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Abstract 
This paper addresses new techniques and challenges for user 
interface design for small-screen devices made possible by the 
recent availability of 3D graphics hardware. A survey of current 
research on the topic for desktop systems is presented and 
applications of these techniques for small screen devices are 
proposed. Also general differences in user interface design 
between large and small screen devices are highlighted. 
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1. Introduction 
Supporting graphics hardware in the user interface is becoming 
increasingly more popular for desktop systems, latest versions of 
Mac OS X and Microsoft Windows will employ 3D hardware for 
a range of new user interface techniques and effects. Currently we 
are seeing an explosion in graphics performance for both 2D and 
3D on handheld devices made possible by the introduction of 
graphics hardware. This explosion is mainly driven by gaming but 
may be exploited for enabling a better user experience. Designing 
user interfaces for small screen devices is a tedious task mainly 
focused at organizing screen content such that large data sets can 
be presented in an intuitive way and to provide an interaction 
hierarchy that is easy to understand and use. The introduction of 
3D graphics hardware makes a new range of techniques available 
and feasible on mobile devices that may help with providing more 
appealing, enjoyable and intuitive user interfaces. This paper aims 
to present previously described technical solutions for 
accelerating the user interface with graphics hardware on desktop 
systems and describe what challenges that must be overcome in 
order to realize these techniques on mobile devices with current 
and future graphics hardware. We also intend to highlight some 

interesting user interface design techniques found in the desktop 
space that may be applicable to mobile devices with graphics 
hardware. 
 
In section 2 a survey of how 3D acceleration is currently being 
used in user interfaces as well as an overview on current research 
on the topic for desktop systems is presented. Section 3 contains a 
summary of technical limitations and challenges encountered 
when attempting to implement similar systems on mobile 
platforms. Finally in section 4 we outline aspects of user interface 
design for small screen devices related to the techniques described 
in section 2 as well as suggestions for new research. 
 

2. Survey of 3D acceleration in desktop UIs 
The dominant user interface model for desktop systems is window 
management. In [Myers 1988], Myers defines a window manager 
as “a software package that helps the user monitor and control 
different contexts by separating them physically onto different 
parts of one or more display screens”. He adds: “Before window 
managers, people had to remember their various activities and 
how to switch back and forth”. Generally speaking the window 
manager controls the physical display area and manages the 
different user interface components and applications that aspire on 
drawing graphics. Tasks that fall on the window manager are 
typically overdraw management, moving and resizing windows 
and controls as well as managing pointer devices such as a mouse. 
Some current systems [Graffagnino 2002; McCartney 2002] target 
this piece of software for 3D acceleration. 
Traditionally user interface graphics systems draw directly to the 
display frame buffer via the window manager. The window 
manager controls which areas of the display are owned by a given 
application. If a certain area of the display need to be updated the 
window manager orders the application to draw its content 
directly to the display in the given area. Exploiting graphics 

Figure 1. A common approach to accelerating a traditional window manager is the 
compositing approach, illustrated above. 

Application Texture 

Compositor 
Application Texture 

Application 

57



acceleration without breaking compatibility with existing 
applications is generally achieved by introducing a compositor 
that manages the display instead of the individual application via 
the window manager, see figure 1. This is a common approach 
that is available in current generation Apple OS [Graffagnino 
2002] and will be available in next generation of Microsoft OS 
[McCartney 2002]. In this approach the application draws its user 
interface to a texture accessible by the graphics hardware using 
existing methods. The different textures containing the application 
UIs are composited using the graphics hardware. Furthermore the 
compositor may use the graphics hardware to apply a wide range 
of effects during compositing, such as per-pixel transparency, pre-
window fade and transform control, independent of the original 
application user interface code. In conjunction applications 
specifically written for the compositing pipeline may use the 
graphics hardware directly to further enhance the user interface. 
The compositor generally access the graphics hardware via an 
open API such as OpenGL [Graffagnino 2002; Kawahara and 
Byrne 2005] or a proprietary such as DirectX [McCartney 2002]. 
 
With a system as described above, a range of different new user 
interface concepts become available. A popular use case is 
organising windows on the desktop. In [Kawahara and Byrne 
2005; Robertson et al. 2000; Rousel 2003] windows may be 
stacked at the side of the screen by rotating them in 3D, see figure 
2. This gives the user overview of the content of the windows 
while freeing up space for more applications. Given a high 
performance multi-tasking system the content of the windows 
may be updated continuously such that the user can monitor any 
activity while enjoying the space for other applications. Other 
solutions to this problem include the exposé feature of Mac OS X 
Tiger. Instead of stacking the windows using perspective 
transforms the exposé feature tiles all of the open windows - 
scales them down and arranges them, so that all are completely 
visible. This allows the user to get an overview of all open 
windows. It also allows the user to select one of the miniature 
windows which will bring that window to front, this feature 
makes exposé useful both to get an overview of current running 
applications as well as application switching. Both features would 
not be possible without seriously draining system resources if not 
graphics hardware were employed. 
 
Some researchers propose designs based on a compositor WM 
approach that are more decoupled from the traditional desktop 
metaphor UIs. G. Robertson et al. have presented a solution called 
The Task Gallery [Robertson et al. 2000] where user tasks (i.e. 
applications windows) appear as artwork hung on the walls of a 
virtual art gallery. The Task Gallery aim to exploit the spatial 
cognition and memory inherit in humans and is based on the 
theory that if presented with a virtual environment that is more 
like the 3D environment that we live in new and old users will 
find interaction more intuitive and enjoyable. According to the 
authors user studies have shown that the Task Gallery helps with 
task management in the way that users easier remember where 
they “put” their windows in the 3D metaphor. Although this 
concept is far away from the traditional desktop metaphor many 
designs that have found their way into current commercial 
systems such as stacking windows with perspective transforms are 
presented in this paper. 
 
Interesting research projects are Project Looking Glass [Kawahara 
and Byrne 2005] and Ametista [Rousel 2003] two open source 
window mangers that are based on the 3D interaction metaphor. 
These projects aim to provide a platform for research on 3D user 
interfaces in a real working window environment. Perhaps the 
most interesting project is [Kawahara and Byrne 2005] where 

Figure 2. Project Looking Glass among others uses 3D 
perspective transformations to stack windows at the side 

of the screen to free up space for other applications. 
(Image courtesy of Project Looking Glass.) 

Figure 3. Project Looking Glass includes a media player 
with a free form 3D user interface. Using 3D many new 

and interesting UI techniques become available. 
(Image courtesy of Project Looking Glass.) 

Figure 4. Project Looking Glass also includes a photo 
browser with a free form 3D user interface. 
(Image courtesy of Project Looking Glass.) 
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Java is used as the platform for building applications that expose 
3D user interfaces. The window manager has a number of built in 
interaction paradigms such as stacking windows, task bars and 
how navigation is performed in the 3D space that the applications 
occupy. Besides from that novel interaction methods may be 
introduced by the individual projects. Some interesting 
applications have been developed as part of the project, most 
notably a media player and a photo browser. These applications 
have free form 3D user interface floating in the application space 
as oppose to traditional applications that are contained within their 
windows, see Figure 3 and Figure 4. 
 
Another popular field of user interface research that doesn’t 
require hardware acceleration but that definitely benefits from it is 
zoomable user interfaces or ZUI. Both OpenGL [Blythe and 
Munshi 2004] and the emerging standard OpenVG [Rice 2005] 
are based on hierarchical transformations which combined with 
more graphics performance via hardware acceleration makes a 
great platform for ZUI. The goals of ZUI is to better visualize 
large data sets on small display areas. The capability and 
performance to seamlessly change level of zoom enables a range 
of interesting user interface techniques. Photomesa [Graffagnino 
2002] is an example of a browser that uses novel layout 
mechanisms (quantum treemaps and bubble maps) that allows 
users to see as many photos as possible and maintain context. It 
allows users to group photographs by date, filename and directory 
as well as employ zooming techniques to display the photographs. 
The basic concept is fairly simple, photos are clustered with 
regard to a number of parameters such as data, texture, color etc 
and ZUI is used to let the user seamlessly navigate the collection 
of images. The user directly control the level of zoom and the 
software attempts to always present the level of information that is 
suitable for the given level of zoom. It has been shown [Cockburn 
and Savage 2003] that techniques where the user directly controls 
the degree of zoom does not aid in searching for images, generally 
when a new degree of freedom for navigation is introduced the 
learning curve for the UI is steeper. An interesting extension of 
ZUI to remedy this problem is speed dependent automatic zoom 
(SDAZ). This concept is based on the fairly simple assumption 
that when the user is actively searching for an image a thumbnail 
overview is more suitable and when the user settles down on a 
given image a more zoomed in view is wanted. A photo browser 
based on the SDAZ concept is described in [Igarashi and Hinckley 
2000; Cockburn and Savage 2003], and according to the authors 
user studies show that this technique aid some users in searching 
for photos. 
 

3. Technical limitations and challenges 
The introduction of graphics hardware for mobile devices presents 
great opportunities for building more intuitive and overall better 
user interfaces. However, when attempting to facilitate the 
research presented in section 2 for mobile devices a number of 
challenges arise, some of these challenges and limitations are 
covered in this section.  
 
Lately, good standards for accessing the hardware such as 
OpenGL|ES and OpenVG have emerged. OpenVG is a much 
newer standard, and there are no hardware implementations yet. 
This section will focus on limitations of OpenGL|ES 1.x as this 
has been tried in the industry. Most OpenGL|ES graphics 
accelerators for the mobile market today offer quite good raw 
rendering performance and give major speed improvements on 
pure blitting and alpha blending. OpenGL|ES provides a 
convenient and standardized way of performing controlled 
composition of bitmaps and is capable of supporting at least half 

of the Porter-Duff blending operations [Porter and Duff 1984]. 
Details on blending limitation follow below. Current graphics 
hardware is capable of performing full screen bitmap composition 
at rather impressive frame rates as would be expected since the 
most important target software is games. Using the hardware 
graphics accelerator in a window system would mean enabling 
many of the features of a compositing based window system as 
described in section 2 without putting much load on the CPU. 
When using OpenGL|ES for this purpose, window content needs 
to be accessed as texture data. Most of today’s OpenGL|ES 
implementations require textures to be uploaded to dedicated 
memory which presents a number of technical challenges that 
must be addressed: 
 
Small texture memory 
The typical OpenGL|ES accelerator on the market today targeting 
QVGA displays has about 1MB of VRAM (video ram) to be 
shared by frame buffer and textures. This clearly indicates that the 
window system must contain some sort of VRAM virtualization 
approach in order to fit all windows in “virtual VRAM”. This is a 
problem that is common with desktop solutions [Graffagnino 
2002; McCartney 2002]. By treating the VRAM as an on chip 
“L1” cache, it is possible to page in textures from a system RAM 
“L2” cache. Another issue is if the device has enough RAM to 
hold the “L2” cache. If not, the window system must resort to 
issuing a repaint command to the client in order to get the bitmap 
data. If this happens for every frame, we will not gain any 
performance boost from using the hardware graphics accelerator. 
More likely, the added overhead will in fact make the UI slower 
than if not using any hardware acceleration. 
 
Slow texture transfer 
In order to save power, all bus widths and -speeds are generally 
kept thin and slow on mobile devices. Also, graphics hardware 
manufacturers do not typically prioritize optimizations of the 
particular data path for transferring texture data since most games 
and benchmarks focus on fill rate and polygon count. This 
definitely has an impact on the VRAM virtualization mentioned 
above since it relies on being able to quickly swap in textures 
from RAM. The general solution to this problem is texture 
compression which lowers the impact on narrow busses but we 
will see below that this is not always feasible for user interfaces. 
The best workaround for the slow texture transfer is to reduce the 
number of client side updates and instead rely on effects and 
animations that are possible to perform on the graphics 
accelerator. Examples of this are scaling, moving, and opacity 
changes. 
 
UI graphics is not suitable for texture compression 
User interface graphics such as text and fine lines are very 
sensitive to compression artifacts. This effectively rules out 
texture compression for these tasks. Also, since applications and 
window content is rendered on the device in real time, texture 
compression times would pose a problem since it further delays 
the uploading of the texture data. Not being able to use texture 
compression further increases the texture memory problems (size 
and speed) mentioned above. 
 
Texture size 
OpenGL|ES 1.x supports neither texture sizes larger than 256x256 
nor sizes other than powers of two. This means that texture RAM 
can not be utilized to 100% efficiency since windows rarely have 
sizes that are powers of two. It is possible to use tiling to work 
around this problem, in which case source bitmaps are broken 
down into small tiles that can be allocated from larger textures. 
The main problem with this is the vastly increased complexity of 
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the drawing operations while maintaining good performace. There 
is also a significant increase in the geometry complexity which 
may also cause performance degradations. 
 
Blending limitations on OpenGL|ES 1.x 
As mentioned above, only half of the 12 Porter-Duff blending 
modes are supported by OpenGL|ES 1.x. The reason for this is 
that in OpenGL|ES1.x there is no support for destination alpha. 
The ones that remain are “Clear”, “Src”, “SrcOver”, “DstIn”, 
“DstOut” and “Dst”. However, there is support for additional 
blending modes, for instance a version of “SrcOver” without the 
requirement of RGB being premultiplied with alpha 
 
OpenGL|ES and other concurrent hardware 
On a mobile device there is likely to be special hardware for 
decoding video and, if applicable, displaying a camera viewfinder. 
This can conflict with OpenGL|ES operation. Normally 
OpenGL|ES would not be running when using these special 
hardware features but with a hardware accelerated window 
system, OpenGL|ES is running all the time. Note that this differs 
very much between different OpenGL|ES implementations and 
integration decisions. For instance, an OpenGL|ES accelerator 
may include an interface for a camera and require that viewfinder- 
and snapshot data is stored in the chip’s embedded memory. This 
may end up consuming most of the accelerator’s RAM, not 
leaving any room for the window “L1” cache mentioned above, 
thus forcing the window system to revert to non-accelerated 
mode. Another example could be a graphics accelerator that 
actually does not at all support running the OpenGL|ES core when 
the camera viewfinder is active even if the RAM issue was solved. 
 

4. UI design challenges and possibilities 
In general when working with small-screen devices only one 
window/application may be simultaneously visible which has 
brought us back to the point where it is difficult to remember and 
organize activities. Generally for small-screen devices as opposed 
to desktop systems the concept window is analogous with screen, 
i.e. the window occupies the entire screen. User interaction is 
layed out in a hierarchical fashion, selecting an option on one 
screen generally presents another screen with more options, 
pressing the back key returns to the first screen. In these systems 
user interface designers often struggle with keeping the context 
such that the user is always aware of where a certain choice will 
take him/her and where the back key will lead at any given time, 
which as the complexity of the system grows becomes an 
enormous task. 
 
Another major challenge and difference when designing user 
interfaces for mobile devices versus desktop systems is that on a 
mobile device you are most likely targeting first time users. On a 
desktop system you are designing a tool and optimizing it for 
maximum efficiency, on a mobile device on the other hand you 
are designing a system that has to be intuitive enough to be usable 
by first time users. Generally mobile devices do not come with a 
thick user manual and anyway you are expected to be able to use 
the device without reading any more instructions than what is 
presented on the display in the user interface. 
 
Mobile 3D graphics presents many interesting opportunities for 
improving the problem with context shifts and its implications on 
usability as outlined above. Different kinds of transitions are very 
effective in helping the user to remember which context is 
currently active.  
With the performance of graphics hardware and 3D a wide range 
of new transitions are available and a lot of research is required to 

evaluate these transitions and how they may aid the user. One 
example of new transitions that may help the user is presented in 
figure 5, by connecting context menus associated with an object in 
a visually appealing way the human sense for spatial context may 
make these transitions more intuitive. 
 
Both graphics and general processing performance is increasing at 
a rapid rate however display sizes are still limited by physical 
constraints such as the fact that the device must be able to fit in 
the pocket or in the palm of your hand. The introduction of high 
performance 3D graphics may be exploited to virtually extend the 
size of the screen by introducing new techniques for better 
organizing screen content. Section 2 discussed some concepts on 
desktop systems that attempt to solve this problem. This section 
will further discuss these topics in the context of mobile devices. 
 
Stacking is a very common user interface technique used to 
display a set of components, icons, windows or pages in a 
compact manner. The components appear to be stacked or piled 
on top of each other with only a portion or tab visible. This tab is 
used to switch between the current active component and the 
component indicated by the tab, this is commonly referred to as 
tabbed windows introduced in [Beaudouin-Lafon 2000] and 
extended in [Beaudouin-Lafon 2001]. Stacking is especially 
attractive for small screen devices since the technique allows for 
quick navigation among pages on a limited space, where 
otherwise each page had to be its own window. However, a 
common problem of packing information tightly is that it will 
most likely be less intuitive. In such cases, visual perception will 
become critical for the user to understand what is displayed. 
A user study [Kjelldahl 2003] has shown that the visual cues 
perspective and shadow have a substantial positive effect on 
perceiving position. Figure 6 shows two examples of stacking 
images (for instance in a photo viewer application): One without 
the perspective and shadow and one where the two visual cues 
have been used to help the user perceive the scene. 
With the use of modern graphics hardware and the compositor 
approach, effects such as perspective transforms (texture 
mapping) and shadow techniques may be used on arbitrary user 
interface components to achieve the right visual cues and thus 
reduce the risk of the user misinterpreting the intended use.  
As described in section 2 recent products and research on desktop 
systems that employ graphics hardware in the user interface 

Figure 5. By connecting context menus associated 
with an object in a visually appealing way the 

human sense for spatial context may make these 
transitions more intuitive. 
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attempt to achieve better organization of screen content by 
stacking windows at the side of the screen with perspective 
transformations thus exploiting these visual cues. Although 
stacking windows by the side of the display would be feasible on 
a mobile device, the small screen size would most likely render 
the window content impossible to see. The same unfortunately 
apply for the exposé feature. Unless only two or three applications 
are running, scaling down all open windows such that they all fit 
the display is not feasible for most mobile devices due to the small 
screen. Instead stacking combined with the visual cues 
perspective and shadow may be used to give an intuitive overview 
on the limited display space, see figure 7. This effect may be 
useful for more intuitive application switching or simply to get an 
overview of currently open windows. 
 
Improving screen content organization and virtually extending the 
display on small screen devices is one of the biggest challenges 
for user interfaces designers and much research is needed. The 
recent introductions of OpenGL|ES and OpenVG plus hardware 
acceleration will, as mentioned in section 2, provide an excellent 
platform for zoomable user interfaces. Zoomable user interfaces is 
a popular research field for both mobile and desktop systems with 
the goal of better visualizing large data sets on small displays. As 
storage capabilities of mobile devices and available information 
via network connections increase rapidly, the need for new and 
better ways to visualize this data on small screen devices are 
imperative. ZUI have great potential for improving screen content 
organization in a natural way. The PhotoMesa [Bederson 2001], 
also mentioned in section 2, has also been developed in a version 
for PocketPC [Khella and Bederson 2003]. As mentioned in 
section 2, problems were encountered when introducing new 
navigation methods, i.e. direct controls for zooming. The lack of 
sophisticated input devices such as a mouse/point on many mobile 
devices is likely to make it even less attractive to introduce new 
navigational degrees of freedom. This makes methods such as 
SDAZ very interesting. Interesting research would be to extend 
the concept of SDAZ to work well with navigation keys and other 
systems that do not have pointer devices. 
 

5. Conclusions 
High performance 3D graphics hardware will enter the mobile 
arena driven by the gaming industry and thus it is very likely that 
the mobile user interface will evolve in the same direction as the 
desktop systems. Some of the new user interface techniques 
developed for these systems may provide great solutions for 
problems inherited in mobile devices such as better screen content 
organization on small screens via zoomable user interfaces or 
more intuitive interaction flows via transitions. More research is 
needed to adapt, evolve and evaluate these techniques for small 
screen limited mobile devices. 
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