
 Developing Mobile 3D Games Using MIDP 2.0 Game API and JSR 184
Mobile 3D Graphics (M3G) API

Yu Han
School of Computer Engineering

Nanyang Technological University

#45-6-861 Hall of Residence 9
24 Nanyang Avenue, NTU

Singapore 639811
Telephone number 65-93363651

yuha0002@ntu.edu.sg

Abstract
This paper discusses in details how to apply the JSR 184 M3G
API and the MIDP 2.0 Game API in the development of mobile
3D immersive games based on two games developed by the
author. The use of third party content creation software, the
problems of importing .m3g format resource files and the
solutions proposed by the author will also be addressed.

As the processing power of mobile phones is still not up to the
requirement of 3D immersive games, it is essential that the games
are properly optimized to offer a satisfying gaming experience
with reasonably fast frame rate. The optimization techniques
which were employed to solve specific problems arising during
the development of the sample games will be illustrated in detail.

Keywords
MIDP 2.0 Game API, Mobile Game Programming, Mobile 3D
gaming, JSR 184 M3G API.

1 Introduction

The Java Mobile 3D Graphics (M3G) API has the power to turn
a good game into an outstanding mobile gaming experience and
profoundly change the way of presenting information on mobile
devices. As the standard implementation of JSR 184 matures and
the Java 3D enabled devices become widely available, mobile 3D
games are starting become common commercialized applications
instead of just being research topics in the laboratories.

Although proprietary 3D graphics software does exist in the
current market, the trend among the mobile industry is to
implement and support a common 3D graphics API that will
facilitate portability of the applications and ease the process of
development. For Java, the JSR 184 M3G API is considered the
most suitable candidate. This paper discusses in details how this
API combined with MIDP 2.0 Game API can be used not only to
develop 3D immersive mobile games but also to improve the user
interface of the game, while in some cases increasing the memory
footprint of the application.

Moreover, the limitations of memory and processing power still
exist for mobile devices and must be properly addressed in order
for computationally expensive applications such as 3D games to
run. This paper will also discuss several optimization techniques
which can be employed to improve the performance of the games.

2 Exposition

2.1 Building Lightweight GUIs with MIDP 2.0

Game API
Previously, the GUI of the mobile games for the control and game
settings were written simply based on J2ME built-in container
classes such as Form or List. However, this has become
increasingly inadequate given the high demand from consumers
for more visually appealing GUIs. Using proprietary software to
create GUIs requires the developer to learn to program in their
specific ways and may sometimes involve licensing problems.

One way to solve this problem is to use the J2ME MIDP 2.0
Game API to write GUIs tailored to the specific game. The Game
API offers excellent support in manipulating graphics and
animations. If implemented as a Runnable thread, it enables the
use of polling technique to simulate key events.

Even though the APIs allow porting applications to different
devices, even across vendors, the size of the display varies from
device to device. Therefore the UI elements should not be
positioned using absolute coordinates, but in relative coordinates
based on the screen size and the size of the content. For example,

X =((screen width) – (string width))/2

69

Figure 1: User menu implemented with Game API

The required information can be extracted from Font and
GameCanvas classes. With each up or down key press, the
indicator is moved by a predefined amount along the vertical axis
to correspond to different choices. Internally, an index is updated
to log the information of which option is currently highlighted.
With the press of the select key, the current thread is terminated
and the respective function handling the event is called.

Figure 2: Flowchart of simulating key events using polling

When large numbers of resource files are being loaded, the game
may appear not responsive for a long time. Users may suspect
their mobile devices are crashed by the program and undesirable
actions such as shutting down the device may be taken. To add in
more interactivity, a progress bar can be implemented using J2ME
MIDP 2.0 Game API to show the progress of loading the game. In
the loading function, set different points to update a global integer

value which represents the percentage of the game loaded. Then
in the second thread, keep reading this value and redraw the
progress bar. In this case, a separate thread is mandatory for the
loading and drawing of the progress bar to be executed
concurrently.

Figure 3: Progress bar for loading the game

2.2 Loading M3G Files
M3G files are a specially defined group of files which caters
specifically to the JSR 184 M3G API. Objects or even entire
scenes created with content creation tools such as 3D Studio Max
or Maya can be exported as .m3g files and used by mobile games.
This enables the games to have fairly complex objects or scenes
which, in turn, enhance the gaming experience of the players.

However, loading a .m3g file may not be so straight forward as it
seems to be. There is a discrepancy of implementation between
the scene graph hierarchy of the .m3g file format and the JSR 184
M3G API: in the API, the root of the scene graph is an object of
class World and all other 3D objects are children of this World
object. But in the .m3g exporter, the root of the scene is an
instance of the class AnimationController. Because of this
difference, the developer must do a manipulation in the program
to extract the World object out.

As each .m3g may have different indices for different objects,
there is no way to be certain which index corresponds to the
World object. In order to extract the desired object, the World
object must be found first. Therefore, we use the following piece
of code to locate the World object:

 Object3D[] roots = Loader.load(filename);

 World world;

 for(int i = 0; i < roots.length; i++){

if(roots[i] instanceof World){

world = (World)roots[i];

break;

}

 }

70

Figure 4: Scene graph of a .m3g file

Loop through the objects and find the only one which is of World
type. As only one World object is allowed in each .m3g file, we
can be certain that the World object is found when we first
encounter it and exit the loop.

Another problem associated with .m3g file arises from the fact
that each 3D object can only be child of one World. When
multiple instances of the same object need to be present in the
same World, the resource file needs to be reloaded and the object
re-extracted which takes considerable amount of time. This
problem will be addressed in detail in the later optimization
section.

2.3 Perspective Distortion
When using graphics primitives such as triangleStrip to construct
planar surface, perspective distortion may occur during texture
mapping

Each planar face of the wall in Figure 5 consists of 2 triangles.
When drawing the pixels of the texture, the positions of the ones
near the upper edge are calculated with respect to the upper edge
and the positions of the ones near to the lower edge are calculated
with respect to the lower edge. Since these two edges appear to be
not parallel from this perspective view, distortion occurs. The line
separating the two triangles can be seen clearly in the figure
below.

.

Figure 5: Perspective distortion

To alleviate this problem, more triangles can be used to represent
one planar surface. As more and more triangles are added in, the
effect of perspective distortion appears to be less and less
noticeable. However, this method not only consumes more
memory to store the extra triangles, it is also tedious for
programmers to implement. Instead, the M3G API provides a
function called setPerspectiveCorrectionEnable(boolean
enable) in the PolygonMode class which eliminates the
perspective distortion. However, the perspective correction flag is
only a hint, so some implementations may not respect it.

Figure 6: Perspective correction

2.4 Collision Detection
The JSR 184 M3G API provides a pick() function under the
Group class for collision detection by ray intersection. An
imaginary ray is cast from the center of the camera to infinity and
the first mesh surface intersecting it at a predefined distance is
considered causing a collision. This method is considered
sufficient when navigating in a complex scene setting and there
are too many objects to test for potential collisions by
implementing bounding box or bounding sphere. However, the
ray cast is only along the same direction as the camera. Therefore,
when trying to detect collision during backward motions, the
camera has to be temporarily reversed, test for collision, then
reversed back.

71

Figure 7: Collision detection by ray casting for firing of

ammunitions

However, the pick() function may be implemented differently by
some mobile phone manufacturers (I have tried using the pick()
function with SonyEricsson phones and the collision detection did
not work). Moreover, it is not suitable to use when the
ammunitions are to be seen flying away (e.g. firing a missile).
Therefore, in this case, bounding box or bounding sphere should
be used.

Figure 8: Bounding box collision detection

For mobile devices with limited processing power, bounding box
is a better choice since it requires less calculation to detect a
collision:

(X1-X2)² + (Z1-Z2)² + (Y1-Y2)² < distance²

In the case when all the objects appear on roughly the same level,
a bounding cylinder can further simplify the calculation and
thereby improve the performance of the game:

(X1-X2)² + (Z1-Z2)² < distance²

In this case, a cylinder along y-axis with infinite height is used for
collision detection.

2.5 Optimization
Due to the limitation of memory and processing power of mobile
devices, the games should always be optimized in order to make
efficient use of the resource and achieve better performance. This
is especially the case for 3D games which generally require more
expensive computations than 2D games when rendering the
screen.

First of all, not all the components have to be 3D. The graphics
shown on the screen are basically a way of presenting the
information and logic of the game, so whenever possible,
developers should resort to 2D graphics which generally render
faster. For example, in Figure 8, there is a jet fighter image
attached to the camera. It banks to the left or right when the player
presses the left or right key respectively as shown in Figure 10.
To use a 3D model to accomplish this requires a lot of
computations when rotating the plane and rotating the camera
about the plane. Instead, we use a 2D image with the various
positions of the plane pre-captured and place the corresponding
image on the screen when necessary.

Figure 9: 2D images of the plane

Figure 10: Plane banking to the right

Thread objects should not be used unless absolutely necessary.
By creating too many processes running concurrently, the
overhead of context switching can make a 3D mobile game run
unbearably slowly. Therefore, sometimes it is a good idea to
manage all the moving objects in several Vector objects and
move all of them in the same Thread running the game loop.

As mentioned in earlier section, the M3G API disallows one
Object3D instance to be child of multiple Worlds. By default,
there is a World object in every .m3g resource file and even if one
only wants to export a 3D object, it is automatically attached to
this default World.

72

The most intuitive way to solve this problem is to load the
resource file each time one new instance of the object is needed,
extract the object, remove it from the old World and attach it to
the World in which the game is set. However, loading external
resource files takes a long time and this can cause a significant
delay during the game play, resulting in disruptive and unpleasant
gaming experiences.

To eliminate the delay, a concept similar to double buffering has
been employed in one of my games. For each 3D object for which
multiple instances might be needed, one copy of it is stored in the
memory throughout the playing time of the game. Each time a
new instance is required, the original copy is duplicated and the
new copy is attached to the World. To do the duplication, the
duplicate() function of Object3D class is used. It not only
creates an exact replica of the original object but also set the
parent to null if the object is a Node. Then this new copy can be
a child of the game World without causing any error.

Although this method consumes more memory by saving one
copy of each object regardless of whether it is being used, it
eliminates the need to reload external resource files and thereby
remove the long pauses during reloading. Overall, the
performance of the game is improved.

Alternatively, the components of the object like IndexBuffers and
VertexBuffers of a mesh can be replicated and the mesh
reconstructed later. However, to locate these pieces of information
in the .m3g exporter file requires the knowledge of the indices of
them. And more often then not, the sheer amount of IndexBuffers
and VertexBuffers involved in complex models would make
implementing this method a daunting task.

3. Observation
Although there have been significant improvements in the
processing power, memory capacity and floating point support in
the recently launched mobile phone models, the 3D graphics
performance does not offer a very satisfying game play experience
especially in the case of a first-person-view game.

However, with the proper application of the optimization
techniques mentioned above, an approximately 30% increase in
frame rate has been achieved.

Phone Model Frame rate before
optimization /FPS

Frame rate after
optimization /FPS

SonyEricsson K300 6.5 11

SonyEricsson K500 7 10.7

SonyEricsson K700 8.3 12.5

SonyEricsson
F500i

7.6 11.5

Table 1: Performance of the same game before and after
optimization on various phone models

The values shown above are average values for one complete
game session on actual devices. With further refinement in
optimization techniques and continued improvement in mobile
phone hardware, the 3D immersive games developed with JSR
184 M3G API will surely achieve a satisfying frame rate of 20~25
FPS and offer a new outlook to the mobile gaming industry.

References:
SonyEricsson general article, Java 3D - a new opportunity
in mobile gaming, March 9, 2005

Qusay H. Mahmoud, Getting Started With the Mobile 3D
Graphics API for J2ME, September 21, 2004

Sony Ericsson Developers Network, Mobile 3D Graphics and
Java Applications Development for Sony Ericsson Phones,
November 2004.

Sun Microsystem Inc, JSR 184 Mobile 3D Graphics (M3G) API.
http://java.sun.com/j2me/docs/index.html

Tomi Aarnio, Kari Pulli, Nokia Research Centre,

Advanced Game Development with the Mobile 3D Graphics API

Alexei Sourin, Computer Graphics – From a Small Formula to
Virtual Worlds, published in 2005 by Prentice Hall, ISDN 981-
244-743-1

73

	sigrad05_inlaga_paginerad.pdf
	11R_barrera.pdf
	12R_pettersson.pdf
	13R_revall.pdf
	21APP_almgren.pdf
	Abstract
	Keywords Augmented Reality, Tangible User Interface, Education, Organic Chemistry, Octet Rule, GUI, TUI
	CCS
	1. Introduction
	2. Tangible user interface (TUI)
	3. GUI and TUI, dual mode, 3D rendering
	3.1. GUI and TUI: design issues
	3.2. Dual mode: textual and aural information
	3.3 Improved 3D visualization and rendering
	4. Portability
	4.1. Operating systems and cameras
	4.2 Multilingual configuration

	5. Ability to import from an external molecule DB
	5.1. Advantages of an external DB
	5.2. Database format
	5.3. Conversion from external to internal data structure

	6. Discussion and outlook
	References
	Acknowledgements

	22APP_johansson.pdf
	23APP_lindemann.pdf
	31WIP_Henrysson.pdf
	32WIP_kangas.pdf
	33WIP_lundin.pdf
	34WIP_olsson.pdf
	35WIP_persson.pdf
	41_doolan.pdf
	42_han.pdf

