
Texture Compression: THUMB – Two Hues Using Modified Brightness

Martin Pettersson Jacob Ström

Ericsson Research

Abstract

We present a new texture compression system called THUMB, that
can be used either as a stand-alone compression system or in com-
bination with the iPACKMAN algorithm. We show how the com-
bined system improves quality in the test images we have used,
especially in the image blocks most problematic to iPACKMAN.

1 Introduction

Bandwidth is usually the factor limiting performance in
rasterization-based rendering hardware [Aila et al. 2003]. Knittel et
al. [1996] and Beers et al [1996] show how texture compression can
be used to reduce bandwidth during rendering. By transferring the
texels over the bus in compressed form, and decompressing needed
texels on-the-fly, texture bandwidth can be reduced significantly.
Previously introduced image compression techniques such as the
CCC scheme [Campbell et al. 1986] can be used for the compres-
sion.

For mobile devices, which are powered by batteries, these band-
width savings are also important from a power consumption per-
spective, since such off-chip memory accesses are often the most
energy consuming operations in a computer system [Fromm et al.
1997]. In low-power processes, such as the ones used for mobile
devices, off-chip memory accesses are more than an order of mag-
nitude more energy consuming than accesses to a small on-chip
SRAM memory. The bandwidth savings can therefore be trans-
lated into energy savings. The texture compression system pre-
sented here was originally intended for use on mobile devices, but
could be used on PC systems and game consoles as well.

A texture compression system differs from a normal image com-
pression system in a number of ways. First, it needs to allow ran-
dom access to the texels, since rendering can start in any location
in the texture, and be traversed in a non-scanline fashion. Most
texture compression systems are therefore block-based fixed rate
codecs, where each block of the image is given a fixed number of
bits, which makes it simple to calculate the address of a particu-
lar block. Second, the decompression of a block should ideally be
of low complexity. If some sort of filtering is used, many paral-
lel decompression units are needed to process a single pixel. For
instance, if trilinear filtering is used, eight parallel decompression
units are needed to process one pixel per clock. By decompressing
the texels right before filtering, it is possible to keep compressed
texels in the texture cache, which means that the cache can be made
several times smaller in terms of chip surface area. Third, it is ad-
vantagous to avoid texture dependent look-up tables (LUTs), such
as color palettes, since the indirect addressing they introduce give
rise to latencies that are hard and costly to hide.

Our new texture compression system is developed with
iPACKMAN texture compression [Ström and Akenine-Möller
2005] in mind, and designed to be a complementing mode in that
coder, taking care of the blocks that iPACKMAN has most difficul-
ties with. However, it can also be used as a stand-alone codec, and
we have presented results for both usages.

2 Previous Work

We will now go through previous work that is related to texture
compression.

Delp and Michell [1979] present a scheme called block trunca-
tion coding (BTC) for gray scale images. The image is divided into
4× 4 blocks, and two shades of gray are encoded in the block, to-
gether with a bit mask that decides for each pixel what shade to
choose. The bit mask is thus 16 bits, and eight bits are used for
each gray level, resulting in 32 bits per 4x4 block or 2 bits per pixel
(bpp).

Campbell et al [1986] extend the BTC algorithm to color images
in a system called CCC — Color Cell Compression. Each 4× 4
block now includes two colors instead of two gray scales. By us-
ing a 256-wide color palette, the colors can be represented with
eight bits each, yielding 2 bpp for color images. However, only
two colors are possible per block, which limits image quality. Fur-
thermore, having a color palette is a drawback in today’s systems,
where memory accesses are slow in relation to computation.

The de facto standard today is the S3TC texture compression
method by Iourcha et al. [1999], and it can be seen as an extension
of CCC. To increase quality compared to CCC, four colors can be
chosen in each pixel, yielding two bits per pixel in the bit mask.
To avoid a texture dependent LUT, no color palette is used. Instead
two colors in RGB565 format are stored in the block, and two more
colors are interpolated in-between these two colors. This means
that colors in a block are restricted to lying on a line in RGB space.
However, this is a rather good approximation of the color distribu-
tion in blocks from most natural images. An example can be seen
in the left diagram in Figure 1, which shows a cross section of the
RGB space, and where the colors of a block are plotted as points
in RGB space. The point cloud is approximated by four equidistant
reconstruction points along a line, as shown in the right diagram.
The two end points (marked with squares) are the colors stored in
the block, whereas the two middle points (marked with circles) are
interpolated. With 64 bits per 4× 4 block, the rate of S3TC is 4
bpp.

R

B

R

B

Figure 1: Left: Possible distribution of the colors of a 4× 4 block
in RGB-space. Right: In S3TC the colors are approximated by four
equidistant points along a line.

Akenine-Möller and Ström [2003] present a variant of S3TC
called POOMA, where the biggest difference is that only one in-
between color is used, and blocks are 2× 3 pixels. Here the main

7



+ =

color luminance final image

Figure 2: Here, the core idea of PACKMAN is illustrated. To the
left, the base color for each 2×4 block is shown. The image in the
middle shows the per pixel luminance modulation. The rightmost
image shows the decompressed image.

target is to reach 32 bits per block to match bus-sizes of mobile
phones on a rendering system without a texture cache. However,
this reduces quality and increases the rate as compared to S3TC,
and the block size of 2× 3 pixels is awkward for hardware imple-
mentation.

Beers et al. [1996] use vector quantization for texture compres-
sion to reach compression rates of 1-2 bpp. However, this requires a
big LUT, which introduces indirect addressing resulting in latencies
that can be hard to hide.

Fenney [2003] uses a different approach, exploiting the fact that
an upscaled low-resolution version of an image is often similar to
the image itself. Fenney uses two such low-resolution images A
and B, both upscaled bilinearly two times, yielding only one color
sample each per 4× 4 block. Each pixel can then choose its color
from either image A, image B, or from two blend values between
A and B. Using 16 bits for each color and 2 bits per pixels for
choosing the blend value results in 64 bits per block or 4 bpp. A 2
bpp mode is also present.

Since our work is built on the PACKMAN [Ström and Akenine-
Möller 2004] and iPACKMAN algorithms, we will go through them
in more detail in the next section.

3 PACKMAN and iPACKMAN

The PACKMAN algorithm exploits the fact that the human visual
system is more sensitive to changes in luminance than in chromi-
nance. It takes the rather radical approach of only having a single
chrominance per 2×4 pixel block, represented as a RGB444 color
(12 bits). Each pixel can then modify the luminance of this base
color additively, as shown in Figure 2. More specifically, a mod-
ifier value is added to all three components (R, G and B) of the
base color. The modifier value is taken from a small table of four
entries, and hence two bits, called pixel indices are needed to se-
lect the value for each pixel. Finally, four bits are spent on a table
codeword, to select the small table from a list of 16 prefixed tables.
Altogether, 32 bits are used for 2×4 pixels, giving a rate of 4 bpp.

3.1 iPACKMAN

This algorithm has been improved under the name iPACKMAN
(also called Ericsson Texture Compression, ETC) in two ways
[Ström and Akenine-Möller 2005]. First and most important, a dif-
ferential mode is introduced, allowing two neighboring 2×4 blocks
to be coded together. The base color of the left block can then be
encoded using RGB555, i.e., with higher precision, and the right
base color also in RGB555 format, but coded using a differential
dRdGdB333, where dR, dG and dB can assume values between
−4 and +3. Thus, for pairs of blocks with similar base colors,
the chrominance resolution effectively goes up from RGB444 to
RGB555 in both blocks. Blocks that cannot be encoded well using

Figure 3: Left: Original. Right: Image compressed using
iPACKMAN. Note the blocky artifacts coming from that only one
hue is allowed per subblock (not visible in b/w reproduction).

the differential mode will be coded as before, i.e., with two indi-
vidually coded RGB444 colors. This mode is called the individual
mode.

The second improvement is that blocks can be flipped so that a
4×4 block consists of either two 2×4 block next to each other, or
two 4× 2 blocks on top of each other. Two mode bits are needed,
one to choose between individual and differential mode, and one
to indicate the flip status. Space for these two bits are created by
shrinking the number of possible tables from 16 to eight, thus re-
ducing the number of table bits in each sub-block from four to three.
Figure 8 shows the bit layout in the differential (top) and the indi-
vidual (bottom) modes.

These two small differences have a substantial effect on image
quality, which jumps 2.5 dB in terms of Peak Signal to Noise Ratio
(PSNR), suddenly putting iPACKMAN on par with S3TC. Visu-
ally, iPACKMAN lacks the disturbing banding artifacts that are a
result of the low chrominance resolution in PACKMAN. However,
iPACKMAN does not change the fact that only one chrominance
can be used for a block of eight pixels.

4 THUMB Texture Compression

In this section, we present our new THUMB texture compression
scheme. First we describe the design and motivate the different
design choices. Then follows descriptions for decompression and
compression of the stand-alone version of THUMB. The last sub-
section describes how THUMB can be combined with iPACKMAN
to get a better solution.

4.1 Basic Design and Motivation

Almost all fixed-rate block compression techniques have particu-
lar blocks that are coded worse than others. This is also the case
for iPACKMAN. The overall performance of iPACKMAN is very
good, but subblocks with more than one distinct hue are sometimes
coded with poor result as the pixel value can only be modified in
the direction (1,1,1) in RGB space. An image with typical prob-
lem blocks is shown in Figure 3. The image is cropped from a
larger image showing a road with a yellow line. Since the human
visual system is good at picking up block artifacts such as these, the
main goal of this paper is to be able to better handle such blocks.
However, we do not want to compromise quality in other blocks in
order to reach that goal, so our secondary goal is that overall quality
should stay the same or increase.

Our new scheme is called Two Hues Using Modified Brightness,
or THUMB for short. Just like iPACKMAN, it is based on 4× 4
blocks. In the stand-alone version, each block is coded with 64 bits.
As the name suggests, THUMB can handle up to two different hues

8



in a block. To allow this, two independent base colors are used to
code each block. This is also the case for iPACKMAN where each
base color is restricted to a 2× 4 subblock. In THUMB however,
each base color can be used for any pixel in a block. The colors are
encoded in RGB554 format.

Modifying the brightness for each pixel has proved to be a good
solution for iPACKMAN. Therefore this approach has been used in
THUMB as well. The technique however is somewhat different. 32
bits are used as pixel indices, giving us two bits to code each one
of the 16 pixels in a block. Hence, we can have four different paint
colors.

R

B

R

B

d

d

d

d

Figure 4: Left: The colors of the original block can be located in
two different hues in RGB space. Right: Two base colors (marked
with squares) are selected. Four paint colors (marked with circles)
are derived by adding a distance d in direction (1,1,1) to form an
H-pattern.

These paint colors can be chosen in several ways since we are
using two independent base colors per block. THUMB defines two
different patterns of how to retrieve the four paint colors. In the first
pattern, these paint colors are derived using a distance d added in
direction (1,1,1) from the base colors. This pattern is called the H-
pattern, since the paint colors and the base colors can be placed as
an H in RGB space. The H-pattern is illustrated in Figure 4, where a
cross section of the RGB space is shown. Note that, just as in S3TC,
the colors are approximated with line segments. Whereas S3TC can
choose any orientation of the line segment (see Figure 1), the line
segments in THUMB must be oriented parallel with the intensity
direction (1,1,1). On the other hand, THUMB can use two line
segments whereas S3TC can use only one.

Sometimes the colors of the original block are clustered more
around one base color than the other. A different pattern might then
be a better match. In the second pattern, the first two paint colors
are the base colors themselves. To get the other two paint colors,
the distance d is added to the first base color in direction (1,1,1). In
this way, three paint colors with the same hue can be represented in
a block. The fourth paint color is then chosen independently from
the first three. This pattern is called the T-pattern, since the paint
colors can be placed to form a T in RGB space as illustrated in Fig-
ure 5. A pattern bit is used to resolve which one of the two patterns
to use when generating the paint colors. The patterns are approx-
imately equally common. The distance d is coded using three bits
in the stand-alone version. As a total we will have eight possible
distance values to choose from for each block. The distances are
taken from a hardware lookup table. This table was created using
a combination of different optimizing techniques for a test suite of
twenty images. The optimized table is shown in Table 1. We have
tried approximating the tables using shifts as well, and even though
it only gives a small performance loss, it is not clear that we actually
would gain much in terms of HW complexity.

R

B

R

B

d

d

Figure 5: Left: An uneven distribution of the original block colors.
Right: The T-pattern. Both base colors are used as paint colors. The
distance d is added in direction (1,1,1) to get the other two.

table index 0 1 2 3 4 5 6 7
distance 3 6 11 16 23 32 41 64

Table 1: Hardware lookup table with optimized distances.

R0

G0

B0

R1

G1

B1

d

Extend to 8 bits

Extend to 8 bits

Extend to 8 bits

Extend to 8 bits

Extend to 8 bits

Extend to 8 bits

24 bits RGB

24 bits RGB

+
+

Negate

+
+

Lookup
table

c0

c1

c2

c3

Clamp

Clamp

Clamp

Clamp

Pixel color

Pattern bit

Q 2 bits

Pixel number (4 bits)

32 bits

3 bits

4 bits

5 bits

5 bits

4 bits

5 bits

5 bits

CH
T1

H
T2

Figure 6: Hardware diagram for a possible THUMB decoder. The
bit layout can be seen to the left. The expanded color components
have been combined to RGB-colors to make the diagram more read-
able.

4.2 Decompression

Figure 6 shows a possible implementation of how to decode a pixel
in THUMB. At most, the values of twenty bits are needed to retrieve
a pixel. The two bits from the pixel indices are used to determine
which one of the paint colors to decode. Below is a description of
how each paint color is derived:

1. To retrieve the first paint color, the first base color must be
read. Each component is expanded to eight bits to form a 24-
bit RGB-color. The distance is read from the lookup table,
and added to each component of the base color. The color
components are then clamped to the interval [0,255], resulting
in the first paint color.

2. The second paint color is decoded in a similar way as the first
one. The only difference is that the distance is negated before
it is added to the components of the base color.

3. Decoding the third paint color is a bit trickier than the first two
ones. Depending on the value of the pattern bit, two different

9



paint colors can be acquired. If the pattern bit is zero, the first
base color is expanded and used as the paint color without
adding a distance. If the pattern bit is set, the second base
color is expanded and the distance is added to get the third
paint color.

4. The pattern bit is also needed to determine the fourth paint
color. If the pattern bit is zero, the second base color is ex-
panded and used as paint color. If the pattern bit is set, the
negated distance is added to all components of the expanded
second base color to get the fourth paint color.

4.3 Compression

The problem of compression is to find the best possible pair of base
colors. Exhaustive search is not yet feasible due to the number of
combinations that must be tested. Iterating over all possible base
colors (228), patterns (2), distances (23) and paint colors (4) means
that up to 234 different combinations would have to be tried for each
pixel. Therefore, three non-exhaustive compression methods have
been developed.

LBG Compression. The LBG vector quantization algorithm
[Linde et al. 1980] is used to find the two base colors. Since
we only have two reconstruction values (the base colors), the
algorithm converges quite fast. Starting with two random base
colors, only ten iterations are needed to get a satisfying result.
After the base colors are found, all possible patterns, distances
and paint colors are tried. The parameter combination giving
the lowest Mean Square Error (MSE) is chosen for the block.
Encoding a 512×512 texture takes less than five seconds us-
ing a 800 MHz PC with 256 MB of RAM.

Radius Compression. This method is much slower than LBG
compression, but will also give a better result. Initially, two
base colors are found using the LBG-algorithm as above.
Then for each quantized base color, all possible colors within
a (2k+1)×(2k+1)×(2k+1) cube centered around the base
color are tried. Loosely speaking, k can be called the radius
of the cube, hence the name. The encoding time increases
very quickly with respect to k, while the gain in image qual-
ity is decreasing: Since there are two colors per block, and
they cannot be tested independently, radius compression is
(2k + 1)6 times slower than LBG compression. For instance,
radius compression with k = 1 is 729 times slower than LBG
compression, k = 2 is 15625 times slower and so on. In prac-
tice, the extra encoding time for a radius level over two will
not justify the small gain in quality. The gain in image qual-
ity using the first level of radius is on average around 1 dB
in terms of Peak Signal to Noise Ratio (PSNR), compared to
LBG compression.

Selective Compression. This solution exploits the fact that all sur-
rounding colors in radius compression are not equally proba-
ble. Empirical studies show that for almost all blocks where
the first radius level is used, it is sufficient to try only the col-
ors shown in figure 7. This means that only nine different col-
ors need to be tested for each base color instead of 27. Thus,
the encoding time is decreased a factor nine, compared to ra-
dius compression. The loss in image quality however, is only
about 0.05 dB.

4.4 Combining THUMB and iPACKMAN

Blocks containing two distinct hues are coded very well with
THUMB. However, the overall performance is in general slightly
worse than for iPACKMAN. This is mainly because iPACKMAN

Figure 7: All colors tried in radius search are not equally common.
In selective compression, only the most frequent colors from radius
compression are tested. The figure shows the constellation of these
colors for the first level of radius.

1 14 4 4 4 4 4bit size

R0 R1 G0 G1 B0 B1

32

0

1 15 3 5 3 5 3bit size

diff

flipR0 dR1 G0 dG1 B0 dB1

32
1

individual

differential

table 0 table 1

table 0 table 1

pixel indices

pixel indices

3 3

3 3

diff

flip

Figure 8: Modes in original iPACKMAN. Top: Differential mode.
Bottom: Individual mode.

1 14bit size

diff

patB0

32
0

1 15 3 5 3 5 3bit size

diff

flipR0 dR1 G0 dG1 B0 dB1

32
1

THUMB mode

differential iPACKMAN mode

table 0 table 1

pixel indices

pixel indices

3 3

5

R0 G0

5 4

B0

5

R0 G0

5 2

d

Figure 9: Modes in the combined iPACKMAN and THUMB coder.
Note how the individual mode in iPACKMAN has been exchanged
with a 63-bit THUMB mode.

has the possibility to have eight different paint colors per 4× 4
block, as the blocks are divided into two subblocks.

Since iPACKMAN and THUMB are good at different types of
blocks, it makes sense to combine the two. Each block is encoded
using both iPACKMAN and THUMB separately. The one giving
the lowest MSE will be used to represent the block. In order to fit
both iPACKMAN and THUMB into 64 bits, both algorithms need
to be represented using fewer bits.

How to do this is not obvious—the design space is truly huge—
and we have only been able to cover a small number of the pos-
sible constellations. However, the solution that has given the best
result among the ones we have tried is also the one that we think
is the most straight-forward: The individual mode in iPACKMAN
is replaced with a 63-bit THUMB mode, as can be seen in Fig-
ures 8 and 9. This has a number of advantages: Firstly, all decod-
ing hardware for the individual mode in iPACKMAN can be re-
moved and replaced by the THUMB mode. Also, when encoding,
only two modes (differential, THUMB) need to be tested, just as in
iPACKMAN (differential, individual). It is also likely that blocks

10



Kodak img 1 Kodak img 2 Kodak img 3 Kodak img 4 Kodak img 5 Lena Lorikeet Avg gain
PVR-TC 33.8 [8.98] 37.1 [6.20] 37.9 [5.61] 37.7 [5.76] 32.4[10.59] 35.9 [7.11] 34.8 [8.08] +0.85 dB
S3TC 34.78 36.86 38.53 37.96 32.80 35.97 34.37 +0.61 dB
iPACKMAN 36.29 38.09 38.62 38.59 34.12 35.17 33.25 +0.21 dB
Stand-alone THUMB 34.80 36.86 37.88 37.34 32.97 35.31 33.69 +0.96 dB
Combined Solution 36.26 38.12 38.92 38.66 34.08 35.66 33.88 —

Table 2: The PSNR is reported from a test suite of images for PVR-TC, S3TC, iPACKMAN, stand-alone THUMB and the combination of
THUMB and iPACKMAN. The rightmost column shows the average gain when comparing the combined system to the other schemes.

that are coded using the individual mode in iPACKMAN will be
well represented with THUMB, since two very different base col-
ors are easily representable in THUMB.

Combining iPACKMAN with THUMB in this way means that
THUMB must operate at 63 bits, since the diff bit occupies one
bit. This is solved by using two instead of three bits for the
distance table. The new optimized table contains the distances
{ 6 13 24 43 }.

5 Results

In this section we compare the image quality of different texture
compression schemes. Our new schemes THUMB and the com-
bined solution are compared to iPACKMAN, S3TC and PVR-TC.

To maximize image quality, the slowest compression mode of
iPACKMAN has been used.

THUMB is encoded with radius compression using the second
level of radius. This is also the case for the THUMB-mode in the
combined solution.

S3TC is encoded using the Compressonator software package
from ATI. The DirectX mode was used in this comparison, setting
the weights to (1,1,1) for the lowest error score.

There is no publicly available codec for PVR-TC, so the results
are taken from Fenneys publication.

The results of PVR-TC was presented in root mean squared error
(RMSE): √

1
w×h ∑

x,y
(∆R2

xy +∆G2
xy +∆B2

xy)

where w and h are the width and the height of the image, and ∆Rxy,
∆Gxy and ∆Bxy are the pixel differences in pixel (x,y) between the
original and the decompressed image in the red, green and blue
component respectively. We have chosen to present our results in
Peak Signal to Noise Ratio (PSNR) instead:

PSNR = 10log10

(
3×2552

RMSE2

)
, (1)

where the scale factor 3 in the numerator is due to the fact that
3×2552 is the peak energy in a pixel.

To be able to compare the results with PVR-TC, the same seven
images used for the testing of PVR-TC have been used here. Just
as in Fenney’s study, these have been cropped to 512×512 pixels.

The results of the comparison between the different schemes are
found in Table 2. It can be seen that the combined solution outper-
forms both S3TC and PVR-TC with over 0.5 dB. Using THUMB
separately is almost one dB worse than using the combined solu-
tion. The same number for iPACKMAN is only 0.21 dB. Gener-
ally in image coding, a difference below 0.25 dB is hard to notice.
However, the main goal of this paper was not to increase overall
quality, but to handle the particular blocks that are most problem-
atic for iPACKMAN, and this objective has been met. Examples
can be seen in Figure 10. The secondary goal, that overall quality
on average should stay the same or increase, has also been reached.

It must be said that seven images are not enough to make a good
statistical analysis of the results. A larger test suite with images

intended for texture mapping would be desirable. What can be said
however, is that THUMB solves some of the worst problem blocks
for iPACKMAN.

6 Conclusion

We have presented a new texture compression algorithm, THUMB,
that can be used as a stand-alone system or in combination with
iPACKMAN. If combined, THUMB can improve some of the worst
blocks in iPACKMAN, and at the same time raise overall quality
some. Still, some blocks, such as gradients between two colors il-
lustrated by the explosion in Figure 10, are better handled by S3TC
than with the proposed combination. This opens up for future work,
and perhaps new modes.

References

AILA, T., MIETTINEN, V., AND NORDLUND, P. 2003. Delay Streams for
Graphics Hardware. ACM Transactions on Graphics, 22, 3, 792–800.

AKENINE-MÖLLER, T., AND STRÖM, J. 2003. Graphics for the Masses:
A Hardware Rasterization Architecture for Mobile Phones. ACM Trans-
actions on Graphics, 22, 3, 801–808.

BEERS, A., AGRAWALA, M., AND CHADDA, N. 1996. Rendering from
Compressed Textures. In Proceedings of SIGGRAPH, 373–378.

CAMPBELL, G., DEFANTI, T. A., FREDERIKSEN, J., JOYCE, S. A.,
LESKE, L. A., LINDBERG, J. A., AND SANDIN, D. J. 1986. Two
Bit/Pixel Full Color Encoding. In Proceedings of SIGGRAPH, vol. 22,
215–223.

DELP, E., AND MITCHELL, O. 1979. Image Compression using Block
Truncation Coding. IEEE Transactions on Communications 2, 9, 1335–
1342.

FENNEY, S. 2003. Texture Compression using Low-Frequency Signal Mod-
ulation. In Graphics Hardware, ACM Press, 84–91.

FROMM, R., PERISSAKIS, S., CARDWELL, N., KOZYRAKIS, C., MC-
CAUGHY, B., PATTERSON, D., ANDERSON, T., AND YELICK, K.
1997. The Energy Efficiency of IRAM Architectures. In 24th Annual
International Symposium on Computer Arhchitecture, ACM/IEEE, 327–
337.

IOURCHA, K., NAYAK, K., AND HONG, Z. 1999. System and Method for
Fixed-Rate Block-based Image Compression with Inferred Pixels Val-
ues. In US Patent 5,956,431.

KNITTEL, G., SCHILLING, A., KUGLER, A., AND STRASSER, W. 1996.
Hardware for Superior Texture Performance. Computers & Graphics 20,
4 (July), 475–481.

LINDE, Y., BUZO, A., AND GRAY., R. M. 1980. An Algorithm for Vector
Quantizer Design. IEEE Transactions on Communication 28, 1, 84–95.

STRÖM, J., AND AKENINE-MÖLLER, T. 2004. PACKMAN: Texture Com-
pression for Mobile Phones. In Sketches program at SIGGRAPH.

STRÖM, J., AND AKENINE-MÖLLER, T. 2005. iPACKMAN: High Qual-
ity, Low Complexity Texture Compression for Mobile Phones. In Graph-
ics Hardware, ACM Press, 63–70.

11



Original S3TC iPACKMAN Stand-alone THUMB Combined Solution

Figure 10: In this figure three examples of typical problem blocks are illustrated. Top: In this example, which shows a road, the main
problem of iPACKMAN can be seen. Subblocks containing two distinct hues are coded poorly. Middle: Here is an example of the strength
of iPACKMAN. Small transitions in luminance are coded well as can be seen around the eye and on the cheek. THUMB and S3TC have
a more blocky appearance. A large image artifact can also be seen in the ear for S3TC. Since the combined solution inherits the strength
of iPACKMAN, these blocks are coded well. Bottom: This last example is a cut-out of an explosion. Here S3TC performs the best thanks
to its linear interpolation between the base colors. As the blocks contain more than one hue, the result tends to be blocky for iPACKMAN.
THUMB encodes the image a little bit better even though some edges can be seen.

12


	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract 
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction 
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering 
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability 
	4.1. Operating systems and cameras 
	4.2 Multilingual configuration 

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB 
	5.2. Database format 
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook 
	References 
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf




