
Lighting Effects for Mobile Games
Jeppe Revall Frisvad∗ Niels Jørgen Christensen† Peter Falster‡

Informatics and Mathematical Modelling
Technical University of Denmark

Abstract

Adapting games to the miniature screens and limited process-
ing power of mobile phones is quite a challenge. To accom-
modate these technical limitations, mobile games are often two-
dimensional (2D), tile-based, and seen from above. Such games
rarely present much creativity with respect to dynamic lighting.
Textures are merely plastered onto the tiles. A recent game release
has, however, shown that effects such as dynamic light sources can
spice up a mobile game of this type quite a bit. In this paper we
carry the idea of dynamic lighting effects for tile-based 2D games
even further. In particular, we present simple and efficient tech-
niques for shadows and fluctuating fog which can greatly improve
the gamer’s visual experience.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: lighting effects, mobile games, shadows, fog synthe-
sis, real-time.

1 Introduction

Mobile games rarely feature dynamic lighting effects. An obvious
reason is the limited processing power available. Another reason
is the different gaming experience that one encounter when playing
a game on the small screen of a mobile phone. Since the gaming
experience is different, the gameplay designed for a mobile game
should be adapted accordingly, see [Nok 2003].

On a small screen the player quickly looses track of game charac-
ters and objects. A solution is to make games in a style where every-
thing is seen from above. This ensures the best possible overview.
It, therefore, seems reasonable to assume that two-dimensional,
tile-based games viewed from above always will be relevant on the
miniature screens of mobile phones. For that reason, we propose
some simple methods enabling dynamic lighting effects in games
of this type.

Quite recently the mobile game Darkest FearTM from Rovio Mo-
bile was shipped as the first mobile game marketing itself on its
ability to incorporate dynamic lighting effects in its gameplay, see
[Rov 2005]. And it received an Airgamer Award from Germany’s
leading mobile game reviewer with the review punch line: “Inno-
vative and exciting!” [Biedermann 2005]. This strongly indicates
that lighting effects are worth the effort in this category of games.

∗e-mail: jrf@imm.dtu.dk
†e-mail: njc@imm.dtu.dk
‡e-mail: pfa@imm.dtu.dk

Figure 1: The gamelike scenario we will be working with.

Figure 2: Examples of the lighting effects we will describe efficient
methods for in this paper.

Darkest Fear has lighting effects such as movable light sources
providing an attenuating illumination of the surroundings. More-
over several light sources are turned on and off dynamically. The
shadows of the dynamic characters are merely blobs, which are a
part of the sprites1 associated with a character.

In this paper we suggest a simple technique to do dynamic shad-
ows in tile-based games. Moreover we give a simple technique to
create fluctuating fog in such games.

Figure 1 presents the central part of a sample frame from the
gamelike scenario we will be working with in this paper. This tile-
based demo scenario is compiled for a Windows PC platform, but
could as well have been compiled for a mobile phone platform if
we had had the necessary development tools at our disposal. The
scenery is viewed from above, as we argued is often sensible in
mobile games. In Figure 1 no lighting effects have been applied.
Compare this example to the images in Figure 2, where the sample
frame has been spiced up with the inexpensive lighting effects to
be described in the following sections. Hopefully the reader agrees
that such effects make the scene more interesting.

The lighting effects we present have, clearly, been done before
in games for PCs and consoles. Here the environment is, how-
ever, most often three-dimensional which means that the employed
shadow and fog algorithms are slightly different from the ones we
describe. The types of 2D games which have a third dimension that
is always projected on the same plane, give us an option for inex-

1A sprite is basically a rectangular pixel map.

13

Figure 3: Six sprites for animation of the character in our gamelike
environment. The character is a Robin Hood-like person wearing a
hat and having a bow over his back pack. He is seen directly from
above.

pensive calculation of 3D lighting effects. In the following we will
describe how this is done.

2 Lighting Effects

Jim Blinn is one of the pioneers who introduced several lighting ef-
fects for three-dimensional environments in the seventies and eight-
ies. Some of his ideas were planar projection shadows, see [Blinn
1988], and rendering of cloud cover, see [Blinn 1982]. Inspired by
these ideas, we describe, in the following, how shadows and fog (or
cloud cover) effects can be incorporated in two-dimensional games.

The general question to be answered in the following, is how
to create a third dimension in an otherwise two-dimensional gam-
ing environment. And, after this information has been provided,
how can we construct lighting methods that are not processing in-
tensive. To provide answers, we must take advantage of the two-
dimensional nature of the environment.

2.1 Planar Projection Shadows

Consider the sprites for the character of our game, see Figure 3.
The sprites have a resolution of 32 × 32. To find shadows cast by
this character, we must provide some height information.

To keep memory costs low, we decided to make two height
curves. One along each axis in the character sprites, see Figure
4. Let ` denote the number of pixels a height curve covers. In our
case ` = 32. A pair of curves could be constructed for each charac-
ter sprite, but if the difference between the sprites is subtle, there is
no need to have more than a single pair of curves for each character.

The curves are positioned above the character and the curve
along the axis making the largest angle with the direction towards
the light source, is used for calculation of the shadow. Figure 5
illustrates how the shadow outline is found and can be referred to
throughout the remainder of this section.

Each light source in the game should have a 3D position:

L = (xL, yL, hL) ,

where hL is the height of the light source above the xy-plane where
everything is rendered.

Suppose we let C = (xC , yC) denote the position where the
center of the sprite will be drawn next. The 2D direction dL towards
a light source is then given as:

dL = (xd, yd) = (xL, yL)− C .

To decide which curve we want to use for the shadow (a or b in
Fig. 4), we can calculate:

cosφ1 =
dL · ex

‖dL‖
=

xd
√

x2
d

+ y2
d

, (1)

where ex = (1, 0) is the direction of the x-axis.
When φ1 ∈ [π

4
, 3π

4
] or φ1 ∈ [5π

4
, 7π

4
] we want to use curve (a)

otherwise curve (b). This corresponds to saying that when cosφ1 ∈

[−
√

2

2
,
√

2

2
] we use curve (a) otherwise curve (b). Note that there

PSfrag replacements

(a)

(a)

(b)

(b)

0.0

0.0

0.5

0.5

1.0

1.0

1.5

1.5

2.0

2.0

Figure 4: An illustration of the height curves for our character.

PSfrag replacements

(a)

(b)

x

y

h L

C

dL

Figure 5: A sketch illustrating how the shadow outline is found.
Here curve (b) is the chosen curve, since it has the largest angle
with the direction towards the light source.

14

is no need to find the angle φ1 itself as long as the sprites are not
being rotated.

It is, however, desirable to rotate the sprites, since then we only
need to store them facing a single direction. In our game, an angle
φ0 ∈ [0, 2π] specifies how much the character sprite has been ro-
tated around its center2. This complicates the matter a bit. To find
out which curve to use in this case, we calculate

φ = φ0 − sign(yd) cos−1

(

xd
√

x2
d

+ y2
d

)

, (2)

and again, if φ ∈ [π
4
, 3π

4
] or φ ∈ [5π

4
, 7π

4
], we use curve (a) other-

wise curve (b).
Note, in (2), that cosφ1 does not supply us with sufficient infor-

mation to determine φ1. We need to consider the sign of yd to get
φ1 ∈ [0, 2π]. It is also important to realize that φ1 should be sub-
tracted from φ0. This follows since φ is the angle between the local
x-axis of the sprite and the direction towards the light source. The
local x-axis has been rotated to have the angle φ0 with the global x-
axis and φ1 is the angle between the global x-axis and the direction
towards the light source, hence, φ = φ0 − φ1.

Depending on whether the character sprites are being rotated in
the game or not, either (2) or (1) determines which curve to be used
for the projection of the shadow. Each curve should have a direction
vector and an origin. The direction of curve (a) is da = (wT /`, 0)
and the direction of curve (b) is db = (0, hT /`), where wT and hT
are, respectively, the width and height of a tile in world coordinate
units3. The needed origin, either Pa or Pb, is found according to
the current position of the sprite.

Let d and P denote the direction and origin, respectively, of the
chosen curve. If the sprite has been rotated, d and P should be
rotated accordingly. Each height value on the chosen curve now
has a corresponding position:

(x0,i, y0,i) = P + id , i = 0, . . . , `− 1 .

Combining the (x0,i, y0,i)-position with the height value h0,i

stored for each position on the curve (see again Fig. 4) gives 3D
points P0,i ∈ R

3 , i = 0, . . . , ` − 1, along the curve. When those
have been established, the direction di from the light source to Pi

is found as
di = P0,i − L

and intersection with the xy-plane can be calculated. This is a
simple calculation, since we are in possession of the parametric
equation of the line with origin at the position of the light source,
L, and direction di through the point on the curve P0,i:

(xi, yi, hi) = L+ ti di . (3)

When hi = 0, the line intersects the xy-plane. Hence, we
quickly discover that

0 = hL + ti(h0,i − hL) ⇔ ti =
hL

hL − h0,i
(4)

finds the value of ti which, inserted in (3), gives the projection of
the ith point on the height curve to the xy-plane in the direction
away from the light source. In other words, the points

(xi, yi) = (xL, yL) +
hL

hL − h0,i
(x0,i − xL, y0,i − yL) (5)

and (x0,i, y0,i) with i = 0, . . . , ` − 1, defines the outline of the
shadow in the xy-plane (see again Fig. 5).

2In fact we use integers and degrees (from 0
◦ to 359

◦) for the angles not
radians, but that is not essential for the description of the concept.

3It is sensible and, of course, convenient to let wT = hT = 1.

Figure 6: Shadows resulting when the described technique is em-
ployed in our case study. In the first three rows the shadow has been
rendered with alpha values interpolated over a single triangle strip.
For comparison the last row has been rendered using two triangle
strips: One representing the umbra region and one representing the
penumbra region. The first with constant alpha value, the second
with interpolated alpha values. While the difference is subtle, the
advantage of the second approach is that we can control the size of
the penumbra region.

Having the shadow outline, the shadow can be visual-
ized in many different ways. With a slight abuse of nota-
tion let P0,i = (x0,i, y0,i), and let Pi = (xi, yi). We
simply draw the shadow as a triangle strip using the points
P0,i, Pi, P0,i+1, Pi+1, . . . , P0,`−1, P`−1. To give a touch of soft-
ness to the shadows, we make the points Pi quite transparent
(α = 0.1) while the points P0,i are left opaque (α = 1). Stan-
dard linear interpolation of the alpha values between the vertices of
each triangle (Gouraud shading, see [Gouraud 1971]) is performed4

when the triangle strip is rendered. Examples from our case study
of the resulting shadows are given in Figure 6.

Linear interpolation of the alpha values is physically incorrect,
but seems visually more pleasing than a hard shadow. If distin-
guishable umbra and penumbra regions are desired, it is necessary
to render the shadow as two triangle strips. First we project the
height curve to a plane which is moved a constant c closer to the
light source. The constant determines the size of the penumbra re-
gions and the shadow outline found at the plane moved closer to
the light source will describe the umbra region (the idea to move

4In OpenGL and OpenGL ES, Gouraud shading happens automatically
when the smooth shading model has been chosen.

15

the intersection plane closer to the light source was proposed by
Gootch et al. [1999] for rendering of planar soft shadows in 3D en-
vironments). The projected points Pu,i = (xu,i, yu,i) are found
using (3) with tu,i = ti − c when ti − c ≥ 1 otherwise tu,i = 1.
Now the points P0,i, Pu,i, . . . , P0,`−1, Pu,`−1 can be used to draw
the triangle strip for the umbra region with a constant alpha value,
eg. α = 0.75.

The second strip is drawn using the points
Pu,i, Pi, . . . , Pu,`−1, P`−1, where the points Pi are the ones
found in (5). The points Pu,i should be rendered with the same
alpha value as before, but the points Pi should be rendered with
α = 0. A few examples of the shadows resulting from this two
strip method are given in Figure 6 for comparison with the method
using one strip.

2.2 Fluctuating Fog

The second lighting effect that we would like to describe a simple
rendering technique for, is fog and similar semi-transparent phe-
nomena. One way to do fog is simply to have a texture with varying
shades and transparencies (alpha values). The texture is then spread
over the tiles that should be foggy. This is, however, expensive with
respect to memory storage and the result is a static fog which does
not give much feeling of realism.

Instead we suggest that a height field composed of a 16 × 16,
10×10, or an even smaller grid of height values should be sufficient
to generate an interesting fluctuating fog.

Suppose the fog is to be spread across a rectangular area in the
game specified by three 2D points: Q0, Qtop, andQright. Let `x and
`y denote the resolution of the height field grid. Then the vectors
used to step through the height field are

vx =
Qright −Q0

`x
and vy =

Qtop −Q0

`y
.

The 2D position of each vertex in the height field is then found
as

(xij , yij) = Q0 + ivy + j vx ,

where i = 0, . . . , `y − 1 and j = 0 . . . , `x − 1. This is combined
with the values hij available in the height field to obtain the 3D
positions Qij = (xij , yij , hij).

To have our fog change appearance depending on the viewpoint
of the player (that is, to create fluctuations), we need normal in-
formation as well as positions. For each vertex in the height field
we can calculate two basis vectors b1,ij and b2,ij using one neigh-
boring point in the x direction and one neighboring point in the y
direction. Normalized cross products of the two basis vectors at
each vertex then provides the normals:

nij =
b1,ij × b2,ij

‖b1,ij × b2,ij‖
.

Depending on the processing power available versus the mem-
ory available, normals or positions could be stored in memory or
recalculated as one thinks fit. If the fog is supposed to move around
in the game, the positions must, of course, be recalculated, but the
normals could still be kept static. Normals should be recalculated
if the height values change.

To render the fog, the position of the eye V must be available. In
our game, the eye is positioned directly above the controlled char-
acter which is always centered. Centering the character controlled
by the player is one of the good advises in [Nok 2003]. This gives
the player a better chance to follow the game on a small screen.

The angle θij between the direction towards the viewpoint, V ,
and the normal, nij , at each vertex is now used to attenuate the light

transmitted directly through the fog. The formula calculating atten-
uation of directly transmitted light is well known, see eg. [Chan-
drasekhar 1960]. Assuming that the fog medium has a constant
extinction coefficient σt throughout, and that the fog goes all the
way to the xy-plane, the attenuation computation is given as

αij = e−τij/| cos θij | , (6)

where τij = σthij is the optical depth of the fog below the ver-
tex. We do not have to worry too much about the exact meaning of
the extinction coefficient in this context. It suffices to think of σt
merely as a scale: When it increases the fog becomes more dense.
To calculate cos θij we have

cos θij =
V −Qij

‖V −Qij‖
· nij . (7)

Left to find is a shade for the fog at each vertex. In our opinion
the height values scaled such that they live in [0, 1] gives acceptable
grey shades for a fog in dark surroundings.

The fog is now ready to be rendered on top of the tiles it was
spread across. To do the blending of the fog with the scenery below
it, we call the grey shade, found for each fragment as an interpo-
lation of the scaled height values, the source and denote it Lsrc.
The destinations are the existing colors Ldst of the fragments. The
blending should be done such that

Lblend = Lsrc + αsrcLdst .

Some resulting images from our case study are presented in Fig-
ure 7. If we want a white fog, corresponding to a cloud cover lit
from above by the sun, we do not use grey shades, but set all color
values (except the alpha value, of course) to 1 and use the following
function for blending:

Lblend = (1− αsrc)Lsrc + αsrcLdst .

An example of the result is shown in Figure 2.

3 Dealing with Mobile Phone Limitations

Battery life is a main concern on all mobile devices. Floating point
processors consume more power than integer processors, therefore
most mobile devices (even high-end devices) have no floating point
processor [Astle and Durnil 2004, Chap. 6]. Instead floating point
calculations are simulated in software and that is too slow for game
programming. How can we implement the lighting effects de-
scribed in the previous section with no floating point operations?
The answer is to employ fixed point arithmetics. Michael Street
[2004] gives an excellent primer to fixed point arithmetics describ-
ing efficient implementations of all the basic math operations in-
cluding square roots, vector normalization, and trigonometric func-
tions (code is included).

The trigonometric functions are not really used in the calcula-
tions for our lighting effects, since cosine of an angle is found using
the dot product between two vectors as shown in (1) and (7). If a
game uses rotation of sprites as we do in our demo, it is necessary to
evaluate (2) where an arcus cosine (cos−1) is employed. Moreover
evaluation of the exponential function (e) is needed for calculation
of fog transparency in (6). We recommend that look-up tables are
used for fixed point evaluation of these two functions.

While it is straight forward to construct a look-up table for arcus
cosine, since cos−1(x) only takes values x ∈ [−1, 1] as argument,
it is not immediately obvious how to construct a look-up table for
the exponential function. In our implementation we chose a look-
up table with twenty entries for evaluation of e−x when x ∈ [0, 1),

16

Figure 7: A few screen shots to illustrate that the fog changes ap-
pearance as the eye point moves around above it. The eye point is
always placed directly above the character.

we have ten entries for x ∈ [1, 2), and five entries for x ∈ [2, 3). If
x ∈ [3, 10), the function is approximated by a straight line:

f(x) =
e−3

7
(10− x) .

Finally, when x ∈ [10,+∞), the return value is set to zero.
To make sure that our demo can potentially run on a mobile de-

vice, we have made an implementation using the PowerVR MBX
OpenGL ES 1.1 SDK for desktop PCs5. PowerVR even supply a
look-up table for fixed point evaluation of arcus cosine as a part of
their OpenGL ES Tools library.

Both the shadow and fog described in the previous section can
and should be drawn using triangle strips. This is efficient and suit-
able for both OpenGL ES and the J2ME 3D graphics API.

5The SDK is available at http://www.pvrdev.com/Pub/MBX/OGLES/.

no shadow one strip two strips
w/o. fog 50.5 47.8 47.5
w. fog 30.1 29.0 28.9

Table 1: Frame rates (frames/sec) measured on an old laptop with
or without fog and with no shadow, shadow drawn using a single
triangle strip, or shadow drawn using two triangle strips. Please
note the differences between the frame rates rather than the frame
rates themselves.

4 Results and Discussion

While there, as indicated in the previous section, are many imple-
mentation constraints when games are written for mobile phones,
see also [Coulton et al. 2005], processing power is rarely an issue.
The reason is that smaller screen size means “fewer pixels to push
with each buffer flip” [Nok 2003]. Nokia also argues that the 104
MHz speed of the average mobile phone should be sufficient to sup-
port real-time rendered 3D graphics to a limited extent. This makes
us confident that at least the shadows we have described are very
well suited for mobile games. The fog may be slightly over the top.
On the other hand, we only need to recalculate the terms in the part
of the fog which is visible.

To give a feeling of the performance hit entailed by the described
methods, we have simulated our case study on a 400 MHz Pentium3
laptop. The simulations were run in a 250 × 250 resolution and
with a fog grid of 16 × 16 vertices. What is important is not the
frame rates themselves, but rather the difference between them. The
program could run much faster in a lower screen resolution and with
textures of a lower resolution, but then it would be difficult to tell
the difference in performance between eg. shadow and no shadow
since frame rates become quite unstable when they are high. The
frame rates from our experiments on the laptop are given in Table
1.

The performance hit of the fog is seemingly a little high. The
calculations described in the previous section are, however, not the
expensive part of the fog rendering. They reduce the frame rate
only by a frame or two. The expensive part is the Gouraud interpo-
lation of colors and alpha values across the triangles that are drawn.
Hence the larger the number of pixels which are covered by fog, the
larger the performance hit. The white fog shown in Figure 2 is, in
fact, less expensive to render than the fog with grey shades, since in
the second case, the color values have to be interpolated as well as
the alpha values. With the emergence of mobile GPUs (see some of
the possibilities they entail in [Macedonia 2004]) which all have a
hardware implementation of the Gouraud shading, the fog synthesis
we describe should become very feasible for mobile games.

Considering the images in Figure 6 more closely, we will dis-
cover that the described shadows have some limitations. While the
shadow outline is projected correctly onto the xy-plane, the method
does not account for eg. the gap between the legs of the character.
The gap is not captured by the shadow outline we can construct us-
ing a single height curve. To render such details, additional height
curves (below the existing ones) would have to be incorporated.

Another problem is that the shadows are always projected onto
the xy-plane. Suppose there is a wall next to the character, then
the shadow will end up on top of the wall. This is definitely not
desirable. A simple way to work around the problem is to draw the
walls (and rooms on the opposite side of the wall) after the shadow
has been rendered. This trick does not really fix the problem, the
shadow may still appear on the opposite site of a closet or some
other object close to the character. But then, on the other hand, the
shadow caused by the object close to the character would usually
cast a shadow itself on top of the shadow from the character. Hence,
the problem is not fatal.

Throughout the main part of this paper we have referred to tile-

17

based games viewed from above as the type of games where the
described methods can be employed. There is, however, nothing to
prevent us from using the same methods in games which are not
tile-based or games which are not viewed directly from above. As
long as the objects are all rendered as sprites moving on the same
plane, the described shadow and fog techniques are applicable. It
so happens that tile-based games usually belong to the category of
games for which our techniques are useful. Therefore we describe
our methods as rendering methods suitable for tile-based games.

5 Conclusion

An efficient method for rendering of projection shadows in tile-
based 2D games has been presented in this paper. Shadows are
found through construction of two height curves above each sprite
describing a dynamic object or character in a game. The calcula-
tions needed for our shadows are sufficiently simple to allow for
implementation on mobile phones. The shadows are not exactly
physically correct, but they are a great improvement as compared
to no shadows or simple blobs beneath the characters.

Additionally we describe a method for creation of fluctuating
fog. The fog is described by a height field placed above a plane and
fluctuates as the eye point moves around in the scene. The changing
transparency of the fog is calculated according to physical consid-
erations in the theory of radiative transfer. The shade of the fog is,
however, simplified to limit the performance hit of the fog render-
ing. The OpenGL ES software simulation of Gouraud interpolation
across the triangles visualizing the fog has shown to be the limit-
ing factor with respect to processing power. With the emergence of
mobile GPUs, this problem will disappear. In our opinion, the fog
resulting from the rendering method we describe, is quite convinc-
ing. In particular we find that the fluctuations are an important part
of the conviction. If the fog is rendered as a static semi-transparent
layer, the gamer will hardly get any feeling of visual realism.

In light of recent development in and attention to the mobile
gaming market6, we believe that the time is right for incorporation
of more lighting effects in mobile games. Hopefully this paper will
help the gaming companies getting started on projection shadows
and fluctuating fog.

Acknowledgement

Thanks to Rasmus Revall Frisvad for letting us use the character
sprites which were created approximately ten years ago for a garage
game project.

References

ASTLE, D., AND DURNIL, D. 2004. OpenGL R© ES Game Devel-
opment. Thomson Course Technology PTR, Boston, MA.

BIEDERMANN, S., 2005. Darkest fear: Bringen sie licht ins
dunkel! Airgamer, July. http://www.airgamer.de/.

BLINN, J. F. 1982. Light reflection functions for simulation of
clouds and dusty surfaces. Computer Graphics (SIGGRAPH ’82
Proceedings) 16, 3 (July), 21–29.

BLINN, J. F. 1988. Me and my (fake) shadow. IEEE Computer
Graphics and Applications 8, 1 (January), 82–86.

6The September 2005 issue of Game Developer Magazine was devoted
entirely to the subject of mobile gaming.

CHANDRASEKHAR, S. 1960. Radiative Transfer. Dover Publica-
tions, Inc., New York. Unabridged and slightly revised edition
of the work first published in 1950.

COULTON, P., RASHID, O., EDWARDS, R., AND THOMPSON, R.
2005. Creating entertainment applications for cellular phones.
ACM Computers in Entertainment 3, 3 (July).

GOOTCH, B., SLOAN, P.-P. J., GOOTCH, A., SHIRLEY, P., AND
RIESENFELD, R. 1999. Interactive technical illustration. In
Proc. of the 1999 Symposium on Interactive 3D Graphics, 31–
38.

GOURAUD, H. 1971. Computer display of curved surfaces.
Tech. Rep. UTEC-CSc-71-113, Department of Computer Sci-
ence, University of Utah, June. Also in IEEE Transactions on
Computers, vol. C-20, pp. 623–629, June 1971.

MACEDONIA, M. 2004. Small is beautiful. Computer 37, 12,
122–129.

NOKIA CORPORATION. 2003. Designing Single-Player Mobile
Games, September. Version 1.01.

ROVIO MOBILE. 2005. Darkest Fear: Fact Sheet.
http://www.rovio.com/.

STREET, M. 2004. A fixed point math primer. In Dave Astle
and Dave Durnil: OpenGL R© ES Game Development. Thomson
Course Technology PTR, Boston, MA, ch. 4, 67–88.

18

	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability
	4.1. Operating systems and cameras
	4.2 Multilingual configuration

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB
	5.2. Database format
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook
	References
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf

