz-
ontinuous in N with Lips
hitz-
onstant L. Then, the matrix C ob-tained by applying the inverse of the operator ve
 on 
, satis�eskC �r2f(x)k � p2��(A)LÆ;where x 2 N and �(A) is the 
ondition number of A.Proof. Let hl = ve
(r2f(exl)); l = 1; : : : ; �. The Hessian has the same sparsity stru
tureas C, so 
Q 
an be written 
Q = 26664 (Ah1)1(Ah2)2...(Ah�)�
37775 ;where (Ahl)l is the lth element of the ve
tor Ahl. If we now let El be the matrix with 1in position (l; l) and zero everywhere else, we have
 = A�1 �Xl=1 (ElAhl):The Hessian mapping r2f : Rn 7! Rn�n is assumed to be Lips
hitz-
ontinuous in N , thatis, kr2f(x)�r2f(y)k � Lkx� yk for all x; y 2 N : (23)Let x 2 N . De�ne ve
(r2f(x)) = h:Then we have 
 = A�1 �Xl=1 (ElA(h+ �l));
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where �l = hl � h:This expands to 
 = A�1(E1 + � � �+ E�)Ah+ �Xl=1 A�1ElA�l:The �rst part of the expression redu
es to just h, sin
e the sum of the El be
omes theidentity matrix. The se
ond term be
omes an error term, whose norm is bounded byk
� hk = k �Xl=1 A�1ElA�lk � �kA�1k�maxl kElk� kAk�maxl k�lk� : (24)All the El have unit norm, and the norms kAk and kA�1k together make up the 
onditionnumber of the matrix A, �(A). We now need a bound on maxl k�lk. We havemaxl kexl � xk � Æ;sin
e x and all the exl are in N . Thus, by (23):maxl kexl � xk � Æ ) maxl kr2f(exl)�r2f(x)k � LÆ:By (15) we havemaxl k�lk = maxl kh� hlk � maxl kr2f(exl)�r2f(x)kF � LÆ:This turns (24) into k
� hk � ��(A)LÆ;and �nally, by (15), kC �r2f(x)kF � p2��(A)LÆ:�4 Preliminary Numeri
al ResultsNumeri
al test were performed on three fun
tions from [15℄, for various sizes of n. All thefun
tions have a minimum value of zero. The results on smooth fun
tions are listed in table1. The 
olumns 
ontain, from left to right, the number of variables, the number of uniquenonzero elements to be determined �, the number of fun
tion evaluations performed torea
h the solution, the number of C-matri
es 
omputed and hen
e the number of timesthe positive basis D is updated, and the �nal fun
tion value obtained, for the method
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using sparsity and the method of [7℄ (marked \regular" in the table), respe
tively. The
onvergen
e 
riterion used in the experiments on smooth fun
tions wasmaxi Æi < 10�7:The results on the extended Rosenbro
k fun
tion agree very well with our expe
tations.The Hessian of the extended Rosenbro
k fun
tion has O(n) elements, so as expe
ted thenumber of C-matri
es and hen
e D-updates is relatively 
onstant for the sparse method,
onsistent with the bound O( �n) for obtaining the desired CQ-elements. In the 
ase of theregular method, D-updates be
ome fewer as n grows, 
onsistent with the bound O(n) onthe 
omputation of CQ in this 
ase. In addition, the sparse method uses fewer fun
tionevaluations to rea
h the optimum, apparently sin
e it is able to 
hange sear
h basis andhen
e adapt to the lands
ape of the fun
tion more often than the regular method.On the Broyden tridiagonal fun
tion we see a similar pi
ture, although the savings infun
tion evaluations are not as apparent here as on the extended Rosenbro
k fun
tion.The reason this seems to be that frequent basis updates is not 
ru
ial on this fun
tion.The same 
an be said about the results on the Broyden banded fun
tion. Note that onthe two Broyden fun
tions, when n = 64 and n = 128, no basis 
hange takes pla
e in the
ase of the regular method, whi
h then in reality be
omes Compass Sear
h.We also tested on the fun
tions with noise, spe
i�
allyef(x) = f(x) + max(10�4 � jf(x)j; 10�4) � �; (25)where � is uniformly distributed in the interval [�1; 1℄. This noise s
heme is adopted from[18℄. On these problems, the 
onvergen
e 
riterion used wasmaxi Æi < 10�4:The results are listed in table 2. Sin
e we add noise to the problems by (25) we 
annotexpe
t to �nd a lower fun
tion value than 10�4. On the extended Rosenbro
k fun
tion thepi
ture is very mu
h the same as with no noise. However, the regular method terminatesprematurely for n equal to 32, 64, and 128. The sparse method terminates prematurelyfor n = 128. On the Broyden fun
tions we also have the same pi
ture as when no noiseis added.5 Con
luding RemarksWe have proposed and extension to the algorithm of [7℄ to make it aware of sparsity, andthereby enable solution of problems with n relatively large. We have managed to redu
ethe number of fun
tion evaluations it takes to rea
h a minimum on all three test fun
tionsas n grows. The results hold promise, and mu
h 
an be done to improve the results still, for
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Extended Rosenbro
k Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 893 16 1.53e-15 1051 14 3.52e-138 12 1972 18 5.89e-16 2870 11 3.26e-1616 24 3669 17 1.99e-15 8128 8 9.62e-1632 48 7368 17 3.65e-15 20632 6 2.77e-1564 96 14849 17 1.63e-15 65284 4 1.18e-14128 192 29781 17 3.26e-15 190884 3 2.13e-13Broyden Tridiagonal Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 355 6 1.53e-13 365 5 4.62e-138 15 826 7 2.59e-13 781 3 1.20e-1316 31 1556 6 8.25e-13 1672 2 7.97e-1332 63 3384 7 4.09e-13 4153 1 7.52e-1464 127 6440 7 1.70e-12 9186 0 1.42e-12128 255 14997 8 1.41e-12 18879 0 8.61e-12Broyden Banded Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 457 6 5.08e-15 382 5 2.56e-138 35 824 3 1.36e-14 804 3 4.28e-1316 91 1667 3 5.05e-14 1682 2 2.34e-1332 203 3439 2 6.90e-13 3437 1 9.31e-1364 427 6709 2 1.45e-12 7524 0 1.76e-13128 875 13450 2 2.24e-12 15070 0 3.96e-13Table 1: Numeri
al results, smooth fun
tions.
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Extended Rosenbro
k Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 808 15 3.63e-5 874 11 3.52e-48 12 1635 15 2.67e-3 2251 9 1.31e-416 24 3113 14 2.36e-2 7556 8 4.35e-332 48 7014 14 2.36e-2 10623 3 3.06e164 96 14085 16 1.38e-1 5236 0 1.22e2128 192 29321 17 1.86e1 6629 0 2.49e2Broyden Tridiagonal Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 182 3 5.25e-5 220 3 6.71e-58 15 383 3 3.66e-5 400 2 9.09e-516 31 855 4 1.86e-4 923 1 1.98e-432 63 1710 4 6.69e-4 1955 0 9.15e-464 127 3436 4 1.03e-4 4460 0 2.03e-3128 255 6834 4 1.70e-3 8146 0 4.81e-3Broyden Banded Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 205 3 1.73e-5 264 4 2.70e-58 35 460 2 5.76e-5 434 2 7.89e-516 91 893 1 1.13e-4 925 1 1.50e-432 203 1687 1 1.93e-4 1885 0 2.53e-464 427 3734 1 2.81e-4 3791 0 7.56e-4128 875 6799 1 8.60e-4 7504 0 1.33e-3Table 2: Numeri
al results, noisy fun
tions.
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Duality in MIP

Generating Dual Price Functions Using Branch-and-Cut

Elena V. Pachkova

Abstract

This presentation treats duality in Mixed Integer Programming (MIP in short). A dual
of a MIP problem includes a dual price function F , that plays the same role as the dual
variables in Linear Programming (LP in the following).

The price function is generated while solving the primal problem. However, different to the
LP dual variables, the characteristics of the dual price function depend on the algorithmic
approach used to solve the MIP problem. Thus, the cutting plane approach provides non-
decreasing and superadditive price functions while branch-and-bound algorithm generates
piecewise linear, nondecreasing and convex price functions.

Here a hybrid algorithm based on branch-and-cut is investigated, and a price function
for that algorithm is established. This price function presents a generalization of the dual
price functions obtained by either the cutting plane or the branch-and-bound method.

1 Introduction

Duality in mathematical programming is used in a variety of applications. Apart from con-
ceptual interest it provides interesting economic interpretations of the problem. Moreover,
using dual information usually improves the performance of an algorithm. Thus, there
exist many results on duality in linear programming (LP) (e.g. see Gass (1985)). Results
on duality in integer programming (IP) also exist (Wolsey (1981)). While algorithms for
LP produce unique dual programs (apart from degenerating programs), that are relatively
easy to obtain, IP algorithms generate a dual function whose characteristics depend on the
method used to solve the primal IP problem. Wolsey (1981) characterized this function for
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the branch-and-bound and the cutting plane methods.

Duality in mixed integer programming problems (MIPs), on the other hand, has only
a few results1. The formulation of a MIP dual also contains a dual price function as in the
case of IP problems. The aim of this paper is to give a characterization of this function
for the branch-and-cut method, a hybrid method, that uses the branch-and-bound and the
cutting plane approaches simultaneously.

2 MIP Problems

MIP deals with models, where a linear objective function has to be maximized (or mini-
mized) subject to a set of linear inequality or equality constraints, and where some of the
variables are integer.
A classical mixed integer program can be written as:

max cx + dy

(PMIP ) s.t. Ax + By ≤ b (1)

x ∈ Zn
+, y ∈ Rm

+

Here, x represents the integer variables while y represents the continuous variables. c ∈ Rn

and d ∈ Rm are the objective coefficients for x and y respectively. A ∈ Rk×n is a k × n
coefficient matrix for integer variables x and analogously B ∈ Rk×m is a k ×m coefficient
matrix for continuous variables y. b ∈ Rk is the right hand side vector of the constraints.
A review on MIP can be found in Nemhauser and Wolsey (1988).

3 Mixed Integer Duality

Consider the MIP problem (PMIP ) given by (1). The dual of the problem can be written
as

min F (b)

s.t. F (Ax + By) ≥ cx + dy ∀x ∈ Zn
+ & ∀y ∈ Rm

+ (2)

F ∈ F

1Nemhauser and Wolsey (1988) have stated the dual of MIP for superadditive dual function. Nemhauser
and Wolsey (1985) have investigated duality for 0-1 MIP problems.
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Here F is the dual function, or the so called price function. It plays the same role as
shadow prices2 in the LP dual. Let, e.g. b be the available resources, cx + dy be the
profit from a production and Ax + By be the production function. Then the original MIP
problem (PMIP ) given by (1) can be interpreted as maximizing profit from production,
given some constraints on available resources. One interpretation of the dual price func-
tion in the dual program (2) tells, how much extra resources are worth. In particular, if one
constraint in the primal problem (1) represents a constraint on one single resource, then
one extra unit of resource i is worth F (ei) units of payment, where ei is the i’th unit vector.

The structure of an optimal price function F and its properties depend on the algorithmic
approach used to solve the original MIP problem, and thus to generate F (if it is possible).
A review on the pure integer programming case can be found in L. A. Wolsey (1981).

The two most widespread algorithmic approaches to solve MIP problems are branch-and-
bound and cutting plane approaches. A cutting plane algorithm for MIP was first proposed
by Gomory (1960). However, the procedure appeared to be slow at first. Moreover, a finite
cutting plane algorithm for MIP is still not known. If the classical Gomory cuts are used,
Salkin (1989) mentions an example of a MIP problem by White (1961), that cannot be
solved using the cutting plane method. Therefore the research was more concentrated on
the branch-and-bound method proposed by Little (1963).

However, the cutting planes algorithms have been reconsidered in the early 90’s with some
impressive results. Thus, a cutting plane based lift-and-project algorithm was proposed
(see Balas et al. (1993) and Lovasz and Schrijver (1991)). Moreover, one of the most
widespread algorithm, branch-and-cut3 is a mixture of both approaches where a cutting
plane approach is added to the branch-and-bound framework.

Two sets of functions will be useful when describing MIP problems. Let F be the set
of nondecreasing functions F : Rk → R. Thus

F = {(F : Rk → R) : F (a) ≤ F (b)∀a, b ∈ Rk, a 5 b}.

Finally let H be the set of nondecreasing and superadditive functions satisfying the follow-
ing conditions:

1. (F : Rk → R) ∈ H is superadditive, i.e. F (q1) + F (q2) ≤ F (q1 + q2),∀q1, q2 ∈ Rk,

2Dual variables
3Padberg and Rinaldi (1987) for pure integer programming and Crowder et al. (1983) for 0-1 MIP.
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2. F (0) = 0,

3. F ∈ H is nondecreasing, i.e. F ∈ F, and

4. F (q) = limε↘0
F (εq)

ε
exists and is finite for all q.

In the cutting plane approach we will deal with functions in H, while dual price functions
for branch-and-bound approach will be nondecreasing, polyhedral and convex.

3.1 Cutting Plane Framework

Algorithms based on the cutting plane setting are less common. This may be because no
cutting plane based finite algorithm is known for the general MIP problem. See Marchand
et al. (1999) for a review on cutting plane based algorithms for MIP problems. The orig-
inal Gomory’s cutting plane algorithm is sure to terminate only if the optimal objective
function is integer valued. Other MIP algorithms restrict the variables to the 0-1 case.

Again consider the MIP problem (PMIP ) given by (1). The Gomory’s strong cutting plane
algorithm for MIP problems solves a family of problems (P r):

max zr = cx + dy

s.t Ax + By ≤ b

Cx + Cy ≤ Cb

x, y ≥ 0

Here an element in the last set of constraints has the form
∑n

j=1 Gr(A.j)xj+∑m
j=1 Gr(B.j)yj ≤ Gr(b) where the function Gr(q) : Rk → R represents a Gomory cut. r is

the index representing the number of the cut in focus.

The form of the function Gr(q) can be obtained from results in Nemhauser and Wolsey
(1988). Let bac be the integral part, and fa be the fractional part of a ∈ R. That is,
a = bac+ fa and 0 ≤ fa ≤ 1. For an α, 0 ≤ α < 1, define Fα(a) : R→ R by

Fα(a) = bac+ max(0, fa−α
1−α

).

Let v be the row element of the inverse basis matrix corresponding to the source row in the
constructed simplex tableau. For simplicity consider the first cut. Then v = {v1, ..., vk},
since the dimension of the basis is k. Let V = {1, ..., k}, V + = {i ∈ V |vi ≥ 0} and
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V − = {i ∈ V |vi < 0}. Moreover, let α be the fractional part of the nonintegral value of
the basic variable in the source row.

Holm and Tind (1988)4 show that G(q) defined by

G(q) = Fα(vq)− 1

1− α

∑

i∈V −
viqi

is superadditive and nondecreasing and that

G(q) =
1

1− α
min(−

∑

i∈V −
viqi,

∑

i∈V +

viqi)

is concave and piecewise linear. Additionally G(q) generates cuts in the Gomory strong
MIP cutting plane algorithm.

The algorithm terminates if some problem (P r) is found to be infeasible, or if a mixed
integer solution is found. However, this Gomory cutting plane algorithm is finite for inte-
gral optimum objectives only. For a general MIP we are not sure to obtain a solution after
a finite number of cuts.

3.1.1 MIP duality in Cutting Plane Framework

Gomory’s strong mixed integer cutting plane algorithm generates nondecreasing superad-
ditive optimal dual price functions. Suppose that p Gomory cuts are needed to find the
optimal solution for the primal MIP problem. With the Gomory cuts given by the function
G(q) defined above, the optimal price function F (q) : Rk → R and its directional derivative
are given by

F (q) =
k∑

i=1

uiqi +

k+p∑

i=k+1

uiGi(q) (3)

and

F (q) =
k∑

i=1

uiqi +

k+p∑

i=k+1

uiGi(q)

respectively. Here u1, ..., uk, uk+1, ..., uk+p ≥ 0 represent the dual variables obtained at ter-
mination. The first k variables correspond to the original MIP constraints, while the last

4Based on Nemhauser and Wolsey (1988)
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p variables correspond to the additional Gomory cuts.

The superadditive dual of a MIP is then (see also Nemhauser and Wolsey (1988))

min
F∈H

F (b)

s.t. F (A.j) ≥ cj j = 1, ..., n

F (B.j) ≥ dj j = 1, ..., m

Here F (q) is nondecreasing and superadditive and F (q) is concave and piecewise linear.

3.2 Branch-and-Bound Framework

The LP based branch-and-bound approach produced some effective algorithms like branch-
and-price and branch-and-cut. A review on algorithms based on LP branch-and-bound
approach can be found in Johnson et al. (2000).

Consider the mixed integer problem (PMIP ) given by (1). The classical branch-and-bound
algorithm solves a family of subproblems (Pt), t = 1, ..., r:

max cx + dy

s.t. Ax + By ≤ b (4)

x ∈ Xt, y ∈ Rm
+

where Zn
+ ⊆ ⋃r

t=1 Xt. Assume in the following that Xt = {x ∈ Rn : gt
j ≤ xj ≤ ht

j, j =
1, ..., n, x ≥ 0} as it is done in Klamroth et al. (2002), where gt

j and ht
j are lower and upper

integer bounds respectively. This assumption is satisfied by LP based branch-and-bound
approaches and many other branch-and-bound algorithms. A branch-and-bound algorithm
terminates if one of the following is true:

• All the generated subproblems (Pt), t = 1, ..., r, are shown to be infeasible or,

• The optimal solution to some subproblem Pt∗ , (xt∗ , yt∗), is found, such that xt∗ is
integer valued, and for zt∗ = cxt∗ + dyt∗ we have that zt∗ ≥ zt for all t 6= t∗. Here zt

represents the objective value of the subproblem (Pt).
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3.2.1 MIP Duality in Branch-and-Bound Framework

Using branch-and-bound algorithms the generated optimal price function is not necessar-
ily superadditive. Although branch-and-bound algorithms have been widespread in solving
MIP problems, there are no results concerning generation of optimal price functions based
on branch-and-bound known to the author. A treatment for the pure integer programming
problem can be found in Wolsey (1981).

Consider the original MIP problem (PMIP ) given by (1) and the subproblems (Pt) given
by (4). The following lemma shows how to construct a dual feasible function for (PMIP )
given dual feasible functions for its subproblems.

Lemma 3.1: If Ft ∈ F, t = 1, ..., r, are dual feasible functions for the subproblems
(Pt), t = 1, ..., r in the sense that

Ft(Ax + By) ≥ cx + dy ∀x ∈ Xt, y ∈ Rm
+

then
F (q) := max

t=1,...,r
Ft(q)

is a dual feasible function for the original MIP problem (PMIP ) in (1).

Proof

Let x ∈ Zn
+, and y ∈ Rm

+ . Then because Zn
+ ⊆ ⋃r

t=1 Xt, x ∈ Xt for some t = 1, ..., r.
Hence, since Ft is feasible for (Pt), Ft(Ax + By) ≥ cx + dy. But due to the definition
of F , F (Ax + By) ≥ Ft(Ax + By) ≥ cx + dy. Moreover, F is nondecreasing since Ft is
nondecreasing for t = 1, ..., r. This implies that F ∈ F. Thus, all in all F is a dual feasible
function for the original MIP problem (PMIP ).

2

Next we show that a dual optimal function F for the original MIP problem in fact exists,
provided the problem has a finite optimal solution. This result together with a way to
construct F is established in the theorem below.

Theorem 3.1 If the original MIP program (PMIP ) in (1) has a final optimal solution,
and an LP based branch-and-bound algorithm terminates in a finite number of subproblems
(Pt), t = 1, ..., r, then there exists a dual optimal price function F ∈ F where

F (q) := max
t=1,...,r

(πtq + αt), αt ∈ R, πt ∈ Rk, πt ≥ 0. (5)
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Proof

Let z∗ be the optimum objective value of (PMIP ) and consider some arbitrarily chosen
terminating subproblem (Pt), t ∈ 1, ..., r. (Pt) is either infeasible or has an optimal solu-
tion where integer variables have integer values.

a) If the linear program (Pt) has an appropriate optimal solution with corresponding
optimal objective value zt, then its dual LP is feasible. Let (πt, πt, πt) ≥ 0 be the optimal
solution of the dual. Here, the variable πt corresponds to the initial constraints in (PMIP ),
while the variables πt and πt represent the extra integer ≥ and ≤ constraints respectively,
that are generated by the branch-and-bound algorithm. Since (πt, πt, πt) is feasible for the
dual LP

πtA.j −
n∑

j=1

πt
j +

n∑
j=1

πt
j ≥ cj j = 1, ..., n

and
πtB.i ≥ di i = 1, ...,m.

Define a nondecreasing function Ft as

Ft(q) := πtq + αt, where αt = −πtgt + πtht.

Ft satisfies

Ft(Ax + By) = πt(Ax + By) + αt = πt(Ax + By)− πtgt + πtht ≥
πt(Ax + By)− πtx + πtx = πtAx + πtBy − πtx + πtx ≥ cx + dy ∀x ∈ Xt, y ∈ Rm.

Thus, Ft represents a dual feasible function for (Pt) in the sense of lemma 3.1. More-
over, by linear programming duality, Ft(b) = πtb − πtgt + πtht = zt for terminating (Pt).
Here zt ≤ z∗.

b) If (Pt) on the other hand is infeasible, there exits a dual ray (ωt, ωt, ωt) ≥ 0, that
satisfies ωtA.j −

∑n
j=1 ωt

j +
∑n

j=1 ωt
j ≥ cj, j = 1, ..., n, ωtB.i ≥ di, i = 1, ..., m and

ωtb − ωtgt + ωtht < 0. The definitions of ω are analogous to the definitions of π above.
Consider some dual feasible solution (πp, πp, πp) ≥ 0 of the dual of (Pt). This may be
available from the parent node in the branch-and-bound tree. Combining it with the dual
ray we obtain a vector (πt, πt, πt) := (πp, πp, πp) + µ(ωt, ωt, ωt), where µ ∈ R+.

Define Ft ∈ F for (Pt) by Ft(q) = πtq + αt, αt := −πtgt + πtht. Then we have that:
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Ft(Ax + By) = πt(Ax + By)− πtgt + πtht =
(πp + µωt)(Ax + By)− (πp + µωt)gt + (πp + µωt)ht =
πp(Ax + By) + µωt(Ax + By)− πpgt − µωtgt + πpht + µωtht ≥ cx + dy, ∀x ∈ Xt, y ∈ Rm

+

Thus again we are dealing with a dual feasible function Ft for (Pt). Moreover, we see
that

lim
µ→∞

Ft(b) = lim
µ→∞

(πtb + αt) = lim
µ→∞

((πp + µωt)b− (πp + µωt)gt + (πp + µωt)ht) =

lim
µ→∞

(πpb− πpgt + πpht + µ(ωtb− ωtgt + ωtht)) = −∞.

Thus we always can choose µ so Ft(b) < z∗.

Summarizing, Ft(q) = πtq + αt is a dual feasible function for all terminating (Pt), t =
1, ..., r. Thus, using lemma 3.1, the price function F given by (5), is dual feasible for
(PMIP ). We assumed that (PMIP ) has an finite optimal mixed integer solution, let it be
(x∗, y∗). But then there exists a t∗ ∈ {1, ..., r} such that (x∗, y∗) is the optimum solu-
tion for (Pt∗) and hence z∗ = cx∗ + dy∗ = Ft∗(b). Since Ft(b) ≤ z∗ for all t = 1, ..., r,
F (b) = maxt=1,...,r Ft(b) = Ft∗(b) = z∗ and thus is dual optimal for (PMIP ). All in all, the
constructed optimal dual price function F exists and is dual optimal for (PMIP ).

2

The theorem shows that a standard LP based branch-and-bound algorithm generates a
price function that is piecewise linear, nondecreasing and convex, as it was the case with
pure IP problems (see Wolsey (1981)). We also see that F in general is not superadditive.

There are several versions of the branch-and-bound algorithms, depending on which vari-
able to branch on, if several integer variables have non-integer values in an optimal solution
of a LP relaxation. Each version produces one optimal dual price function. Thus, the gen-
erated price function is only one possible solution out of many and depends on the version
of the algorithm.

For a special kind of MIP problems, however, an interpretation involving a superaddi-
tive price function can be obtained using branch-and-bound algorithms. An analogous
result for the pure integer programming case can be found in Wolsey (1981). Consider the
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following bounded MIP problem (P ):

max cx + dy

s.t. Ax + By ≤ b

−x ≤ −g

x ≤ h

x ∈ Zn
+, y ∈ Rm

+

Let again Xt = {x ∈ Rn : gt
j ≤ xj ≤ ht

j, j = 1, ..., n, x ≥ 0} and {x : 0 ≤ g ≤ x ≤ h, x ≥ 0

and integer} ⊆ ⋃r
t=1 Xt. The dual of (P ) is

min F (b,−g, h)

s.t. F (A.j,−ej, ej) ≥ cj

F (B.j, 0, 0) ≥ dj

F ∈ H

where ej is the j’th unit vector.

Theorem 3.2 If the bounded MIP program (P ) has a final optimal solution, and solving
(P ) with an LP based branch-and-bound algorithm results in a finite number of terminating
subproblems (Pt), t = 1, ..., r, then there exists a dual feasible price function F ∈ H of the
form

F (q) := min
t=1,...,r

utq, ut ∈ Rk+2n, ut ≥ 0.

Proof

Set ut = (πt, πt, πt), as in the proof of theorem 3.1. Thus, ut is the dual variables of some
subproblem (P t) in case a) and a combination of a feasible solution and a dual ray in case b).
Since πtA.j−πt

j+πt
j ≥ cj for all t = 1, ..., r, F (A.j,−ej, ej) = mint=1,...,r(π

tA.j−πt
j+πt

j) ≥ cj.

Moreover, since πtB.j ≥ dj for all t = 1, ..., r, F (B.j, 0, 0) = mint=1,...,r(π
tBj) ≥ dj.

F is clearly superadditive and nondecreasing and F (0) = 0. Finally finite F (q) exists
for all q. Thus, F ∈ H. All in all, F is dual feasible for (P ).

2

The generated price function is a weak dual function and serves as an upper bound for the
value function of the primal problem (P ).
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3.3 MIP Duality in Branch-and-Cut Framework

The branch-and-cut algorithm is a hybrid algorithm, that combines the branch-and-bound
and the cutting planes approaches. Thus, at each node we try to find a violated cut first.
If it is not available within a reasonable amount of time we branch. A description of the
algorithm can among others be found in Cordier et al. (1999). This algorithm turned out
to be quite effective for solving MIP problems.

The following theorem states a result about the dual optimal function of the MIP problem,
if an branch-and-cut algorithm is applied. Such a dual function exists provided that the
primal problem has a finite optimal solution, and the number of terminating subproblems
is finite. Moreover, the theorem shows a way to find an optimal dual price function.

Theorem 3.3 If the original MIP program (PMIP ) in (1) has a final optimal solution,
and solving (PMIP ) with a branch-and-cut algorithm results in a finite number of termi-
nating subproblems (P̃t), t = 1, ..., r, then there exists a dual optimal price function F ∈ F

where

F (q) := max
t=1,...,r

(πtq + αt +

δ(t)∑
s=1

π̃t
sG

t
s(q)), αt ∈ R, πt ∈ Rk

+, π̃t ∈ Rδ(t)
+ , Gt

s ∈ H.

Here δ(t) ≥ 0 is the number of Gomory cuts Gt
s in subproblem (P̃t).

Proof

As in the proof of theorem 3.1 let z∗ be the optimum objective value of (PMIP ). Con-
sider some arbitrarily chosen terminating subproblem (P̃t):

max cx + dy
s.t. Ax + By ≤ b

Cx + Cy ≤ Cb

x ∈ Xt, y ∈ Rm
+

where an element in the last constraints has the form
∑n

j=1 Gt
s(A.j)xj+

∑m
j=1 G

t

s(B.j)yj ≤
Gt

s(b), and Gt
s(q) represents the s’th Gomory cut in problem (P̃t). If some cuts are present

in a parent node subproblem, then these cuts will also be present in its child node sub-
problem, if such a child node exists.
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case a) Suppose that the LP relaxation of (P̃t) has an optimal mixed integer solution
with objective value zt. Let (πt, πt, πt, π̃t) ≥ 0 be the optimal dual solution. πt, πt, πt are
as defined in proof for theorem 3.1, and π̃t corresponds to the Gomory cuts constraints.
Since we have δ(t) cuts in problem (P̃t), π̃t has dimension δ(t). We see that

πtA.j −
n∑

j=1

πt
j +

n∑
j=1

πt
j +

δ(t)∑
s=1

Gt
s(A.j)π̃

t
s ≥ cj j = 1, ..., n

and

πtB.i +

δ(t)∑
s=1

G
t

s(B.i)π̃
t
s ≥ di i = 1, ...,m.

Define the nondecreasing function Ft by

Ft(q) := πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s with αt = −πtgt + πtht, t = 1, ..., r.

Since Gt
s is a Gomory cut it is superadditive. But then

∑δ(t)
s=1 Gt

s(Ax + By)π̃t
s ≥∑δ(t)

s=1 Gt
s(Ax)π̃t

s +
∑δ(t)

s=1 Gt
s(By)π̃t

s. Moreover,this also implies that
∑δ(t)

s=1 Gt
s(Ax)π̃t

s ≥∑δ(t)
s=1 Gt

s(A)xπ̃t
s, and analogously

∑δ(t)
s=1 Gt

s(By)π̃t
s ≥

∑δ(t)
s=1 Gt

s(B)yπ̃t
s. Due to the defini-

tion of Gt
s given in section 3.1 Gt

s(B) ≥ G
t

s(B), s = 1, ..., δ(t). Finally, since Gt
s is a

Gomory cut Gt
s(0) = 0.

All this implies that, for all t = 1, ..., r, Ft satisfies

Ft(Ax + By) = πt(Ax + By) + πtht − πtgt +
∑δ(t)

s=1 Gt
s(Ax + By)π̃t

s ≥
πtAx + πtBy + πtx− πtx +

∑δ(t)
s=1 Gt

s(Ax)π̃t
s +

∑δ(t)
s=1 Gt

s(By)π̃t
s ≥

πtAx + πtBy + πtx− πtx +
∑δ(t)

s=1 Gt
s(A)xπ̃t

s +
∑δ(t)

s=1 Gt
s(B)yπ̃t

s ≥
πtAx + πtBy + πtx− πtx +

∑δ(t)
s=1 Gt

s(A)xπ̃t
s +

∑δ(t)
s=1 G

t

s(B)yπ̃t
s ≥

cx + dy ∀x ∈ Xt, y ∈ Rm.

Thus, the function Ft represents a dual feasible function for (P̃t). Moreover, by linear

programming duality, Ft(b) = πtb − πtgt + πtht +
∑δ(t)

s=1 Gt
s(b)π̃

t
s = zt for terminating (P̃t)

and zt ≤ z∗.

case b) If (P̃t) is infeasible then there exists a dual ray (ωt, ωt, ωt, ω̃t) ≥ 0, such that

ωtA.j −
∑n

j=1 ωt
j +

∑n
j=1 ωt

j +
∑δ(t)

s=1 Gt
s(A.j)ω̃

t
s ≥ cj, j = 1, ..., n, πtB.i +

∑δ(t)
s=1 G

t

s(B.i)ω̃
t
s ≥

di, i = 1, ..., m, and ωtb − ωtgt + ωtht +
∑δ(t)

s=1 Gt
s(b)ω̃

t
s < 0. Analogous to the proof for
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theorem 3.1 define

(πt, πt, πt, π̃t) := (πp, πp, πp, π̃p) + µ(ωt, ωt, ωt, ω̃t), where µ ∈ R+.

Here, (πp, πp, πp, π̃p) represents a dual feasible solution for (P̃t). Then let Ft be defined by

Ft(q) := πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s, αt := −πtgt + πtht. Analogous to case a) Ft satisfies

Ft(Ax + By) ≥ cx + dy, ∀x ∈ Xt, y ∈ Rm
+ . Thus Ft represents a dual feasible function for

(P̃t).

Moreover, since

lim
µ→∞

Ft(b) = lim
µ→∞

(πtb + αt +

δ(t)∑
s=1

Gt
s(q)π̃

t
s) =

lim
µ→∞

(πpb− πpgt + πpht +

δ(t)∑
s=1

Gt
s(b)π̃

p
s + µ(ωtb− ωtgt + ωtht +

δ(t)∑
s=1

Gt
s(b)ω̃

t
s)) = −∞.

we always can choose µ so Ft(b) < z∗.

Summarizing, Ft(q) = πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s is a dual feasible function for all ter-

minating (P̃t), t = 1, ..., r. Thus, F (q) := maxt=1,...,r Ft(q) is a dual feasible function for
(PMIP ), if branch-and-cut algorithm is used due to lemma 3.1. Since we assumed that
there is a finite mixed integer solution (x∗, y∗) there exists t∗ ∈ {1, ..., r} such that (x∗, y∗)
is the optimal solution for (P̃t∗). Hence z∗ = cx∗ + dy∗ = Ft∗(b). Since Ft(b) ≤ z∗ for all
t = 1, ..., r, F (b) = Ft∗ = z∗ and this F (q) is optimal for (PMIP ).

2

The constructed function is not only the dual optimal function for the branch-and-cut
algorithm. It also represents a general form of such a dual optimal function if either
a cutting plane or branch-and-bound based algorithm is used. In case of a cutting plane
algorithm, we only deal with one node, the root node. Moreover, the variables αt disappear.
Thus we end up with the same formulation as (3). For a pure branch-and-bound algorithm,
we do not have any constraints representing Gomory cuts, δ(t) = 0, for all t = 1, ..., r. In
this case we are back to the same formulation of the dual price function (5) in theorem 3.1.
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4 Summary

The presented paper gave a short presentation of the MIP problem and three of its solution
methods. Additionally, some duality results were shown. In particular, the formulation
of a dual of a MIP problem contains a dual price function F . The characteristics of this
function, however, depend on the algorithm used to generate it. Applying the cutting plane
algorithm we obtain a nondecreasing and superadditive price function. Using a branch-and-
bound algorithm, on the other hand, provides a piecewise linear, nondecreasing and convex
price function, which in general is not superadditive. However, section 3.2.1 presented a
superadditive weak dual price function for the bounded MIP problem, if branch-and-bound
approach is applied.

Section 3.3 presents a general dual function for the branch-and-bound and the cutting
plane approach. This dual function is additionally the price function for the branch-and-
cut algorithm. The branch-and-cut algorithm is now very popular when solving MIP
problems. One important brick in the algorithm is the generation of cuts. In this chapter
we used the classical Gomory cut. However, there exist other cuts, e.g. the lift-and-project
cut (see Balas et al. (1993), Balas et al. (1996)) or the mixed integer rounding cut (see
Marchand and Wolsey (2001)). One idea for further research would be to show similar
duality results for these cuts.

Apart from the conceptual interest, the result can be useful in economic interpretations of
MIP models as well as sensitivity analysis.
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On the Facial Structure of the Replacement Polytope 
 
Andréasson, Niclas (Chalmers University of Technology, Sweden) 
 
Consider a system consisting of a finite number of parts, each with a specific lifetime. At the very latest when a 
part reaches its lifetime it must be replaced. Associated with a replacement is the cost of the part and a fixed cost 
independent of how many parts that are replaced. The replacement problem refers to finding a replacement 
schedule that minimizes the total cost for having a working system a finite time period. An integer linear 
program is presented for the replacement problem. The facial structure of the convex hull of the set of feasible 
solutions (the replacement polytope) is then investigated. 
 
 
Optimization and Evolutionary Search: Related Issues 
 
Bhattacharya, Maumita (Charles Sturt University, Australia) 
 
Evolutionary algorithms (EA) have been long accepted as efficient global optimizers. Given a search space S and 
an objective function g defined on it, the problem is to find the global maximum (or minimum) of g in S. To 
apply EA’s heuristic search, the coding function or representation ρ is created, that partially maps S to the finite 
chromosome space C. The genetic operators are used to create new solutions such that Cn→ Cm. 
However, as the evolutionary search progresses, it is important to avoid reaching a state where the genetic 
operators can no longer produce superior offspring, prematurely. This is likely to occur when the search space 
reaches a homogeneous or near-homogeneous configuration converging to a local optimal solution. Maintaining 
a certain degree of population diversity is widely believed to help curb this problem. This paper discusses the 
problem of premature convergence related to EA based optimization. A novel technique is presented, that uses 
informed genetic operations to reach promising, but un/under-explored areas of the search space, while 
discouraging local convergence, to curb premature convergence. Elitism is used at a different level aiming at 
convergence. The proposed technique’s improved performance in terms solution precision and convergence 
characteristics is observed on a number of benchmark test functions with a genetic algorithm (GA) 
implementation. 
 
 
Determining the Non-Existence of a Compatible OSPF Metric 
 
Broström, Peter (Linköping Institute of Technology, Sweden) 
Holmberg, Kaj (Linköping Institute of Technology, Sweden) 
 
Many communication networks use the intra-domain protocol OSPF (Open Shortest Path First) for deciding the 
routing of traffic. Routers in such networks send traffic to destinations on shortest paths. The network operator 
control the traffic by assigning weights to each link. This set of weights is called the "metric" and is used in the 
shortest path computations. 
It is easy to decide how traffic is routed when a network and a metric is given (this is in fact exactly what routers 
do). A more difficult question is whether or not there exists a metric giving a set of desired traffic patterns i.e. a 
metric making the desired paths shortest. Such a metric is in this work called compatible. The existence of a 
compatible metric is a matter of  similarities between different traffic patterns, and this is further investigated in 
this work. 
To this point, there is one known necessary condition for the existence of a compatible metric, called the "sub-
optimality" condition. We present more general necessary conditions for the existence of a compatible metric for 
a set of desired shortest path graphs. In addition, we also present a polynomial method that use pairs of traffic 
patterns for explaining why some desired sets are not compatible with any metric. This method is successful in 
indicating where the conflict lie in most instances, but can sometimes fail when the type of conflict is more 
complicated. More complicating conflicts are treated in the presentation "Stronger necessary conditions for the 
existence of an compatible OSPF metric". 
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On the Use of Second Derivatives in Optimization of Radiation Therapy 
 
Carlsson, Fredrik (Royal Institute of Technology, Sweden) 
Forsgren, Anders (Royal Institute of Technology, Sweden) 
 
The goal of external-beam radiation therapy of cancer is to obtain an acceptable balance between tumor control 
and complications to the normal tissue surrounding the tumor. During the last decade, the field has experienced a 
rapid progress. New technology has improved the accuracy of the beam delivery significantly. Together with the 
development of faster computers, this has led the way for so called 'intensity modulated radiation therapy' 
(IMRT). 
In IMRT, the clinician specifies certain characteristics of the desired dose distribution by introducing objective 
functions for the tumor and for the critical organs close to the tumor. A discretization of the incident beams and 
of the treatment volume of the patient is performed and an optimization problem is formulated. In general, the 
IMRT problem is large-scale and has a non-convex nature, often with linear and non-linear constraints. 
In this study we investigate how the Hessian affects the optimization performance for a quasi-Newton algorithm 
used in a commercial treatment planning system. Currently, the initial Hessian fed into the algorithm is diagonal. 
The influence of including more accurate curvature information, represented as off-diagonal elements, is 
explored for three patient cases. 
A more accurate initial Hessian results in a much faster progress of optimization than when using a diagonal 
initial Hessian. Furthermore, the optimal beam profiles differ significantly, with an accurate Hessian they are 
very jagged compared to the smooth profiles obtained with a diagonal Hessian. Jagged profiles are, in general, 
not desirable since they are harder to deliver, but for a certain class of IMRT problems they are preferable. The 
results also indicate that the IMRT problem is an ill-posed inverse problem in the sense that very different 
fluence profiles can produce almost identical dose distributions. 
 
 
A Method for Approximating Symmetrically Reciprocal Matrices by Transitive 
Matrices 
 
Dahl, Geir (Center of Mathematics for Applications, University of Oslo, Norway) 
 
The problem of approximating symmetrically reciprocal matrices by transitive matrices has received some 
attention recently. This problem has applications in multicriteria decision theory. Several approximation 
approaches have been suggested and analyzed. We here suggest another approach, called the multiplicative 
approach.  We show that the optimal approximation in this sense may be found efficiently by transforming the 
problem into a known combinatorial optimization problem (the minimum cycle mean problem) for which 
efficient and simple combinatorial algorithms exist. 

Keywords: Transitive matrix, symmetrically reciprocal matrix, approximation. 
 
 
Cutting Plane Method in Decision Analysis 
 
Ding, Xiaosong (Mid-Sweden University, Sweden) 
Al-Khayyal, Faiz (Mid-Sweden University, Sweden) 
 
Computational decision analysis methods, such as the DELTA method, have been developed and implemented 
over a number of years for solving decision problems where vague and numerically imprecise information 
prevails. However, the evaluation phases in those methods often give rise to bilinear programming problems, 
which are time-consuming to solve in an interactive environment with general nonlinear programming solvers. 
This paper proposes a linear programming based algorithm that combines a cutting plane method with the lower 
bounding technique for solving this type of problem. The central theme is to identify the global optimum as early 
as possible in order to avoid generating unnecessary cuts in the convergent cutting plane procedure.  
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Topology Optimization of the Navier-Stokes Equations 
 
Evgrafov, Anton (Chalmers University of Technology, Sweden) 
 
We consider the problem of optimal design of flow domains for Navier-Stokes flows in order to minimize a 
given performance functional. We attack the problem using topology optimization techniques, or control in 
coefficients, which are widely known in structural optimization of solid structures for their flexibility, generality, 
and yet ease of use and integration with existing FEM software. Topology optimization rapidly finds its way into 
other areas of optimal design, yet until recently it has not been applied to problems in fluid mechanics. The 
success of topology optimization methods for the minimal drag design of domains for Stokes fluids  (see the 
study of Borrvall and Petersson [Internat. J. Numer. Methods Fluids, vol. 41, no. 1 pp. 77-107, 2003]) has lead to 
attempts to use the same optimization model for designing domains for incompressible Navier-Stokes flows. 
We show that the optimal control problem obtained as a result of such a straightforward generalization is ill-
posed, at least if attacked by the direct method of calculus of variations. We illustrate the two key difficulties 
with simple numerical examples and propose changes in the optimization model that allow us to overcome these 
difficulties. Namely, to deal with impenetrable inner walls that may appear in the flow domain we slightly relax 
the incompressibility constraint as typically done in penalty methods for solving the incompressible Navier-
Stokes equations.  
In addition, to prevent discontinuous changes in the flow due to very small impenetrable parts of the domain that 
may disappear, we consider so-called filtered designs, that has become a "classic" tool in the topology 
optimization toolbox. Technically, however, our use of filters differs significantly from their use in the structural 
optimization problems in solid mechanics, owing to the very unlike design parametrizations in the two 
models.We rigorously establish the well-posedness of the proposed model and then discuss related 
computational issues. 
 
 
 
A New Generating Set Search Method for Unconstrained Optimisation 
 
Frimannslund, Lennart (University of Bergen, Norway) 
Steihaug, Trond  (University of Bergen, Norway) 
 
Generating set searches, a class of derivative-free optimisation methods, has been an area of active research in 
recent years, much caused by the development of convergence theory. However, although these methods are 
usually easy to implement, robust and provably convergent in most cases, their attractiveness suffers from the 
fact that they are slow when it comes to convergence. Usually these methods do not take the local topography of 
the objective function into account.  
We present a new algorithm which is a modification to a well known generating set search method, Compass 
Search. The new algorithm tries to adapt its search directions to the local topography by accumulating curvature 
information about the objective function as the search progresses. We present some theory regarding its 
properties, as well as numerical results that show our algorithm to outperform Compass Search most of the time, 
sometimes by significant relative margins, on noisy as well as smooth problems. In addition, preliminary 
numerical results indicate that we can exploit the sparsity information of the Hessian matrix. Thus allowing us to 
solve relatively large problems using methods in this class.  
 
 
Tabu Search Heuristics for the Probabilistic Dial-a-Ride Problem 
 
Ho, Sin C. (University of Bergen, Norway) 
Haugland, Dag (University of Bergen, Norway) 
 
We present an efficient neighborhood search procedure for the probabilistic dial-a-ride problem. The suggested 
approach requires O(n^4) computations as opposed to O(n^6) operations required by a straightforward 
neighborhood evaluation. In the current work a tabu search and a hybrid GRASP/tabu search exploiting this 
search procedure are developed and compared through numerical experiments.   
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Path Relinking for the Vehicle Routing Problem 
 
Ho, Sin C. (University of Bergen, Norway) 
Gendreau, Michel (Université de Montréal, Canada) 
 
The aim of this work is to propose a tabu search heuristic with path relinking to solve the classical vehicle 
routing problem. Computational results show that using path relinking periodically in the search speeds up the 
search to find good solutions. They also show that tabu search with path relinking is able to produce better 
solutions than pure tabu search using much less computing time. 
 
 
Stronger Necessary Conditions for the Existence of a Compatible OSPF Metric 
 
Broström, Peter (Linköping Institute of Technology, Sweden) 
Holmberg, Kaj (Linköping Institute of Technology, Sweden) 
 
This presentation is a continuation of the presentation "Determining the Non-Existence of a Compatible OSPF 
Metric". It addresses the question of whether or not for a set of desired traffic patterns in an Internet Protocol 
telecommunication network using OSPF (Open Shortest Path First), there exists a compatible metric, i.e. weights 
making the routers give the specified traffic patterns. In the previous presentation it was shown that the existence 
of what we here call 1-valid cycles prove the non-existence of a compatible metric. In a 1-valid cycle the flow of 
two commodities is changed in a cycle. We here prove that a 2-valid cycle, which is a cycle in which more than 
two commodities are changed, exists if and only if there exists a 1-valid cycle. Furthermore, a 3-valid set of 
cycles is defined as a set of cycles where the flow of one commodity is changed in each cycle. Unfortunately we 
have not been able to show that the non-existence of 3-valid sets of cycles is sufficient for the existence of a 
compatible metric. However, for some special cases, such as when the desired traffic patterns only consist of a 
number of trees, stronger results are obtainable. Since it is fairly easy to find 1-valid cycles, we also consider the 
case when we know that there does not exist any 1-valid cycle. 
An alternate title of this talk is "In Search of Sufficient Conditions for the Existence of a Compatible OSPF 
Metric". We can formulate sufficient conditions for the existence of a compatible metric, but at the moment this 
formulation is not practically usable. However, this talk aims to show that the gap between the necessary and 
sufficient conditions is decreasing. 
 
 
Optimizing the Schedule of a Sports League 
 
Joborn, Martin (Carmen Systems AB, Sweden) 
Optimizing the game schedule of a sports league is a very complex problem, known as the traveling tournament 
problem. In a real situation, the problem includes many intangible constraints that are hard to quantify. Also, the 
objective function is quite fuzzy. In this presentation, we will compare the "theoretical" traveling tournament 
problem with a real instance. Further, we will sketch how the problem is solved today, discuss potentials for 
optimization, and outline how we have helped a major sports league to optimize their planning. 
 
 
Ship Scheduling with Visit Separation Constraints 
 
Sigurd, Mikkel M. (University of Copenhagen, Denmark) 
Ulstein, Nina L. (Norwegian University of Science and Technology, Norway) 
Nygreen, Bjørn (Norwegian University of Science and Technology, Norway) 
Ryan, David M. (University of Auckland, New Zealand) 
 
This talk discusses an application of planning support in designing a sea-transport system. Increased pressure on 
the road network and increasing transport needs make companies look for new transport solutions. This spurred 
an initiative to create a new liner shipping service. The initiative came from a group of Norwegian companies 
who need transport between locations on the Norwegian coastline and between Norway and The European 
Union. While few producers on the Norwegian coast have sufficient load to support a cost efficient, high 
frequency sea-transport service, they can reduce costs and decrease transport lead-time by combining their loads 
on common ships. They agreed upon a tender (transport offer) which was proposed to a number of shipping 
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companies. The tender specifies the number of cargos per week and time constraints for pickup and delivery. It 
also states the requirements regarding ship types and loading and unloading techniques. For rapid handling, all 
goods must be transported in containers. Finally the tender specifies the yearly payment each company will make 
to be part of this transportation system. Today there are neither ships nor harbour facilities to support the 
proposed solution. Thus, major investments are necessary. Estimates indicate that investments in ships alone, can 
amount to about 150 mill US dollars. We present a model which calculates a near optimal fleet and 
corresponding routes to satisfy the requirements in the tender. The problem is a variant of the general pickup and 
delivery problem with multiple time windows. In addition, it includes requirements for recurring visits, 
separation between visits and limits on transport lead-time. The problem is formulated as a set partitioning model 
and solved by a heuristic branch-and-price algorithm. 
 
 
CPLEX Overview and Recent Advances in Mathematical Programming 
 
Oussedik, Sofiane (ILOG, France) 
 
The first part of the presentation is an overview of ILOG CPLEX algorithms and parameters for solving linear, 
mixed integer, quadratic and mixed integer quadratic programs. Also, CPLEX includes the ILOG CPLEX 
Callable Library (C and VB APIs) and ILOG Concert Technology (C++, Java and .Net APIs) to make it easy to 
embed the powerful CPLEX algorithms in your application. The second part of the presentation will highlight 
the recent algorithmic advances in Mathematical programming and the features that made CPLEX the industry 
standard. 
 
 
Duality in MIP 
 
Pachkova, Elena V. (Copenhagen University, Denmark) 
 
This presentation treats duality in Mixed Integer Programming (MIP in short). A dual of a MIP problem includes 
a dual price function F, that plays the same role as the dual variables in Linear Programming (LP in the 
following).  
The price function is generated while solving the primal problem. However, different to the LP dual variables, 
the characteristics of the dual price function depend on the algorithmic approach used to solve the MIP problem. 
Thus, the cutting plane approach provides nondecreasing and superadditive price functions while branch and 
bound algorithm generates piecewise linear, nondecreasing and convex price functions.  
Here a hybrid algorithm based on branch and cut is investigated, and a price function for that algorithm is 
established. This price function presents a generalization of the dual price functions obtained by either the 
cutting plane or the branch and bound method. 
 
 
Global Optimality Conditions for Discrete and Nonconvex Optimization, With 
Applications to Lagrangian Heuristics and Column Generation 
 
Larsson, Torbjörn  (Linköping University, Sweden) 
Patriksson, Michael (Chalmers University of Technology, Sweden) 
 
The well-known and established global optimality conditions based on the Lagrangian formulation of an 
optimization problem are consistent if and only if the duality gap is zero. We develop a set of global optimality 
conditions that are structurally similar but are consistent for any size of the duality gap. This system 
characterizes a primal-dual optimal solution by means of primal and dual feasibility, primal Lagrangian epsilon-
optimality, and, in the presence of inequality constraints, delta-complementarity, that is, a relaxed 
complementarity condition. The total size epsilon + delta of those two perturbations equals the size of the duality 
gap at an optimal solution. The characterization is further equivalent to a near-saddle point condition which 
generalizes the classic saddle point characterization of a primal-dual optimal solution in convex programming. 
The system developed can be used to explain, to a large degree,when and why Lagrangian heuristics for discrete 
optimization are successful in reaching near-optimal solutions. Further, experiments on a set covering problem 
illustrate how the new optimality conditions can be utilized as a foundation for the construction of Lagrangian 
heuristics. Finally, we outline possible uses of the optimality conditions in column generation algorithms and in 
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the construction of core problems, and illustrate our findings on instances of the generalized assignment 
problem. 
 
 
Origin-Destination Matrx Estimation from Traffic Counts 
 
Peterson, Anders (Linköping University, Sweden) 
 
Origin--destination matrices, which specify the travel demand for all pairs of origin and destination nodes in a 
traffic network, can be estimated by utilizing link flow observations. We will describe and motivate an 
optimization model formulation of the generic problem and discuss how it can be handled with respect to an 
implicit problem, modelling the route choice mechanism. Special attendance will be given to the problems 
occurred by introducing time-dependence to the model. 
 
 
Sensitivity Analysis of a Bilevel Traffic Equilibrium Problem with Welfare Constraints 
 
Rydergren, Clas (Linköping University, Sweden) 
 
Transport planners currently face a major challenge to devise future transport plans to meet multiple expectations 
and objectives. In this research, we aim to develop a decision-support tool for enhancing the understanding of 
various transport policies and finding appropriate transport measures. We are developing a suitable model for the 
urban transport system, together with flexible mathematical forms for expressing efficiency, equity and public 
acceptability considerations in the form of objectives and constraints. The model is intended to be used for 
studying the impact of various policies based on the use of sensitivity analysis expressions of the inputs to the 
model. In this presentation a bilevel model is given together with solution methods for the lower level problem 
and the corresponding sensitivity analysis problem. 
 
 
Facility Location under Economics of Scale in the Case of Uncertain Demand 
 
Schütz, Peter (University of Science and Technology, Norway) 
Stougie, Leen (University of Science and Technology, Norway) 
Tomasgard, Asgeir (University of Science and Technology, Norway) 
 
The presentation adresses facility location under uncertain demand. The problem is to determine the optimal 
location of facilities and allocation of customer demand to these facilities. The costs of operating the facilities 
are subject to economics of scale and customer demand is uncertain. The objective is then to minimize the total 
expected cost. These costs can be split into three parts: firstly the costs of investing in a facility and maintaining 
it, secondly the costs of operating a facility with strictly diminishing average costs, and thirdly linear 
transportation costs. We show a solution method for this problem based on Lagrangean Relaxation. We present 
computational results from the Norwegian meat industry and the location of slaughterhouses. 
 
 
A Stochastic Algorithm for Constrained Multiobjective Optimization 
 
Shukla, P. K. (Indian Institute of Technology Kanpur, India) 
 
A stochastic method is presented for solving constrained multiobjective optimization problems. This method 
may be thought of as an extension of Schäffler's method (which is based on solution of stochastic differential 
equation) for the solution of unconstrained multiobjective problems. Several methods for constraint handling are 
presented in this paper. Numerical results on several test problems are given. Problems with a large number of 
variables as well as with complex search space can be handled by this method. Finally using the above stochastic 
method an algorithm for constrained global multiobjective optimization is presented. 
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Modified Variable Neighborhood Search for the Vehicle Routing Problem with 
Accessibility Constraints 
 
Souid, Mahdi (UVHC/LAMIH/ROI, France) 
Hanafi, Saïd (UVHC/LAMIH/ROI, France) 
Semet, Fréderic (UVHC/LAMIH/ROI, France) 
 
The classical capacitated Vehicle Routing Problem (VRP) consists in determining optimal delivery routes for a 
set of homogeneous vehicles to serve a set of customers. Each route is covered by one vehicle without exceeding 
its capacity. Moreover, each route starts and ends at the same depot. Each customer is served exactly once. In 
this paper, we consider the Vehicle Routing Problem with Accessibility constraints (VRPA) which is defined on 
a graph of which vertices are partitioned into two sub-sets V1 and V2, served by two types of vehicles, i.e. Truck 
and truck + trailer. The customers of V1 are accessible by both vehicles types whereas the customers of V2 are 
only accessible by the trucks. The VRPA is a generalization of the VRP, it possesses numerous applications in 
domains such as logistics, economic planning of distribution networks and their management. 
The classic capacitated vehicle routing problem, a special case of the VRPA where V2 is empty, has been 
studied extensively. The VRP is known to be NP-Hard, so VRPA is also a NP-hard problem. Generally, exact 
methods for NP-hard problem do not allow even moderately-sized problems to be solved. Heuristic approaches 
are needed to solve large scale instances of practical problems. Variable Neighborhood Search (VNS), 
introduced  by  Hansen  and N. Mladenovic is a recent  metaheuristic  which  exploits  systematically  the  idea 
of neighbourhood change, both in the descent to local minima and in the escape from the valleys which contain 
them. For solving the VRPA by VNS we exploit the connection of this location and routing problem with close 
and particular cases. The neighborhood structures used can be classified in three categories according to the 
number of routes involved in the corresponding move : i) for a unique route we use the generalized 
adding/dropping procedure as proposed in GENIUS heuristic for traveling salesman problem; ii) for the two 
routes we use classical VRP moves such that dropping, adding, swapping; iii) for several routes we consider the 
move which consist to open or close a depot as done in location problem. 
We propose various implementations of a Modified Variable Neighborhood Search (MVNS) method for the 
resolution of the VRPA, differentiated basing on the following criteria: local search method, choice of the 
neighbor solution, Sequence of neighborhoods. Test problems were generated in order to validate and determine 
the best implementation. MVNS method gives good results for VRPA. An improvement of MVNS method can 
be obtained by hybridization with a tabu search method. 
 
 
The Hub Location Network Design Problem 
 
Thomadsen, Tommy (Technical University of Denmark) 
Stidsen, Thomas (Technical University of Denmark) 
 
Designing hierarchical telecommunication networks pose some very   difficult optimization problems. Most 
solutions today involve sequential solution of a series of easier optimization problems. In this presentation we 
will present the Hub Location Network Design (HLND) problem. The HLND problem combines the routing 
problem, the network design problem and the hub selection problem into one problem. The objective is to 
minimize the link establishment costs and the link capacity costs. We present an ILP model for the HNLD  
problem. To solve larger instances of the problem we develop a cut-and-price algorithm for the LP problem, 
which includes additional cuts to tighten the gap. Based on the LP solution IP solutions are generated. In most 
cases the gap is zero. 
The hub location network design problem is related to several wellknown optimization problems: Network 
design, Generalized Travelling Salesman and Location-Routing. The connection between the HLND problem 
and these will briefly be discussed. 
 
 
Design of Planar Articulated Mechanisms Using Branch and Bound 
 
Stolpe, Mathias (Technical University of Denmark) 
Kawamoto, Atsushi (Technical University of Denmark) 
 
In this talk we present an optimization model and a solution method for optimal design of two-dimensional 
mechanical mechanisms. The mechanism design problem is modeled as a nonconvex mixed integer program 
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which allows the optimal topology and geometry of the mechanism to be determined simultaneously. The 
underlying mechanical analysis model is based on a truss (pin jointed assembly of straight bars) representation 
allowing for large displacements. For mechanisms undergoing large displacement elastic stability is of major 
concern. We derive conditions, modeled by nonlinear matrix inequalities, that guarantee that a stable mechanism 
is found. The feasible set of the design problem is described by nonlinear constraints as well as nonlinear matrix 
inequalities. 
To solve the mechanism design problem a branch and bound method based on convex relaxations is developed. 
The relaxations are strengthened by adding valid inequalities to the feasible set. Encouraging computational 
results, which will be presented, indicate that the branch and bound method can reliably solve mechanism design 
problems of realistic size to global optimality. 
 
 
Joint Hub Location, Node Clustering and Network Design of Two-Tiered Meshed 
Networks 
 
Thomadsen, Tommy (Technical University of Denmark) 
Stidsen, Thomas (Technical University of Denmark) 
 
In this talk we discuss design of two-tiered meshed networks. A two-tiered meshed network consists of clusters 
of nodes comprising the access network tier and a backbone tier which interconnects the clusters. Each cluster 
contains exactly one hub node which routes the traffic between clusters. 
Designing a two-tiered meshed network involves a number of interrelated problems: Hub location, clustering of 
nodes and network design. These problems have often been carried out independently, but since the problems are 
interrelated, this may lead to suboptimal designs. We determine hub location, clustering of nodes and network 
design jointly. A mathematical model is presented for the problem and a bound is derived. Also a GRASP 
heuristic is implemented to obtain feasible solutions. 
Tiers exists because of limitations in communication equipment, e.g. hop limits, organizational advantages, e.g. 
easier upgrade and the observation, that a two-tiered network seems to cope with changes in the traffic better 
than a network without tiers. However, enforcing tiers does incur some additional cost. This is clear, since any 
two-tiered network is also a feasible solution when networks without tiers are considered. For that reason we 
investigate how much cost is incurred by enforcing two tiers, i.e. we compare with networks without tiers. 
 
 
Supply Base Management 
 
Wallace, Stein W. (Molde University College, Norway) 
Aas, Bjørnar (Molde University College, Norway) 
 
The purpose of this presentation is to outline a rather new project at Molde University College. The project is in 
cooperation with Statoil, the major Norwegian oil company, and is focused on the supply base Vestbase in the 
town of Kristiansund, north of Molde. The base supplies about ten drilling and production platforms off the 
Norwegian coast with all types of equipment they need for daily operations. Supply vessels are used for goods 
and helicopters for people. Our main focus is on the scheduling of vessels to the platforms. 
 
 
Methods for Some Linear and Quadratic Optimization Problems Defined on a Set of 
Orthogonal Vectors 
 
Wedin, Per-Åke (Umeå University, Sweden) 
 
For several practical optimization problems one wants to find a minmizer   that belongs to a set of orthonormal 
vectors. In most cases these problems are 3-dimensional and related to rigid body movement, 
tereophotogrammetry and similar applications. However,there are also, e.g. in psychometrics, quadratic or linear 
optimization problems over a set of m*n-matrices Q with orthonormal columns a.k.a. a Stiefel manifold. 
Interesting properties that set problems of this kind apart are the following:  (1) The function to be minimized is 
nice. It is always convex, while  the  set that we optimize over is non-convex and fairly tricky. (2) It is possible 
to get a useful unconstrained LOCAL representation of the optimization problem while the constrained 
representation is needed globally. (3) Some optimization problems of this kind, e.g. the Procrustes problem, have 
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a unique minimum thar can be attained by using the singular value decomposition. (4) There are several 
optimization problems of this kind where the number of local minima will grow very fast with the number of 
orthogonal vectors to be optimized over. (5) Geometrical considerations combined with Lagrange multipier 
theory are useful analytic tools. 
Thomas Viklands, Umeå, has developed an algorithm and furthered the analysis for one problem of this kind, the 
Penrose-Procrustes regression problem. Viklands has shown that this problem can have 2^n local minima. Here 
n is the number of orthogonal vectors for which the optimization problem is defined. Vikland´s algorithm tries to 
find all the minima of the P-P problem. 
In this talk we will summarize the state of the art of the research in this area with special emphasis on the 
Penrose-Procrustes regression problem. 
 
 
A Hierarchical Neighbourhood Search Method for Topology Optimization 
 
Svanberg, Krister (Royal Institute of Technology, Sweden) 
Werme, Mats (Royal Institute of Technology, Sweden) 
 
In topology optimization of continuum structures, a fixed design domain is given. The infinite dimensional 
problem then deals with finding an optimal subdomain of the given design domain to fill with material. In 
practice, the design domain is discretized, so that the objective and constraint functions can be computed via the 
finite element method. The design of the structure is represented by binary design variables indicating material 
or void in the various finite elements. 
We present a hierarchical neighbourhood search method for solving topology optimization problems defined on 
discretized linearly elastic continuum structures. Two different designs are called neighbours if they differ in 
only one single element, in which one of them has material while the other has void. The proposed 
neighbourhood search method repeatedly jumps to the ``best'' neighbour of the current design until a local 
optimum has been found, where no further improvement can be made.  The ``engine'' of the method is an 
efficient exploitation of the fact that if only one element is changed (from material to void or from void to 
material) then the new global stiffness matrix is just a low rank modification of the old one.  To further speed up 
the process, the method is implemented in a hierarchical way. Starting from a coarse finite element mesh, the 
neighbourhood search is repeatedly applied on finer and finer meshes. Numerical results are presented for 
minimum weight problems with constraints on respectively the stiffness of the structure, strain energy densities 
in all non-void elements, and von Mises stresses in all non-void elements. 
 
 

Minimum-Energy Broadcasting and Multicasting in Ad Hoc Networks: Some 
Integer Programming Formulations and Computational Experiences 
 
Yuan, Di (Linköping University, Sweden) 
 
Broadcast (multicast) routing in a wireless network involves the construction of a broadcast (multicast) tree used 
by a source node to send messages to some other nodes in the network. The energy consumption of the tree is the 
sum of the transmission power at the nodes. The optimization problem of finding a broadcast (multicast) tree of a 
minimum amount of energy arises in applications of wireless networking where network units must be energy-
aware. An example of such wireless systems is ad hoc networks. In this talk we present some integer 
programming formulations for this problem and report our computational experiences. 
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