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Figure 1: Snapshot from interactive simulation of a defdstedoeam and solid sphere

Abstract

A novel, fast, stable, physics-based numerical methodnferac-
tive simulation of elastically deformable objects is prese. Start-
ing from elasticity theory, the deformation energy is medein
terms of the positions of point masses using the linear shape
tions of finite element analysis, providing for an exact espon-
dence between the known physical properties of deformaideeb
such as Young’s modulus, and the simulation parameter.eByitrg
the infinitely stiff case as a kinematic constraint on a systépoint
particles and using a regularization technique, a stalde dider
stepping algorithm is constructed which allows the simatabf
materials over the entire range of stiffness values, inolythcom-
pressibility. The main cost of this method is the solutiomdihear
system of equations which is large but sparse. Commonlyadlai
sparse matrix packages can process this problem with lcwar
plexity in the number of elements for many cases. This metbod
contrasted with other well-known point mass models of detdile
solids which rely on penalty forces constructed from siniptal
geometric quantities, e.g., spring-and-damper models. tHese,
the mapping between the simulation parameters and thegathysi
observables is not well defined and they are either stromgliyed
to the low stiffness case when using explicit integratiortrods, or
produce grossly inaccurate results when using simplerdinéa-
plicit method. Validation and timing tests on the new metkhdw
that it produces very good physical behavior at a moderateoe
tational cost, and it is usable in the context of real-timeractive
simulations.
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1 Introduction

Simulation of elastically deformable objects is a necgdsit cre-
ating certain types of virtual environments, such as theségtied
for surgical or heavy vehicle operator training applicasipfor in-
stance. This problem has generated interest recently andrays
of well-known methods can be found in [Nealen et al. 2005]. We
focus here on numerically stable methods for integratingté de-
formable objects at interactive rates over a wide rangeiffiass,
including incompressibility and the nearly rigid limit, éon es-
tablishing a clear correspondence between the known rabperi
rameters used in elasticity theory—such as Young’s moétduthe
simulation parameters.

We will briefly describe the most commonly used techniquesd an
explain how they fail for high stiffness, either losing sté yield-

ing grossly inaccurate results, or both, and how they laclearc
correspondence between simulation parameters and physipa
erties. Observe that both full incompressibility as welfudkrigid-

ity are cases of infinite stiffness. We argue that the key to ha
dling theinfinite stiffnessegime is to reformulate the problem as a
kinematically constrained dynamical system. The recoweéfinite
stiffnessis done using a constraint regularization and stabilizatio
technique which amounts to a numerically stable penaltyrtiegie
with the strain energy as the penalty function. Formulatboon-
strained mechanical systems and techniques for solving tHave
been presented before in the graphics literature in [Witkiral.
1990] [Baraff 1996] and [Erleben et al. 2005]. The idea ohgsi
standard energy terms for generating penalty force hasbalen
used several times before [Terzopoulos et al. 1987][Tesychnal.
2004]. It is the mixing of these two ideas in a numericallybita
way which is novel, and this is achieved by constructing aigpe
integrator which is semi-implicit [Lacoursiere 2006] iprabina-
tion with appropriate formulation of energy and dissipatierms.
The resulting method can handle stiffness from zero to ityfimith-
out developing instabilities though the effective stifeseand accu-




racy is limited by the size of the time step. Since stabiliyges on
reasonably accurate solutions of a large system of linesatems,
performance is achieved by exploiting sparsity in a direbter as
was done in [Baraff 1996], for instance. Validation teses@nclu-
sive in demonstrating good agreement between the simypéest
ical properties and the input parameters. Using a wideljlable
sparse matrix package, UMFPACK [UMFPACK ], we achieved lin-
ear complexity as a function of system size and sufficiertsy &x-
ecution for interactive rates for moderately sized systems

1.1 Contribution and organisation of this paper

Section 2 provides background of particle based simulaifate-
formable materials. Previous work is reviewed and the aidhepas
and shortcomings of the different strategies are discussesec-
tion section 3 we consider a simple example that elucidaieses
of the ideas and pitfalls. We argue that the key to fast and sta
ble simulation even in the stiff regime is to reformulate greb-
lem as a kinematically constrained dynamical system. The ne
method for simulating elastic deformable materials is @nésd in
section 4. This method combines the technique of regukisiza
and stable stepping of constrained systems — describedsy(Z)
—and elasticity modeling based on well established mateddels

— specified by Eqg. (15). The model is evaluated, through nizaler
experiments, and discussed in section 5. Summary and cioetu
are found in section 6.

2 Particle system models for deformable
objects

There are several ways to represent deformable objectsdouoe-w
strict our attention to those represented as a set of irteggooint
masses, namely, lumped element models. Elastic propeftibe
bodies are constructed by defining various forces and @intdr
on the particles so that all constraints are satisfied anidtalinal
forces cancel out when the body is in the reference configurat
A recent survey of techniques for simulating deformableotyj is
found in [Nealen et al. 2005]

We denote the particle positions ky= (x(VT,x(@T  x(NT)T,
wherex(® = (") x§) xI))T is the 3D position vector of particle
i, with the parentheses emphasizing that it is a particledndter
than a component of a vector, aNds the total number of particles.
The particle velocities are = x and the particle masses') are
collected in the diagonal mass matfik of dimension Bl x 3N.
The equations of motion are:

X=V
MV = Fext+ Fint + Fc

@)
)

where the total force is divided into external forEg, internal
force Ry and constraint forc&:.. Sometimes we agglomerate the
external and internal forces info= Feyi + Fint.

2.1 Geometry, energy and force

General penalty forces derived from energy functions forusat-
ing deformable elastic objects were introduced in the graditer-
ature by [Terzopoulos et al. 1987]. The idea is to defjeemetric
displacemenfunctions ¢ (x), which vanish in the rest configura-
tion, and a potential enerdy(x) = ;(ki/2)@?(x), where thek's
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are positive stiffness parameters. The functigr{g) might be the
local curvature for a string or that of the surface for a meanbr
instance. Other examples include deviation from rest dcgtede-
tween two particles, j, with @ (x) = ([Xy —X(jy| = Lij)/Lij, where
Lij is the rest distance. The resulting energy representsthdire
ear spring. The force generated from the potentigk) is well
known to be:Fn = —dU /dx. Note that this is linear i (x) and
therefore, all forces vanish at equilibrium, as neededviBeal the
Jacobian matriX) = d@/dx has full rank at the equilibrium point,
the restoration forces alimear in the geometric displacements.

Therefore, the art of this formulation is to chose displaeetfunc-
tions ¢ (x) which do not have zero derivatives near the equilib-
rium, and which are linear independent of each other at or nea
the equilibrium point. In computing the bending energy for a
cable made of point masses for instance, there is a zeroaderiv
tive condition if one takes the bending displacement végiats:
&(X) = (IX(i+1) — X(i—1)] —2Lo)/(2Lo). There are several such
cases which are not so obvious and which arise accidentaignw
trying to brace a set of particles with springs so as to predac
unique rest configuration that is stable under arbitrargiaeéitions.
This sort of problem is usually solved using inverse trigoedtric
functions, as is done in the construction of shear restordtirces

in cloth simulation [Baraff and Witkin 1998]. This can be tgui
expensive computationally and produce unexpected results

This energy based penalty formulation was developed sygtem
cally for handling elastic solids in [Teschner et al. 200¢]defin-
ing three types ofleometriadisplacements, namelgistancesvol-
umes andsurface areasThese displacement functions involve the
coordinates of two or more particles and generate forceheset
via the potential energy function. To do this, the volume iistfi
cut into a set of tetrahedra, each of which contains fouriglast
one at each vertex. Each particle is included in one or skwéra
these. Then, distance displacement functions are defirtecdée
a particle and its nearest neighbors, using the rest coafigarfor
labeling. Then, a volume displacement function is definddgus
the coordinates of the four particles in each tetrahedramallly, a
surface area displacement function is defined by measuranagrea
of the free surfaces of the tetrahedron and subtractingetttearea.
One can then choose independent parameters famutimpressibil-
ity, the stiffness and thesurface tension This approach is an im-
provement over standard spring-and-damper models, wixtra e
springs are introduced to model some of the material pregsert

The first problem with this model is that these three pararsete
are not completely independent so that mapping to knownnmbte
properties is difficult as discussed in [Nealen et al. 20@5sen-
tially, the true deformation energy, that is easily meagurethe
lab and tabulated in handbooks, might not have such a simge m
ping to the simple geometric quantities of the system ofigdas.
This is very clear in the case of a string where definition afdieg
energy is difficult and torsion impossible, when considgramly
point particles.

The second problem is that forces generated by this modebtio n
converge in the limit of infinite stiffness, even though thegdcto-
ries of the particles are mathematically well behaved is Limit.
Indeed, as demonstrated in [Rubin and Ungar 1957], the fyenal
forces typically oscillate wildly in the limit where the #tiess con-
stants become large. This is not an intuitive result sineectin-
straint forces are well behaved in the case where the kineowat-
straints@ (x) = O are rigorously enforced. Therefore, it is gener-
ally difficult to integrate systems with large penalty foscéVhen
using explicit integration methods, the time step is limite less
than a fraction of the smallest natural period of oscillaioln the
present case, if all particles have identical massehis period is:
Tmin = 211y/M/Kmax. This stability requirement seriously limits the



maximum stiffness or the performance. Some special inplici
merical integration methods improve stability but greattmm is
needed. For instance, when using the linearly implicitgraéon
strategy of [Baraff and Witkin 1998] however, the stiffnesstric-
tions are not so severe but artificial damping is clearlyasatble,
limiting the usefulness of the method.

Two remedies are provided in the next section. The first isfia de
nition of the potential energy of deformation which is nosed on
the simple geometric quantities but which correctly masstinain
tensor of elasticity to particle positions. This is simitarwhat is
done in finite element methods. The second is a stable rézaHar
tion of constraints so as to remove the high oscillatory conemts
of standard penalty force formulations.

2.2 Constraints and regularization

Kinematic constraints impose restrictions on the motiothefpar-
ticles in the system. For instance, we can simulate a pamicv-
ing on the plane = 0 by imposing that restriction directly on the
coordinate, thus bypassing the computation contact fandsac-
celeration due to gravity. It is well known in physics thaté&matic
constraints of the forfq(x) = 0 are the physical limit of strong
potential forces of the forntk; /2) @?(x), for very largek; and this
has lead to two main strategies for solving constrainecesyst

The first is to formulate the equations of motion taking thetnie-
tions 1 (x) = 0 into account as is described in [Erleben et al. 2005]
for instance. This requires the computationaminstraint forces
which are the solution of a non-linear system of equationke T
main problems here are that even when linearizing, thiseayst
of equations can be computationally expensive to solve,taad
the trajectoriex tend to drift away fromg (x) = O because of dis-
cretization and approximation errors. The common strateghn-
earizing the equations for the constraint forces [Baraf6]l%and
stabilizing the constraintg (x) = 0 [Baumgarte 1972] is notori-
ously unstable and this has given the constraint method rbadh
press. Stable and efficient methods for solving constrasyetems
do exist though and we will provide one of these in the nextigec

The second strategy is to include the potenti&l$2) ¢?(x) and the
corresponding forces. This latter approach is known as alfyen
force computation. At the mathematical level, there is anigs
correspondence on the trajectories produced by these ttmdwe
in the limit of infinite k;. Given the simplicity of this formulation,
penalty forces are very attractive. But this is deceptivelekd, a
little known fact is that penalty forces do not converge ®3mooth
constraint forces corresponding ¢gx) = 0. As shown in [Rubin
and Ungar 1957], the penalty forces oscillate with very High
quency in the limit of largés;. In technical terms, the convergence
of the penalty forces is only weak This means in particular that
the average value of the penalty forces, over a short inteftane,
At, say, does converge to the smooth constraint force. Nugiltic
this means that high penalty forces quickly generate iilitab
which can only be resolved using special integration tequnes de-
signed for highly oscillatory systems. Some implicit imatgprs
work well on highly oscillatory systems but some don't anchae
of the latter is the first order implicit Euler method.

What we seek is a combination of the two strategies so thatwe c
recover the stability of constraint computation but alltw thodel-
ing flexibility of penalty forces. To do this, we first statestbqua-
tions of motion of the constrained system. We collect all¢be-

1We consider only time independent equality constraintge.herequal-
ity constraints may be used for non-penetration conssamy., for colli-
sions and contact.
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straint terms in a vector functiop(x) with sizenc, the sum of the
constraint dimensions. Of coursegifx) = 0 at all times, we have
@(x) = 0 and by chain rule, this ig(x) = Jx whereJ is known as
the Jacobian matrix ap. The components afare[J];; = @ /9x;.
Recall that for any surface defined with a scalar functiochsas
@(x) =0, the gradient ofa(x) is normal to the surface, and that
moving along the gradient is the fastest way to move away from
the surfaceg (x) = 0. We want the constraint forces to directly op-
pose any force trying to move the system away from the swsface
@(x) = 0. Itis therefore constructed as a linear combination of the
constraint normalsE. = JT A, whereA is a vector withn; com-
ponents, one for each constraint. What are the values ofdime c
ponents ofA? Well, just what is necessary to remove any part of
resulting forces which point in the direction normal to arfytize
surfacesq (x)! Of course, since the point moves in a direction
tangentialto any of the constraint surfacegx) = 0, the constraint
forces we just defined are workless. When this is taken imgide
eration, and after writing = x the differential algebraic equations

of motion for the constrained system are:

X=v ©)]
MV = Fext+ Fint + Fc 4)
®(x)=0 ®)

This is a nonlinear system of equation and a common strasetgy i
replace the constraint with a linear combinatiap(x) + a@(x) +
bp(x) = 0, which is mathematically equivalent and stable if the
coefficientsa andb are positive. The resulting equation is linear
in v as is easily verified, and the full system of equations (3)—(5
is then discretized as any other second order ordinaryrdiftel
equation. This strategy is now getting known as &lceeleration
basedmethod in contrast to so-calleélocity baseanethods which
we describe shortly. Note that this nomenclature is onlylus¢he
graphics literature. The problem here is that numericaliktyais
strongly dependent on the choice of thandb parameters. How-
ever, there is no systematic strategy for choosairand b which
work in all cases. Choosing andb too small leads to constraint
drift so that|¢| increases with time, but choosimgandb too large
makes the system explode. Conversely, a solution of thdigtah
equations of motion with non-zero coefficiemtd, even when sta-
ble, is not necessarily a solution of the original systengofations.
This method is a very bad idea indeed. Curiously, this is thetm
popular scheme in the graphics literature where it goes tmatie
early 1990s [Witkin et al. 1990].

The alternative is to discretize the velocity and acceienatefore
attempting to linearize the constraiptx) = 0. This is covered in
Sec. 2.4.

As was mentioned previously, constraints can be realizethas
limit of strong potentials. If we keep the strength finite ugh
large, this is a form of regularization if we find a way to write
equations of motion in terms of the inverse of the large rets.
When discretized judiciously, this scheme can produceesiaid
efficient time stepping scheme of systems with either cairgts or
very strong forces. In fact, almost the entire range from ibfio-
ity is allowed, although some elasticity may remain in thinite
case as a numerical error. Relaxing the constraints by hkgepi
finite but large penalty parameter (or small regularizaparame-
ter) has the added benefit of removing numerical problemshwhi
occur when constraints are degenerate or over defined, drao
stabilize the linear equation solving process by makingrbg&ices
strongly positive definite. In other word, we are trading itifenite
stiff limit for speed and numerical stability.

Starting from a constrairg we construct the potential energy:

U = 30" (a o(x) (6)



for symmetric, positive definite matrig of dimensiond; x dc.
The correspondence to the penalty terms defined previosishei
case whera 1 is a diagonal matrix and where the entries on the
main diagonal are the stiffness parametgrs The limit a — 0
corresponds to infinite stiffness amd— o to zero stiffness. In
the case of distance constraints the corresponding pakastia
spring potential, with spring stiffness—1. SinceU(x) is a po-
tentlal energy term, |t1produces forces in the standard nayely:
de/Bx a (p, whereJ is the Jacobian matrix of
the functions@(x) as before. Next, in order to replace the large
parametersr —1 for the smalla in the equations of motion, we in-
troduce an artificial variabl@d = —a~1¢ such thafFc = JTA. For
the regularized system the equations of motion are modified t

X=v (7
Mv = FeXH" Fmt + Fc (8)
aA (th) = *(P(X,t). (9)

Note that in the limit of infinite stiffnessy — 0, the Egs. (7)—(9)
are free from singularities and reproduces the system%B)¥he
trick now is to discretize this avoiding the high frequenscitia-
tions in the constraint forces. Note also that a first ordssigative
term of the form—B¢, with 3 > 0, can be also added to the right
hand side of (9) without affecting the limit — 0 as long ad — 0
simultaneously.

2.3 Elastic deformation energies

Now that we have seen how to transform quadratic potentexiggn
terms into constrained systems and vice versa, we constpaten-
tial energy term for elastically deformable materials agfire the
functionsg(x) used in (6). Instead of using the intuitive geometric
displacement functiong(x) however, we turn to elasticity theory in
order to approximate the strain tensor—a measure of defmma

in terms of the coordinates of the constituent particlee Bénefit
here is that all parameters entering the simulation arecttijree-
lated to the known, tabulated material properties. Elagtibeory

is rigorously covered in Ref. [Fung and Tong 2001] and more ac
cessible for the purpose of physics based animation in Rd&ljen

et al. 2005].

We will consider only linear (Hookean) and isotropic elastiateri-
als here. This means specifically that the relation betwsedefor-
mation and the restoring force is linear and therefore, titergial
energy is quadratic in the deformations. To discretize #fertna-
tion and thus express it in terms of the particle coordinatesuse
a spatial discretization found iimite element analysigestricting
our choice to lineashape functionsind tetrahedral meshes. The
mass is lumped at the nodes which correspond to point pesticl

To parametrize the deformation of a solid, we first consitiat t

it occupies some domaiB in 3D space, in its rest configura-
tion. Considering infinitesimal displacements first, eaompr =
(r1,r2,r3)7 is moved by a small amounty(r), so that its new lo-
cation is:r’ =r 4+ u(r). This defines the vector field(r) over the
domainB. The field is needed for constructing a measure of de-
formation which is estimated by measuring the change irmdcst
between two nearby points.

We assume thd is divided into a set of tetrahedra in what follows
and concentrate the analysis on a single tetrahedron cetpmds
four nodal particles with current position& (t),a = 1,2,3,4.

The domairB is now the original, undisplaced, undistorted volume
of our tetrahedron. To construct a mapping which relates¢lceor
fieldu(r), to thecurrentpositions of the nodes, we need to compute
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the current displacement of each node as well as an inteiqpla
shape function. The role of the shape function is to distelibe
displacements at the nodes to displacements at the infaints
in B so that if the nodea; has a large displacement but noale
has none, the displacement field increases smoothly bettvesa
two nodes. We define(@ to be the full displacement vector of

nodal particle(a) from an arbitrary initial positiorxga) =x@(0)
a)(t) —

where the tetrahedron is at rest, say, so we ha®:= x(
x(()a). The simplest case is to use a linear interpolation so thheif
vectorsu(® are the nodal displacements at each nadghen, the
displacement field reads:

ur) = ZN<a)(r,x)u<a),

@

(10)

where summation is over the four particles in each tetrairedmd
xis the current configuration vector. Details of the full gation of
the shape function are found in [Erleben et al. 2005] foranse.
The linear shape function is a scalar function of the form
N@(rx) =V~

L@@ 4 0@ry +c@ry+d@rg),  (11)

whereV (x) is the volume of the tetrahedra and the coefficients sat-

—1
al) a2 a3 @) 1 1 1 1
bl p@ p® p@ NONENC) (3> 4
@ @ @ @ %1 3 3 X§4) 12)
4 4@ 4@ 4@ 51> %) ?3 )

X3 X3 X3

A few important observations must be made here. First, thtove

r used inu(r) is in the interior of thecurrenttetrahedron formed by
the current coordinates of the nodé®. Second, the displacement
fieldu(r) is not small. Indeed, a uniform translation of all the nodes
by a vectory produceau(r) =y, which is arbitrarily large. A uni-
form rotation of all the particles also causes large changesr ).

But the displacement field itself is not the measure of deftion.
Instead, the Green strain tensor, which measures localtiars in
distances between close pointandr + dr, is what is needed. This
is defined in terms of thderivativesof the displacement field as:

0u.

This tensor is symmetric and is therefore parametrized witiix
dimensional vectore = (€11, £22, £33, €12, €13, 823)T. The quadratic
term is often ignored but is necessary here if we want zeginstr
under rigid displacements.

au;

o (13)

3 ari drj ’

The Green strain tensor is a good measure of small deformatio
but we use it for arbitrarily large ones. This can pose a bl

if the four nodes collapse onto a plane, in which case, Eq). (1
cannot be solved. Worse still, after going through a planfapse,

a tetrahedron can beconrerertedand eventually go to rest in an
inside-out configuration. This can be remedied by addingxéma e
constraint to the system stating that the determinant afteix on

the left side of Eq. (12) should be near unity but we do not yeirs
this further here.

Computing the derivatives of the displacement field is gtrai
forward but tedious. The resulting expressions are founfEin
leben et al. 2005] for instance. The Ref. [Bro-Nielsen andirCo
1996] is also useful for making implementations.



We now construct a potential energy in terms of the straif var
ables which are the natural measures of deformation. Folean e
tic material, the deformation energy per unit volume is giv®y
W(x) = 1¢TDe, where:

A

A
+2u

0

0

0

Ar2u A
A+2u
A (14)

OO O >>
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T Oo0oooo

A
0
0
0

and A and u are the Lame constants which are directly related
to other common material parameters such as Young’'s madulus
Y, bulk modulusB and Poisson ratiw, via simple algebraic re-
lations, namely:Y = u(3A +u)/(A +u), B=A+(2/3)u, and

v =(1/2)A /(A + ). The matrixD is symmetric and positive defi-
nite as is well known. For large values bthe material approaches
incompressibility and with increasing valuesothe resistance to
shearing deformations increases. Typical solids have &sunod-
ulus ranging from 1M Pa for rubber to 2GPafor Nylon, and up

to 1000 GPa for diamond. The Poisson ratio ranges between 0
(compressible) and/2 (incompressible). This means thatand

u ranges between the order of the Young’'s modulus and infinity,
A — oo latter being the limit of incompressibility.

We are now ready to formulate the kinematic constraint pcody
rigid body motion for a tetrahedron and the potential endayy
elastic deformations. As the deformation enevgfx) is an energy
density, the potential energy for elastic deformation aftesthedron
is the volume integral of this expression:

U=VW=1(vig)TDV2e). (15)

We identify the constraint for rigid body motion of a tetrahen

as 0=¢@= Ve and the constant matrig in the regularization
description is identified aso = D~1. We will employ this en-
ergy function for particle systems representing elastfordeable
objects.

As noted previously, matriB is constant, symmetric, and positive
definite. It can therefore be factorized to the fofrha ~1Q where
Q are constant orthogonal matrices and! is diagonal with non-
negative entries. The vector of constraigtdefined previously can
therefore be associated with= Qe. Note here that the matri®
essentially rotates the strain components, mixing thenwiayathat

is dependent on the ratio between the Lamé constants. Tiisgn
explains, in part, why simple geometric penalty functionruat be
mapped easily to the physical parameters, even though tiatpe
terms are constructed from an identical tetrahedral mesh.

2.4 Time stepping

Details of numerical integration methods plays a criticégin sim-
ulation stability, accuracy—as well as the loosely definetions
of realism or plausibility—and even more so when using low or
der algorithms. The special objective we have in mind her is
stable integration of the highly oscillatory forces argsiinom the
regularized constraint forces, combined with speed and demo
ate level of accuracy. This contrasts with the numericalyasia
literature where onlyverall efficiencyis considered, namely, the
accuracy achieved for a given unit of computational effémtad-
dition, accuracy is generally measured in terms of locallobg
error bounds on the solution itself. In simulating physiggdtems
however, accuracy can also be measured in terms of preisercit
known invariants of the trajectories such as momentum,ggmer
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symplecticity of the flow, see Ref. [Kharevych et al. 2006ince
the equations of motion are differential formulations o tton-
sequences of these global invariants on the trajectoriesgrical
preservation of these invariants has a strong impacts disnea
For low order methods, the distinction is particularly ais as
we illustrate below. In fact, some low order methods, sucthas
popular symplectic Euler [Kharevych et al. 2006]-also knaxs
Stormer-Verlet, Leapfrog, or several other names as wgielbally
preserve some of these invariants within certain boundsgtine
entire simulation, provided some stability restrictionstbe size
of the time step are met. By contrast, a fourth order RungéaKut
method, which is locally more accurate, does not preseryeoin
the physical invariants globally and can accumulate sicguifi er-
rors over time. For instance, with the wrong choice of tinepst
the energy of the system might decay to zero unintentioraiig
inexplicably for the user.

We will discuss benefits and shortcomings of two widely used
methods in the context of simulation of elastic materialst fire-
fore introducing the regularized stepper which meets ojgatives.
Further examples and discussions are provided in section 3.

Consider the family of first order time steppers for the eiguet of
motion (1)—(2):

(16)
7

Xn+1 = Xn +AtVnin,
Vntl =Vn +AtM71Fn+n\,,

where the indexn denotes the time poirit= nAt, and the indexes
ny = 0,1 ny = 0,1 denote the discrete time at which the various
quantities are evaluated. The explicit Euler method cpomrds to
the caseny = 0, ny = 0. It fails unconditionally on the undamped
harmonic oscillator, producing trajectories wita| = O(e”Atz"’z),
wherew? = k/m. This is a bad sign. In general, artificial damping
terms must be added to avoid exponential growth but careflya
sis reveals that when the damping is increased too muchyshens
isagainunstable. In addition, the observed damping forces are gen-
erally much lower than the damping parameters would suglyest
to the in combination with damping—in general much largenpla
ing than ever occurs in reality. Tuning this for a complichtet-
work of spring and dampers is a tedious and frustrating tastii
worth the effort.

The case witmy = 1, ny = 0 corresponds to the well known sym-
plectic Euler method which has many remarkable properties.
one, it is computationally as cheap as the explicit Eulerhmgbt
However, it is stable for integrating harmonic oscillatgstems as
long as the time step satisfids < 2/w = 2,/m/k, without any
artificial damping. It does not exactly conserve the enenglyito
does exactly preserve another quadratic form which is dimsiee
energy. This implies global stability at least for lineas®ms as
the energy oscillates within bounds proportionaltd. The reason
for this conservation property is that it is the simplestrapke of

a variational integrator [Kharevych et al. 2006], and likkesach
time stepping methods, it is symplectic, i.e., it preseemtegral
invariant along the flow. But since this is not unconditidyaita-
ble, we expect to lose stability as sooncaas > 2/At, wherewn is
the maximum frequency in the system. This can therefore eot b
applied to the high stiffness case.

To understand this limitation, consider an object of makg &nd
density roughly like water. Simulate the object with 1000@ticées
of equal masses connected with spring forces with stiffnesstant
k, and integrate this with fixed time stéyf = 0.02 ms The sta-
bility requirement demands thkt< 2.5 N/m. The corresponding
Young's modulus for this is roughly ~ 250Pawhich is extremely
soft, as typical solids have Young’s modulus ranging fronMiRa
up to 1000GPa At Y = 250 Pa, we are way off the scale. The



maximum stiffness become even less for a finer division, ingo
more particles of lesser mass and shorter spring lengths.wHy
out is to integrate with smaller time steps or to use artificEmall
mass density, or to modify other physical parameters tcezetthe
desired visual result. But this only works if one is not ietgted in
any sort of validation.

The casel = 1, ny = 1 corresponds to the first order implicit Euler
method. This is well known to be the most stable method in the
book if the nonlinear system is solved accurately. It is alsoon-
ditionally stable for positive time step for the simple hamnit os-
cillator. When the nonlinear system of equations is solvygataxi-
mately after a linearization, stability is no longer uncibiothal but

still quite good. To do this, approximate the fordgs 1 with a
Taylor expansion around the current statev, to get the stepping
formula:

Xnt1 = Xn +AtVhyg (18)

X (29)
where the force derivatives are evaluated at timestifhe expres-
sion in the bracket on the left hand side of Eq. (19) we dengte b
Sp. This is a matrix of dimensionNx 3N, that is typically sparse
for the systems we are considering. For clarity we have disch
possible dependence on velocity in the force but this eidaris
simple to perform and well covered in the graphics literatuin
particular the famous paper [Baraff and Witkin 1998] apgptids to
cloth simulations defined as networks of point masses athalith
spring-damper. As observed in [Baraff and Witkin 1998]stikinot
unconditionally stable even for simple springs but stableugh to
take much larger steps than would be possible with the syatiple
Euler method, for instance. Solving the linear system otéiqus

is not terribly expensive either and again, a good solutioispeed-
ing this up is provided in [Baraff and Witkin 1998].

F
{1—At2M’lb} Vi1 = Vn+AtM IR,

We could of course consider this strategy to discretize gralty
forces or the regularization terms of (6). The problem lisewhere
though. The implicit Euler method is stable because it aidifily
dissipates the energy of the system, faster with larger sieg. On
a simple linear harmonic oscillator, this artificial disaiion is so
large that it significantly alters the observed oscillatimguency.
Even worse, if one simulates a simple pendulum using a paissm
attached to a stiff spring, integrating with the implicitiEumethod
alters the pendulum oscillation frequency and the obseacedler-
ation of gravity, which should have nothing to do with thei@etof
the stiff force! This artificial damping is immediately nogiable in
cloth simulation, especially when comparison is made witérgy
preserving methods. This fact has not been reported in #Eh@rs
literature as an anomaly but is considered a welcome iroitaif
natural occurrences of friction although there is littlenwol over
it. We demonstrate how severe this damping can be in section 3

When considering regularized equations of motion (7)-#@)have
additional variables to consider. Starting with the syriteEuler
parametersy = 1, ny = 0 in (16-17), we still need to provide a
correct interpretation of the regularized connection (@ men-
tioned previously that penalty forces converge weakly t® dbn-
straint forces in the limit wherer — 0. This means in particular
that the time averagesk = (—1/At) [ dta~1[p+ B¢] should
be well behaved. Formally integrating (8) over the time rivaé
fromt tot + At, wheret = nAt, we approximate ™' dtF, ~ JT A
andad = At~1 [t + o] ~ At 1gh + (1/2+ AB) IV 1.
Collecting the terms, we have:

M
Jn

Xn+1 = Xn+AtVny1

=31 1 [Vnea] _ [Mva+AtF,
yot—2a | [AA | T | —yAtign |

(20)
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wherey = (1/2+ AtB)~1. This linear equation may either be
solved directly using a sparse matrix solver, or by firstdiog the
Schur complemens, = J);M~13T + At—2a, and solve for the La-
grange multiplier from

SnA = —Ot 1Jwvn — M IR, — yAt 2 g, (21)
and then compute the velocity from the top row of equation(Z)
and finally the positions are updated. The stability of thitmod
has not been analyzed theoretically, but as we will see intinger-
ical examples below, it appears to be strongly stable. Coatipn-
ally, itis no more expensive than the linear implicit Eulespper. In
fact, since we are skipping all Jacobian derivative termlwhre
used in the linear implicit Euler formulation, it is somewlfaster,
and far, far simpler to implement.

3 An elucidating example

Consider a cube composed of eight particles and five tetrahed
producing a total of 18 edges as shown in Fig. 2 a). We use
this example to illustrate both the strength of the new fdamu
tion and statements made about numerical integrators in2&c
As a model of elastic deformable material we assign energy di
tance functions fod (X) = Z| (1/2)'(([12 with Q= (‘ |X(i|) — X(jl) H —
L))/L;, wherel labels each of the 18 edges in the mesh with re-
spective rest lengthk;, andij, j| are the labels of the two nodes
and the end of edde The cube is dropped from rest and subjected
to downward gravitational acceleration of magnitype 10 m/s?.
One of the particles is fixed to the world so the cube swing& bac
and forth at the same time as it undergoes elastic oscilstioder

its own weight. The mass of the particles are- 1 kg and stiffness

is set tok = 10° Nm, yielding natural internal oscillation periods
of 0.014s. This is a nearly rigid case and the elastic deformation
are expected to be small—of the order 10~3—and hardly notice-
able visually. We integrate the system with the three tirepstrs
described in section 2.4 with time st&p= 0.05 s, and for a ref-
erence solution witlit = 0.005s. The result is displayed in Fig. 2
and 3. The standard symplectic Euler stepper explodes aimos
stantly forAt = 0.05 s so only the first state is shown in Fig. 2 a).
Fig. 2 b) displays snapshots from a simulation with the lirea
plicit Euler stepper and our new regularized stepper in Eig),
both for time stef\t = 0.05s. The final position of the cube after a
given number of steps is visibly different for the differeseppers.

In particular, the swinging motion is slower when using theérly
implicit Euler stepper than for the regularized one.

This is illustrated more precisely in Fig. 3 where the heigbit a
given particle is plotted as functions of time for all threethrods
usingAt = 0.005s and for the two stable methods fat = 0.05s.

A striking feature is that theate of fallis slowed down by the lin-
early implicit Euler method when using the larger time staging
nearly 35% more time to reach the minimum position, and thés p
nomena gets proportionally worse when either the time stepeo
stiffness is increased. The artificial damping of the iraggr not
only models linear drags in the direction of the spring ferbat af-
fects the physics of thentire system, even free fall under gravity!
Worse yet, even when the time step is reduced by a factor of 10,
down to less than one third of the natural frequency of therival
springs, damping is still of the order of 10% per cycle.

When using the smaller time step, the symplectic Euler steps
produces the same solution of as the regularized model. towe
the regularized stepper nearly produces same trajectoripdin
time steps!



a)

Figure 2: An elastic cube anchored at one node, falling ugcser-
ity, is integrated with three different steppess: symplectic Euler
stepper, that explodes almost instantdy,linearly implicit Euler

stepper ana) regularized stepper. The cubes are displayed at the

time points = 0.0,0.2,0.4,0.8 sand integrated with large time step
of At =0.05s; nearly 3 times larger than the natural oscillation pe-
riod of the structural springs. For the linear implicit Bustepper
numerical damping makes the cube fall slower than with tgere
larized stepper.

Figure 3: The height of one of the particles in the swingingecas
function of time. The severe damping of the linear implicitl&t
stepper is clear. The motion is integrated with the linegolicit Eu-

ler stepper (circles foit = 0.05s, dotted line forAt = 0.005s) and
the regularized symplectic Euler stepper (crossed\fee 0.05 s,

solid line forAt = 0.005s).

The observations are summarized as follows.

k < 4m/At2. In other words, the time step must satigély< T /1t
whereT is the natural period of the oscillators, given By=
2n/oo,w2 = k/m. For high stiffness, or short natural period, the
solutions escapes to infinity. The linearly implicit Euléemper is
stable for much larger range of stiffness (which is diffidoltde-
termine exactly) but it adds artificial and spurious dampgimghe
system. The result is that even the rigid body motion of veif§ s
materials are damped, producing noticeably inaccurajectaies.
The regularized symplectic Euler, on the other hand, preslan
accurate trajectory even in the stiff limit and for large eirsteps.
Some of this numerical behavior can be understood by comgpari
the matrices involved in the linear system of equations in(Edy)
and (19), namely:

Sh=dhM~ 1T +yat—2a (22)
oF,
! __ 2n1—1 n
1M (T atg s Pngt 23
=1+ ha "+ o7 a (23)

In the limit wherea — 0, the first of these matrices has the nice
limit: Sp — J)M~13T. This is the same matrix equation that must
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For a given time
step At, the symplectic Euler stepper is only stable as long as

be solved to integrate the purely constrained system. Hexyvéve
matrix defined in Eqg. (23) goes to infinity. Looking carefuldy
matrix S}, it can fail to be positive definite, numerically at the very
least, even for moderately large valuesoinl, at which point the
stepping is unstable and can diverge. As the identity terr®/,in
becomes negligible in comparison with thel terms, we get the
wrong physics due to numerical errors in solving the badgjest
system of equations.

4 Simulating elastic deformable materials

We are proposing and investigating the combination of ptasi
based material energies and constraint regularizatidmigae for
stable time stepping in simulations where the elasticity nsage
from very soft to very stiff. Here we present the details instouct-
ing an actual simulation based on these ideas. We have fidenti
the symplectic Euler stepper in combination with constregagu-
larization as a suitable numerical integrator. As mentibearlier,
length and volume constraints (e.g. spring-and-damperetapds
a possibility, but is associated with an uncontrolled nxef ma-
terial parameters. This makes it impractical to adjust theam-
eters for the object to behave as a specific material. Instead
propose using constraints (or rather regularized withgn&rmc-
tions) based on elasticity theory, that have been desciibedc-
tion 2.3. We divide the object into a meshdf tetrahedra antl
nodes, or particles, as we did for the box in Fig. 2. Eachhetra
dron has four node particlés) = (1), (2), (3), (4). For each tetra-
hedron we compute local quantities, e.g., strain and enéiiggse
are added to global quantities. Tgkbal constraint vectorp and
global Jacobian] then has dimensionsNg and 6Nt x 3N. The
local quantities are constructed by first defining kbeal position
vectord = (x<1)T,x<2)T,x(3>T,x(4>T)T which is of dimension 12.
We then define the local straf) that is of dimension 6 and in turn
the local constraint deviatiog (also this of dimension 6) and local
Jacobian) = 9€/9%", having dimension & 12. The algorithm for
the proposed method is
initialize positionsx = Xy and velocities/ = vy
construct tetrahedral mesh
for each time step=0,1,2,... do
accumulate external forces
loop {all tetrahedré
read off particlega) = (1), (2),(3),(4)
get local position vectox ~
computep = &
compute] = 9& /9X"
add localg andJ to global matrix equation (20)
end loop
solve linear equation (20} Vn11
updatexy — Xnr1
end for

The global matrix equation here, can be either Eq. (20) o(Zq),
depending on choice of linear equation solver. The mostieah
part is the computation of the local Jacobian and solvinditiear
system of equations. Some of the steps in computing the izacob
are given in the Appendix.

5 Results

We now present results of validation and performance tesis &n
implementation of our new method.



5.1 Visual checks and Fig. 7 (with mass 90tbn). In both cases we have Young’s
modulusY = 1.0 GPaand the Poisson ratio is set tb= 0.25 .

Casual visual observations of the method in action reveairae As expected, the material responds with stiffness incngapro-
nice properties, even with just a few tetrahedra. Still fearof sim- portionally with the Young's modulus.

ulation are shown in Fig. 4, where a beam made of 88 nodes and
105 tetrahedra is deformed by the action of a twisting foitlee
method is clearly capable of handling large deformationth \&i
visually pleasing result, i.e., without kinks of collapginegions.

The same beam is illustrated in Fig. 5 in which trelinearterms

in the Green strain, Eqg. (13), were omitted. These termsame c
ventionally omitted when the displacements are only snfallch

a linearization, whenever possible, largely improves ihmmuta-
tional efficiency of the method. In that case the matrix in )

is constant and its inverse may be precomputed to allow fast v
locity updates. In the case of Fig. 5, the deformation isrbfeao

large for omitting the nonlinear terms. Otherwise, the lteisuan
unrealistic volume deformation. We also show results foug: s

Figure 6: A supported beam of mass 1@®, Y = 1.0 GPaand
o =0.25.

Figure 4: The result of a twisting force acting on the shodsof
an elastic deformable beam.

Figure 7: A supported beam of mass 9@®, Y = 1.0 GPaand
o=0.25.

5.2 Physical performance

Next we validate the physical behavior by conducting pukpand
twist tests and measuring the change in length and rotatiggivien
applied forces. We validate against the theoretical @iatbetween
applied force and deformations from elasticity theory, Hooke’s
law for pull/pushAL/L = F/YAand twist6 = 2T1L(1+4 0)/YK,
wherelL is the rest lengthF is the applied forceA is the cross-
Figure 5: The same setup as in Fig. 4, but with the nonlineatr co  section areay is the twisting momentL is the length anK is

tribution to the strain omitted. The result is an unreatistolume a geometrical factor (torsion section constant). The texuhese

deformation. tests performed on a beam of 88 nodes and 105 tetrahedraomne sh
in Figs. 8 and 9. The results fit theory, but with a clear depend

ported beam bending under gravity in Fig. 6 (with mass tid{) on geometry/mesh. This is arguably, owed to the fact thatnee a
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using 4-node tetrahedral mesh wiithear shape function—-simplest
possible choice—which is known to be associated with paeity
large mesh dependence. Using either finer discretizatiohigber
order shape functions should improve this. We also confira th
incompressibility is achieved far = 0.5.
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Figure 8: The pull/push test for five slightly varying geones.
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Figure 9: The twist test for five slightly varying geometries

5.3 Computational properties

We consider two aspects of computational performance:ilisgab
and efficiency. The regularized symplectic Euler integr&self-
stabilizing. This means that, much like the linear impliEitler
method, the simulation dissipates energy and approacheseao$
equilibrium. It should be emphasized that the dissipat®mer
stricted to theinternal motionand does not affect rigid motion,
which the linear implicit Euler method does, c.f. the swirgi
cube example in section 3. In real-time applications withetistep
At = 0.015 s the simulations are stable for stiffnesses even well
above that of diamon¥ = 1000GPa We achieve stable simula-
tion of very stiff materials under large tension and largéodea-
tions. It should be pointed out, however, that the time so&tbe
dissipation of internal vibrations becomes very short fif sate-
rials. In Fig. 10 we show results from a soft beam attachechian o
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end and swinging freely under gravity. This figure confirnat the
method is self-stabilizing. No energy dissipative termgehbeen
added to the system, still, the system gradually relaxesdiate
of equilibrium. The rate of numerical dissipation of theeintal
motion increases with decreasing size of the time step atidimi
creasing stiffness. To resolve the issue of damped inteno&bn,
the time stepper can be replaced with an energy preservioggh
computationally more expensive, time stepper, e.g., atanal
integrator as presented in ref. [Kharevych et al. 2006].

At=0.020s
At=0.015s
4 13 At=0.010s
il % At=0005s
150 i § At=0.001s

Deformation energy U (J)
e
)
IS
T

50 - 4 i Voo

Time t (s)

Figure 10: A beam is attached at one end and is swaying freely i
uniform gravitational field. This shows how the deformatirergy
vary over time at different sized time steps. Material paztars
used ar&y = 8.0 kPaando = 0.25 applied on the 10 kg beam.

Next we consider the efficiency of the method and how the com-
putational time scales with system size. In this implentémave
build and solve the Eq. (21) rather than Eq. (20) directhkimguse
of that the matrix is banded and achieve linear in time depecel
on the number of particles in the system. The computatiooidlies
necks are recognized as the computation of the Jacobiancemd ¢
straint, building and factorizing the matrix equation (2hJd solv-
ing the equation. The contribution of these three procdéasesim-
ulation of a beam is displayed in Fig. 11. The simulation vwamsan
an Intel Pentium 4 2.4 GHz CPU, with 1025 Mb DDR2 RAM in-
ternal memory. Most time, in our implementation, is consdrae
factorizing the Schur complement matrix rather than sgiinThe
method we present clearly scales linearly with system sideeal-
time simulation (with time step of 15 ms) can be achieved y&r s
tems with size up to nearly 200 tetrahedra. There are sewesa
to improve the efficiency further, besides more efficientding
and factorization of Eq. (21). In the computation of the neoe-
ity, from Eq. (20), it is not necessary to build the Schur ctement
and first solve the Lagrange multiplier. Although Eq. (28)arger
in dimension than Eq. (21), it is a saddle-point matrix wittvell
ordered and sparse structure. There are efficient techiguith
linear complexity, for factorizing the matrix and solvirtyig equa-
tion. The efficiency may be further increased using vectoeltel
hardware, e.g., performing computations on the graphicsgss-
ing unit. We estimate that with these optimizations realetisimu-
lation of systems of the size of 1000 tetrahedra should bsilples
with currently available hardware.
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Figure 11: The computational time for the bottlenecks foinzet
step and the dependence on the number of tetrahedrons.
method we present has linear in time complexity and real siime
ulation is achieved with system size of about 200 tetrahedra

6 Summary and Conclusions

We have constructed and investigated a method for stabl@aim
tions of elastically deformable objects at interactive naith elas-
ticity ranging from very elastic to highly stiff. With the mel com-
bination of constraint regularization based on realistiterial en-
ergies in combination with a symplectic Euler stepper waeaeh
stable time stepping for any value of stiffness of practicsd, in-
cluding the incompressible limit. This approach is compaie
using linear implicit Euler, which damps all motion stropgh this
limit. Any of the conventional integration methods for sofateri-
als, including the standard symplectic Euler, has an uppet dn
material stiffness for each size of time step - beyond thisevéhe
simulation becomes unstable.

Energy functions based on elasticity theory gives a direlettion
between simulation parameters and real world measuredriaiate
parameters. Simulated objects respond as expected tmaixter
forces and changes in the material parameters, e.g., H@k's
obeyed and the material turns incompressible for the Poisz®n
o=0.5.

The method is self stabilizing. This guaranties stable kitran
even in the regime of very stiff materials undergoing largéod
mations. On the downside, there is numerical, and thuscatifi
damping in the system. Internal vibrations damp out vergkjuyi
for large material stiffness but rigid motion is unaffectdthe nu-
merical damping in our new method is thus less severe thathéor
linear implicit Euler method. The issue with numerical damgp
can be resolved by using time stepper that preserves thisieym
in the equations to a higher degree. These time steppersnkas
variational integrators [Kharevych et al. 2006], are hogremore
computationally expensive, they involve solving a noredin sys-
tem of equations rather than a linear system.

The method we present here scales linearly with system dize.
the current implementation we achieve real-time perfolceaof
systems of the size of 200 tetrahedra. Performance can lveveth
by using other solver strategies, e.g., combining an iteratethod
and a good preconditioner, and utilizing vector/paralkidware.
We estimate that real-time simulation of systems of the i2€00
tetrahedra should be possible with currently availablelvare.
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In comparison with other methods, it should be emphasizaitie
efficiency of the method we proposeéisiependent on the material
stiffnessand not flawed by instabilities in the stiff regime.

In future work, we will improve the scaling and performande o
the method, extend it to other type of constraints, e.g. amton-
straints and improve the time stepping to reduce numerisalph-
tion without compromising stability and speed. Also, welpilr-
sue issues of plasticity, mesh elements and adaptive |édidtail
techniques.
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8 Appendix

Here we give some of the details in computing the Jacobiaaecbas
on the energy function given in Eqg. (15) from elasticity theo
Computing the Jacobian is part of building the equation ZistF
we order the strain vectar in its normal componentsengrmal =
(€11, €22, £33)" andshearcomponent$ghear= (€12, £13,£23)" such
thate = (6], man Eqhea) |- We compute local quantities, e.g., the
strain and contribution to the Jacobian for each tetraledithe
local Jacobian is identified from the relatign = J;%;, where
i=1,2,...,12. Usingy = € we identify

0uk gnormal oV
Jhormal Aiji A 24
|]|+(0r> le 2\/— (7XJ ( )
1 sshear dV
J“_Shear T k/\ k+
ij 2! imk/Amj \/v dXJ
dun du
2X|mk {( o ) Anjm+ (07:1) /\njk} (25)
where
Jd dy
/\ijk = \/\7— —,,I_ . (26)

In all of these expressions the ranges of the indexesi are

.,6,j=12,...,12 andk,m n = 1,2,3. For notational con-
venience we have introduced the constant matrcasdl that are
both of size 3x 3 x 3 and with the nonzero elements

(27)
(28)

X112= X213= X323=1
Mi2=T121=T213=T231=T323=T332=1
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