
Opportunities and challenges when 3D accelerating mobile user interfaces

Mikael Persson
e-mail: mikael@tat.se

TAT AB

Karl-Anders Johansson
e-mail: k-a@tat.se

TAT AB

Abstract
This paper addresses new techniques and challenges for user
interface design for small-screen devices made possible by the
recent availability of 3D graphics hardware. A survey of current
research on the topic for desktop systems is presented and
applications of these techniques for small screen devices are
proposed. Also general differences in user interface design
between large and small screen devices are highlighted.

Keywords: Graphics hardware, user interfaces, mobile devices

1. Introduction
Supporting graphics hardware in the user interface is becoming
increasingly more popular for desktop systems, latest versions of
Mac OS X and Microsoft Windows will employ 3D hardware for
a range of new user interface techniques and effects. Currently we
are seeing an explosion in graphics performance for both 2D and
3D on handheld devices made possible by the introduction of
graphics hardware. This explosion is mainly driven by gaming but
may be exploited for enabling a better user experience. Designing
user interfaces for small screen devices is a tedious task mainly
focused at organizing screen content such that large data sets can
be presented in an intuitive way and to provide an interaction
hierarchy that is easy to understand and use. The introduction of
3D graphics hardware makes a new range of techniques available
and feasible on mobile devices that may help with providing more
appealing, enjoyable and intuitive user interfaces. This paper aims
to present previously described technical solutions for
accelerating the user interface with graphics hardware on desktop
systems and describe what challenges that must be overcome in
order to realize these techniques on mobile devices with current
and future graphics hardware. We also intend to highlight some

interesting user interface design techniques found in the desktop
space that may be applicable to mobile devices with graphics
hardware.

In section 2 a survey of how 3D acceleration is currently being
used in user interfaces as well as an overview on current research
on the topic for desktop systems is presented. Section 3 contains a
summary of technical limitations and challenges encountered
when attempting to implement similar systems on mobile
platforms. Finally in section 4 we outline aspects of user interface
design for small screen devices related to the techniques described
in section 2 as well as suggestions for new research.

2. Survey of 3D acceleration in desktop UIs
The dominant user interface model for desktop systems is window
management. In [Myers 1988], Myers defines a window manager
as “a software package that helps the user monitor and control
different contexts by separating them physically onto different
parts of one or more display screens”. He adds: “Before window
managers, people had to remember their various activities and
how to switch back and forth”. Generally speaking the window
manager controls the physical display area and manages the
different user interface components and applications that aspire on
drawing graphics. Tasks that fall on the window manager are
typically overdraw management, moving and resizing windows
and controls as well as managing pointer devices such as a mouse.
Some current systems [Graffagnino 2002; McCartney 2002] target
this piece of software for 3D acceleration.
Traditionally user interface graphics systems draw directly to the
display frame buffer via the window manager. The window
manager controls which areas of the display are owned by a given
application. If a certain area of the display need to be updated the
window manager orders the application to draw its content
directly to the display in the given area. Exploiting graphics

Figure 1. A common approach to accelerating a traditional window manager is the
compositing approach, illustrated above.

Application Texture

Compositor
Application Texture

Application

57

acceleration without breaking compatibility with existing
applications is generally achieved by introducing a compositor
that manages the display instead of the individual application via
the window manager, see figure 1. This is a common approach
that is available in current generation Apple OS [Graffagnino
2002] and will be available in next generation of Microsoft OS
[McCartney 2002]. In this approach the application draws its user
interface to a texture accessible by the graphics hardware using
existing methods. The different textures containing the application
UIs are composited using the graphics hardware. Furthermore the
compositor may use the graphics hardware to apply a wide range
of effects during compositing, such as per-pixel transparency, pre-
window fade and transform control, independent of the original
application user interface code. In conjunction applications
specifically written for the compositing pipeline may use the
graphics hardware directly to further enhance the user interface.
The compositor generally access the graphics hardware via an
open API such as OpenGL [Graffagnino 2002; Kawahara and
Byrne 2005] or a proprietary such as DirectX [McCartney 2002].

With a system as described above, a range of different new user
interface concepts become available. A popular use case is
organising windows on the desktop. In [Kawahara and Byrne
2005; Robertson et al. 2000; Rousel 2003] windows may be
stacked at the side of the screen by rotating them in 3D, see figure
2. This gives the user overview of the content of the windows
while freeing up space for more applications. Given a high
performance multi-tasking system the content of the windows
may be updated continuously such that the user can monitor any
activity while enjoying the space for other applications. Other
solutions to this problem include the exposé feature of Mac OS X
Tiger. Instead of stacking the windows using perspective
transforms the exposé feature tiles all of the open windows -
scales them down and arranges them, so that all are completely
visible. This allows the user to get an overview of all open
windows. It also allows the user to select one of the miniature
windows which will bring that window to front, this feature
makes exposé useful both to get an overview of current running
applications as well as application switching. Both features would
not be possible without seriously draining system resources if not
graphics hardware were employed.

Some researchers propose designs based on a compositor WM
approach that are more decoupled from the traditional desktop
metaphor UIs. G. Robertson et al. have presented a solution called
The Task Gallery [Robertson et al. 2000] where user tasks (i.e.
applications windows) appear as artwork hung on the walls of a
virtual art gallery. The Task Gallery aim to exploit the spatial
cognition and memory inherit in humans and is based on the
theory that if presented with a virtual environment that is more
like the 3D environment that we live in new and old users will
find interaction more intuitive and enjoyable. According to the
authors user studies have shown that the Task Gallery helps with
task management in the way that users easier remember where
they “put” their windows in the 3D metaphor. Although this
concept is far away from the traditional desktop metaphor many
designs that have found their way into current commercial
systems such as stacking windows with perspective transforms are
presented in this paper.

Interesting research projects are Project Looking Glass [Kawahara
and Byrne 2005] and Ametista [Rousel 2003] two open source
window mangers that are based on the 3D interaction metaphor.
These projects aim to provide a platform for research on 3D user
interfaces in a real working window environment. Perhaps the
most interesting project is [Kawahara and Byrne 2005] where

Figure 2. Project Looking Glass among others uses 3D
perspective transformations to stack windows at the side

of the screen to free up space for other applications.
(Image courtesy of Project Looking Glass.)

Figure 3. Project Looking Glass includes a media player
with a free form 3D user interface. Using 3D many new

and interesting UI techniques become available.
(Image courtesy of Project Looking Glass.)

Figure 4. Project Looking Glass also includes a photo
browser with a free form 3D user interface.
(Image courtesy of Project Looking Glass.)

58

Java is used as the platform for building applications that expose
3D user interfaces. The window manager has a number of built in
interaction paradigms such as stacking windows, task bars and
how navigation is performed in the 3D space that the applications
occupy. Besides from that novel interaction methods may be
introduced by the individual projects. Some interesting
applications have been developed as part of the project, most
notably a media player and a photo browser. These applications
have free form 3D user interface floating in the application space
as oppose to traditional applications that are contained within their
windows, see Figure 3 and Figure 4.

Another popular field of user interface research that doesn’t
require hardware acceleration but that definitely benefits from it is
zoomable user interfaces or ZUI. Both OpenGL [Blythe and
Munshi 2004] and the emerging standard OpenVG [Rice 2005]
are based on hierarchical transformations which combined with
more graphics performance via hardware acceleration makes a
great platform for ZUI. The goals of ZUI is to better visualize
large data sets on small display areas. The capability and
performance to seamlessly change level of zoom enables a range
of interesting user interface techniques. Photomesa [Graffagnino
2002] is an example of a browser that uses novel layout
mechanisms (quantum treemaps and bubble maps) that allows
users to see as many photos as possible and maintain context. It
allows users to group photographs by date, filename and directory
as well as employ zooming techniques to display the photographs.
The basic concept is fairly simple, photos are clustered with
regard to a number of parameters such as data, texture, color etc
and ZUI is used to let the user seamlessly navigate the collection
of images. The user directly control the level of zoom and the
software attempts to always present the level of information that is
suitable for the given level of zoom. It has been shown [Cockburn
and Savage 2003] that techniques where the user directly controls
the degree of zoom does not aid in searching for images, generally
when a new degree of freedom for navigation is introduced the
learning curve for the UI is steeper. An interesting extension of
ZUI to remedy this problem is speed dependent automatic zoom
(SDAZ). This concept is based on the fairly simple assumption
that when the user is actively searching for an image a thumbnail
overview is more suitable and when the user settles down on a
given image a more zoomed in view is wanted. A photo browser
based on the SDAZ concept is described in [Igarashi and Hinckley
2000; Cockburn and Savage 2003], and according to the authors
user studies show that this technique aid some users in searching
for photos.

3. Technical limitations and challenges
The introduction of graphics hardware for mobile devices presents
great opportunities for building more intuitive and overall better
user interfaces. However, when attempting to facilitate the
research presented in section 2 for mobile devices a number of
challenges arise, some of these challenges and limitations are
covered in this section.

Lately, good standards for accessing the hardware such as
OpenGL|ES and OpenVG have emerged. OpenVG is a much
newer standard, and there are no hardware implementations yet.
This section will focus on limitations of OpenGL|ES 1.x as this
has been tried in the industry. Most OpenGL|ES graphics
accelerators for the mobile market today offer quite good raw
rendering performance and give major speed improvements on
pure blitting and alpha blending. OpenGL|ES provides a
convenient and standardized way of performing controlled
composition of bitmaps and is capable of supporting at least half

of the Porter-Duff blending operations [Porter and Duff 1984].
Details on blending limitation follow below. Current graphics
hardware is capable of performing full screen bitmap composition
at rather impressive frame rates as would be expected since the
most important target software is games. Using the hardware
graphics accelerator in a window system would mean enabling
many of the features of a compositing based window system as
described in section 2 without putting much load on the CPU.
When using OpenGL|ES for this purpose, window content needs
to be accessed as texture data. Most of today’s OpenGL|ES
implementations require textures to be uploaded to dedicated
memory which presents a number of technical challenges that
must be addressed:

Small texture memory
The typical OpenGL|ES accelerator on the market today targeting
QVGA displays has about 1MB of VRAM (video ram) to be
shared by frame buffer and textures. This clearly indicates that the
window system must contain some sort of VRAM virtualization
approach in order to fit all windows in “virtual VRAM”. This is a
problem that is common with desktop solutions [Graffagnino
2002; McCartney 2002]. By treating the VRAM as an on chip
“L1” cache, it is possible to page in textures from a system RAM
“L2” cache. Another issue is if the device has enough RAM to
hold the “L2” cache. If not, the window system must resort to
issuing a repaint command to the client in order to get the bitmap
data. If this happens for every frame, we will not gain any
performance boost from using the hardware graphics accelerator.
More likely, the added overhead will in fact make the UI slower
than if not using any hardware acceleration.

Slow texture transfer
In order to save power, all bus widths and -speeds are generally
kept thin and slow on mobile devices. Also, graphics hardware
manufacturers do not typically prioritize optimizations of the
particular data path for transferring texture data since most games
and benchmarks focus on fill rate and polygon count. This
definitely has an impact on the VRAM virtualization mentioned
above since it relies on being able to quickly swap in textures
from RAM. The general solution to this problem is texture
compression which lowers the impact on narrow busses but we
will see below that this is not always feasible for user interfaces.
The best workaround for the slow texture transfer is to reduce the
number of client side updates and instead rely on effects and
animations that are possible to perform on the graphics
accelerator. Examples of this are scaling, moving, and opacity
changes.

UI graphics is not suitable for texture compression
User interface graphics such as text and fine lines are very
sensitive to compression artifacts. This effectively rules out
texture compression for these tasks. Also, since applications and
window content is rendered on the device in real time, texture
compression times would pose a problem since it further delays
the uploading of the texture data. Not being able to use texture
compression further increases the texture memory problems (size
and speed) mentioned above.

Texture size
OpenGL|ES 1.x supports neither texture sizes larger than 256x256
nor sizes other than powers of two. This means that texture RAM
can not be utilized to 100% efficiency since windows rarely have
sizes that are powers of two. It is possible to use tiling to work
around this problem, in which case source bitmaps are broken
down into small tiles that can be allocated from larger textures.
The main problem with this is the vastly increased complexity of

59

the drawing operations while maintaining good performace. There
is also a significant increase in the geometry complexity which
may also cause performance degradations.

Blending limitations on OpenGL|ES 1.x
As mentioned above, only half of the 12 Porter-Duff blending
modes are supported by OpenGL|ES 1.x. The reason for this is
that in OpenGL|ES1.x there is no support for destination alpha.
The ones that remain are “Clear”, “Src”, “SrcOver”, “DstIn”,
“DstOut” and “Dst”. However, there is support for additional
blending modes, for instance a version of “SrcOver” without the
requirement of RGB being premultiplied with alpha

OpenGL|ES and other concurrent hardware
On a mobile device there is likely to be special hardware for
decoding video and, if applicable, displaying a camera viewfinder.
This can conflict with OpenGL|ES operation. Normally
OpenGL|ES would not be running when using these special
hardware features but with a hardware accelerated window
system, OpenGL|ES is running all the time. Note that this differs
very much between different OpenGL|ES implementations and
integration decisions. For instance, an OpenGL|ES accelerator
may include an interface for a camera and require that viewfinder-
and snapshot data is stored in the chip’s embedded memory. This
may end up consuming most of the accelerator’s RAM, not
leaving any room for the window “L1” cache mentioned above,
thus forcing the window system to revert to non-accelerated
mode. Another example could be a graphics accelerator that
actually does not at all support running the OpenGL|ES core when
the camera viewfinder is active even if the RAM issue was solved.

4. UI design challenges and possibilities
In general when working with small-screen devices only one
window/application may be simultaneously visible which has
brought us back to the point where it is difficult to remember and
organize activities. Generally for small-screen devices as opposed
to desktop systems the concept window is analogous with screen,
i.e. the window occupies the entire screen. User interaction is
layed out in a hierarchical fashion, selecting an option on one
screen generally presents another screen with more options,
pressing the back key returns to the first screen. In these systems
user interface designers often struggle with keeping the context
such that the user is always aware of where a certain choice will
take him/her and where the back key will lead at any given time,
which as the complexity of the system grows becomes an
enormous task.

Another major challenge and difference when designing user
interfaces for mobile devices versus desktop systems is that on a
mobile device you are most likely targeting first time users. On a
desktop system you are designing a tool and optimizing it for
maximum efficiency, on a mobile device on the other hand you
are designing a system that has to be intuitive enough to be usable
by first time users. Generally mobile devices do not come with a
thick user manual and anyway you are expected to be able to use
the device without reading any more instructions than what is
presented on the display in the user interface.

Mobile 3D graphics presents many interesting opportunities for
improving the problem with context shifts and its implications on
usability as outlined above. Different kinds of transitions are very
effective in helping the user to remember which context is
currently active.
With the performance of graphics hardware and 3D a wide range
of new transitions are available and a lot of research is required to

evaluate these transitions and how they may aid the user. One
example of new transitions that may help the user is presented in
figure 5, by connecting context menus associated with an object in
a visually appealing way the human sense for spatial context may
make these transitions more intuitive.

Both graphics and general processing performance is increasing at
a rapid rate however display sizes are still limited by physical
constraints such as the fact that the device must be able to fit in
the pocket or in the palm of your hand. The introduction of high
performance 3D graphics may be exploited to virtually extend the
size of the screen by introducing new techniques for better
organizing screen content. Section 2 discussed some concepts on
desktop systems that attempt to solve this problem. This section
will further discuss these topics in the context of mobile devices.

Stacking is a very common user interface technique used to
display a set of components, icons, windows or pages in a
compact manner. The components appear to be stacked or piled
on top of each other with only a portion or tab visible. This tab is
used to switch between the current active component and the
component indicated by the tab, this is commonly referred to as
tabbed windows introduced in [Beaudouin-Lafon 2000] and
extended in [Beaudouin-Lafon 2001]. Stacking is especially
attractive for small screen devices since the technique allows for
quick navigation among pages on a limited space, where
otherwise each page had to be its own window. However, a
common problem of packing information tightly is that it will
most likely be less intuitive. In such cases, visual perception will
become critical for the user to understand what is displayed.
A user study [Kjelldahl 2003] has shown that the visual cues
perspective and shadow have a substantial positive effect on
perceiving position. Figure 6 shows two examples of stacking
images (for instance in a photo viewer application): One without
the perspective and shadow and one where the two visual cues
have been used to help the user perceive the scene.
With the use of modern graphics hardware and the compositor
approach, effects such as perspective transforms (texture
mapping) and shadow techniques may be used on arbitrary user
interface components to achieve the right visual cues and thus
reduce the risk of the user misinterpreting the intended use.
As described in section 2 recent products and research on desktop
systems that employ graphics hardware in the user interface

Figure 5. By connecting context menus associated
with an object in a visually appealing way the

human sense for spatial context may make these
transitions more intuitive.

60

attempt to achieve better organization of screen content by
stacking windows at the side of the screen with perspective
transformations thus exploiting these visual cues. Although
stacking windows by the side of the display would be feasible on
a mobile device, the small screen size would most likely render
the window content impossible to see. The same unfortunately
apply for the exposé feature. Unless only two or three applications
are running, scaling down all open windows such that they all fit
the display is not feasible for most mobile devices due to the small
screen. Instead stacking combined with the visual cues
perspective and shadow may be used to give an intuitive overview
on the limited display space, see figure 7. This effect may be
useful for more intuitive application switching or simply to get an
overview of currently open windows.

Improving screen content organization and virtually extending the
display on small screen devices is one of the biggest challenges
for user interfaces designers and much research is needed. The
recent introductions of OpenGL|ES and OpenVG plus hardware
acceleration will, as mentioned in section 2, provide an excellent
platform for zoomable user interfaces. Zoomable user interfaces is
a popular research field for both mobile and desktop systems with
the goal of better visualizing large data sets on small displays. As
storage capabilities of mobile devices and available information
via network connections increase rapidly, the need for new and
better ways to visualize this data on small screen devices are
imperative. ZUI have great potential for improving screen content
organization in a natural way. The PhotoMesa [Bederson 2001],
also mentioned in section 2, has also been developed in a version
for PocketPC [Khella and Bederson 2003]. As mentioned in
section 2, problems were encountered when introducing new
navigation methods, i.e. direct controls for zooming. The lack of
sophisticated input devices such as a mouse/point on many mobile
devices is likely to make it even less attractive to introduce new
navigational degrees of freedom. This makes methods such as
SDAZ very interesting. Interesting research would be to extend
the concept of SDAZ to work well with navigation keys and other
systems that do not have pointer devices.

5. Conclusions
High performance 3D graphics hardware will enter the mobile
arena driven by the gaming industry and thus it is very likely that
the mobile user interface will evolve in the same direction as the
desktop systems. Some of the new user interface techniques
developed for these systems may provide great solutions for
problems inherited in mobile devices such as better screen content
organization on small screens via zoomable user interfaces or
more intuitive interaction flows via transitions. More research is
needed to adapt, evolve and evaluate these techniques for small
screen limited mobile devices.

References
BEAUDOUIN-LAFON, M. 2001. Novel interaction techniques for
overlapping windows. In Proceedings of ACM Symposium on
User Interface Software and Technology, UIST 2001, Orlando
(USA), ACM Press. Pages 153-154.

BEAUDOUIN-LAFON, M. and LASSEN, H.M. 2000. The architecture
and implementation of CPN2000, a post-WlMP graphical
application, in UIST 2000, ACM Symposium on User Interface
Software and Technology, CHI Letters 2(2). Pages 181- 190

BEDERSON, B. 2001. Photomesa: A zoombable image browser
using quantum treemaps and bubblemaps, in Proceedings UIST
2001, ACM Press. Pages 71-80

BLYTHE, D. and MUNSHI, A. 2004. OpenGL|ES
Common/Common-Lite Profile Specification Version 1.1.04
(Annotated), www.khronos.org

COCKBURN, A. and SAVAGE, J. 2003. Comparing Speed-
Dependent Automatic Zooming with Tradional Scroll, Pan, and
Zoom Methods, People and Computers XVII: British Computer
Society Conference on Human Computer Interaction. Bath,
England. Pages 87-102.

GRAFFAGNINO, P. 2002. Apple OpenGL and Quartz Extreme.
Presentation at SIGGRAPH 2002, OpenGL BOF.

Figure 6. Normally tabbing is achieved by
simply displacing the images (bottom). Using
visual cues such as perspective and shadows

the UI may be made more intuitive (top).

Figure 7. Another example of where stacking in
perspective can be used. Here used for

application switching.

61

IGARASHI, T. and HINCKLEY, K. 2000. Speed-dependent automatic
zooming for browsing large documents, Proc. UIST 2000, ACM
Press. Pages 139-148

KAWAHARA, H. and BYRNE P 2005. Project Looking Glass.
Presentation at Sun JavaOne 2005. https://lg3d.dev.java.net/

KHELLA, A. and BEDERSON, B. 2003. A Zooming Image Browser
for the Pocket PC. University of Maryland, Technical Report

KJELLDAHL, L. 2003. A survey of some perceptual features for
computer graphics and visualization. SIGRAD2003

MCCARTNEY, C. 2002. Windows Desktop Composition.
Presentation at WinHEC 2002, Windows Graphics Architecture
session.

MYERS, B.A. 1988. A taxonomy of window manager user
interfaces. IEEE Computer Graphics and Applications, 8(5).
Pages 65-84

PORTER, T. and DUFF, T. 1984. Compositing digital images.
Computer Graphics (SIGGRAPH '84 Proceedings), vol. 18, no. 3,
pages 253-259

RICE, D. 2005. OpenVG 1.0 Specification. www.khronos.org

ROBERTSON, G., VAN DANTZICH, M., ROBBINS, D., CZERWINSKI,
M., HINCKLEY, K., RISDEN, K., THIEL, D. and GOROKHOVSKY, V.
2000. The Task Gallery: a 3D window manager. In Proceedings of
ACM CHI 2000 Conference on Human Factors in Computing
Systems, ACM Press. Pages 494-501.

ROUSSEL, N. 2003. Ametista: a mini-toolkit for exploring new
window management techniques. In Proceedings of CLIHC 2003,
Latin American Conference on Human-Computer Interaction,
ACM Press. Pages 117-124.

62

	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability
	4.1. Operating systems and cameras
	4.2 Multilingual configuration

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB
	5.2. Database format
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook
	References
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf

