
Distributed Fractal Generation Across a Piconet

Daniel C Doolan, Sabin Tabirca∗

University College Cork,
Ireland.

Abstract

This paper explores the distributed generation of fractal images on
mobile phones using Bluetooth (JSR-82) as the inter-device com-
munications mechanism. Mobile phones inherently have limited
resources (such as memory and processing power). The aim of this
paper is to demonstrate a technique, where the resources of several
mobile devices can be used in conjunction. This will allow for the
computation of a processor intensive task in a short period of time.

CR Categories: I3.5 [Computer Graphics]: Computational
Geometry and Object Modelling—Geometric algorithms, lan-
guages and systems.; D1.7 [Programming Techniques]: Visual Pro-
gramming; C2.4 [Computer Communication Networks]: Distrib-
uted Systems—Client/Server.

Keywords: Fractal Image Generation, Distributed Computing,
Bluetooth, Piconet

1 Introduction

Fractals have been a classical topic ever since what is considered to
be the discovery of the first fractal in 1872 by Georg Cantor, (typi-
cally called “Cantor Dust”). The present interest in Fractal geome-
try is mainly due to the work of Benoit Mandelbrot, who in the mid
1970’s was successful in the creation of the an index (Mandelbrot
Set) for all the possible Julia Sets. Since then their have been many
further developments such as Fractal Terrain Generation [Meyer
1982] [Lucas and Marquand 1983], Fractal Image Compression [Lu
1997], Fractal Encryption and Fractal Music. However, the process
of generating such images requires significant computational re-
sources [Doolan and Tabirca 2005]. In this paper we present a
study parallelizing the generation of Mandelbrot images on mobile
phones using Bluetooth as the communication mechanism.

Over the past couple of years both Sony-Ericsson and Nokia De-
veloper websites have published invaluable training material on the
development of J2ME applications with Bluetooth technology.

Some interesting literature has been published of late, dealing with
Bluetooth technology. One thesis [Long 2004] “A Study of Java
Games in Bluetooth Wireless Networks” gives an overview of the
Bluetooth API and shows how such technology can be employed
in the development of wireless networked games. The thesis gives
a simple example of a game designed in a Point to Point Piconet
Configuration (Figure 1). It also includes some useful references
to various sources dealing with both game programming and net-
worked communications.

∗e-mail:{d.doolan, tabirca}@cs.ucc.ie

Figure 1: Simple Point to Point Piconet Configuration.

A far more in-depth look at Bluetooth technology with J2ME may
be found in the MSc thesis of [Klingsheim 2004]. The thesis cen-
tered around the development of two Bluetooth applications and the
testing of same on several devices, namely Nokia 6600 to Nokia
6600, Sony Ericsson P900 and PC to Nokia 6600. The applications
dealt with device discovery and bench-marking data transfer.

The generation of the Mandelbrot Set is often referred to as an “em-
barrassingly parallel computation”. It can be easily divided into a
number of completely independent parts, each of which can be ex-
ecuted by a separate processor. The parallel computation of the
Mandelbrot Set usually relies on the C based Message Passing In-
terface (MPI) library [MPI][Book][O’Mahony 2004].

More and more mobile devices are shipping with Bluetooth tech-
nology as standard. Typically all Smartphones fall within this remit,
examples include the Nokia Series 60 2nd and 3rd Edition phones.
Sony-Ericsson so too have a significant number of Bluetooth en-
abled devices (K750, D750, W800, K608). The Java capabilities
of these devices are that of levels 5 and 6 of Sony-Ericssons Java
Platforms [Sony-Ericsson 2005].

2 Fractal Generation

The generation algorithms for the Mandelbrot Set are quite simple,
but as the generating function is iterated repeatedly this gives rise
to complexity and results in a highly complex fractal image. Frac-
tals are usually obtained when the generating functionf (z) is non
linear. For f (z) = z2 + c the classical Mandelbrot Set is obtained.
Mandelbrot-like sets are also obtained when the generating function
has the form off (z) = Zu +Cv.

The area of the Fractal image that is displayed is dependent on the
xmin,ymin, xmax,ymax values. Figure 2 shows a typical Mandel-
brot Image and the corresponding coordinates for it.

63

Figure 2: Typical Mandelbrot Image for xmin,ymin = -2.0,
xmax,ymax = 2.0.

A Code sample (Listing 1) of the Mandelbrot Set generation func-
tion shows a direct relationship with the Mandelbrot Set Algorithm.
One can clearly see that if the absolute value of the complex number
lies outside the threshold R, that the pixel at the current coordinates
of the iteration through the image will be drawn in a specific colour.

1 for(int i=0;i<SIZEX;i++)for(int j=0;j<SIZEY;j++){

2 Complex c = new Complex((XMIN+i*STEPX),(YMIN+j*STEPY));

3 Complex z = new Complex();

4 for (k=0;k<NR_ITER;k++){

5 z=f(z,c);

6 if(z.getAbs()>R){

7 r = c[k%l][0]; g = c[k%l][1]; b = c[k%l][2];

8 color = b + (g<<8) + (r<<16) + alpha;

9 pixels[(j*SIZEX) + i] = color;

10 break;

11 }

12 }

13 }

Listing 1: Code listing of Mandelbrot Set Function

The execution times for generating a fractal image on a mobile
phone are quite long (Table 1), especially as the number of iter-
ations required increases. Execution on a Nokia 6630 Phone re-
quires 55,657ms to generate a 200 x 200 pixel image using 500
iterations, running at 1000 iterations the processing time increases
to 98,250ms (almost double). Similar tests using Sun’s WTK emu-
lator yields results far in excess of the execution times for the Nokia
6630 Phone. The Sony-Ericsson Emulator demonstrated the fastest
computation.

Device 500 750 1000
SE WTK 2.2 30,079 ms 42,516 ms 56,141 ms
Nokia 6630 55,657 ms 75,266 ms 98,250 ms
Sun WTK 2.2 140,875 ms 205,078 ms 269,734 ms

Table 1: Image Generation Times for the Mandelbrot Set (Image
Size 200x200 pixels, xmin,ymin -2.0, xmax,ymax 2.0) at varying
number of iterations.

3 Distributed Fractal Generation

The application was developed using Sun Java Studio Mobility
6 2004Q3 [Sun-Microsystems a] and the J2ME Wireless Toolkit
(WTK) Emulators [Sun-Microsystems b].

The application has been designed to work with several fractal for-
mulas and not just fractals of the formf (z) = Zu +Cv. The other
implemented forms includef (z) = Zu−Cv and f (z) = Zu+Cv+Z.
A more comprehensive Math’s Class would allow for a wider di-
versity of possible fractal formulas. The MathFP class is a efficient
integer based alternative to this.

The design of the system is that of a Point to Multi-Point configu-
ration (Figure 3). The Point to Multi-Point configuration is signifi-
cantly more complex than the simpler Point to Point configuration.
For the Point to Multi-Point Configuration to work the Master De-
vice must keep a list of all clients connected to it.

Figure 3: Point to Multi-Point Piconet Configuration.

3.1 User Interface

One of the most important parts of the Server Program is the User
Interface for modifying the Fractal Image settings. The most impor-
tant options include the Image Size, Number of Iterations, Fractal
Co-ordinates and Fractal Equation Type (Figure 4). The Client Ap-
plication has a simple interface that displays whether an image is
currently being generated or not, the processing time for the gen-
eration of an image and the Image Settings the Client is currently
using to generate the image (Figure 4).

Figure 4: Fractal Image Settings Form, (Server). Client Info Form.

64

3.2 Work Load Balancing

There are several ways in which the image can be divided among
the client’s nodes for processing. These include Uniform Block,
Cyclic and Dynamic Load Balancing.

3.2.1 Uniform Block Balancing

This method of load balancing was the first scheme to be imple-
mented in the application. In this implementation the image is
divided intonrClientsvertical (or horizontal) strips of equal size
(Figure 5). The clienti receives for computations the image chunk
with the consecutive columnsi ×w/nrClients, i ×w/nrClients+
1, ...,(i + 1)×w/nrClients− 1. This division of the image into
similar vertical strips would yield to similar computation on each
client. It is a simple scheme where a single message is sent to each
client which results in a corresponding message being returned to
the master with the results of the computation. A similar method
[Murty 2004] where the image is divided into a grid was used for
the generation of Fractal Images using .NET Web Services.

Figure 5: Division of Image into Vertical Strips.

For example dividing the image into four vertical strips yields a ma-
trix of coordinates that may be sent to the clients connected to the
Master. In the case of 4 vertical strips with xmin, ymin starting at
-2.0 and xmax, ymax starting at 2.0, the following matrix is gener-
ated (Table 2). In the case that 4 clients were used using a grid of
sub-squares the resulting matrix would center around the value 0.0
for a Mandelbrot Image where xmin, ymin = -2.0 and xmax, ymax
= 2.0.

xmin ymin xmax ymax
-2.0 -2.0 -1.0 2.0
-1.0 -2.0 0.0 2.0
0.0 -2.0 1.0 2.0
1.0 -2.0 2.0 2.0

Table 2: Co-ordinate Matrix for 4 Vertical Strips: xmin,ymin = -2.0,
xmax,ymax = 2.0

Several other elements are essential for the distributed processing
of the image. This size of the image each client is to generate.
An identifier for which section of the image was generated by each
client. This is necessary so the image can be reassembled on the
Server in the correct order. The order in which images are re-
turned to the Server is random as some sections will require greater

processing time than others. The other parameters include whether
the image should be inverted or not, the powers for Z and C, the
number of iterations to be executed and finally a flag for the type of
fractal formula to use.

3.2.2 Cyclic Load Balancing

This is a follow on approach from the Uniform Block Load Bal-
ancing example. The image is still divided into equal sized ver-
tical strips{S0,S1, ...,Sp−1} each of them containing only a few
columns. The partition of thisp strips onto the clients is performed
into a cyclic matter so that the clienti would receive the strips
{Si+ j×nrClients : j = 0,1, ..., p

nrClients−1}. Figure 6 shows an ex-
ample of this division. In this example each client will receive four
small sections of the image. The image sections a single client will
receive are evenly distributed through out the image to be gener-
ated (e.g. Figure 6 clearly shows that the first client will receive
grid sections 1,5, 9, 13). In this case the computation of the regions
with significant details is evenly distributed amongst processors.

Figure 6: Cyclic Division of Image Area.

3.2.3 Dynamic Load Balancing

The Server maintains a Work Pool of jobs that can be sent out to
clients (Figure 7). Initially every connected Client will receive a
work unit to process, as soon as a Client returns a result another
work unit is issued to the Client. This process is carried out until
all the jobs in the Servers Work Pool have been completed. For this
procedure the image area is typically divided into a grid structure.
There is of course a slight increase in communication costs com-
pared with that of the Uniform Block method, but the distribution
of processing should be far more even across all connected Clients.

65

(xmin, ymin, xmax, ymax) (xmin, ymin, xmax, ymax)

(xmin, ymin, xmax, ymax)

(xmin, ymin, xmax, ymax) (xmin, ymin, xmax, ymax)
(xmin, ymin, xmax, ymax)

(xmin, ymin, xmax, ymax)

(xmin, ymin, xmax, ymax)

(xmin, ymin, xmax, ymax)

0

1

3
2

Issue: new parameters /

Return: Image Section

Job Pool

Figure 7: Dynamic Division of Image Area.

The division of the image into a grid (Figure 8) is carried out by
the user choosing a particular granularityg which is the width of
each grid block. Figure 8 is a 200 x 200 pixel image divided into 16
areas (Granularity of 50 pixels). The granularity by which the im-
age is divided greatly effects the number of messages that are sent
between Server and Clients (Figure 9). The area (in pixels) of each
grid block is given byg2 so that the number of grid blocks is given
by w×h

g2 . The total number of exchanges between Server and all the

Clients has the form 2
(

w×h
g2

)
as a request must be sent to the client

and a result returned. The total number of exchanges between the

Server and any connected Client is 2
(

w×h
g2×nrClients

)
. It is clear that

the granularity has an important effect on both computation and
communication. For computation the finer the granularity is the
better the computation load balance becomes amongst processors.
With a fine granularity the grid blocks have a small area so that the
clients compute them in short time. In the case that one client be-
comes idle (work pool is empty) this will wait only little time for
the other clients to finish the computation. Moreover, a fine granu-
larity will evenly distribute the regions of high details amongst all
the processors. However, fine granularity increases the amount of
communication between the Server and the Clients. This would im-
ply more overheads to start up the communications as well as more
information that is sent between the Server and the Clients.

Figure 8: Dynamic Division of Image Area.

Figure 9: Number of Exchanges Required as Granularity Varies

3.3 Client / Server Operations

Overall the general methodology of the system is quite simple (Fig-
ure 10). The initial stages of the process are carried out on the
Server. Firstly it is necessary to acquire the Input Settings for the
Fractal Image, a Graphical User Interface (GUI) (Figure 4) is pro-
vided for this. When the user issues a request to generate a Frac-
tal Image the parameters are gathered from the Fractal Image Set-
tings GUI. The next stage is to calculate the parameters necessary
for each client (this will depend on the number of clients currently
connected). This yields a unique set of parameters for each client.
Several other parameters are also passed which are the same for all
clients (for example: formula type, number of iterations).

Once all the parameters have been finalised the operation of send-
ing the Image Parameters to each connected client can commence.
The parameter data is passed in the form of a string. A typical ex-
ample of this string has the format of “width, height, xmin, ymin,
xmax, ymax, iterations, equation type, cPower, zPower, invert, im-
age segment number ”. An example of the output string would be:
“50, 200, -1.0, -2.0, 0.0, 2.0, 500, 0, 1, 2, 0, 1”. The previous
string would generate an image 50 x 200 pixels in size. The com-
plex plane coordinates are “-1.0, -2.0, 0.0, 2.0”. The client would
carry out 500 iterations at each point. The generated Image would
be the standard non inverted mandelbrot setZ2 +C. The final para-
meter “image segment number” allows for the correct ordering of
segments on the Server side.

The Client has in the meantime has been waiting for requests from
the Server. Once a Client receives a request it must first parse the
data to extract all of the required parameters necessary to generate
the image. The next and most important stage is the actual genera-
tion of the fractal image. Each client will generate a small section
of the image. The image section is then sent to the Server in the
form of a sequence of integers using a DataOutputStream Object.

On the server side once it has issued its requests to all clients, it
simply waits for incoming results. When a message is received
from a client, the server examines the “image segment number” so
the image will be placed in the correct order. Next it finds the length
on the remaining incoming data, and initialises an array to be able
to read all of the integer values representing the actual image. Once
all the integer values have been read an Image object is created
and positioned into is proper location based on the “image segment
number”. The process of waiting for client responses continues
until all Image Sections are Retrieved. When the final image section
is retrieved the Server displays the completed image on screen to the
user.

66

Figure 10: Client / Server Operations.

3.4 Bluetooth Networking

Typically the first step in a Networked Bluetooth application is to
discover other Bluetooth Capable devices within the catchment area
(10 meters for a class 3 Bluetooth Device, 100 meters for a class 1
device). For a Bluetooth device to advertise itself as being available
it must be in “discoverable mode“. There are two differing forms
of this mode: General Unlimited Inquiry Access Code (GIAC) and
Limited Dedicated Inquiry Access Code (LIAC). If the device is to
be generally discoverable then it should be set to GIAC mode else it
may be set as discoverable in a “limited” manner by using the LIAC
mode. In this application the Client Devices are set to be generally
discoverable, and as such when the Server Device is started it’s first
task is to discover all local devices available within it’s catchment
area.

In many Client to Server Applications the client requests services
from the Server. In this case the Server usually starts running first
and begins a cycle of waiting to accept new client requests. This
application however the operation of the Client / Server system is
slightly different. As with most Bluetooth applications the Mas-
ter adds each client into the piconnet. The Master however issues
requests to all client on the piconet (for example generate a frac-
tal image) the client devices then carryout the actual processing
work and return results to the Master (Server). This is akin to
how SETI@Home [SETIatHome] works where the clients carry
out the processing and return the results to the Server Application.
An invaluable aid in the development of this system came in the
form of a simple application from Nokia that demonstrated the use
of a Point-multi-Point configuration [Nokia 2004]. Sony-Ericsson
[Sony-Ericsson 2004] also have some very useful Developers Train-
ing Material dealing with Bluetooth Applications programming.

3.5 Execution Results

The experimental tests of this distributed fractal generating were
carried out using 4 of Nokia 6630 phones. The scheduling parti-
tions used in the experiment wereUniform Block, Cyclic, Dynamic
Scheduling with g= 50 and Dynamic Scheduling with g= 25. The
Mandelbrot fractal was generated into a 200 pixel square image to
cover the plane region[−2,2]× [−2,2] with 500, 750 and 1000 it-
erations. Recall that the generation of the fractal on a single Nokia

6630 devices at 500 iterations requires 55,657ms to process, a fig-
ure far in excess of the execution times that will be presented below.
Even when the Sony-Ericsson Wireless Toolkit (WTK) 2.2. emula-
tor (Sony-Ericsson P900 Mobile Phone) was used the overall results
showed a significant improvement in rendering time (see Tables 3
and 1).

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 13,675 4,453 11,456 7,455 2,235
750 14,047 4,609 11,838 7,422 2,557

1,000 14,907 4,437 12,101 7,469 2,610

Table 3: Image Generation Times for the Mandelbrot Set using the
Sony-Ericsson WTK Emulator

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 25,878 8,246 20,457 13,379 4,217
750 26,051 8,230 21,064 13,277 4,542

1,000 26,442 8,311 21,418 12,945 4,547

Table 4: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Uniform Block Partition)

Table 4 presents the execution times for theUniform Blockschedul-
ing. One can see that the second and third clients will receive the
regions with more details so that they generate the highest compu-
tation times. While the forth client receives the region with lesser
details so that it has the smallest execution time. As consequence
those execution times show a huge load imbalance of the computa-
tion.

The use of theCyclic scheduling corrects this load imbalance. The
primary advantage with this scheme is that all areas of the image
are distributed uniformly onto all the connected clients. The result
of this is that areas where there is high computation cost are carried
out by all processors. This means that the Server no longer has to
wait for one or two nodes to finish the computation well after all
other nodes have completed their assigned tasks. Table 5 shows
the processing times for the cyclic scheduling scheme are very well
balanced.

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 18,734 14,038 14,740 13.734 14,251
750 19,042 14,734 15,183 14.361 14,793
1000 19,623 14,829 15,053 14.853 15,391

Table 5: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Cyclic Scheduling Algorithm)

TheDynamic Load Balancingmethod was tested for two granular-
ities. Wheng= 50 the fractal was splitted up into 16 grid blocks so
that each client gets 4 blocks to compute. The computation times
(see Table 6) show a very good load balance but they are bigger
than the those of theCyclic scheduling. In this case each client
has at least 3 idle periods waiting for the communication with the
Server to complete. Similarly, for granularityg= 25 each client has
16 grid blocks to compute so that it has 15 idle periods of waiting
for communication. This however increases the computation times
of each processor with around 8 seconds as Table Table 7 presents.

67

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 23,475 20.243, 20,048 21.482 21,729
750 23,739 21,473 21,762 21,906 21,845
1000 23,957 21,883 21,834 22.045 21,983

Table 6: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Dynamic Scheduling Algorithm with
granularityg = 50 pixels)

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 30,754 28.393, 28,851 28.703 28,929
750 31083 30,710 29,675 29,496 30,025
1000 31,672 30,031 29,871 29.582 29,832

Table 7: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Dynamic Scheduling Algorithm with
granularityg = 25 pixels)

Certainly, these experimental tests showed that the distributed com-
putation over a piconet with Bluetooth reduces the generating time.
Table 8 shows the reduction of the execution times for 500 iterations
when the number of clients isnrClients= 1,2,3,4.

1 Client 2 Clients 3 Clients 4 Clients
Block 55,657 43,864 32,704 25,878
Cyclic 55,493 36,586 23,193 18,734

Dynamic 55,723 38,741 29,704 23,475

Table 8: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones fornrClients= 1,2,3,4.

3.6 Further Work

Many alternative possibilities exist in terms of load balancing, ex-
amination and implementation of other scheduling schemes could
provide noticeable improvement in the overall processing time. The
implementation of alternate schemes would result in higher com-
munication costs.

Another possibility is to make use of Scatternets. From the results
so far it is clear that sections of the fractal image that contain a
high level of detail require much more processing than areas of far
less detail. So for the areas that require significant processing those
sections could be distributed to a client that also acts as a server for
another piconet.

4 Conclusion

A method of carrying out distributed fractal image generation
across a piconet has been developed. This method of distributed
fractal image generation has shown that it is capable of increasing
the rate at which fractal images can be rendered on a mobile device.

Several methods of load balancing were implemented: Uniform
Block, Cyclic Load Balancing and Dynamic Load Balancing. The
Cyclic and Dynamic forms produce a far more even distribution of
the work among the connected clients. It is clear from Tables 4, 5,
6 that the processing times reduce dramatically compared with the
processing times with a single mobile device, for example 55,657
with a single Nokia 6630 (500 Iterations).

The method outlined for distributing the processing of a proces-
sor intensive task could be used in many other areas besides fractal
image generation. The continually increasing number of mobile
devices may prove to be a useful processing resource in the fu-
ture. In time mobile devices may contribute to projects such as
Seti@Home, DNA Analysis, Prime Number Search’s to name but
a few.

References

BOOK, M. Parallel fractal image generation.http://www.
matthiasbook.de/papers/parallelfractals/.

DOOLAN, D. C., AND TABIRCA , S. 2005. Interactive teaching
tool to visualize fractals on mobile devices. InProceedings of
Eurographics Ireland Chapter Workshop, Eurographics Ireland
Chapter, 7–12.

KLINGSHEIM, A. N. 2004.J2ME Bluetooth Programming. Mas-
ter’s thesis, University of Bergen.

LONG, B. 2004. A Study of Java Games in Bluetooth Wireless
Netowrks. Master’s thesis, University College Cork.

LU, N. 1997.Fractal Imaging. Academic Press, San Diego, Lon-
don, Boston.

LUCAS, G., AND MARQUAND, R., 1983. Star wars, return of the
jedi. DVD Release Sept 2004.

MEYER, N., 1982. Star trek: The wrath of khan. DVD Release
May 2003.

MPI. Message passing interface.http://www-unix.mcs.anl.
gov/mpi/.

MURTY, R. 2004. Juliet: A distributed fault tolerant load balancer
for .net web services. InProceedings of International Confer-
ence on Web Services (ICWS’04), IEEE.

NOKIA . Nokia platforms. http://www.forum.nokia.com/
main/0,6566,010,00.html.

NOKIA , 2004. Introduction to developing net-
worked midlets using bluetooth. http://www.
forum.nokia.com/info/sw.nokia.com/id/
c0d95e6e-ccb7-4793-b3fc-2e88c9871bf5/
Introduction To Developing Networked MIDlets
Using Bluetooth v1 0.zip.html.

O’M AHONY, C. 2004.Distributed Multimedia Processing. Mas-
ter’s thesis, University College Cork.

SETIATHOME. The search for extra terrestial intelligence at home.
http://setiathome.ssl.berkeley.edu/.

SONY-ERICSSON, 2004. Developing applications with the
java api’s for bluetooth (jsr-82). http://developer.
sonyericsson.com/getDocument.do?docId=65246.

SONY-ERICSSON, 2005. Java platforms for sony-ericsson.
http://www.sonyericsson.com/developerimages/
javaplatformversionsandscreensizesjune2005.xls,
June.

SUN-M ICROSYSTEMS. Sun java studio mobility 6 2004q3.http:
//www.sun.com/software/products/jsmobility/.

SUN-M ICROSYSTEMS. Windows wireless toolkit.http://java.
sun.com/products/sjwtoolkit/download-2 2.html.

68

	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability
	4.1. Operating systems and cameras
	4.2 Multilingual configuration

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB
	5.2. Database format
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook
	References
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf

