
A Novel Approach to Compress Reflection Functions Based on PCA

Björn Olsson∗
Linköping University

Anders Hast†

University of G̈avle
Anders Ynnerman‡

Linköping University

building−probe.hdr rnl
p
robe.hdr stpeters

p
robe.hdr

Figure 1: Three examples of generated images using 25 coefficients.

Abstract

In many applications it is important to perform image-based relight-
ing. That is, to synthesize a scene in various lighting conditions
without explicitely rerendering the image. This paper proposes an
efficient compression method, which after a precomputing step al-
lows an efficient re-rendering of the scene. The best results are
achieved on scenes with a limited number of materials, but it may
also be used on arbitrary scenes. In this work images of a static
scene are generated and the method is exemplified using a dataset
of ray-traced images.

CR Categories: I.3.3 [Computer graphics]: Picture/Image Gener-
ation; I.3.7 [Computer graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing and texture

Keywords: BRDF, PCA, image-based relighting

1 Introduction

Image-based relighting is important in many applications, for ex-
ample in the entertainment industry and in flight-simulators. This
technique is based on methods developed decades ago and the first
renderings with reflection mapping were performed by [Blinn and
Newell 1976]. In the years to follow the ideas were developed fur-
ther by many people and were formalized by [Greene 1986].

A very large amount of work has been performed in the field of re-
lighting. In [Kristensen et al. 2005] a general method for real-time
relighting of scenes was presented. This method used the concepts
of unstructered light clouds and clustered PCA to render scenes
with moving lights and dynamic cameras. Another example is the
method presented by [Wood et al. 2000], who used a surface light-
field to generate images of shiny objects at arbitrary lighting con-

∗email:BjornA Olsson@hotmail.com
†email:Anders.Hast@hig.se
‡email: andyn@itn.liu.se

ditions. Another method was presented by [Nimeroff et al. 1994],
who used basis images for efficient re-rendering of a scene.

The PCA method has previously been used to render transparent
objects (See [Matusik et al. 2002]). In contrast to earlier meth-
ods the approach presented in their paper computed the principal
components for global reflection maps. In [Matusik et al. 2002]
an approach similar to JPEG-compression was used. The reflec-
tion maps were divided into zones of 16x16 pixels and each zone
was compressed to a small number of coefficients. Another paper
by [Epstein et al. 1995] investigated the number of eigenimages re-
quired to generate the scene. In this case global eigencomponents
computed from a data set of variably lit images were used. A re-
lated approach, the eigentexture method, was described by [Nishino
et al. 1999].

Another approach, matrix radiance transfer, which also builds on
PCA compression of BRDFs was presented by [Lehtinen and Kautz
2003]. In [Ho et al. 2003] a related approach was described. The
PCA method was applied on a set of reference images with the
same view, but with different illumination conditions. However,
in contrast to the method presented in this paper PCA was applied
block-wise. In [Shim and Chen 2005] a statistical approach, which
can be used to compare various methods estimating surface reflec-
tion functions was described. A method related to the approach
presented in this paper was described in [Sloan et al. 2002]. In that
paper the reflection functions were represented using spherical har-
monics. CPCA (Clustered principal component analysis) is another
way to compress precomputed radiance transfer, which was used
in [Sloan et al. 2003]. The algorithm was implemented on graphics
hardware. An interesting method using CPCA can be found in [Liu
et al. 2004]. It was used to perform relighting on large models.

In this paper a new reconstruction technique applied on reflection
functions is described. The goal of this work has been to develop a
simple method, which is fast and efficient. This approach builds on
the PCA method and is especially efficient for scenes with a lim-
ited number of textures. For the method presented in this paper the
viewpoint is fixed relative to the object and a set of photographs is
captured while the light source is repositioned for each photograph.
In addition this representation allows a very efficient reconstruction
step due to the linear basis in the PCA method. After a precomputa-
tion step the scene can be relighted in arbitrary lighting conditions.

By using this method a reflection map can be characterized with a
small number of coefficients. In this paper the method is applied to
still images, but it would be very easy to generalize the method to
arbitrary views by predicting the image appearance for several di-
rections and interpolating the current view. The images used in this
work are ray-traced, but it would also be possible to use captured

51

images. In the next section the method is described in detail. The
results and a discussion follows.

2 Method

The method proposed in this paper was applied to one data set
of ray-traced images. After the precomputation and configura-
tion phase it was possible to generate images of arbitrary lighting
conditions without explicitely resynthesizing the scene. The PCA-
method was used to compress the reflection functions to small co-
efficient vectors.

2.1 Principal Component Analysis

The principal component analysis method (PCA for short), also
named the Hotelling transform (See for example Joliffe [Joliffe
2002] or Haykin [Haykin 1999]) is a general method to compress
input data to smaller representations by computing the major com-
ponents of the input-data. This technique is common in statistics as
well as in image processing.

The PCA method is used to decompose images into a number of
basis components. The pixels in an image are rearranged into a
vector x̄ = [x1,x2, . . . ,xN] of length N. We assume that we have
M such vectors. The transpose is denoted ¯xT . The mean vector
mx is defined asmx = E(x̄) and the covariance matrix isCxx =
E((x̄−mx) · (x̄−mx)

T), whereE(.) means the expectation value
of a stochastic variable. The eigenvalue problem is then defined
CxxV = VD, whereV is a matrix with the eigenvectors as columns
andD a diagonal matrix with the eigenvalues along the main diag-
onal.

For the resolution needed the size of the covariance matrix becomes
impractical. The size of the matrix can be decreased by using di-
mensionality reduction [Haykin 1999]. LetY be the rectangular
data matrix of sizeMxN. The matrix has the same height as the
number of vectors (M). The eigenvalue problem,CxxV = VD, can
be written as

Cxx =
1

N2 YTY ⇒ 1
N2 YTYV = VD (1)

The size of the covariance matrix is reduced from a size ofNxN
elements to a size ofMxM elements by multiplying withY from
the left and changing variableW = YV.

1
N2 YYTYV = YVD ⇒ 1

N2 YYTW = WD. (2)

We have now computed the eigenvectors inW, which is a sub-space
of V. To transform them to the original systemW is multiplied with
YT.

W = YV ⇒ YTW = YTYV = CxxV ⇒ YTW = VD (3)

VD are the eigenvectors multiplied with the eigenvalues. This
scaling-factor does not alter the result since the principal compo-
nents are normalized before usage

φ(k) =
V(:,k)

√

V(:,k) ·V(:,k)T
. (4)

An image is transformed to a coefficient vector by

κ (k) = (x ·φ(k)
T
),k = 1, . . . ,N (5)

Figure 2: A number of original images for varying lighting condi-
tons are exemplified in this figure.

This transformation is denotedx
PCA→ κ . The inverse transform

κ PCA−1→ x is defined by

x =
N

∑
k=1

κ (k) ·φ(k) (6)

In practical applications vectorκ is often truncated and only theP
most important coefficients are computed

κc(k),k = 1, . . . ,P (7)

In this case the inverse transform will be inexact

κc
PCA−1→ x̃. (8)

2.2 Precomputing and synthesizing

The method can be divided into the precomputing and synthesizing
phases:

Precomputing Reflection maps,Rxy, one for each pixel, are com-
puted from the input images. These reflection maps have size
QxQx3 elements. The PCA method is used to compress the
reflection maps to small coefficient vectors, one vector for
each pixel.

Synthesizing The scene is relighted for a specific lighting condi-
tion. This is performed by relighting each individual pixel by
using the corresponding reflection function and the lightmap.
By using the PCA approach it is possible to perform the com-
putation much more efficiently.

2.3 Precomputing

The initial configuration phase can be divided into a number of
steps:

Collect data set This method uses a database of images contain-
ing images of one identical scene lighted by a point source

52

with varying direction. The database is used to construct a
method to relight the scene with arbitrary light sources. The
data set can contain either captured or ray-traced images, but
the best results are achieved for scenes with a limited number
of surface textures. Since this work has concerned synthetic
images, the colour channels are assumed to behave linearly.

Discretize the lighting directions Only the upper semi-sphere is
considered in this work. It is discretized in a limited number
of directions. A circular bitmap image with varying diameter
is used as a model of the reflection map. Each pixel is associ-
ated with a corresponding direction. By using this technique
interpolation artifacts are avoided. The directions are stored
separately to be used in the generating process.

Compute reflection maps Each generated image is associated
with a specific direction. For each pixel a separate reflection
map is computed. This is performed by picking one pixel
from each generated image and locating them in the asso-
ciated positions. The procedure is exemplified in Figure 3,
in which the pixel-information of the images is transformed
to the reflection functions. The reflection matrices are stored
in a 5D data structure (imagex, imagey, r mapx, r mapy,
{rgb}).

Rotation of reflection maps All reflection maps are rotated along
their major axes. The colour planes are not rotated individ-
ually, but instead the intensity of each pixel is computed by
I = R + G + B. The major axis of the corresponding binary
image is computed by thresholding the intensity levels. Pixels
with I(x,y) > threshold are included in the calculation.

The major axisθ is computed by the following method:

• fxx = 0, fyy = 0 and fxy = 0.

1. ∆x = x−mx, wherex is the currentx coordinate
andmx the meanx position.

2. ∆y = y−my, my is the meany position andy the
currenty coordinate.

3. fxx = fxx +∆x ·∆x

4. fyy = fyy +∆y ·∆y

5. fxy = fxy +∆x ·∆y

Then perform the following calculations:

• p = −(fyy + fxx)

• q = fxx · fyy − fxy · fxy

• f = − p
2 +
√

p·p
4 −q

• The mean axis will beθ = q
f

All reflection maps are rotated to have their major axes in the
same direction. The rotation angles are stored in a separate
matrix, which is used in the synthesizing phase.

Compute the eigencomponents In the next step the PCA method
is used to compute a number of the most important eigencom-
ponents,φ1, . . . ,φP from the reflection maps. A large number
of reflection maps is needed to compute sharp components.

Compute coefficients The reflection maps are projected one by
one onto the most important eigencomponents and the co-
efficients are stored. The result will be a coefficient ma-
trix with one coefficient vector for each pixel of the image,
κ (1, . . . ,P;1, . . . ,M), whereP is the number of coefficients
andM is the number of pixels.

Transform the lightmap to this specific representation The
original lightmap defining the lighting conditions is rescaled
to Lxy of sizeQxQ, whereQ is the size of the reflection map.

Precompute the rotated eigencomponents: φ(1, . . . ,N,1 : σ : 180)
To make the computations more efficient, rotated versions of
the eigencomponents are computed before the calculations.
The angle is discretized in steps of sizeσ . In the calculations
the eigencomponent closest to the angle is used. If the
reflection functions are of a small size the error introduced
will be limited.

Image representation The result will be a coefficient matrix with
P coefficients for each pixel and a data structure with the ro-
tated eigencomponents. In the beginning of the synthesizing
phase the eigen-numbers are computed by using the appropri-
ate lightmap.

2.4 Synthesizing

In the synthesizing phase the data volume in Figure 5 is used. One
column consisting of a coefficient vector and a rotation vector is
applied to construct one reflection function.

Collect lighting conditions Acquire an HDR-fisheye representa-
tion of the lighting conditions.

Rescaling Recompute the light representation to this specific dis-
cretization. The result will be a QxQx3 matrix,Lxy. In the
synthesizing phase the data volume in Figure 4 is used. One
column consisting of a coefficient vector and a rotation vector
is applied to construct one reflection function.

Algorithm In this section the principle behind the algorithm is pre-
sented. It is described in more detail in the upper row of Fig-
ure 4. One pixel of the resulting image is generated at a time:

1. Generate a reflection functionRxy from the correspond-
ing coefficient vectorκ for pixel ψ.

Rxy =
P

∑
k=1

κ (k) ·φ(k), (9)

P is the number of coefficients andφ(k) the eigenvec-
tors.

2. Rotate the reflection map angleθ.

Rθ
xy = rot(Rxy,θ) (10)

3. For each colour plane multiply the light representation
with the reflection map element by element and sum the
elements to three scalar values.

C(ψ) =
M

∑
x=1

M

∑
y=1

(Rθ
xy(:, :,ψ) ·Lxy(:, :,ψ)). (11)

Efficient algorithm The algorithm presented in the previous sec-
tion can be made more efficient by pre-computing the eigen-
numbers. This approach is described in more detail in the
second row of Figure 4. One pixel is generated at a time.

To simplify the calculations the eigen-numbers,χ(k,θ), are
introduced. These are precomputed summations of the multi-

53

E1 G1

C1 D1

F1

H1 I1 J1

K1

B1

A1 A2

B2 C2 D2

E2 F2 G2

H2 I2 J2

K2

A3

B3 C3 D3

E3 F3 G3

H3 I3 J3

K3

A4

B4 C4 D4

E4 F4 G4

H4 I4 J4

K4

A5

B5 C5 D5

E5 F5 G5

H5 I5 J5

K5

A6

B6 C6 D6

E6 F6 G6

H6 I6 J6

K6

Reflection functions

C

A

DB

E

H

F G

I J

K

IA

IB IC

IE IF IG

ID

IH II IJ

IK

p=sum .*

I1 I3

I4 I5 I6

D1 D2 D3

D4 D5 D6

F1 F2 F3

F4 F5 F6

G1 G2

G4 G5 G6

G3

H1 H2 H3

H4 H5 H6

J1 J2 J3

J4 J5 J6

K1 K2 K3

K4 K5 K6

A1 A2 A3

A4 A5 A6

B1 B2 B3

B4 B5 B6

E1 E2 E3

E4 E5 E6

C1 C2 C3

C4 C5 C6

Lightsource directions

I2

Images

Transformation from

images to reflection

functions.

Figure 3: The scene is illuminated with a point light source located
in the direction defined by the lightmap. In this figure 11 images
with 6 pixels each are captured at varying locations of the lightmap.
The pixel-information is then transformed to the reflection func-
tions containing 11 pixels each, which characterize the reflection
properties for a specific pixel. In the synthesizing phase the reflec-
tion function for a specific pixel is multiplied element by element
with the lightmap. The resulting pixel value is equal to the sum of
all elements.

Coefficents (320x240xP)

Angles (320x240x1)

Algorithm

Efficient
Algorithm

Coefficient
Vector

Vector

Reflection map
Rotated

Reflection map

0

0

Reflection map
Rotated

.*)

Lightmap

Pixel_value=sum(

Coefficient

Pixel_value=k1*x(1,0)+k2*x(2,0)+...

Figure 4: This figure explains the method. The data is represented
in a volume, in which each column is used to construct one reflec-
tion function. In the first row the algorithm is explained and the
second row is a description of the optimized algorithm.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 Eigenvectors

Figure 5: These are the 25 most important eigencomponents for the
examined data set.

plications between the rotated eigen-components and the re-
flection functions

χ(k,θ) =
M

∑
x=1

M

∑
y=1

φ(k,θ) ·Rxy,k = 1 : 1 :n,θ = 0 : σ : 180.

(12)

• ψ is the pixel number.

Rxy(ψ) =
N

∑
k=1

κ (ψ,k) ·φ(k,θ) ⇒ (13)

C(ψ) = (Rxy ·Lxy) =

([κ (1,ψ) ·φ(1,θ)+ . . .+κ (P,ψ) ·φ(P,θ)] ·Lxy) =
(14)

κ (1,ψ) · [φ(1,θ)·Rxy]+ . . .+κ (P,ψ) · [φ(P,θ)·Lxy] =
(15)

κ (1,ψ) · χ(1,θ)+ . . .+κ (P,ψ) · χ(P,θ)

• To generate one pixel value (P-1) additions and P mul-
tiplications are needed. The resulting equation will for
each pixel and colour plane be:

C(ψ) =
P

∑
k=1

κ (k,ψ) · χ(k,θ) (16)

3 Implementation and results

There are two main components to the system, the pre-computing
phase, in which the data matrices are computed and the synthesiz-
ing, where images are generated using novel lighting conditions.

The first phase was implemented in Matlab and the second in C++.
An image data set containing 374 images was generated by us-
ing MegaPOV (A version of POVray [Povray] allowing render-
ing of HDR images) and this data set was used to evaluate the

54

[x,y]=[45,62] [x,y]=[45,124] [x,y]=[45,186] [x,y]=[45,248] [x,y]=[45,310]

[x,y]=[90,62] [x,y]=[90,124] [x,y]=[90,186] [x,y]=[90,248] [x,y]=[90,310]

[x,y]=[135,62] [x,y]=[135,124] [x,y]=[135,186] [x,y]=[135,248] [x,y]=[135,310]

[x,y]=[180,62] [x,y]=[180,124] [x,y]=[180,186] [x,y]=[180,248] [x,y]=[180,310]

[x,y]=[225,62] [x,y]=[225,124] [x,y]=[225,186] [x,y]=[225,248] [x,y]=[225,310]

Figure 6: These images are examples of original reflection maps for
the data set.

method. The data set contained images of a complicated scene,
with a large amount of shadows. In this initial setup small images
of size 320x240 pixels were used. Examples of input images can
be seen in Figure 2. This dataset was rearranged to reflection func-
tions (See Figure 6) of size 21x21 pixels, which were rotated along
their major axes. The 25 most important eigencomponents (See
Figure 5) were computed from the rotated reflection functions. It
was chosen to compute the 25 most important eigencomponents
from the rotated reflection functions, since the use of additional
components resulted in little difference in the resulting images. All
rotated reflection functions were compressed using the eigencom-
ponents and the coefficients were stored in a data volume together
with the rotation angle. To speed up the computations rotated ver-
sions of the eigencomponents were precomputed for each of the 360
degrees. The synthesis of an image was divided into two phases.
In the first phase lighting coefficients were computed by multiply-
ing the lightmap with the eigencomponents. (See the algorithm in
section 2.4). In the second phase the pixel values were computed
by using the lighting coefficients and the eigen coefficients. These
computations were repeated for every frame.

Resulting images were computed for three well-known HDR fish-
eye images (See [Debevec and Malik 1997] for more information).
These HDR fisheye images were transformed to the same represen-
tation as the reflection functions (The upper semi-sphere was used
and this was rescaled to 21x21 pixels). For every lightprobe image
the corresponding scene was generated using 10 and 25 coefficients
and by using the corresponding uncompressed reflection functions
(Images generated using 25 coefficients can be seen in Figure 1
and images generated using 10 coefficients and by using the corre-
sponding original lightprobe images can be seen in Figure 7).

The frame-rate for varying numbers of coefficients can be seen in
Table 1. As a measure of the image quality the peak signal-to-noise
ratio was selected

PSNR = 20∗ log10(
MAXI√

MSE
), (17)

where

MSE =
1

m ·n
m−1

∑
i=0

n−1

∑
j=0

3

∑
k=1

||imorig(i, j,k)− imκ (i, j,k)||2 (18)

In these equationsm ·n is the size of the image. The reference image
generated using the original reflection functions isimorig and an

κ fps PSNRl p1 PSNRl p2 PSNRl p3
1 11.25 19.1 20.7 20.0
2 10 18.9 21.6 18.5
3 7.8 18.8 21.7 18.3
5 5.45 19.0 25.5 18.8
10 3.46 19.0 25.4 18.7
25 1.6 19.0 25.6 18.6

Table 1: A comparison of the resulting speed and image quality for
various selections of coefficient numbers. The first column is the
number of coefficients used, the second is the number of frames
per second for the corresponding number of coefficients and the
three following columns include the PSNR value for each of the
lightprobes.

image generated usingκ coefficients isimκ . MAXI is the maximum
intensity ofimorig.

The errors for different choices ofκ were computed for the selec-
tions of lightprobe images depicted in the third column of Figure 7.
In Table 1 it can be seen that the PSNR increases for increasing
numbers of coefficients for the second lightprobe, but for the others
the PSNR is approximately constant. The difference in PSNR for
10 and 25 coefficients is very small. However, when examining the
resulting images (Figure 1 and 7) it can be seen that the details of
some of the spheres become better, when using additional compo-
nents even if the PSNR value does not improve.

4 Discussion

In this paper we have presented a new approach for real-time re-
lighting of a static scene. This method is general and can be used to
relight a scene with arbitrary lightprobe images. It could for exam-
ple be used to visualize a scene at arbitrary weather conditions by
using synthetic sky images (See for example [Olsson et al. 2004]
or [Olsson 2005]). The approach could be advantageous for ex-
ample in scenes with a limited number of materials. The results
show that it is feasible to represent BRDFs using principal compo-
nents. For the data set used in this work 25 coefficients are suffi-
cient. This can be seen by comparing the images in Figures 1 and 7.
The images in Figure 1 are very similar to the images in the mid-
dle column in Figure 7, which were computed using uncompressed
reflection functions. The major limitation is that semi-shadows are
not always rendered correctly. The relatively small reflection func-
tions of 21x21 pixels limit the possible shadows, but the limitation
can be removed by using larger matrices to represent the reflection
functions. A limitation of the method is that it demands detailed
reflection functions to compute sharp components. The reflection
functions are rotated along their major axes in order to to take the
correlation between reflection functions into account.

This is a simple approach and can not directly be compared with
more general, but also more complicated approaches as for exam-
ple the method presented in [Kristensen et al. 2005]. The goal of
this method is to relight a still image in novel lighting conditions,
while the goal in their paper is to relight an arbitrary scene with
unstructured light clouds using precomputed radiance transfer. The
major advantage of this method is that each pixel of the resulting
image can be computed with a fixed number of 25 multiplications
and 24 additions, while the more advanced algorithms need a much
larger number of operations in the generation process. On the other
hand, the largest drawback is the precomputing step and the rela-
tively large data matrices, which must be stored to be able to gen-

55

building−probe.hdr

rnl
p
robe.hdr

stpeters
p
robe.hdr

Figure 7: Each row of images corresponds to a specific lighting
condition defined by an associated light probe image. The first im-
age was generated using 10 coefficients, the second was generated
using the original reflection functions and in the third image the
corresponding lightprobe image can be seen.

erate images. The memory usage is

xsize ∗ ysize ∗3∗ (Nbrcoe f f icients +1), (19)

which means that for an image of size 1024 x 1024 pixels, as much
as 76 megabytes is needed to store the information.

The memory demand increases for larger choices of reflection func-
tions, but the number of coefficients do not increase at the same rate,
which means that after the precomputing step it should be possible
to use much larger reflection functions and thus increase the image
quality, without severely increasing the memory usage of the data
matrices.

This method should be most appropriate for small images to make it
possible to easily generate an image for various lighting conditions,
for example the appearance of a car during the day.

5 Future Work

As a major limitation of this implementation is the computing time,
our major efforts will be directed in decreasing the execution time.
This can be performed by implementing parts of the algorithm in
hardware. See for example [Owens et al.]. Another future work is
to generalize the algorithm to 3D, by generating multiple views.

References

BLINN , J. F.,AND NEWELL, M. E. 1976. Texture and reflection
in computer generated images. InCommunications of the ACM,
vol. 19, 542–547.

DEBEVEC, P. E.,AND MALIK , J. 1997. Recovering high dynamic
range radiance maps from photographs. InProceedings of SIG-
GRAPH, 369–378.

EPSTEIN, R., HALLINAN , P. W., AND YUILLE , A. L. 1995.
5±2 eigenimages suffice: An empirical investigation of low-
dimensional lighting models. InIEEE Workshop on physics-
based vision, 108–116.

GREENE, N. 1986. Environment mapping and other publications
of world projections. InIEEE Computer Graphics and Applica-
tions, vol. 6.

HAYKIN , S. 1999.Neural Networks. Prentice Hall, New Jersey.

HO, P.-M., WONG, T.-T., AND LEUNG, C.-S. 2003. Compress-
ing the illumination-adjustable images with principal component
analysis. InProceedings of the 2003 symposium on Interactive
3D graphics, 59–64.

JOLIFFE, I. T. 2002. Principal Component Analysis. Springer-
Verlag, New York.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN,
H. W. 2005. Precomputed radiance transfer for real-time light-
ing design. InProceedings of ACM SIGGRAPH. 1208–1215.

LEHTINEN, J.,AND KAUTZ, J. 2003. Matrix radiance transfer. In
Proceedings of the 2003 symposium on interactive 3D graphics
table of contents, 59–64.

LIU, X., SLOAN, P.-P., SHUM, H.-Y., AND SNYDER, J. 2004.
All-frequency precomputed radiance transfer for glossy objects.
In Eurographics Symposium on Rendering.

MATUSIK, W., PFISTER, H., ZIEGLER, R., NGAN, A., AND
MCMILLAN , L. 2002. Acquisition and rendering of transparent
refractive objects. InProceedings of Eurographics Workshop on
Rendering, 267–278.

NIMEROFF, J. S., SIMONCELLI , E., AND DORSEY, J. 1994. Ef-
ficient re-rendering of naturally illuminated environments. In
Eurographics workshop on rendering.

NISHINO, K., SATO, Y., AND IKEUCHI, K. 1999. Eigen-texture
method: Appearance compression based on 3D model. InPro-
ceedings of IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, 618–624.

OLSSON, B., YNNERMAN, A., AND LENZ, R. 2004. Visualiz-
ing weather with synthetic high dynamic range images. InPro-
ceedings of SPIE - IS & T Electronic Imaging. Visualization and
Data Analysis, R. F. Erbacher, J. C. Roberts, M. T. Gröhn, and
K. Börner, Eds.

OLSSON, B. 2005. Image based visualization methods for mete-
orological data. Licentiate thesis, Department of Science and
Technology, Link̈oping University. ISBN 9185297003.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRUGER, J., LEFOHN, A. E., AND PURCELL, T. J. A survey
of general-purpose computation on graphics hardware. InEuro-
graphics 2005, State of the Art Reports, 21–51.

POVRAY. Persistence of vision raytracer (version 3.6).Computer
software, Retrieved from http://www.povray.org/download/ .

SHIM , K. H., AND CHEN, T. 2005. A statistical framework
for image-based relighting. InIEEE Conference on Acoustics,
Speech, and Signal Processing (ICASSP).

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency light environments. InProceedings of the 29th annual
conference on computer graphics and interactive techniques.
527–536.

SLOAN, P.-P., HALL , J., HART, J.,AND SNYDER, J. 2003. Clus-
tered principal components for precomputed radiance transfer.
In ACM SIGGRAPH. 382–391.

WOOD, D. N., AZUMA , D. I., ALDINGER, K., CURLESS, B.,
DUCHAMP, T., SALSIN, D. H., AND STUETZLE, W. 2000.
Surface light fields for 3d photography. InProceedings of the
27th annual conference on computer graphics and interactive
techniques. 287–296.

56

	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability
	4.1. Operating systems and cameras
	4.2 Multilingual configuration

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB
	5.2. Database format
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook
	References
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf

