
SIGRAD 2006
The Annual SIGRAD Conference

Special Theme: Computer Games

November 22-23, 2006

Skövde, Sweden

Conference Proceedings

Organized by

Svenska Föreningen för Grafisk Databehandling

and

Högskolan i Skövde

Edited by

Henrik Gustavsson

Published for

Svenska Föreningen för Grafisk Databehandling

(SIGRAD)

by Linköping University Electronic Press

Linköping, Sweden, 2006

 ii

The publishers will keep this document online on the Internet - or its possible replacement – for a
period of 25 years from the date of publication barring exceptional circumstances.
The online availability of the document implies a permanent permission for anyone to read, to
download, to print out single copies for your own use and to use it unchanged for any non-
commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this
permission. All other uses of the document are conditional on the consent of the copyright owner.
The publisher has taken technical and administrative measures to assure authenticity, security and
accessibility.

According to intellectual property law the author has the right to be mentioned when his/her
work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its WWW home page:
http://www.ep.liu.se/.

Linköping Electronic Conference Proceedings, No. 19
Linköping University Electronic Press
Linköping, Sweden, 2005

ISBN 91-85643-17-3 (print)
ISSN 1650-3686 (print)
http://www.ep.liu.se/ecp/019/
ISSN 1650-3740 (online)
Print: LiU-Tryck, Linköpings universitet, 2006

© 2006, The Authors

 iii

Table of Contents
Foreword... iv
SIGRAD 2006... v

Research / Work in Progress Papers

Efficient rendering of multiple refractions and reflections in natural objects 1
Stefan Seipel, Anders Nivfors

Distributed Ray Tracing In An Open Source Environment ... 7
Gunnar Johansson, Ola Nilsson, Andreas Söderström, Ken Museth

Temporal Face Normal Interpolation .. 12
Jindřich Parus, Anders Hast, Ivana Kolingerová

A multi-sampling approachfor smoke behaviour in real-time graphics.................................... 17
Henrik Gustavsson, Henrik Engström, Mikael Gustavsson

Interactive Simulation of Elastic Deformable Materials ... 22
Martin Servin, Claude Lacoursiére, Niklas Melin

Sketches / Short Papers

Computer visualization in accident prevention in industry .. 33
Sławomir Bogacki

Incremental Spherical Interpolation with Quadratically Varying Angle................................... 36
Anders Hast, Tony Barrera, Ewert Bengtsson

Application Papers

A Driving Simulator Based on Video Game Technology ... 39
Mikael Lebram, Henrik Engström, Henrik Gustavsson

The Verse Networked 3D Graphics Platform (Part1).. 44
Emil Brink, Eskil Steenberg, Gert Svensson

 iv

Preface
These proceedings contain the papers from the SIGRAD 2006 conference which was held
on the 22rd and 23th of November in Skövde, Sweden. The topic of this year’s
conference is Computer Games. As in previous years, we also welcome paper
submissions in various other graphics areas.

The SIGRAD conference has an explicit ambition to broaden its geographic scope
beyond the national borders of Sweden. We are therefore very happy to have several
international contributions
this year. The keynote speakers this year are Torbjörn Söderman and Johan Andersson
from DICE. The topic of the keynote is the history of rendering in computer games and
the rendering technology used in the current generation of game engines.

We would also like to thank the program committee that provided timely reviews, and
helped in selecting the papers for these roceedings.

Many thanks to our generous sponsors: Högskolan i Skövde, DICE , Pearson Education,
InGaMe Lab and Akademibokhandeln.

We wish all participants a stimulating conference, and hope they take the chance and to
create new connections in the Nordic graphics community.

Henrik Gustavsson
Program Chair SIGRAD 2006

 v

SIGRAD 2006
The SIGRAD 2005 program committee consisted of experts in the field of computer
graphics and visualization from Sweden. We thank them for their comments and
reviews.

Program Chair
Henrik Gustavsson, Högskolan i Skövde

Program Committee Members
Henrik Engström, University of Skövde
Craig Lindley, Gotland University
Gustav Taxén, Royal Institute of Technology
Stefan Seipel , University of Gävle
Anders Hast, University of Gävle
Lars Kjelldahl, Royal Institute of Technology
Ulf Assarsson, Chalmers University of Technology
Kai-Mikael Jää-Aro
Lennart Ohlsson, Lund University

SIGRAD Board for 2006
Kai-Mikael Jää-Aro, Chair

Stefan Seipel, Vice Chair
Lars Kjelldahl, Treasurer

Anders Hast, Secretary

Anders Backman, Member
Anders Ynnerman, Member
Thomas Larsson, Substitute

Ken Museth, Substitute
Lennart Ohlsson, Substitute

Örjan Vretblad, Substitute

EFFICIENT RENDERING OF MULTIPLE REFRACTIONS
AND REFLECTIONS IN NATURAL OBJECTS

Stefan Seipel
Department of Information Technology, Uppsala

University and Department of Mathematics and Computer
Science, University of Gävle

ssl@hig.se

Anders Nivfors
Department of Information Technology, Uppsala

University
nivfors@gmail.com

Figure 1: Rendering of ice showing multiple specular reflections and refraction

Abstract

In this paper we present a multi-pass rendering approach for
approximating the effects of multiple refractions and specular
reflections in transparent or semitransparent materials. These
optical effects are typically found in natural materials like ice but
also in glass artworks. The rendering technique proposed in this
paper is intended to perform at real-time frame rates and aim at
achieving naturally looking effects rather than simulating
physically correct interaction between light and matter. Part of our
method is an improved image space technique for clipping a
geometry using the Boolean difference of two geometries in order
to create internal surfaces of reflection inside transparent objects.
It employs a number of generic cracks surface geometries which
are clipped against the geometry to be rendered. Reflection and
refraction effects on the ice are implemented by using
environment mapping. Two-sided refraction is accomplished by
combining the normal vectors of the front and back side of the ice
object. Our method renders icy objects with convincing visual
appearance in real-time on state-of-the-art graphics hardware.

Keywords: Computer Graphics, Modelling of Natural
Phenomena, Illumination Models, Realtime Rendering
Algorithms.

1. Introduction

Objects made of glass or naturally grown ice are impressive to
look at. Part of the fascination these materials exert on the
observer is due to the rich and extreme interaction effects between

light and glass or ice objects. Ice shows, in comparison with glass,
an even more complex visual appearance because its internal
structure is often much more irregular and inhomogeniuos as
opposed to glass. The simulation of these complex interactions
between light and ice or glass comes almost for free in raytracing
approaches. In the field of real-time computer graphics, however,
rendering of ice has not been subject of intensive research.
Realistic rendering of natural phenomena in real-time has always
been one of the most difficult tasks. In consequence, numerous
papers can be found that describe implementation techniques for
fire, smoke, clouds, fog, water etc. Yet, rendering of ice appears
to be little explored. In this paper we summarize the most
prominent visual characteristics of ice and what distinguishes ice
from similar materials such as glass. We then present a multi-pass
rendering approach to accomplish these characteristics in real-
time using the GPU of a modern graphics card.

2. Related Work

To our knowledge, until now hardly any research has been
published in relation to real-time rendering of ice objects. Little of
the work related to ice in the field of computer graphics is mostly
concerned with physically based techniques for offline rendering.
A physically based model for icicle formation was presented as
early as 1993 [Kharitonsky and Gonczarowski 1993]. Methods for
ice crystal formations have been looked into quite thorough [Kim
and Lin 2003; Kim et al. 2004; Witten and Sander 19891]. Other
work focusing at animations of melting materials, such as ice, has
been presented by Carlson et al. [Carlson et al 2002] and Jones
[Jones 2003].

1

Whereas most of the above mentioned papers describe offline
methods which focus on the formation of ice, Kim and Lin [Kim
and Lin 2003] presented techniques for ice formation and
rendering that achieves interactive frame rates for low resolution
models.
In the work we present below, we focus on visual appearance of
icy objects rather than physically correct modeling. Therefore, in
order to achieve real-time performance, we aim at techniques that
utilize the graphics hardware. In particular we address tricks for
rendering refraction and reflection effects found in ice structures.
Since ray tracing still can not be carried out in real-time,
interactive graphics applications (i.e. games) generally use
environment mapping (EM) [Blinn and Newell 1976], in order to
collect light samples from in the nearby environment of an object
to be rendered. EM is hardware supported, straight-forward to use
and very fast. Environment mapping does, unfortunately, not
support recursive reflections nor does it account for backside
normal contribution.
In the paper “Interactive Refraction on Complex Static Geometry
using Spherical Harmonics” [Génevaux et al 2006] Génevaux et
al present a method that achieves realistic two-sided refraction.
The method pre-computes some light paths which are used for
approximations of the refracted paths during rendering. Since it
relies on a pre-computation step, the method is suitable for static
objects only. The runtime computations can be calculated on the
graphics hardware, which allows the method to perform at
interactive frame rates.

Another approach to approximation of two sided reflection was
presented by Wyman [Wyman 2005]. By saving the normal
vectors for the back facing polygons of the object to a texture
along with the thickness of the object, both the back and front
normal of the object can be found and accounted for when
refracting the incident ray.

Khan [Khan 2004] presents an interesting method to achieve two-
sided refraction when using EM by saving a normal cube map for
the object. When rendering the surface using a shader, instead of
sampling the environment map immediately, the normal cube map
is sampled to obtain the normal for the backside of the object.
With these two normal vectors the incident ray can be refracted
two times hence accounting for both the back and front side of the
object. The method suffers from artifacts in the refracted image.
Being based on EM, neither Wyman’s nor Kahn’s method can
handle concave objects very well.

Figure 2. Photograph of an ice-block frozen in a refrigerator.

3. Visualizing features of ice objects

3.1 The look of ice

What renders the visual appearance of icy objects specific is a
combination of several different optical effects which are due to
the internal morphology and current surface properties of ice. The
surface of icy objects can exhibit very different specular reflection
properties. For instance, melting ice has a highly specular surface
which gives rise to total reflections. In contrast, under cold
conditions, the surface of ice is populated with thousands of
microscopically small ice crystals yielding to a rather rough
diffuse reflection when viewed from a distance. Ice is a semi-
transparent material and its light transmission properties do
change extremely depending on the internal structure of ice. This
is further complicated due to the fact that the morphology of ice
changes depending on external conditions like temperature and
pressure. Obviously, there is no general model to describe the
visual appearance of ice in all its possible different states. It is
likewise difficult to recreate the visual appearance of ice by
explicitly modeling all the microstructures in ice that give rise to
the various visual appearances. Still, a reasonable approach to
realistic rendering of ice is to identify a number of typical
properties which tell the observer that it is ice she is looking at as
well as to apply a number of simplified rendering techniques that
approximate the most prominent visual attributes. Figure 2 shows
a real ice object and, without any doubt, we can tell that we look
at ice rather than e.g. glass. The most prominent features which
we in informal interviews with six students identified to
contribute most to the visual appearance of ice are:

a) Transmission of light from behind the object involving
double refraction at front-face and back-face.

b) Specular reflections on the outer surface combined with

specular highlights occurring at interior surfaces
(cracks).

c) Irregular shape and bumpiness of the surface.

d) Air enclosed inside the ice causes milky white

appearance.

This list of visual features is not meant to be all comprehensive,
and not all of these characteristics must necessarily be found in
ice at the same time. Yet, an integration of these four attributes
into a material renderer should deliver a plausible visual result for
most natural ice objects.

Methods for rendering of the visual properties mentioned under c)
above are readily available under the term bump-mapping in
computer graphics text books. Air bubbles and internal light
scattering as mentioned under d) above, however, pose some
bigger problem if we intend to implement them in a general way.
In the course of our work, we have previously been using texture
impostors. Hereby, we randomly place a number of transparently
textured polygons inside the ice object. The texture images depict
air bubbles at certain sizes and spatial frequencies. During a
separate rendering pass, these texture images are rasterized and
composited using alpha-blending. In this report, we do not
describe the technique in more detail; instead we refer to [Nivfors
2006].

2

3.2 A straightforward approach to
multiple refraction

In real-time computer graphics, environment mapping (EM) is
used to accomplish effects of reflections and refractions. In our
approach we use a cubic environment map that is sampled in the
fragment shader of the ice object using the refracted and reflected
eye vectors. In order to account for motion of the ice object or any
nearby object in the scene, the environment map is updated
dynamically if so necessary. The EM texture is updated by
rendering the entire scene six times with a field of view set to 90°,
rotating the camera to point in all six directions from the centre of
the ice object.

When a ray penetrates a transparent object, the ray is refracted at
two surfaces: when the ray enters the object and when the ray
exits the object. In standard EM only the surface orientation
(normal) of the front face is used for refracting the ray. To achieve
two-sided refraction we use a simplified method similar to the one
presented by Wyman [Wyman 2005]. We render the normal
vectors of the back faces of the ice object to a texture using a
separate rendering pass. Hereby, the vertex shader calculates the
world space normal and the fragment shader normalizes and
interpolates the result into a back-face normal buffer. A floating
point texture is used for the result to avoid precision artefacts. The
normal texture for the back-faces of the object is later sampled by
the ice’s fragment shader, allowing to simply blend the back and
front faces’ normal vectors using equation 1.

 () ()aa bfr 1 nnn −−= (1)

where nr is the resulting normal
 nf is the front face’s normal in world space

nb is the back face’s normal in world space, sampled from
a texture
a is a scalar value in the range of [0, 1] indicating how
much of the back face’s normal that should be applied. A
value of 0.33 is used for a in the screenshots in this
report.

Using nr as surface normal, the eye vector (e) is refracted using
equation 2. The eye vector, or view vector, is a vector from the
viewer to the vertex on the surface and is calculated in the ice
object’s vertex shader. The interpolated result is used in the
fragment shader.

() ()() r
2

r
2

rrefr 11 nenener ⋅⎟
⎠
⎞⎜

⎝
⎛ •−−+•−⋅= etaetaeta (2)

where rrefr is the refracted eye vector

eta is the refraction index of the media we are travelling
from divided by the media we are travelling to. In this
case air/ice = 1.0003/1.3091 ≈ 0.7641 [Nordling and
Österman 1999].

rrefr is then used to sample the environment map. Figure 3 shows
the concept of the method.

Figure 3. The idea behind two sided refraction using blended
normal vectors.

(a) (b)

Figure 4. Model of the teapot with the ice shader demonstrating
(a) two-sided refraction using blended normals compared with (b)
one-sided refraction. Air and cracks are turned off.

So instead of following the incident ray and refracting it twice, a
new normal is simply created by combining the back and front
face’s normal vectors. This is not a physically correct method but
since ice is a highly distorted material this is a reasonable trade
off for increased performance. Also, highly concave objects will
not refract correctly since only one front face and one back face
are accounted for.
For the purpose of reflection calculations, only the normal vector
of the front face needs to be accounted for. So e is simply
reflected using equation 3.

 () ffrefl 2 nener ⋅•−= (3)

where rrefl is the reflected eye vector.

Reflected and refracted light is sampled by using the reflection
and refraction vectors as indexes into the environmental map. The
resulting two color samples are then mixed using an
approximation of the Fresnel equation similar to the one proposed
in [Jensen and Golias 2001]. The Fresnel equation determines the
ratio between the reflected and refracted ray’s color contribution
using a rather heavy equation. Our approximation is created with
the intention of being fast and yet to produce a convincing visual
result rather than being physically correct (equation 4).

 ()31 ne •−=f (4)

where f is the Fresnel term
 e is the eye vector to the vertex
 n is the vertex’s normal.

nf

-nb

e nr
rrefr

environment map

3

 a) b) c) d)
Figure 5. The depth buffer saved to a texture for the (a) front faces and (b) back faces of the ice object. (c) The crack model without
clipping. (d) The final clipped crack. The cracks are colored red on these pictures for better visibility.

Equation 4 is calculated in the ice object’s vertex shader and f is
interpolated and sent to the fragment shader where it is used for
mixing the reflection and refraction colors sampled from the
environment map (equation 6). The result is shown in Figure 4.

3.3 Multiple specular reflections

The occurrence of cracking surfaces inside solid ice object is very
typical for natural ice objects. It is at these internal, often curved
and irregularly shaped crack surfaces where incident light is
reflected towards the observer. An example of these internal
specular reflections can be seen in the left part of a real ice block
in figure 2. To accomplish this light contribution due to internal
specular reflections, we use a rendering pass that only calculates a
specular highlight for internal crack surfaces and which uses
bump mapping for crack surfaces contained inside an ice object.
Hence, if no specular highlighting occurs, the crack is completely
transparent. Crack surfaces are rendered without back face culling
to make them visible from both sides as an ice object is rotated.
So, how do cracks appear inside ice objects?

Unless they are explicitly defined by the model creator, we need
to define a means of adding a certain number of cracking surfaces
into the object. Generally, it would be preferable to add an
arbitrary number of cracks dynamically to any ice model without
explicitly defining them as subcomponents of the object
geometry. We therefore propose to use a number of generic crack
models of sufficient size, to be subsequently used for rendering of
any ice model. These crack models can be positioned and
randomly oriented inside an ice model. Knowing the bounding
box of an ice object, the scale of the generic crack geometries can
easily be adjusted to cover the volume of the object. The difficulty
lies in performing a volumetric clipping operation, that prevents
crack surfaces from exceeding the ice objects actual boundaries.

Constructive Solid Geometry (CSG) [Goldfeather 1986] is a way
of constructing solids by combining existing solids using the
Boolean operations such as union, difference and intersection.
Various techniques of performing interactive CSG using the
default depth buffer of the fixed point rendering pipeline exist
already (e.g. [McReynolds and Blythe 1996]). With the
possibilities provided by programmable graphics cards, we make
use of a more straightforward screen space method. It uses a
render-to-texture approach for both frontal and rear faces and
employs a specific fragment shader which evaluates depth values
of the crack geometries in order to perform interactive CSG.

Consequently, cracks are created at rendertime by first
randomizing the rotation and position, preferably near the centre
of the ice. Then for each frame the depth values of the back and

front faces of the ice model are rendered to a texture (Figure 5 (a,
b)). In order to optimize the precision of the depth values, the near
plane of the viewing frustum is aligned with the front most
distance of the object’s bounding volume and the far plane is
aligned with the farthest distance of the object’s bounding
volume. Then the cracks can be rendered as usual with their
shader that performs bump mapping and specular highlighting. In
the fragment shader some instructions are added to sample the
two depth textures and to compare the current pixel’s depth value
with the corresponding depth interval. If the value is not contained
within the interval of the two sampled values nothing is drawn
since then the pixel is outside the ice object. Figure 5 (c, d) shows
a generic crack geometry rendered without and with clipping
against the objects boundary. Regardless of the number of crack
surfaces, only three render-to-texture passes need to be
performed: the ice object’s front and back faces’ depth values and
the result with the clipped cracks.
This method is based in the assumption that the object that should
be clipped (the crack) is a surface model and not a solid.
Furthermore, only Boolean intersection is performed. So the
method can not be considered a full alternative method for
interactive CSG, although it can probably be altered to be more
general. The method only works correct for convex objects,
otherwise artefacts will show. The method fulfils the criteria of an
appropriate clipping method for the cracks and can handle an
arbitrary amount of cracks.

4. Performance

We implemented an application to demonstrate and evaluate the
proposed method using C++/OpenGL. For all passes that render
to a texture the framebuffer object (FBO) extension was used
[Juliano and Sandmel 2006]. When using FBOs the color or depth
values can be written directly to a texture instead of being copied
from the frame or depth buffer. Shader programs were written in
Cg (version 1.4.1).
The resolution of all the textures attached to the FBOs (for the
depth buffers, crack bumps, and air bubbles) was set to 512x512
for the measured benchmarks as well as in the screenshots in this
report. The only exception was the texture keeping the backface
normal vectors which was set to the same resolution as the
application window, 1024x768, to avoid filtering artefacts of the
normal vectors. In all tests the ice covered approximately 1/5 of
the screen. Unless stated otherwise, in all tests all effects were
enabled, with 19 air planes and 2 cracks rendered and clipped in
real-time using our method.

4

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000
polygons

fr
am

er
at

e
(1

/s
)

w ith cracks

no cracks

Figure 6. Frame rates for increasingly complex objects rendered
without cracks and air-textures (upper curve) or with cracks and
air-textures (lower curve), respectively.

For the performance tests we used an AMD Athlon 64 3700+ 2.2
GHz with 1 GB of RAM; the tested graphics card was nVidia’s
GeForce 6600GT with 128 MB of video memory. We measured
framerates for three different objects: A sphere with 960
polygons, an irregular ice-cube with 4800 polygons, and the
teapot counting 14400 polygons. Figure 6 illustrates obtained
framerates for a static scene.

Figure 7. Frame rates without two-sided refraction (category=1)
and with the approximation for two-sided enabled
(category=2).The blue bars indicate rendering performance with
dynamic update of the environment cube map. Purple bars are for
a static environment map.

We tested how rendering performance is affected when our
approximation of two-sided refraction based on normal vector
blending is used. To that end, the ice cube object (4800 polygons)
seen in figure 1 was rendered in a simple landscape environment
containing 2340 polygons. It was rendered in a dynamic scene
which requires a continuous update of the environment cube map.
For comparison, we rendered the scene also without dynamic
update of the environment cube map i.e. a static map. The results
of these measurements are shown in figure 7.

5. Discussion and conclusions

In the final implementation of our ice renderer, the proposed
rendering method uses many rendering passes and the ice shader
accesses no less than six texture maps including the environment
cube map. Yet, this did not affect the performance too much. This
is partly due to the use of frame buffer objects but also thanks to
the very powerful GPU that performs all calculations. Figure 6
shows that high frame rates are achieved even with fairly complex
ice objects. The teapot has three times as many faces as the ice
cube but the frame rate is barely affected, which suggests that the
rendering method is fill bound. Apart from air bubbles, one of the
most important features in our renderer is cracks in the ice. When
using the methods proposed in this paper the frame rate drops
about 26% compared with rendering without air and cracks. The
performance mainly depends on two factors: how many pixels the
ice object occupies on screen and the resolution of the textures
attached to the FBOs. If the ice covers approximately 1/5 of the
screen 148 fps is achieved, compared to 67 fps when the ice fills
the entire screen. This is because the fragment program for ice is
complex and requires many texture accesses. While this might be
seen as a problem for large icy objects, it makes on the other hand
distant or small pieces of ice very cheap to render.
Our clipping method fulfils the goal of a method for adding an
arbitrary amount of cracks to any convex object. However, a
possible future improvement would be to implement some pre-
computation step which clips the cracks once and saves them as
new models. In that way, cracks would not have to be clipped for
each rendered frame yielding increased performance. The method
could even be constructed to handle concave objects. When
testing our ice rendering programs, we experimented with letting
the cracks affect the refracted image. We did this by modifying
the method for two-sided refraction in such way, that the crack
normal vectors would also distort the final surface normal. To that
end cracks were rendered on top of the ice object’s back faces
when the backside normal texture was rendered. The cracks
seemed to affect the final result a bit too much, especially when
many cracks were used. Still, in nature the cracks do affect the
refracted image, so if pre-computed CSG is to be implemented a
modified version of this technique might prove useful. One small
drawback of pre-computing the cracks is that if the ice is to be
animated, e.g. due to melting, the computation of new vertices for
the cracks in real-time would be too expensive.
In regard to our approximation of two-sided refraction using
normal vector blending, the observed frame rates shown in figure
7 demonstrate that the extra performance penalty is, with
approximately only 10%, relatively low.
In our rendering model, cracks and air in the ice are coarsely
approximated rather than being based on physical correct models.
Yet, the visual result is convincing, in particular for animated
scenes. The pictures obtained (see e.g. figure 1) show typical
characteristics of ice at high frame rates using standard hardware.
This makes the method suitable for interactive applications such
as computer games.

We have presented a comprehensive method for real-time
rendering of ice incorporating multiple refraction and reflection
on internal surfaces. Given a more or less convex geometry, it
creates an ice object filled with air particles and bubbles. The
number of cracks added to the ice can be specified in real-time.
The environment and light sources are dynamically reflected by
the bumpy surface, and a refracted environment can be seen
through the ice. Our objective was to recreate visual effects of ice
in real-time. The demonstrated results show the relevance of these

98
87

179

146

0
20
40
60
80

100
120
140
160
180
200

1 2

fra
m

er
at

e
(1

/s
)

DEM w ithout DEM

5

visual characteristics, was well as the obtained frame rates that
confirm real-time performance on standard graphics hardware.

References

BLINN, J. F., and NEWELL, M. E. 1976. Texture and Reflection
in Computer Generated Images. Communications of the
ACM v. 19 i. 10, ACM Press, New York, 542-547.

CARLSON, M., MUCHA, P. J., VAN HORN III, R. B., and

TURK, G. 2002. Melting and Flowing. In Proceedings of
the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, ACM Press, New York, 167-174.

GÉNEVAUX, O., LARUE, F., and DISCHLER, J. 2006.

Interactive Refraction on Complex Static Geometry using
Spherical Harmonics. In Proceedings of the 2006
symposium on Interactive 3D graphics and games, ACM
Press, New York, 145-152.

GOLDFEATHER, J. 1986. Fast Constructive Solid Geometry

Display in the Pixel-Powers Graphics System. In
Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, ACM Press, New York,
107-116.

JENSEN, L. S., and GOLIAS, R. 2001. Deep-Water Animation

and Rendering. Gamasutra article.
http://www.gamasutra.com, April 2006.

JONES, M. W. 2003. Melting Objects. In Journal of WSCG 2003,

247–254.

JULIANO, J., and SANDMEL, J. (contact persons). 2006.

Framebuffer object extension specification.
http://oss.sgi.com/projects/ogl-
sample/registry/EXT/framebuffer_object.txt, May 2006.

KHAN, A. 2004. Dual-sided Refraction Simulation. Shadertech

Contest, Summer 2004. http://www.shadertech.com/contest,
April 2006.

KHARITONSKY, D., and GONCZAROWSKI, J. 1993.

Physically based model for icicle growth. The Visual
Computer: International Journal of Computer Graphics,
Springer-Verlag New York Inc., Secaucus, 88-100.

KIM, T., and LIN, M. C. 2003. Visual Simulation of Ice Crystal

Growth. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer
animation, Eurographics Association, Aire-la-Ville, 86-97.

KIM, T., HENSON, M., and LIN, M. C. 2004. A hybrid

Algorithm for Modeling Ice Formation. In Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, ACM Press, New York, 305-314.

MCREYNOLDS, T., and BLYTHE, D. 1996. Programming with

OpenGL: Advanced Rendering. Course notes from ACM
SIGGRAPH 1996 Course 23, ACM Press, New York, 31-
42.

NIVFORS, A. 2006. Real-time rendering of ice. Masters Project

Thesis in Computer Science. Department of information
Technology, Uppsala University.

NORDLING, C., and ÖSTERMAN, J. 1999. Physics handbook

for Science and Engineering. Studentlitteratur.

WITTEN, T. A., and SANDER, L. M. 1981. Diffusion-limited

aggregation, a kinetic critical phenomenon. Physical Review
Letters 47, 1400–1403.

WYMAN, C. 2005. An Approximate Image-Space Approach for

Interactive Refraction. In Proceedings of ACM SIGGRAPH
2005, ACM Press, New York, 1050-1053.

6

Distributed Ray Tracing In An Open Source Environment
(Work In Progress)

Gunnar Johansson∗

Linköping University
Ola Nilsson†

Linköping University
Andreas Söderström‡

Linköping University
Ken Museth§

Linköping University

Render nodes
A: Intel Pentium IV 2 GHz, B: AMD Athlon 2.1 GHz, C: Intel Pentium III 450 MHz, D: Apple PPC 970 2.5 GHz

A B C D E F G H I

F I G H C A B F I

G F G I H D F A B

G C E G A I B F H

F H F C G I A H B

H F I G H B A F C

H I F C D G H I A

I I F H A I F G H

B F G H F I C G B

A B C D E F G H I

Figure 1: Network distributed rendering of a scene with simulated depth of field. Left: The partitioning of the scene and the node assignment
is shown, the grey scale denotes complexity of the rendering measured in time spent per pixel. Right: The ray traced final image, note that
a large amount of samples per pixel are needed to sufficiently sample this scene (512 rays per pixel). Below: Bar-chart depicting the load
balancing measured in number of buckets rendered: A: Athlon XP 2.1GHz, B: P4 1.7GHz, C: Celeron 2.8GHz, D: PIII 700MHz, E: PIII
450MHz, F: Athlon MP 2.1GHz, G: Athlon MP 2.1GHz, H: PPC 970 2.5 GHz, I: Opteron 2.4 GHz.

Abstract

We present work in progress on concurrent ray tracing with dis-
tributed computers using “off-the-shelf” open source software.
While there exists numerous open source ray tracers, very few offer
support for state-of-the-art concurrent computing. However, it is a
well known fact that ray tracing is computationally intensive and
yet prevails as the preferred algorithm for photorealistic rendering.
Thus, the current work is driven by a desire for a simple program-
ming strategy (or recipe) that allows pre-existing ray tracing code
to be parallelized on a heterogenous cluster of available office com-
puters - strictly using open source components. Simplicity, stability,
efficiency and modularity are the driving forces for this engineering
project, and as such we do not claim any novel research contribu-
tions. However, we stress that this project grew out of a real-world
need for a render cluster in our research group, and consequently
our solutions have a significant practical value. In fact some of our
results show a close to optimal speedup when considering the rel-
ative performances of each node. In this systems paper we aim at
sharing these solutions and experiences with other members of the
graphics community.

CR Categories: I.3.2 [Computer Graphics]: Graphic Systems—
Distributed/Network Graphics D.1.3 [Programming Techniques]:
Concurrent Programming—Distributed Programming

Keywords: distributed ray tracing, render farm, open source

∗e-mail: gunjo@itn.liu.se
†e-mail: olani@itn.liu.se
‡e-mail: andso@itn.liu.se
§e-mail:kenmu@itn.liu.se

1 Previous work

Rendering of images lies at the very heart of computer graphics
and the increased desire for photorealism often creates a computa-
tional bottleneck in image production pipelines. As such the sub-
field of global illumination has been the focus of numerous previ-
ous publications, most of which are beyond the scope of this paper.
To mention some of the most important; Ray tracing [Appel 1968;
Whitted 1980], beam tracing [Heckbert and Hanrahan 1984], cone
tracing [Amanatides 1984], radiosity [Goral et al. 1984], path trac-
ing [Kajiya 1986], metropolis light transport [Veach and Guibas
1997], and photon mapping [Jensen 1996]. While some of these
techniques offer better performance than others a prevailing prob-
lem seems to be that they are computationally intensive. In this
paper we have chosen to focus on the popular ray tracing technique
extended with photon mapping. However, even this relatively fast
method can crawl to a halt when effects like depth of field or caus-
tics are added. Unlike the usual pin-hole camera, realistic camera
models usually require a significant increase in the amount of sam-
ples. The same is true when ray tracing caustics of translucent ma-
terials. Especially the latter has been a major issue in our group,
since we are conducting research on large-scale fluid animations.

The algorithms constituting ray tracing and photon mapping are of-

7

ten referred to as being “embarrassingly parallel”. Nevertheless
a large body of work has been devoted to this topic [Lefer 1993;
Freisleben et al. 1997; Stone 1998; Lee and Lim 2001], but rela-
tively little has found its way into open source systems. Yafray1 has
some seemingly unstable support for multi-threading, but currently
no distributed rendering capabilities. POV-Ray2 has some support
for distributed computing through unofficial patches. Finally, for
Blender3 some unmaintained patches and utilities appear to pro-
vide basic network rendering. PBRT4 is another ray tracer; without
distribution capabilites but with excellent documentation and mod-
ular code design. Given the state of the aforementioned distributed
systems we choose - in the spirit of simplicity and modularity - to
work with PBRT as opposed to competing ray tracers. We then ex-
tend PBRT with distribution capabilities which is straightforward
given its modular design.

2 System

Two fundamentally different strategies exist for concurrent comput-
ing. The first approach is threading which involves spawning mul-
tiple local threads (i.e. “lightweight processes”) sharing the same
execution and memory space. In the context of ray tracing these
threads can then cast rays in parallel. The second strategy is to
employ message passing, which provides parallelism by commu-
nication between several running processes each having their indi-
vidual execution and memory space. The former is more efficient
when considering shared memory architectures, but is obviously
not extendable to clusters of computers. For this reason, we use a
message passing technique which has optimized strategies for both
shared memory systems and clusters.

2.1 Software and Implementation

We have developed a modular distributed rendering system based
on simple modifications of pre-existing open source components.
The system can be configured to run on almost any computer hard-
ware using very little effort, creating a powerful rendering cluster at
virtually no cost. The core component of our system is the “phys-
ically based ray tracer”, PBRT, by Pharr and Humpreys [2004].
We have extended PBRT with OpenMPI [Gabriel et al. 2004] and
LAM/MPI [Burns et al. 1994; Squyres and Lumsdaine 2003] to
support concurrent computations on both shared memory and dis-
tributed architectures. Brief descriptions of these core components
follow:

• PBRT is open source for non-commercial use and offers an
advanced light simulation environment. It deploys a strictly
modular design and the source code is well documented.

• MPI (Message Passing Interface) [Forum 1994] is the de facto
standard for distributed scientific computing. The implemen-
tations we used are OpenMPI and LAM/MPI which offer full
compliancy to the MPI-2 standard.

To simplify the administration of our cluster, we use the warewulf
cluster solution5. The warewulf server makes it possible for nodes
to boot off the network while automatically downloading a special-
ized Linux configuration. Using this solution, virtually any ma-
chine connected to the network can be rebooted into the cluster and

1http://www.yafray.org
2http://www.povray.org
3http://www.blender3d.org
4http://www.pbrt.org
5http://www.warewulf-cluster.org

automatically register with the server. In addition, it is easy to main-
tain an up-to-date installation across the nodes and poll CPU and
memory usage.

Following the modular design of PBRT, our implementation is
based on dynamically loaded modules. This simplifies the network
abstraction layer significantly. PBRT is executed using the MPI
runtime environment on every node in the network. Then, each
node in turn loads different modules depending on its role. With this
setup we have implemented a star shaped rendering cluster which
has one master node that is connected to all the render nodes, see
figure 2. The purpose of the master node is to distribute work, col-
lect data, and assemble the final image. Since the complexity of dif-
ferent parts in the image is not known prior to rendering, the work
distribution is a non-trivial problem, which is further complicated
by the heterogeneity of the network itself. We chose to implement
an automatic load balancing scheme where nodes query the master
for tasks as the rendering progresses. First, the master partitions
the rendering work into buckets, for example blocks of pixels or
sets of samples. Then, each rendering node is assigned a bucket in
sequential order. As soon as a node completes rendering, the fin-
ished bucket is sent to the master node for compositing. If there
are unfinished buckets, the master returns a new bucket assignment
to the render node and the process loops. This simple scheme is
summarized in algorithm 1 and 2 for the master and render nodes,
respectively. This strategy of dynamic task assignment is expected
to automatically balance the load between nodes of different per-
formance, providing good utilization of the assigned render nodes.

Figure 2: We use a simple star shaped network layout. The master
node is shaded black and the render nodes white.

1: Compute the buckets for distribution
2: Assign initial buckets to the nodes in sequential order

3: while there are unfinished buckets do
4: Wait for a bucket
5: Add received bucket to image
6: if there are unassigned buckets then
7: Assign the next unassigned bucket to sending node
8: else
9: Send terminating signal to sending node

10: end if
11: end while

Algorithm 1: RENDERMASTER()

In practice, the implementation consists of a few lines of changes
in the PBRT core files and additional modules that implement our
distribution strategies outlined in algorithm 1 and 2. Our imple-
mentation currently supports distribution of either:

8

1: Initialize sampler and preprocess the scene

2: Wait for initial bucket assignment
3: while node is assigned a bucket do
4: while bucket is unfinished do
5: Fetch a sample from sampler and trace ray
6: Add sample result to bucket
7: end while

8: Send finished bucket to master
9: Wait for new bucket assignment or termination signal

10: end while

Algorithm 2: RENDERNODE()

Pixel blocks consisting of {R,G,B,A,weight} tuples.

Sets of samples consisting of {x,y,R,G,B,A} tuples.

Photons consisting of light samples {x,y,z,R,G,B,nx,ny,nz}.

where capital letters denotes the usual color channels, lower case
is used for coordinates and ni denotes normal vector components.
When distributing blocks of pixels, the render nodes will return a
block of finalized pixels to the master upon completion. This leads
to low, fixed bandwidth demands that are proportional to the block
size. However, this also requires that the nodes sample in a padded
region around the block for correct filtering of the boundary pix-
els. This means more samples in total, introducing an overhead
growing with smaller block sizes. If we assume that the block is
quadratic, with side l, and the filter has a filtering radius of r, then
the overhead is given by 4rl + 4r2. In practice this means that a
block size of 100×100 together with a typical filter radius of 2 al-
ready gives an overhead of 4×2×100+4×22 = 816 pixels out of
10.000, or roughly 8 % per block. This overhead needs to be care-
fully weighted against the better load balancing achieved by smaller
block sizes. For example a block size of 10× 10 pixels with filter
radius 2 introduces an overhead of 96 % per block.

Adversely, the distribution of samples does not introduce a similar
computational overhead, since the samples are independent of each
other. However, this approach leads to higher bandwidth demands.
More specifically, the bandwidth required for sample distribution
compared with pixel distribution is proportional to the number of
samples per pixel. For some scenes this can be a considerable num-
ber (see for example figure 1).

The two previous distribution strategies deals exclusively with the
casting of rays within the ray tracer. However, the celebrated
photon-map extension is also easily distributed, with nearly the ex-
act same code. We have parallelized the pre-proccessing step which
samples light at discrete points in the scene; the light estimation can
be parallelized using one of the two aforementioned modules.

2.2 Hardware

Currently, our cluster is composed of existing desktop computers
used by the members of our group, in addition to a collection of
very old retired computers collected in our department. The per-
formance ranges from a Pentium III 450 MHz to a dual core AMD
Opteron 280, giving a very heterogeneous cluster. The majority of
the machines are connected through 100 Mbps network cards and a
few are equipped with 1000 Mbps cards. Finally, to better evaluate
the impact of the very inhomogeneous hardware we cross-test on
a strictly homogeneous shared memory system with high network
bandwidth and low latency; an SGI Prism with 8 Itanium II 1.5GHz
CPUs, 16 GB of RAM and InfiniBand interconnects.

3 Benchmarks

To assess the performance of our render systems we have bench-
marked several different tests. By varying both the raytraced scene
and the bucket distribution we evaluate the load balancing. Figure
3 shows the result of applying the load balancing scheme as de-
scribed in algorithm 1 and 2 for both pixel and sample distribution.
The pixel distribution strategy is very close to optimal, and clearly
outperforms the sample distribution approach. Our tests indicate
that this is due to the currently inefficient, but general, computation
of the sample positions.

To measure the speedup achieved by the cluster, we measured the
rendering times of a benchmark scene at low resolution at each ren-
der node. This gives a relative performance measure for the nodes
that can be accumulated for a given cluster configuration. Figure
4 shows the speedup achieved by the cluster for respectively pixel
and sample distribution, and figure 5 shows one of the correspond-
ing load distributions. Since we can configure the cluster with an
arbitrary combination of nodes, we chose to generate four different
host-lists and plot the speedups achieved by increasing the number
of nodes from each list. As can be surmised from Figure 4, the
pixel distribution shows a clear advantage over the sample distribu-
tions. This is in agreement with the results shown in Figure 3. How-
ever, the pixel distribution deviates from the optimal linear speedup
when the cluster reaches an accumulated relative performance of
5-6 units. This illustrates the main weakness of our simple load
balancing scheme. Currently, the master assigns buckets to the ren-
der nodes in a “first-come-first-served” manner. Consequently it is
possible that a slow node is assigned one of the last buckets, mak-
ing the final rendering time depend on the execution of this single
slow render node. Our measurements indeed show that fast nodes
typically spend a significant amount of time idle, waiting for the
final buckets to complete. A better strategy for load distribution or
re-distribution is clearly needed to improve performance. This is
left for future work, but we have several promising ideas.

Figure 6 shows a frame from one of our gigantic fluid animations
(a water fountain) placed in the “Cornell-box”. The fluid interface
is represented by a sparse level set data structure and directly ray-
traced. Note that the complex fluid surface requires a very large
amount of recursive steps in the ray tracing to accurately account for
the light transmittance. The lighting conditions are very demanding
due to a high amount of indirect lighting and color bleeding. The
scene is rendered in a resolution of 1600×1600 with photon map-
ping using the final gather step. We stress that both the ray tracing
and photon shooting scale well even for a scene as complex as this.

Our final benchmark is presented in Figure 7. It shows how the
rendering times are affected by the number of buckets for a given
scene. As expected, the pixel distribution strategy suffers from a
large overhead induced by many small buckets, while the rendering
times using a sample distribution approach is left almost unaffected.
Also note the initial local minima in rendering time for the pixel
distribution, caused by the good load balancing resulting from an
optimal bucket size.

4 Future Work and Conclusions

As can be seen from figure 7 the input parameters to our sys-
tem greatly affect performance. A practical extension would be a
friendly user interface to the not always intuitive parameter space.
The user should only be concerned with adding a scene description
to a queue. For this we need to design heuristics or algorithms that
from a given set of parameters {image size, scene complexity, clus-
ter size, cluster node performance, etc.} finds the optimal settings
and forwards an augmented scene description to the system.

9

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of processors

S
pe

ed
up

Optimal
Pixel distribution
Sample distribution

Figure 3: Benchmarking the scene in figure 1 at resolution 900×
900 with 16 samples per pixel partitioned using 81 buckets. The
rendering is performed on an SGI Prism shared memory machine
with 8 CPUs. Note how the speedup is close to optimal for pixel
distribution, while the sample distribution is suffering from over-
head in the computation of the sample positions.

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Accumulated relative performance

S
pe

ed
up

Optimal
Hostlist 1
Hostlist 2
Hostlist 3
Hostlist 4

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Accumulated relative performance

S
pe

ed
up

Optimal
Hostlist 1
Hostlist 2
Hostlist 3
Hostlist 4

Figure 4: Benchmarking the scene in figure 1 at resolution 900×
900 with 16 samples per pixel partitioned using 81 buckets. The
rendering is performed on a heterogeneous cluster of 15 nodes.
Left: Pixel distribution. Right Sample distribution.

Handling errors arising from computations in a distributed envi-
ronment is a difficult problem. Implementations of MPI such as
FT-MPI [Dewolfs et al. 2006] are completely dedicated to building
stable systems. For a normal application such as ours the capabil-
ities of OpenMPI are adequate but still require careful design. We
wish to make our system as stable as possible.

Any parallel computation is bound to asymptotically saturate the
network when using the layout described in 2. So far we have not
seen this, but the amount of network traffic for distributing samples
is considerable already at 10-20 machines. Thanks to our modu-
lar design it is easy to implement different layouts. This will also
spread some of the computational overhead for the master node. We
attribute the surprisingly bad results for sample distribution (figure
4 right) to the relatively expensive sample position computations.
This can be efficiently solved by specialized routines for each sam-
pling pattern. As can be seen from the load balancing graphs, figure
1 and 5 with a complex scene and a heterogenous cluster it is dif-
ficult to get really good utilization. Our simple scheme is stable
and works asymptotically well (at least for sample distribution) but
has practical drawbacks. We want to benchmark balancing schemes
with better real world performance such as

• “Round robin” network style where each node only communi-
cates with its neighbors and share its current task. This should
decrease the network traffic to specific master nodes and dis-
tribute the workload better.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

Node

Number of blocks assigned
Relative performance

Figure 5: The load balance from the pixel distribution (figure 4 left)
using a random host file.

• “Optimal work load assignment”, currently each work unit is
equally large. Using a preprocessing step where the time com-
plexity of the scene is measured, as well as the relative perfor-
mance of the nodes, a better work load assignment should be
feasible. Stability issues when dealing with assumptions on
performance and complexity needs to be considered though.

• “Maximum utilization”, modify the current load balancing
scheme so that when idle nodes are detected the distributed
work units are recursively split into smaller parts and reas-
signed. This should ensure good utilization at a small over-
head.

In this work, we have described how to use existing open source
components to compose a high performance cluster used for dis-
tributed ray tracing with little effort and low budget. Initially, we
have tested a simple load balancing strategy based on a first-come-
first-served scheme. The tests indicate that for homogeneous con-
figurations the resulting speedup is close to optimal. However, for
heterogeneous scenes and cluster configurations sub-optimal results
were reported stressing a need for more sophisticated strategies, as
outlined above.

References

AMANATIDES, J. 1984. Ray tracing with cones. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 129–135.

APPEL, A. 1968. Some techniques for shading machine renderings
of solids. In AFIPS 1968 Spring Joint Computer Conf., vol. 32,
37–45.

BURNS, G., DAOUD, R., AND VAIGL, J. 1994. LAM: An Open
Cluster Environment for MPI. In Proceedings of Supercomput-
ing Symposium, 379–386.

DEWOLFS, D., BROECKHOVE, J., SUNDERAM, V., AND FAGG,
G. 2006. Ft-mpi, fault-tolerant metacomputing and generic
name services: A case study. Lecture Notes in Computer Sci-
ence 4192, 133–140.

FORUM, M. P. I. 1994. MPI: A message-passing interface stan-
dard. Tech. Rep. UT-CS-94-230.

FREISLEBEN, B., HARTMANN, D., AND KIELMANN, T. 1997.
Parallel raytracing: A case study on partitioning and scheduling
on workstation clusters. In Hawai‘i International Conference on
System Sciences (HICSS-30), vol. 1, 596–605.

GABRIEL, E., FAGG, G. E., BOSILCA, G., ANGSKUN, T., DON-
GARRA, J. J., SQUYRES, J. M., SAHAY, V., KAMBADUR, P.,

10

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of processors

S
pe

ed
up

Optimal
Photon shooting
Rendering

Figure 6: Above: A complex scene from a water simulation inserted
into the “cornell box” containing several difficult components. Be-
low left: The speedup from distributing the photon mapping pre-
processing step and the ray tracing. Below right: Time complexity
visualization of the scene measured in time spent per pixel, bright
pixels indicate complex regions.

BARRETT, B., LUMSDAINE, A., CASTAIN, R. H., DANIEL,
D. J., GRAHAM, R. L., AND WOODALL, T. S. 2004. Open
MPI: Goals, concept, and design of a next generation MPI im-
plementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, 97–104.

GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND
BATTAILE, B. 1984. Modeling the interaction of light between
diffuse surfaces. In SIGGRAPH ’84: Proceedings of the 11th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 213–222.

HECKBERT, P. S., AND HANRAHAN, P. 1984. Beam tracing
polygonal objects. In Computer Graphics (SIGGRAPH ’84 Pro-
ceedings), H. Christiansen, Ed., vol. 18, 119–127.

JENSEN, H. W. 1996. Global Illumination Using Photon Maps.
In Rendering Techniques ’96 (Proceedings of the Seventh Euro-
graphics Workshop on Rendering), Springer-Verlag/Wien, New
York, NY, 21–30.

KAJIYA, J. T. 1986. The rendering equation. In SIGGRAPH ’86:
Proceedings of the 13th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
143–150.

101 102 103 104
90

100

110

120

130

140

150

160

170

Number of buckets (logarithmic)

R
en

de
rin

g
tim

e
(s

ec
on

ds
)

Pixel distribution
Sample distribution

Figure 7: Benchmarking pixel distribution versus sample distribu-
tion with an increasing number of buckets.

LEE, H. J., AND LIM, B. 2001. Parallel ray tracing using processor
farming model. icppw 00, 0059.

LEFER, W. 1993. An efficient parallel ray tracing scheme for
distributed memory parallel computers. In PRS ’93: Proceedings
of the 1993 symposium on Parallel rendering, ACM Press, New
York, NY, USA, 77–80.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering: From Theory to Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

SQUYRES, J. M., AND LUMSDAINE, A. 2003. A Component
Architecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, Springer-Verlag, Venice, Italy,
no. 2840 in Lecture Notes in Computer Science, 379–387.

STONE, J. E. 1998. An Efficient Library for Parallel Ray Tracing
and Animation. Master’s thesis.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In ACM SIGGRAPH ’97, ACM Press, 65–76.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6, 255–264.

11

Temporal Face Normal Interpolation

Jindřich Parus∗

Centre of Computer Graphics
and Data Visualization,

University of West Bohemia,
Pilsen, Czech Republic

Anders Hast†

Creative Media Lab,
University of Gävle,

Gävle, Sweden

Ivana Kolingerová‡

Centre of Computer Graphics
and Data Visualization,

University of West Bohemia,
Pilsen, Czech Republic

Abstract

Normals of triangular faces are essential vectors in many areas of
computer graphics. In this paper we will deal with methods for nor-
mal computation of triangles under linear soft-body deformation,
i.e., the triangles which deform in time so that each vertex travels
independently along its linear trajectory. Linear deformation can
be found in mesh morphing, cloth simulation, physical simulation,
etc. We will demonstrate five different approaches for temporal face
normal interpolation, one of them is new, and we will discusstheir
pros and cons.

1 Introduction

Normal vectors are important vectors in many areas of computer
graphics. For example in shading, they are used for light model
evaluation [Phong 1975][Gouraud 1971]. In rendering they are
used for back face culling to exclude primitives, which can not
be visible, from the rendering pipeline and thereby reducing the
amount of primitives to be sent to the graphics pipeline. In compu-
tational geometry they are used, e.g., for point containment queries,
to distinguish between the interior and exterior of objects. In col-
lision detection they are used for example for collision response
computation [Eberly 2004].

A normal vectorN at a pointP of the surface S is a vector per-
pendicular to the surfaceS at point P. In computer graphics we
usually work with some approximation of the real surface. Due to
its simplicity a piecewise linear approximation is very often used to
represent surfaces. Here a surface is described by a set of triangular
faces. Such representation is called a mesh. It is a very widespread
representation because it is very easy to modify, store and render
since it is supported by graphics hardware.

In the case of meshes we usually do not define a normal in each
point of the surface. Instead we define the normals of each piece-
wise linear segment, i.e., triangular face. Then it is supposed that
the normal is constant over the whole face. The normal of the face
is usually computed by taking the cross-product of two edgesof
the triangle. In fact we can use any two vectors which lay in the
plane of the face and which are not parallel. Nonetheless since the
triangular face is defined by three vertices, the easiest wayto com-
pute the face normal is to use two edges. Note that there are always
two possible face normals depending on which order of vertices
we choose for normal computation. It is usually required that all
normals of the mesh are consistently oriented, which implies con-

∗e-mail: jparus@kiv.zcu.cz
†e-mail: aht@hig.se
‡e-mail: kolinger@kiv.zcu.cz

sistent orientation of faces, i.e., order of vertices whichdefine the
face. Face normals are used for example in flat shading, wherea
light model is evaluated only once for one face, then the entire face
is filled with one single color. It is of course very fast but the final
image may produce Mach bands, which are disturbing.

In many graphics applications it is required to compute normals
for the vertices. A usual approach for computation of a vertex nor-
mal for the vertexv is to take a weighted average of normals of faces
which are incident to the vertexv. There are several strategies for
which weights to choose [Jin 2005] e.g., area of the faces, the an-
gle between the edges at the vertexv, etc. Again, face normals are
essential. Normals at vertices can then be interpolated over the face
resulting in smooth normal variation, which is essential inshading.
So for vertex normal computation it is required to compute the face
normals as well.

Many problems in computer graphics have t-variant nature, i.e.,
data change in time. In the case of meshes, meshes may move in
space, rotate, deform, etc. Once the mesh is modified it is necessary
to update the normals as well to be able to carry out operations as
described above with respect to a current state of the mesh. Usually
we have some static version of a certain operation and when the
state of the mesh is changed the operation is recomputed according
to the new state of the mesh. It is simple but in some cases it may
be very slow.

The normal computation methods for t-variant meshes can be
categorized into two groups according to what kind of motionthe
mesh performs. The first group is rigid body-motion. In the rigid-
body motion the relative position of any two vertices stays fixed
during the transformation and the object transforms as one entity
[Karni 2004]. Examples of rigid-body motion are rotation and
translation. The second group is soft-body motion. In the soft-
body motion there are no restrictions on change of relative position
of any two vertices; each vertex can travel along its trajectory inde-
pendently of the other vertices.

The rigid-body motion can be expressed by a transformation
matrix A. Then the normal vectors of the transforming mesh un-
der rigid-body motion is transformed by the inverse transpose of
the Jacobian matrixJ of the transformation matrixA, thus(J−1)T

[Gomes 1999]. Moreover, if the transformation is linear, the nor-
mal field is transformed by the matrixA directly, because if the
transformation represented by the matrixA is linear then it holds
that(J−1)T = J = A. In soft-body motion, as there are no restric-
tions on the motion, no global transformation can be appliedon the
normal vectors, as in the rigid-body motion case.

As in many computer graphics disciplines there is always dis-
crepancy between fast computation and exact computation. Some
time critical (real-time) applications require fast computation and
some inaccuracies up to some level are excused, a typical example
is shading. Other applications require the highest possible preci-
sion and may wait for an exact result if necessary, e.g., point con-
tainment tests are very critical and some inaccuracy in the result
(inside/outside) may have large consequences.

In this paper we will deal with face normal computation of
meshes under linear soft-body deformation, i.e., each vertex trav-

12

a0 b0

c0

b1

c1
a1

n0

n1

c(t)

a(t)

b(t)

n(t)

Figure 1: A Triangle deforms from the initial positiona0,b0,c0 to
the final positiona1,b1,c1 .

els independently along its linear trajectory. In section 2we will
describe five approaches for face normal interpolation. In section
3 we will compare described approaches from the time consump-
tion and accuracy point of view and we will discuss pros and cons
of each method. Section 4 concludes the paper together with some
ideas for the future work.

2 Face Normal Interpolation

First let us describe more specifically our setting. We suppose
that mesh is deforming in time so that only the position of ver-
tices varies; the connectivity (i.e., interconnection of vertices by
edges) is always the same. We know the current state of the mesh
at time t0 and we also know the future state of the mesh at time
t1, which is usually given by some simulation process (e.g., colli-
sion detection). An individual state of the mesh will be referred to
as a keyframe. We suppose that the trajectory of vertices between
individual keyframes is linear. More complicated curved trajecto-
ries can be approximated by piecewise linear curves and our ap-
proaches can be applied separately for individual linear segments
of the trajectory. As the triangular mesh is just a set of triangles we
will first consider only one moving triangular face. The setting is
demonstrated in figure 1. A triangle deforms from the initialposi-
tion a0,b0,c0 to the final positiona1,b1,c1. The vertex trajectories
a(t),b(t),c(t) are linear. We can easily compute the initial normal
n0 (for the initial position of the face) and the final normaln1 (for
the final position of the face). We are interested in how to compute
the face normaln(t) when the face deforms between the initial po-
sition to the final position so that it more or less respects the triangle
deformation.

The simplest approach is to recompute the face normal in each
time instant by taking the cross-product of the edges, i.e.:

n = (v1−v0)× (v2−v0) (1)

wherev0,v1,v2 are vertices of triangle. The result is exact, but
it requires a cross-product computation (9 additions, 6 multipli-
cations) and normalization and therefore we are looking forother
methods, which are perhaps less accurate but faster. Anyhow, they
need to approximate the normal in a good way.

2.1 t-variant cross product

We can use the usual cross-product approach but instead of using
vertex coordinates we use the trajectories of vertices [Parus 2006],
i.e.:

n(t) = (b(t)−a(t))× (c(t)−a(t)) (2)

Since the vertex trajectories are linear then the result is adegree
two polynomial for each component of the normal. If there aretwo

(a) (b) (c)

n0

n1

nh

n0

n1

Figure 2: : (a) linear interpolation, (b) quadratic interpolation, (c)
higher degree interpolation.

trajectories with the same direction and the same length then equa-
tion (2) is degree one polynomial. If all three trajectorieshave the
same direction and the same length then equation (2) is constant,
i.e., not time dependent. By evaluating the degree two polynomials
we obtain the exact normals. The advantage of this approach is that
the coefficients of the degree two polynomials can be precomputed
in a preprocessing stage. Moreover, the quadratic polynomials can
be evaluated by the Horner scheme (6 additions, 6 multiplications).
It should be noted that the computation can be reduced further as
explained later. The length of the normal is proportional tothe area
of the face and therefore normalization is required. The normaliza-
tion can also be included into a t-variant formula:

n(t) =
(b(t)−a(t))× (c(t)−a(t))
‖(b(t)−a(t))× (c(t)−a(t))‖

(3)

The resulting evaluation is thus more complicated.

2.2 Lagrange interpolation

Linear interpolation (degree one Lagrange interpolation)of normal
vectors is described by the following expression:

n(t) = n0 + t(n1−n0) (4)

wheren0 is an initial normal andn1 is the final normal. This ap-
proach is used for example in spatial normal interpolation in Phong
shading. In fact, here, the vector is treated as if it was a point. It is
fast but not sufficient because the intermediate normals arefar from
being perpendicular to the triangle; furthermore the intermediate
normals need to renormalized figure 2(a). Higher degree Lagrange
interpolation fits better the true behavior of the face normals but it
is always a tradeoff between a better fit and an oscillation due to the
higher degree of the interpolation function. Also, unit length is not
preserved. It is demonstrated in figure 2. Figure 2 (a) shows linear
normal interpolation, and it can be seen that intermediate normals
(gray) do not have unit length. Figure 2 (b) shows degree two La-
grange interpolation which needs an additional intermediate normal
nh to fit a quadratic interpolation curve. Figure 2 (c) shows higher
degree Lagrange interpolation where a number of intermediate nor-
mals are required to precompute the interpolation curve, itcan be
seen that due to the high degree of the interpolation polynomial the
normal is oscillating.

2.3 Vector SLERP

SLERP (Spherical Linear intERPolation) [Glassner 1999] isa tech-
nique for interpolation of vectors, which maintains unit length, it is
defined as:

SLERP(n0,n1,t) =
sin((1− t)θ)n0 +sin(tθ)n1

sin(θ)
(5)

wheren0,n1 is the initial and target normal respectively,θ is the
angle betweenn0,n1. This approach preserves unit length normals
but again the direction of the normal is far from being perpendicular
to the intermediate triangles.

13

n0

t0 b0

n1

t1
b1

M

a b

c

b’

c’

n(t)

t(t)

b(t)

n0,0 n0,1 n0,2 n0,3

n1,0

n1,1 n1,2

n2,0

n2,1

n3,1

Figure 3: (a) a demonstration of deCasteljau algorithm for vectors,
the gray thick arrow represents application of SLERP on two suc-
cessive normals, (b) quaternion interpolation of face normal, trans-
formationM transforms the trianglea,b,c to the trianglea′,b′

,c′

andn0 to n1. The frameF1 = (t1,b1,n1) is computed by trans-
formingF0 = (t0,b0,n0) by the transformationM .

2.4 Spherical deCasteljau

A slightly better idea is to compute several intermediate normals
exactly (as in higher degree Lagrange interpolation) and interpo-
late these vectors on the surface of the unit sphere. In this case, a
generalized deCasteljau algorithm for spherical interpolation can be
used. The deCasteljau algorithm is well known for fast generation
of Bezier curves. It is basically a recursive subdivision ofthe con-
trol polygon of the Bezier curve which converges very quickly to
the curve. For example, let us haven vertices of a control polygon
and we want to compute the point on the Bezier curve defined by
the control polygon for the parameter valuet0. We subdivide each
of then−1 edges of the control polygon in the rationt0 : (1−t0). It
results in a new control polygon withn−1 vertices andn−2 edges.
The same procedure is recursively repeated until only one edge re-
mains and by subdivision of this edge we end up with a point on
the curve. The generalization of deCasteljau algorithm forfast vec-
tor interpolation means that we replace line segments with shortest
great circle arcs, i.e., the line segment subdivision step is replaced
by SLERP of consecutive intermediate normals.

It is demonstrated in figure 3(a) where we have an initial nor-
mal n0,0, a final normaln0,3, and two intermediate normalsn0,1
and n0,2, (e.g., in the timet = 0.33 and t = 0.66). When we
want to compute normalnf at time t we compute normalsn1,0,
n1,1, n1,2 by applying SLERP on pairs of successive normals,
i.e.,n1,0 = SLERP(n0,0,n0,1,t),n1,1 = SLERP(n0,1,n0,2,t),n1,2 =
SLERP(n0,2,n0,3,t). This process is repeated until one single nor-
mal n3,1 is obtained.

2.5 Quaternion SLERP

In this section we will present our idea which is based on the use of
quaternions [Shankel 2000] in order to interpolate the facenormals.
First let us recall two important identities, which we will use in the
following description:

Definition 1: Rotation in 3D around an axisa by an angleφ is
represented by a 3x3 rotation matrixR or by a quaternionq [Shoe-
make 1985], [Eberly 2004]. Both representations are equivalent.

Definition 2: The matrixR of a rotation transformation is or-
thogonal and its columns (and rows) are having unit length, thus
the matrix of the rotation forms an orthonormal frame.

The central idea is to set an orthogonal frameF0 = (n0, t0,b0)
for the initial face and set an orthogonal frameF1 = (n1, t1,b1) for
the final face. To set a frameF = (n, t,b) means to associate one
vector of the frame with the normal of the facen, choose a tangent
t which lies in the plane of the face (e.g., an edge of the triangle)
and compute the binormalb by taking the cross product ofn andt,
i.e.,b = n× t. By organizing the column vectorst,b,n into a 3×3

matrix we obtain a rotation matrixR which can be converted into
a quaternion representationq [Eberly 2004]. In this way we obtain
quaternionsq0 andq1, representing the initial and the final orienta-
tion of the face, respectively. To obtain intermediate normalsn(t),
quaternions are interpolated using quaternion SLERP (generaliza-
tion of vector SLERP for quaternions in 4D), i.e.,

q(t) = SLERP(q0,q1,t) (6)

and intermediate quaternionq(t) can be converted back to the
orthogonal matrixR(t) and the normal is extracted from the last
column ofR(t). It is demonstrated in figure 3(b) where the trian-
gle a,b,c with the frameF0 is transformed in the trianglea′,b′

,c′

with the frameF1. The intermediate quaternionq(t) is converted
to the frame(t(t),b(t),n(t)) and the intermediate normaln(t) is
extracted. The question is how to set the framesF0 andF1. We
use following scheme. First we compute a transformation matrix
T which transforms vertices of the initial triangle to the vertices
of the final triangle, moreover we want that the transformation T
transforms also the initial normal to the final normal. All condition
can be expressed by a matrix equation, i.e.:

M [a0b0c0n0] = [a1b1c1n1] (7)

where a0, b0, etc. are column vectors, e.g.,a0 =
[a0x ,a0y ,a0z ,1.0]T . The matrixM can be computed as:

M = [a1b1c1n1][a0b0c0n0]
−1 (8)

Then we set an arbitrary frameF0 for the initial face. For the
frameF1 we have to chooset1 andb1 sincen1 is given. We com-
puteb1 by transformingb0 by the matrixM , i.e.,b1 = Mb0, t1 is
then computed as cross product ofn1 andb1, i.e.,t1 = n1×b1.

3 Comparison and Discussion

We compared the approaches described in section 2 from two points
of view. The first aspect is the quality of the interpolation and the
second aspect is the time consumption. The quality of the inter-
polation is measured as follows. The time interval (usually[0,1])
is sampled and in each samplei an angleai between the exact
normal (computed by the cross product) and interpolated normal
(computed by some interpolation approach described in section
2) is computed. Angles between the exact normals and interpo-
lated normals in individual samples are summed and the resulting
numberq represents the quality of the interpolation scheme, i.e.
q = ∑ai,i = 1...n wheren is the number of samples.

Normal interpolation
approach

faces: 15300

faces: 44700

faces: 35180

faces: 21040

Linear 18916 55756 44078 20061
Quadratic 4820 15792 9681 5425
Cubic 1906 6444 3640 1572
t-variant cross product 0 0 0 0
Vector SLERP 19427 57999 44972 20861
Spherical deCasteljau 7039 21772 16068 7647
Quaternion SLERP 17766 53492 42831 19202

Table 1: Comparison of different normal interpolation approaches.

We tested different interpolation approaches on a morphingan-
imation, where a mesh composed of triangles deforms from one
shape to another shape so that the trajectories of individual vertices
are linear. The numbers in table 1 represents a quality of interpola-
tion for the whole mesh, it is computed as a sum of quality of inter-
polation of individual triangles of the mesh, i.e.,Q = ∑q j, j = 0...m

14

wherem is the number of triangles of the mesh andq j is the qual-
ity of interpolation of j-th triangle. The numbers in table 1 must
always be viewed with respect to the number of triangles and the
number of samples. Rather then absolute values it is more impor-
tant to compare ratios between different methods, e.g., it can be
seen that quadratic interpolation is almost 4-times betterthan sim-
ple linear interpolation. The second, third and fourth row shows
the results of normal interpolation described in Section 2.2. The
row t-variant cross product shows the result of the approachfrom
the Section 2.1. The row Vector SLERP shows results of method
described in the Section 2.3. Results of vector interpolation using
generalized deCasteljau algorithm (Section 2.4) are shownin the
Spherical deCasteljau row. The last row shows the quality ofnor-
mal interpolation using quaternions.

From table 1 it is clear that the best approach from the quality
point of view is the t-variant cross product approach which gives
exact normals, i.e., it is not really an interpolation approach. The
other approaches (except the quaternion approach) handlesnormal
vectors as usual vectors, i.e., it is not respected that normals vector
are perpendicular to some surface and in fact, these approaches can
be used for the interpolation of any vectors. The second worst result
is obtained by linear interpolation. Better results can be achieved
by quadratic or cubic interpolation (up to 90% improvement). The
worst result was achieved by SLERP of normal vectors. The quality
of interpolation by spherical deCestaljau approach depends on how
many intermediate normals we use. In this case we used initial and
final normal and two additional intermediate normals. The quater-
nion SLERP approach has slightly better results (on averageabout
5%) than simple linear interpolation.

The problem of Quaternion SLERP approach is that there are an
infinite number of frames configurations that represent the face ori-
entation. First, we generated a pair of random framesF0 (for the
initial face),F1 (for the final face) and we tested the quality of in-
terpolation. A random frame is given by a normaln of the face, an
arbitrary vectort lying in the plane of the face and a binormal vec-
tor b computed asb = n× t. Different configurations of random
frames lead to different quality of interpolation. We did not suc-
ceed in devising a deterministic algorithm for computationof best
pair of frames configuration (from the interpolation quality point of
view). Our frame computation based on the transformation matrix
in equation (8) which maps the initial face to the final face yields
good results, however some specific frame configurations ledto a
better interpolation quality.

Next we will compare various approaches from the time con-
sumption point of view. We will not present exact timing since it
is dependent on how various elementary operations (SLERP, cross-
product, polynomial evaluation, etc.) are implemented. Some of
them can be implemented in hardware so that their execution can
be very fast. We will express the time consumption in terms ofele-
mentary operations, so that one must always decide which approach
is the most suitable according to the actual application platform.

Elementary operations used in table 2 are polynomial evalua-
tion, SLERP and quaternion to matrix conversion. Polynomial
evaluation is used in the Lagrange interpolation approach and in
the t-variant cross product approach. Polynomials can be evalu-
ated by the Horner scheme which saves some multiplications in
comparison with usual evaluation of polynomial in monomialform.
SLERP is used in the Vector SLERP approach and in the deCastel-
jau approach. SLERP requires evaluation of trigonometric func-
tions which are computationally expensive, but it can be speed up
by an incremental approach which was described Barrera et alin
[Barrera 2004].

Quaternion to matrix conversion is used in the Quaternion
SLERP approach. Note that in our case we need to extract only
one column from the matrix, i.e., the normal. It is also important to
decide whether we need random access to the deformation or just

Method Requires
normalization

Computation

Linear interpolation yes 3 linear interpolation, Eq. (4)

Quadratic, cubic
interpolation

yes 3 evaluation of degree two (quadratic interp.) or degree three
(cubic interp.) polynomials

t-variant cross product yes (Eq. 1)
no (Eq. 2)

3 evaluation of degree two polynomials (Eq. 2)
3 evaluation of rational polynomial (Eq. 3)

Vector SLERP no 1 SLERP

Spherical deCasteljau no n(n-1)/2 SLERPs, where n is the number in precomputed
normals

Quaternion SLERP no 1 SLERP, quaternion to matrix conversion

Table 2: Comparison of various normal interpolation approaches
from time consumption point of view in terms of elementary oper-
ations.

sequential access. Random access means that we can jump fromone
time instant to another. Sequential access means that the mesh de-
formation is sequentially played; in this case incrementalmethods
(using temporal coherence) for computing SLERP [Barrera 2004]
or polynomial evaluation [Hast 2003] can be used. For example, a
degree two polynomials can be evaluated by an incremental method
using only two additions.

4 Conclusions and Future Work

In this paper we showed five approaches on how to compute nor-
mals of triangular faces under linear deformation. It is clear that the
Linear interpolation approach always will be faster than any other
approach but it will also have very bad results when the deforma-
tion is dramatic. The higher degree Lagrange interpolationis better
but still it is just an interpolation of vectors and in some cases it
does not capture the face deformation well.

The t-variant cross product approach gives exact face normals;
the lengths of normals are proportional to the size of face soit can
be directly used for vertex normal computation weighted by the
area [Parus 2006]. If unit length normals are required, bothLa-
grange interpolation and t-variant cross product approaches require
additional normalization.

Approaches based on SLERP do not require vector normaliza-
tion since the vectors are interpolated on the surface of theunit
sphere. The problem of Spherical deCasteljau approach is that it
interpolates the initial and final normal but it just approximates the
intermediate normals (in the same way how Bezier curve approxi-
mates the control polygon). So it is not useful when we want inter-
polate exactly some vector different then the initial and the final.

The new quaternion interpolation approach is different from pre-
vious approaches (except t-variant cross product approach) because
it interpolates frames instead of vectors. Interpolation of the frame
may capture better the true triangle motion and thus it can produce
more accurate normals then the simple Vector SLERP approach.
Like the linear interpolation approach and the Vector SLERPap-
proach it has the advantage that no intermediate normals areneces-
sary to compute exactly in order to set up the interpolation for the
animation.

In the future work we would like to study the Quaternion inter-
polation approach. It has promising results because by experiments
we found out that some frame configurations lead to a better qual-
ity of interpolation than others, so we would like to find suchframe
configurations which lead to the best possible quality of thenormal
interpolation.

References

T. BARRERA, A. HAST, E. BENGTSSON2005.Incremental Spher-
ical Linear Interpolation SIGRAD 2004, pp. 7-10.

15

D. EBERLY 2004.Game Physics Morgan Kaufman, 2004

A. GLASSNER 1999. Situation Normal Andrew Glassner’s
Notebook- Recreational Computer Graphics, Morgan Kaufmann
Publishers, pp. 87-97.

J. GOMES 1999. Warping and Morphing of Graphical Objects
Morgan Kaufman. San Francisco, California. 1999.

H. GOURAUD 1971.Continuous Shading of Curved Surfaces IEEE
Transactions on Computers, Vol. 20, No. 6, 1971.

A. HAST, T. BARRERA, E. BENGTSSON 2003. Improved Shad-
ing Performance by avoiding Vector Normalization, WSCG’01,
Short Paper,2001, pp. 1-8.

S. JIN 2005.A Comparison of Algorithms for Vertex Normal Com-
putation Communications of the ACM, Vol. 18, No 6, 1975

Z. KARNI 2004. Compression of soft-body animation sequences
Computers and Graphics, 28: 25-34. 2004.

J. PARUS, I. KOLINGEROVÁ 2006. Normal Evaluation for Soft-
body Deforming Meshes SimVis2006, pp. 157-168, 2006.

B. T. PHONG 1975.Illumination for Computer Generated Pictures
The Visual Computer, Springer-Verlag GmbH, Issue: Vol. 21,No
1-2, pp. 71-82, Feb. 2005.

J. SHANKEL 2000.Interpolating Quaternions Game Programming
Gems. Edited by M. DeLoura. Charles River Media, pp. 205-213

K. SHOEMAKE 1985.Animating rotation with quaternion curves
ACM SIGGRAPH, pp. 245-254.

16

A multi-sampling approach

for smoke behavior in real-time graphics

Henrik Gustavsson†

University of Skövde
Henrik Engström‡

University of Skövde
Mikael Gustavsson*

Abstract

Smoke simulation is a key feature of serious gaming applications
for fire-fighting professionals. A perfect visual appearance is not
of paramount importance, the behavior of the smoke must
however closely resemble its natural counterpart for successful
adoption of the application. We therefore suggest a hybrid
grid/particle based architecture for smoke simulation that uses a
cheap multi-sampling technique for controlling smoke behavior.
This approach is simple enough for it to be implemented in
current generation game engines, and uses techniques that are
very suitable for GPU implementation, thus enabling the use of
hardware acceleration for the smoke simulation.

Keywords: Smoke Simulation, Particle System, Multi-sampling,
GPU, Serious Gaming

1 Introduction

Smoke simulation is a topic that has received much attention from
computer graphics researchers. Commonly, work on smoke
simulation is focused on graphical appearance, either producing
photo realistic smoke [Fedkiw et al. 2001, Losasso et al. 2004] or
less photo-realistic, cartoon-like smoke [Selle et al. 2000]. When
simulated smoke is used in animations, graphical appearance is
considered much more important than real-time execution of the
particle system. In a serious gaming application, the behavior of
the smoke is more important than the appearance. Computational
efficiency is also important since a computer games engine is used
for rendering as well as other tasks related to the game. For
realistic behavior and appearance of smoke, rendering of a single
frame of animated smoke typically takes up to a minute [Losasso
et al. 2004] even very old, and comparably simplistic solutions
[Ebert and Parent 1990] are prohibitively expensive to implement
in a current generation game engine. † ‡ *
Particle systems in computer games typically use simple rule-
based engines executed by the CPU of the computer used to run
the game engine [Sele et al. 2000]. Such an approach tends to
produce very simple particle systems with simplistic behavior and
very limited interaction with the environment. We suggest an
approach which uses a simple multi-sampling technique for a
particle system that is similar to a rule-based particle engine but
has a behavior that is more similar to advanced particle systems.
This engine is sufficiently simple that it can be implemented in a
current generation game engine, and in the future implemented
using a GPU for hardware acceleration of the computations.

† e-mail: henrik.gustavsson@his.se
‡ e-mail: henrik.engstrom@his.se
* e-mail: mikgust@gmail.com

2 Related Work

Particle systems are available in all of the major 3d animation
packages and game engines. The particle engines available in
computer games are however much less sophisticated than their
counterparts in 3d animation software. This is mainly due to the
stringent real-time requirements of computer games. Recently,
several authors have investigated hardware acceleration of particle
systems by offloading particle calculations to the GPU [Kipfer et
al. 2004]. This would allow simulation of a significantly larger set
of particles on the same hardware. If main memory can be
avoided by using the GPU, the strain on the often congested
system bus can be reduced significantly. There have also been
suggestions for executing more advanced particle engines on the
GPU such as fluid simulation [Amada et al. 2004, Hegeman et al.
2006]. Even with GPU acceleration, these systems are not
sufficiently fast to simulate a particle system in a game engine.
Serious gaming is a topic that has recently emerged as a light-
weight tool for training professionals or military personnel.
Existing video game engines can be readily adapted for training
[Fong 2004]. To the player, a video game consists of a playing
environment, characters, tools, and missions. These elements can
then be altered to better fit for training purposes. There are
several games available today for various types of training. Many
of these are military simulators, but others have been developed,
such as games for training of firefighting professionals [Stapleton
2004]. A key issue when it comes to the use of games for training
of professionals is user acceptance. Acceptance is related to the
perceived realism of the simulated environment and poor
acceptance may lead to reduced efficiency of the training
[Lampton et al. 2002]. In a game for fire-fighting professionals
such elements as the color of clothing and details of equipment
may be important for user acceptance [Stapleton 2004]. In a game
focused on extinguishing fires, the behavior of the smoke is one of
the most important properties for user acceptance. If the smoke
does not behave realistically the game is less useful for training
purposes.
Currently, there are environments such as NIST Fire Dynamics
Simulator (FDS) available for fire simulation in virtual buildings
[Hyeong-Jin and Lilley 2006] or even smaller structures [Hamis
2006] which portray fire behavior in a very realistic manner.
These simulations are very realistic but the performance is not
high enough to be suitable for real-time execution using a game
engine. There has also been work in producing realistic graphical
representation of fire [Nguyen et al. 2002], but since fire
simulation uses many of the same techniques as in smoke
simulation fire simulation it has most of the same drawbacks as
smoke simulation for real-time games environments.

17

3 A simplified physics model

The most common approach to realistic smoke motion is to either
use Navier-Stokes or Euler equations. For a standard simulation
system, the equation might use variables such as density, pressure,
volume force, velocity and viscous coefficients [Fedkiw 2001].
The equations are then used to compute the properties of the fluid
or smoke for each element of a grid. In a Lagrangian or grid-less
approach, particles are often updates using a variations of the
Navier-Stokes equations used by the grid methods where the
acceleration of the particle is decided by the velocity, density and
additional forces that may affect the particle.
For this work a Lagrangian approach was selected since particles
can be updated using a simplified equation based on the pressure
surrounding the particle. In the simplified context of smoke
simulation for an in-door fire, the equations that affect particle
motion can be simplified significantly. Firstly, there are no
external forces such as wind inside a building. Furthermore, since
the smoke is light, the effect of gravity is also negligible. There
are thus two main forces that affect the smoke, the pressure of
surrounding particles and the upward motion due to the heat
generated from the fire.
We suggest an approach that uses a medium sized 3D grid
implemented as a 3D texture that contains the density of particles
in each of the grid cells. Each particle is controlled by the pressure
in the surrounding grid elements, which is derived through texture
sampling. The size of the grid needs to be roughly the size of the
polygons used to render the smoke so that the polygons cluster
together to form a solid block when the maximum density has
been reached. A low density grid cell should attract particles and a
high density grid cell should repel particles. A function can then
be used to control the strength of the effect on the particle
dependent on the pressure in grid cell. This gives us the equation:

Figure 1. Particle acceleration equation

Where a is the acceleration for particle i, s is the sample vector
and f the attraction function and ρ is the particle density at the
position of the particle i offset by the sample vector s. We
simplify this further by using the acceleration as the particle
velocity, thereby removing the need to keep track of both the
particle position, velocity and acceleration.
This very simple approach also allows simplification of the
particle updates since particle to particle collisions are not
required and collisions with the environment can be simulated by
grid elements with maximum density. This means that the particle
update code will only need to know the density of particles and
the particle position. A standard particle system commonly uses
the position, velocity and acceleration of the particles [Kipfer et
al. 2004]. By using the acceleration as the velocity, the update
procedure is even simpler than a standard particle system.

Figure 2. Multi-sampling hybrid grid/particle approach

4 Multisampling approach

When multisampling is used, it is important to select a sampling
strategy that gives the best output for the least amount of samples.
In the case of the particle engine it is important that the sampling
occurs farther away from the location of the particle than the
closest grid so that the particle will be attracted to low density
areas some distance away from its current location. For this
application we chose a sampling pattern that samples all 26 grid
points one unit away from the particle so that no low density grid
is missed regardless of the direction. The second level of samples
are taken two steps away from the centre grid in a pattern similar
to the Nvidia quincunx (pattern looks like the number 5 on a die)
pattern used for anti-aliasing. The second level sample vectors are
twice as long as the first level but since there are fewer of them,
the total influence of the second level is very similar to the first
level. On the third level there are only sample vectors for the six
ordinal directions. so even though the vectors are longer, total
influence is lower than both the first and second level.

Y

X

Z
Figure 3. First level (26 samples)

18

Y

Z

X

Figure 4. Second level (14 samples)

Y

X

Z
Figure 5. Third level (6 samples)

When the sampling pattern has been decided it is necessary to
select the function that will decide how the particles will react. A
high value means that the particles will be attracted and a value
below zero means that the particles will be repelled. The steepness
of the curve determines how fast that will happen and how many
particles that will end up in each element of the grid.
For this application we chose a variation of the logistics function,
with parameters that gave us a sigmoid curve that has the value 1
at 0.0 and reaches zero at 5 and -1 at 10. This means that it is
unlikely that a grid element will contain more than 5 particles
since any value above 5 will repel particles. For a room that has a
very large number of grid elements it is necessary to use a steeper
curve

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0
0 1 2 3 4 5 6 7 8 9 10

Attraction

Density

Figure 6. Sigmoid particle density function

If a simulation is started without any bias toward a specific
direction, there is no incentive for the smoke particles to rise since
all directions have equal influence on the particle speed. To
introduce a system where the particle can rise while it is hot and
close to the fire we must introduce a bias for each of the sample
points so that when the particle is hot the sample points above 0
on the y axis get a slight advantage. This advantage can be
reduced, either when the particle becomes older or when the
particle has been in a low density (fewer warm particles)
environment for a number of time steps. These parameters can be
recorded into a bias texture, an example of which is shown below.
Note that the differences between high and low bias has been
exaggerated.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 6 12 18 24 32 38 44 50 9 10

Lifetime

Samplepoint

Figure 7. Sigmoid particle density function

The resulting pseudo-code can be seen below. Note that three
textures are used, one 3D texture for the grid, one 2D texture for
the bias and one 1D texture for the sigmoid function lookup table.
This means that each particle will require 138 samples per particle
which is not much since a GPU can perform millions if not
billions of samples per second.

19

Figure 8. Particle update pseudo-code

5 Results

Through visualization of the density grid it is possible to see that
the particle system works well when it comes to equalizing the
particle pressure. The particles strive to move away from the high
density areas into lower density areas. The largest dot at the top of
figure 8 repels surrounding particles with maximum force.

Figure 9. Particle density plot

Particle behavior over time is also close to the expected result, the
hot recently born particles rise with a high speed and the colder
older particles are more stationary or are even dropping slightly
when cold. The figures below depict the simulation at t=1 second,
t=10 seconds and t=25 seconds and finally t=50 seconds.

Figure 10. Simulation at t=1 second

Figure 11. Simulation at t=10 seconds

Figure 12. Simulation at t=25 seconds

for(int j=0;j<46;j++){

 x=xk+sample_x[j];

 y=yk+sample_y[j];

 z=zk+sample_z[j];

int griddata=Grid[x][y][z];

 cnt+=abs(sigmoid[griddata]);

sumx+=sigmoid[griddata]*
sample_x[j]*bias[lifetime][idx];

sumy+=sigmoid[griddata]*
sample_y[j]*bias[lifetime][idx];

sumz+=sigmoid[griddata]*
sample_z[j]*bias[lifetime][idx];

}

20

Figure 13. Simulation at t=50 seconds

6 Conclusions

We have shown that it is possible to construct a very simple
particle system that produces smoke that behaves realistically in
that the smoke goes up to the top of the room and then slowly fills
the room from above until the room is filled with a uniform cloud
of smoke. The simulation uses only approximately 150 texture
samples per particle which means that thousands of particles can
be simulated on a modern computer without large negative effects
on the performance of the game engine.
The bias texture has a big effect on the behavior of the particles
and construction of the bias texture does require some attention
for realistic behavior. Similarly, the particle emission and density
also affects the visual quality. If the grid size is too large or
particles are released at locations that are very close, particles will
not move realistically.

7 Future Work

There are large amounts of future work to conduct with this
smoke simulator.
• Examining the effects of the bias texture and the sigmoid

function and see if other values or configurations are better
than the current.

• More realistic rendering through billboards for smoke-puffs
and using the density grid as a basis for putting soot on the
walls of the room.

• Benchmarking the solution in real-life situations to see where
for instance the number of particles gives the best visuals and
the lowest negative effect on game performance

• One of the most pressing issues is the implementation of this
smoke simulator in a real games engine to see how it reacts
in a real game. Another pressing issue is to make the GPU
implementation and examine the effect of the GPU on for
example number of particles.

8 References

AMADA, T., IMURA, M., YASUMURO, Y., MANABE, Y.
AND CHIHARA, K. 2004. Particle-Based Fluid Simulation
on GPU, ACM Workshop on General-Purpose Computing on
Graphics Processors and SIGGRAPH 2004 Poster Session.

EBERT, D. S. AND PARENT, R. E. 1990. Rendering and

Animation of Gaseous Phenomena by Combining Fast Volume
and Scanline A-buffer Techniques. Computer Graphics
(SIGGRAPH 90 Conference Proceedings) 24(4):357–366

FEDKIW, R., STAM, J. AND WANN JENSEN, H. 2001. Visual

Simulation of Smoke. ACM SIGGRAPH 2001, 23-31.

FONG, G. 2004. Adapting COTS games for military simulation.

Proceedings of the 2004 ACM SIGGRAPH International
Conference on Virtual Reality Continuum and its Applications
in Industry, 269-272.

HEGEMAN, K., CARR, N. A. AND MILLER, G. S. P. 2006.

Particle-Based Fluid Simulation on the GPU, International
Conference on Computational Science 2006, Part IV, LNCS
3994, 228–235

HAMINS, A., BUNDY, M. AND DILLON, S. E. 2006.

Characterization of Candle Flames. 44th AIAA Aerospace
Sciences Meeting and Exhibit. 1-13

HYEONG-JIN, K. AND LILLEY, D. G. 2006. Computer

Modeling of Developing Structural Fires. 44th AIAA
Aerospace Sciences Meeting and Exhibit

KIPFER, P., SEGAL, M. AND WESTERMANN, R. 2004.

UberFlow: A GPU-Based Particle Engine. HWWS’04
Proceedings of the ACM SIGGRAPH / EUROGRAPH
conference on graphics hardware.

LAMPTON, D. R., BLISS, J. P. AND MORRIS, C. S. 2002.

Human performance measurement in virtual environments. K.
M. Stanney (Ed.), Handbook of virtual environmentvs:
Design, implementation, and applications, Mahwah, NJ:
Lawrence Erlbaum Associates, 701-720

LOSASSO, F., GIBOU, F. AND FEDKIW, R. 2004. Simulating

water and smoke with an octree data structure. ACM
Transactions on Graphics (TOG) 23(3) 57–462

NGUYEN, D. Q., FEDKIW, R. AND WANN JENSEN, H. 2002.

Physically based modeling and animation of fire. Proceedings
of the 29th annual conference on Computer graphics and
interactive techniques. 721-728

STAPLETON, A. 2004. Serious Games: Serious Opportunities.

Paper presented at the Australian Game Developers
Conference, Academic Summit, Melbourne

SELLE, A, MOHR, A. AND CHENNEY, S. 2000. Cartoon

Rendering of Smoke Animations. ACM SIGGRAPH

21

Interactive Simulation of Elastic Deformable Materials

Martin Servin∗

Department of Physics,
Umeå University

Claude Lacoursière†

HPC2N/VRlab and
Computing Science Department,

Umeå University

Niklas Melin
Department of Physics,

Umeå University

Figure 1: Snapshot from interactive simulation of a deformable beam and solid sphere

Abstract

A novel, fast, stable, physics-based numerical method for interac-
tive simulation of elastically deformable objects is presented. Start-
ing from elasticity theory, the deformation energy is modeled in
terms of the positions of point masses using the linear shapefunc-
tions of finite element analysis, providing for an exact correspon-
dence between the known physical properties of deformable bodies
such as Young’s modulus, and the simulation parameter. By treating
the infinitely stiff case as a kinematic constraint on a system of point
particles and using a regularization technique, a stable first order
stepping algorithm is constructed which allows the simulation of
materials over the entire range of stiffness values, including incom-
pressibility. The main cost of this method is the solution ofa linear
system of equations which is large but sparse. Commonly available
sparse matrix packages can process this problem with linearcom-
plexity in the number of elements for many cases. This methodis
contrasted with other well-known point mass models of deformable
solids which rely on penalty forces constructed from simplelocal
geometric quantities, e.g., spring-and-damper models. For these,
the mapping between the simulation parameters and the physical
observables is not well defined and they are either strongly limited
to the low stiffness case when using explicit integration methods, or
produce grossly inaccurate results when using simple linearly im-
plicit method. Validation and timing tests on the new methodshow
that it produces very good physical behavior at a moderate compu-
tational cost, and it is usable in the context of real-time interactive
simulations.

CR Categories: I.3.5 [Computer Graphics]: Physically based
modeling— [I.3.7]: Computer Graphics—Virtual reality

Keywords: deformable simulation, elasticity, constrained dynam-
ics, stability, numerical integration

∗e-mail: martin.servin@physics.umu.se
†e-mail: claude@hpc2n.umu.se

1 Introduction

Simulation of elastically deformable objects is a necessity for cre-
ating certain types of virtual environments, such as those designed
for surgical or heavy vehicle operator training applications, for in-
stance. This problem has generated interest recently and a survey
of well-known methods can be found in [Nealen et al. 2005]. We
focus here on numerically stable methods for integrating elastic de-
formable objects at interactive rates over a wide range of stiffness,
including incompressibility and the nearly rigid limit, and on es-
tablishing a clear correspondence between the known material pa-
rameters used in elasticity theory–such as Young’s modulus–to the
simulation parameters.

We will briefly describe the most commonly used techniques and
explain how they fail for high stiffness, either losing stability, yield-
ing grossly inaccurate results, or both, and how they lack a clear
correspondence between simulation parameters and physical prop-
erties. Observe that both full incompressibility as well asfull rigid-
ity are cases of infinite stiffness. We argue that the key to han-
dling theinfinite stiffnessregime is to reformulate the problem as a
kinematically constrained dynamical system. The recoveryof finite
stiffnessis done using a constraint regularization and stabilization
technique which amounts to a numerically stable penalty technique
with the strain energy as the penalty function. Formulationof con-
strained mechanical systems and techniques for solving them have
been presented before in the graphics literature in [Witkinet al.
1990] [Baraff 1996] and [Erleben et al. 2005]. The idea of using
standard energy terms for generating penalty force has alsobeen
used several times before [Terzopoulos et al. 1987][Teschner et al.
2004]. It is the mixing of these two ideas in a numerically stable
way which is novel, and this is achieved by constructing a special
integrator which is semi-implicit [Lacoursière 2006] in combina-
tion with appropriate formulation of energy and dissipation terms.
The resulting method can handle stiffness from zero to infinity with-
out developing instabilities though the effective stiffness and accu-

22

racy is limited by the size of the time step. Since stability hinges on
reasonably accurate solutions of a large system of linear equations,
performance is achieved by exploiting sparsity in a direct solver as
was done in [Baraff 1996], for instance. Validation tests are conclu-
sive in demonstrating good agreement between the simulatedphys-
ical properties and the input parameters. Using a widely available
sparse matrix package, UMFPACK [UMFPACK], we achieved lin-
ear complexity as a function of system size and sufficiently fast ex-
ecution for interactive rates for moderately sized systems.

1.1 Contribution and organisation of this paper

Section 2 provides background of particle based simulationof de-
formable materials. Previous work is reviewed and the advantages
and shortcomings of the different strategies are discussed. In sec-
tion section 3 we consider a simple example that elucidates some
of the ideas and pitfalls. We argue that the key to fast and sta-
ble simulation even in the stiff regime is to reformulate theprob-
lem as a kinematically constrained dynamical system. The new
method for simulating elastic deformable materials is presented in
section 4. This method combines the technique of regularization
and stable stepping of constrained systems – described by Eqs. (20)
– and elasticity modeling based on well established material models
– specified by Eq. (15). The model is evaluated, through numerical
experiments, and discussed in section 5. Summary and conclusions
are found in section 6.

2 Particle system models for deformable

objects

There are several ways to represent deformable objects but we re-
strict our attention to those represented as a set of interacting point
masses, namely, lumped element models. Elastic propertiesof the
bodies are constructed by defining various forces and constraints
on the particles so that all constraints are satisfied and allinternal
forces cancel out when the body is in the reference configuration.
A recent survey of techniques for simulating deformable objects is
found in [Nealen et al. 2005]

We denote the particle positions byx = (x(1)T ,x(2)T , . . . ,x(N)T)T ,

wherex(i) = (x(i)
1 ,x(i)

2 ,x(i)
3)T is the 3D position vector of particle

i, with the parentheses emphasizing that it is a particle index rather
than a component of a vector, andN is the total number of particles.
The particle velocities arev = ẋ and the particle massesm(i) are
collected in the diagonal mass matrixM of dimension 3N× 3N.
The equations of motion are:

ẋ = v (1)

Mv̇ = Fext+Fint +Fc (2)

where the total force is divided into external forceFext, internal
forceFint and constraint forceFc. Sometimes we agglomerate the
external and internal forces intoF = Fext+Fint .

2.1 Geometry, energy and force

General penalty forces derived from energy functions for simulat-
ing deformable elastic objects were introduced in the graphics liter-
ature by [Terzopoulos et al. 1987]. The idea is to definegeometric
displacementfunctionsφi(x), which vanish in the rest configura-
tion, and a potential energyU(x) = ∑i(ki/2)φ2

i (x), where theki ’s

are positive stiffness parameters. The functionsφi(x) might be the
local curvature for a string or that of the surface for a membrane
instance. Other examples include deviation from rest distance be-
tween two particles,i, j , with φk(x) = (|x(i)−x(j)|−Li j)/Li j , where
Li j is the rest distance. The resulting energy represents that of a lin-
ear spring. The force generated from the potentialU(x) is well
known to be:Fint = −∂U/∂x. Note that this is linear inφk(x) and
therefore, all forces vanish at equilibrium, as needed. Provided the
Jacobian matrixJ = ∂φ/∂x has full rank at the equilibrium point,
the restoration forces arelinear in the geometric displacements.

Therefore, the art of this formulation is to chose displacement func-
tions φk(x) which do not have zero derivatives near the equilib-
rium, and which are linear independent of each other at or near
the equilibrium point. In computing the bending energy for a
cable made of point masses for instance, there is a zero deriva-
tive condition if one takes the bending displacement variable as:
φk(x) = (|x(i+1) − x(i−1)| − 2L0)/(2L0). There are several such
cases which are not so obvious and which arise accidentally when
trying to brace a set of particles with springs so as to produce a
unique rest configuration that is stable under arbitrary deformations.
This sort of problem is usually solved using inverse trigonometric
functions, as is done in the construction of shear restoration forces
in cloth simulation [Baraff and Witkin 1998]. This can be quite
expensive computationally and produce unexpected results.

This energy based penalty formulation was developed systemati-
cally for handling elastic solids in [Teschner et al. 2004] by defin-
ing three types ofgeometricdisplacements, namely,distances, vol-
umes, andsurface areas. These displacement functions involve the
coordinates of two or more particles and generate forces on these
via the potential energy function. To do this, the volume is first
cut into a set of tetrahedra, each of which contains four particles,
one at each vertex. Each particle is included in one or several of
these. Then, distance displacement functions are defined between
a particle and its nearest neighbors, using the rest configuration for
labeling. Then, a volume displacement function is defined using
the coordinates of the four particles in each tetrahedron. Finally, a
surface area displacement function is defined by measuring the area
of the free surfaces of the tetrahedron and subtracting the rest area.
One can then choose independent parameters for thecompressibil-
ity, thestiffness, and thesurface tension. This approach is an im-
provement over standard spring-and-damper models, where extra
springs are introduced to model some of the material properties.

The first problem with this model is that these three parameters
are not completely independent so that mapping to known material
properties is difficult as discussed in [Nealen et al. 2005].Essen-
tially, the true deformation energy, that is easily measured in the
lab and tabulated in handbooks, might not have such a simple map-
ping to the simple geometric quantities of the system of particles.
This is very clear in the case of a string where definition of bending
energy is difficult and torsion impossible, when considering only
point particles.

The second problem is that forces generated by this model do not
converge in the limit of infinite stiffness, even though the trajecto-
ries of the particles are mathematically well behaved in this limit.
Indeed, as demonstrated in [Rubin and Ungar 1957], the penalty
forces typically oscillate wildly in the limit where the stiffness con-
stants become large. This is not an intuitive result since the con-
straint forces are well behaved in the case where the kinematic con-
straintsφi(x) = 0 are rigorously enforced. Therefore, it is gener-
ally difficult to integrate systems with large penalty forces. When
using explicit integration methods, the time step is limited to less
than a fraction of the smallest natural period of oscillations. In the
present case, if all particles have identical massesm, this period is:
Tmin = 2π

√

m/kmax. This stability requirement seriously limits the

23

maximum stiffness or the performance. Some special implicit nu-
merical integration methods improve stability but great caution is
needed. For instance, when using the linearly implicit integration
strategy of [Baraff and Witkin 1998] however, the stiffnessrestric-
tions are not so severe but artificial damping is clearly noticeable,
limiting the usefulness of the method.

Two remedies are provided in the next section. The first is a defi-
nition of the potential energy of deformation which is not based on
the simple geometric quantities but which correctly maps the strain
tensor of elasticity to particle positions. This is similarto what is
done in finite element methods. The second is a stable regulariza-
tion of constraints so as to remove the high oscillatory components
of standard penalty force formulations.

2.2 Constraints and regularization

Kinematic constraints impose restrictions on the motion ofthe par-
ticles in the system. For instance, we can simulate a particle mov-
ing on the planez= 0 by imposing that restriction directly on the
coordinate, thus bypassing the computation contact forcesand ac-
celeration due to gravity. It is well known in physics that kinematic
constraints of the form1 φi(x) = 0 are the physical limit of strong
potential forces of the form(ki/2)φ2

i (x), for very largeki and this
has lead to two main strategies for solving constrained system.

The first is to formulate the equations of motion taking the restric-
tionsφi(x) = 0 into account as is described in [Erleben et al. 2005]
for instance. This requires the computation ofconstraint forces
which are the solution of a non-linear system of equations. The
main problems here are that even when linearizing, this system
of equations can be computationally expensive to solve, andthat
the trajectoriesx tend to drift away fromφi(x) = 0 because of dis-
cretization and approximation errors. The common strategyfor lin-
earizing the equations for the constraint forces [Baraff 1996] and
stabilizing the constraintsφi(x) = 0 [Baumgarte 1972] is notori-
ously unstable and this has given the constraint method muchbad
press. Stable and efficient methods for solving constrainedsystems
do exist though and we will provide one of these in the next section.

The second strategy is to include the potentials(ki/2)φ2
i (x) and the

corresponding forces. This latter approach is known as a penalty
force computation. At the mathematical level, there is a rigorous
correspondence on the trajectories produced by these two methods
in the limit of infinite ki . Given the simplicity of this formulation,
penalty forces are very attractive. But this is deceptive. Indeed, a
little known fact is that penalty forces do not converge to the smooth
constraint forces corresponding toφi(x) = 0. As shown in [Rubin
and Ungar 1957], the penalty forces oscillate with very highfre-
quency in the limit of largeki . In technical terms, the convergence
of the penalty forces is only weak∗. This means in particular that
the average value of the penalty forces, over a short interval of time,
∆t, say, does converge to the smooth constraint force. Numerically,
this means that high penalty forces quickly generate instabilities
which can only be resolved using special integration techniques de-
signed for highly oscillatory systems. Some implicit integrators
work well on highly oscillatory systems but some don’t and a case
of the latter is the first order implicit Euler method.

What we seek is a combination of the two strategies so that we can
recover the stability of constraint computation but allow the model-
ing flexibility of penalty forces. To do this, we first state the equa-
tions of motion of the constrained system. We collect all thecon-

1We consider only time independent equality constraints here. Inequal-
ity constraints may be used for non-penetration constraints, e.g., for colli-
sions and contact.

straint terms in a vector functionφ(x) with sizenc, the sum of the
constraint dimensions. Of course, ifφ(x) = 0 at all times, we have
φ̇(x) = 0 and by chain rule, this iṡφ (x) = Jẋ whereJ is known as
the Jacobian matrix ofφ . The components ofJ are[J]i j = ∂φi/∂x j .
Recall that for any surface defined with a scalar function, such as
φi(x) = 0, the gradient ofφi(x) is normal to the surface, and that
moving along the gradient is the fastest way to move away from
the surfaceφi(x) = 0. We want the constraint forces to directly op-
pose any force trying to move the system away from the surfaces
φi(x) = 0. It is therefore constructed as a linear combination of the
constraint normals,Fc = JT λ , whereλ is a vector withnc com-
ponents, one for each constraint. What are the values of the com-
ponents ofλ? Well, just what is necessary to remove any part of
resulting forces which point in the direction normal to any of the
surfacesφi(x)! Of course, since the pointx moves in a direction
tangentialto any of the constraint surfacesφi(x) = 0, the constraint
forces we just defined are workless. When this is taken into consid-
eration, and after writingv = ẋ thedifferential algebraic equations
of motion for the constrained system are:

ẋ = v (3)

Mv̇ = Fext+Fint +Fc (4)

φ(x) = 0 (5)

This is a nonlinear system of equation and a common strategy is to
replace the constraint with a linear combination:φ̈ (x) + aφ̇(x) +
bφ(x) = 0, which is mathematically equivalent and stable if the
coefficientsa andb are positive. The resulting equation is linear
in v̇ as is easily verified, and the full system of equations (3)–(5)
is then discretized as any other second order ordinary differential
equation. This strategy is now getting known as theacceleration
basedmethod in contrast to so-calledvelocity basedmethods which
we describe shortly. Note that this nomenclature is only used in the
graphics literature. The problem here is that numerical stability is
strongly dependent on the choice of thea andb parameters. How-
ever, there is no systematic strategy for choosinga and b which
work in all cases. Choosinga andb too small leads to constraint
drift so that|φ | increases with time, but choosinga andb too large
makes the system explode. Conversely, a solution of the stabilized
equations of motion with non-zero coefficientsa, b, even when sta-
ble, is not necessarily a solution of the original system of equations.
This method is a very bad idea indeed. Curiously, this is the most
popular scheme in the graphics literature where it goes backto the
early 1990s [Witkin et al. 1990].

The alternative is to discretize the velocity and acceleration before
attempting to linearize the constraintφ(x) = 0. This is covered in
Sec. 2.4.

As was mentioned previously, constraints can be realized asthe
limit of strong potentials. If we keep the strength finite though
large, this is a form of regularization if we find a way to writethe
equations of motion in terms of the inverse of the large stiffness.
When discretized judiciously, this scheme can produce stable and
efficient time stepping scheme of systems with either constraints or
very strong forces. In fact, almost the entire range from 0 toinfin-
ity is allowed, although some elasticity may remain in the infinite
case as a numerical error. Relaxing the constraints by keeping a
finite but large penalty parameter (or small regularizationparame-
ter) has the added benefit of removing numerical problems which
occur when constraints are degenerate or over defined, and tohelp
stabilize the linear equation solving process by making thematrices
strongly positive definite. In other word, we are trading theinfinite
stiff limit for speed and numerical stability.

Starting from a constraintφ we construct the potential energy:

U(x) = 1
2φT(x)α−1φ(x) (6)

24

for symmetric, positive definite matrixα of dimensiondc × dc.
The correspondence to the penalty terms defined previously is the
case whereα−1 is a diagonal matrix and where the entries on the
main diagonal are the stiffness parameterski . The limit α → 0
corresponds to infinite stiffness andα → ∞ to zero stiffness. In
the case of distance constraints the corresponding potential is a
spring potential, with spring stiffnessα−1. SinceU(x) is a po-
tential energy term, it produces forces in the standard way,namely:
Fc = −∂U/∂xT = −JT α−1φ , whereJ is the Jacobian matrix of
the functionsφ(x) as before. Next, in order to replace the large
parametersα−1 for the smallα in the equations of motion, we in-
troduce an artificial variableλ = −α−1φ such thatFc = JT λ . For
the regularized system the equations of motion are modified to:

ẋ = v (7)

Mv̇ = Fext+Fint +Fc (8)

αλ (x, t) = −φ(x, t). (9)

Note that in the limit of infinite stiffness,α → 0, the Eqs. (7)–(9)
are free from singularities and reproduces the system (3)–(5). The
trick now is to discretize this avoiding the high frequency oscilla-
tions in the constraint forces. Note also that a first order dissipative
term of the form−βφ̇ , with β > 0, can be also added to the right
hand side of (9) without affecting the limitα → 0 as long asβ → 0
simultaneously.

2.3 Elastic deformation energies

Now that we have seen how to transform quadratic potential energy
terms into constrained systems and vice versa, we constructa poten-
tial energy term for elastically deformable materials and define the
functionsφ(x) used in (6). Instead of using the intuitive geometric
displacement functionsφ(x) however, we turn to elasticity theory in
order to approximate the strain tensor–a measure of deformation–
in terms of the coordinates of the constituent particles. The benefit
here is that all parameters entering the simulation are directly re-
lated to the known, tabulated material properties. Elasticity theory
is rigorously covered in Ref. [Fung and Tong 2001] and more ac-
cessible for the purpose of physics based animation in Ref. [Erleben
et al. 2005].

We will consider only linear (Hookean) and isotropic elastic materi-
als here. This means specifically that the relation between the defor-
mation and the restoring force is linear and therefore, the potential
energy is quadratic in the deformations. To discretize the deforma-
tion and thus express it in terms of the particle coordinates, we use
a spatial discretization found infinite element analysis, restricting
our choice to linearshape functionsand tetrahedral meshes. The
mass is lumped at the nodes which correspond to point particles.

To parametrize the deformation of a solid, we first consider that
it occupies some domainB in 3D space, in its rest configura-
tion. Considering infinitesimal displacements first, each point r =
(r1, r2, r3)

T is moved by a small amount,u(r), so that its new lo-
cation is:r′ = r+u(r). This defines the vector fieldu(r) over the
domainB. The field is needed for constructing a measure of de-
formation which is estimated by measuring the change in distance
between two nearby points.

We assume thatB is divided into a set of tetrahedra in what follows
and concentrate the analysis on a single tetrahedron composed of
four nodal particles with current positionsx(a)(t),a = 1,2,3,4.

The domainB is now the original, undisplaced, undistorted volume
of our tetrahedron. To construct a mapping which relates thevector
field u(r), to thecurrentpositions of the nodes, we need to compute

the current displacement of each node as well as an interpolating
shape function. The role of the shape function is to distribute the
displacements at the nodes to displacements at the interiorpoints
in B so that if the nodea1 has a large displacement but nodea2
has none, the displacement field increases smoothly betweenthese
two nodes. We defineu(a) to be the full displacement vector of

nodal particle(a) from an arbitrary initial positionx(a)
0 = x(a)(0)

where the tetrahedron is at rest, say, so we have:u(a) = x(a)(t)−
x(a)

0 . The simplest case is to use a linear interpolation so that ifthe

vectorsu(a) are the nodal displacements at each nodea, then, the
displacement field reads:

u(r) = ∑
(a)

N(a)(r,x)u(a), (10)

where summation is over the four particles in each tetrahedron, and
x is the current configuration vector. Details of the full derivation of
the shape function are found in [Erleben et al. 2005] for instance.
The linear shape function is a scalar function of the form

N(a)(r,x) = V−1(a(a) +b(a)r1 +c(a)r2 +d(a)r3), (11)

whereV(x) is the volume of the tetrahedra and the coefficients sat-
isfy:

a(1) a(2) a(3) a(4)

b(1) b(2) b(3) b(4)

c(1) c(2) c(3) c(4)

d(1) d(2) d(3) d(4)

=

1 1 1 1

x(1)
1 x(2)

1 x(3)
1 x(4)

1

x(1)
2 x(2)

2 x(3)
2 x(4)

2

x(1)
3 x(2)

3 x(3)
3 x(4)

3

−1

(12)

A few important observations must be made here. First, the vector
r used inu(r) is in the interior of thecurrent tetrahedron formed by
the current coordinates of the nodesx(a). Second, the displacement
field u(r) is not small. Indeed, a uniform translation of all the nodes
by a vectory producesu(r) = y, which is arbitrarily large. A uni-
form rotation of all the particles also causes large changesin u(r).
But the displacement field itself is not the measure of deformation.
Instead, the Green strain tensor, which measures local variations in
distances between close pointsr andr+δr, is what is needed. This
is defined in terms of thederivativesof the displacement field as:

εi j ≡
1
2

[

∂ui

∂ r j
+

∂u j

∂ r i
+ ∑

k=1,2,3

∂uk

∂ r i

∂uk

∂ r j

]

. (13)

This tensor is symmetric and is therefore parametrized witha six
dimensional vector:ε = (ε11,ε22,ε33,ε12,ε13,ε23)

T . The quadratic
term is often ignored but is necessary here if we want zero strain
under rigid displacements.

The Green strain tensor is a good measure of small deformation
but we use it for arbitrarily large ones. This can pose a problem
if the four nodes collapse onto a plane, in which case, Eqn. (12)
cannot be solved. Worse still, after going through a planar collapse,
a tetrahedron can becomeinvertedand eventually go to rest in an
inside-out configuration. This can be remedied by adding an extra
constraint to the system stating that the determinant of thematrix on
the left side of Eq. (12) should be near unity but we do not pursue
this further here.

Computing the derivatives of the displacement field is straight-
forward but tedious. The resulting expressions are found in[Er-
leben et al. 2005] for instance. The Ref. [Bro-Nielsen and Cotin
1996] is also useful for making implementations.

25

We now construct a potential energy in terms of the strain vari-
ables which are the natural measures of deformation. For an elas-
tic material, the deformation energy per unit volume is given by
W(x) = 1

2εTDε, where:

D =

λ +2µ λ λ 0 0 0
λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

, (14)

and λ and µ are the Lame constants which are directly related
to other common material parameters such as Young’s modulus,
Y, bulk modulusB and Poisson ratioν, via simple algebraic re-
lations, namely:Y = µ(3λ + µ)/(λ + µ), B = λ + (2/3)µ, and
ν = (1/2)λ/(λ +µ). The matrixD is symmetric and positive defi-
nite as is well known. For large values ofλ the material approaches
incompressibility and with increasing values ofµ the resistance to
shearing deformations increases. Typical solids have Young’s mod-
ulus ranging from 10MPa for rubber to 2GPa for Nylon, and up
to 1000 GPa for diamond. The Poisson ratio ranges between 0
(compressible) and 1/2 (incompressible). This means thatλ and
µ ranges between the order of the Young’s modulus and infinity,
λ → ∞ latter being the limit of incompressibility.

We are now ready to formulate the kinematic constraint producing
rigid body motion for a tetrahedron and the potential energyfor
elastic deformations. As the deformation energyW(x) is an energy
density, the potential energy for elastic deformation of a tetrahedron
is the volume integral of this expression:

U = VW = 1
2(V

1
2 ε)TD(V

1
2 ε). (15)

We identify the constraint for rigid body motion of a tetrahedron
as 0= φ = V

1
2 ε and the constant matrixα in the regularization

description is identified as:α = D−1. We will employ this en-
ergy function for particle systems representing elastic deformable
objects.

As noted previously, matrixD is constant, symmetric, and positive
definite. It can therefore be factorized to the formQTα−1Q where
Q are constant orthogonal matrices andα−1 is diagonal with non-
negative entries. The vector of constraintsφ defined previously can
therefore be associated withφ = Qε. Note here that the matrixQ
essentially rotates the strain components, mixing them in away that
is dependent on the ratio between the Lamé constants. This mixing
explains, in part, why simple geometric penalty function cannot be
mapped easily to the physical parameters, even though the penalty
terms are constructed from an identical tetrahedral mesh.

2.4 Time stepping

Details of numerical integration methods plays a critical role in sim-
ulation stability, accuracy–as well as the loosely defined notions
of realism or plausibility–and even more so when using low or-
der algorithms. The special objective we have in mind here isa
stable integration of the highly oscillatory forces arising from the
regularized constraint forces, combined with speed and a moder-
ate level of accuracy. This contrasts with the numerical analysis
literature where onlyoverall efficiencyis considered, namely, the
accuracy achieved for a given unit of computational effort.In ad-
dition, accuracy is generally measured in terms of local or global
error bounds on the solution itself. In simulating physicalsystems
however, accuracy can also be measured in terms of preservation of
known invariants of the trajectories such as momentum, energy, or

symplecticity of the flow, see Ref. [Kharevych et al. 2006]. Since
the equations of motion are differential formulations of the con-
sequences of these global invariants on the trajectories, numerical
preservation of these invariants has a strong impacts on realism.
For low order methods, the distinction is particularly obvious as
we illustrate below. In fact, some low order methods, such asthe
popular symplectic Euler [Kharevych et al. 2006]–also known as
Störmer-Verlet, Leapfrog, or several other names as well–globally
preserve some of these invariants within certain bounds during the
entire simulation, provided some stability restrictions on the size
of the time step are met. By contrast, a fourth order Runge Kutta
method, which is locally more accurate, does not preserve any of
the physical invariants globally and can accumulate significant er-
rors over time. For instance, with the wrong choice of time step,
the energy of the system might decay to zero unintentionally–and
inexplicably for the user.

We will discuss benefits and shortcomings of two widely used
methods in the context of simulation of elastic materials first be-
fore introducing the regularized stepper which meets our objectives.
Further examples and discussions are provided in section 3.

Consider the family of first order time steppers for the equations of
motion (1)–(2):

xn+1 = xn +∆tvn+nx (16)

vn+1 = vn +∆tM−1Fn+nv, (17)

where the indexn denotes the time pointt = n∆t, and the indexes
nx = 0,1 nv = 0,1 denote the discrete time at which the various
quantities are evaluated. The explicit Euler method corresponds to
the casenx = 0, nv = 0. It fails unconditionally on the undamped
harmonic oscillator, producing trajectories with|xn| = O(en∆t2ω2

),
whereω2 = k/m. This is a bad sign. In general, artificial damping
terms must be added to avoid exponential growth but careful analy-
sis reveals that when the damping is increased too much, the system
is againunstable. In addition, the observed damping forces are gen-
erally much lower than the damping parameters would suggestdue
to the in combination with damping–in general much larger damp-
ing than ever occurs in reality. Tuning this for a complicated net-
work of spring and dampers is a tedious and frustrating task hardly
worth the effort.

The case withnx = 1, nv = 0 corresponds to the well known sym-
plectic Euler method which has many remarkable properties.For
one, it is computationally as cheap as the explicit Euler method.
However, it is stable for integrating harmonic oscillator systems as
long as the time step satisfies∆t < 2/ω = 2

√

m/k, without any
artificial damping. It does not exactly conserve the energy but it
does exactly preserve another quadratic form which is closeto the
energy. This implies global stability at least for linear systems as
the energy oscillates within bounds proportional to∆t2. The reason
for this conservation property is that it is the simplest example of
a variational integrator [Kharevych et al. 2006], and like all such
time stepping methods, it is symplectic, i.e., it preservesan integral
invariant along the flow. But since this is not unconditionally sta-
ble, we expect to lose stability as soon asωm > 2/∆t, whereωm is
the maximum frequency in the system. This can therefore not be
applied to the high stiffness case.

To understand this limitation, consider an object of mass 1kg and
density roughly like water. Simulate the object with 1000 particles
of equal masses connected with spring forces with stiffnessconstant
k, and integrate this with fixed time step∆t = 0.02 ms. The sta-
bility requirement demands thatk . 2.5 N/m. The corresponding
Young’s modulus for this is roughlyY≈ 250Pawhich is extremely
soft, as typical solids have Young’s modulus ranging from 10MPa
up to 1000GPa. At Y = 250 Pa, we are way off the scale. The

26

maximum stiffness become even less for a finer division, i.e., into
more particles of lesser mass and shorter spring lengths. The way
out is to integrate with smaller time steps or to use artificially small
mass density, or to modify other physical parameters to achieve the
desired visual result. But this only works if one is not interested in
any sort of validation.

The casenx = 1, nv = 1 corresponds to the first order implicit Euler
method. This is well known to be the most stable method in the
book if the nonlinear system is solved accurately. It is alsouncon-
ditionally stable for positive time step for the simple harmonic os-
cillator. When the nonlinear system of equations is solved approxi-
mately after a linearization, stability is no longer unconditional but
still quite good. To do this, approximate the forcesFn+1 with a
Taylor expansion around the current statexn,vn to get the stepping
formula:

xn+1 = xn +∆tvn+1 (18)
[

1−∆t2M−1 ∂Fn

∂x

]

vn+1 = vn +∆tM−1Fn, (19)

where the force derivatives are evaluated at time stepn. The expres-
sion in the bracket on the left hand side of Eq. (19) we denote by
S
′
n. This is a matrix of dimension 3N×3N, that is typically sparse

for the systems we are considering. For clarity we have discarded
possible dependence on velocity in the force but this extension is
simple to perform and well covered in the graphics literature. In
particular the famous paper [Baraff and Witkin 1998] applies this to
cloth simulations defined as networks of point masses attached with
spring-damper. As observed in [Baraff and Witkin 1998], this is not
unconditionally stable even for simple springs but stable enough to
take much larger steps than would be possible with the symplectic
Euler method, for instance. Solving the linear system of equations
is not terribly expensive either and again, a good solution for speed-
ing this up is provided in [Baraff and Witkin 1998].

We could of course consider this strategy to discretize the penalty
forces or the regularization terms of (6). The problem lies elsewhere
though. The implicit Euler method is stable because it artificially
dissipates the energy of the system, faster with larger timestep. On
a simple linear harmonic oscillator, this artificial dissipation is so
large that it significantly alters the observed oscillationfrequency.
Even worse, if one simulates a simple pendulum using a point mass
attached to a stiff spring, integrating with the implicit Euler method
alters the pendulum oscillation frequency and the observedacceler-
ation of gravity, which should have nothing to do with the action of
the stiff force! This artificial damping is immediately noticeable in
cloth simulation, especially when comparison is made with energy
preserving methods. This fact has not been reported in the graphics
literature as an anomaly but is considered a welcome imitation of
natural occurrences of friction although there is little control over
it. We demonstrate how severe this damping can be in section 3.

When considering regularized equations of motion (7)–(9),we have
additional variables to consider. Starting with the symplectic Euler
parametersnx = 1, nv = 0 in (16–17), we still need to provide a
correct interpretation of the regularized connection (9).We men-
tioned previously that penalty forces converge weakly to the con-
straint forces in the limit whereα → 0. This means in particular
that the time averages:̃λ = (−1/∆t)

∫ t+∆t
t dtα−1[φ + βφ̇] should

be well behaved. Formally integrating (8) over the time interval
from t to t +∆t, wheret = n∆t, we approximate

∫ t+∆t
t dtFc ≈ JT

n λ̃
andαλ̃ = ∆t−1∫ t+∆t

t dt[φ + βφ̇] ≈ ∆t−1φn + (1/2+ ∆tβ)Jnvn+1.
Collecting the terms, we have:

xn+1 = xn +∆tvn+1
[

M −JT
n

Jn γ∆t−2α

][

vn+1
∆tλ̃

]

=

[

Mvn +∆tFn

−γ∆t−1φn

]

,
(20)

where γ = (1/2 + ∆tβ)−1. This linear equation may either be
solved directly using a sparse matrix solver, or by first building the
Schur complement,Sn ≡ JnM−1JT

n +∆t−2α, and solve for the La-
grange multiplier from

Snλ̃ = −∆t−1Jnvn−JnM−1Fn− γ∆t−2φn (21)

and then compute the velocity from the top row of equation Eq.(20)
and finally the positions are updated. The stability of this method
has not been analyzed theoretically, but as we will see in thenumer-
ical examples below, it appears to be strongly stable. Computation-
ally, it is no more expensive than the linear implicit Euler stepper. In
fact, since we are skipping all Jacobian derivative terms which are
used in the linear implicit Euler formulation, it is somewhat faster,
and far, far simpler to implement.

3 An elucidating example

Consider a cube composed of eight particles and five tetrahedra,
producing a total of 18 edges as shown in Fig. 2 a). We use
this example to illustrate both the strength of the new formula-
tion and statements made about numerical integrators in Sec. 2.4.
As a model of elastic deformable material we assign energy dis-
tance functions forU(x) = ∑l (1/2)kφ2

l with φl ≡ (||x(i l)−x(j l)||−
Ll)/Ll , wherel labels each of the 18 edges in the mesh with re-
spective rest lengthsLl , and i l , j l are the labels of the two nodes
and the end of edgek. The cube is dropped from rest and subjected
to downward gravitational acceleration of magnitudeg = 10 m/s2.
One of the particles is fixed to the world so the cube swings back
and forth at the same time as it undergoes elastic oscillations under
its own weight. The mass of the particles arem= 1 kgand stiffness
is set tok = 105 Nm, yielding natural internal oscillation periods
of 0.014 s. This is a nearly rigid case and the elastic deformation
are expected to be small–of the orderφ ∼ 10−3–and hardly notice-
able visually. We integrate the system with the three time steppers
described in section 2.4 with time step∆t = 0.05 s, and for a ref-
erence solution with∆t = 0.005s. The result is displayed in Fig. 2
and 3. The standard symplectic Euler stepper explodes almost in-
stantly for∆t = 0.05 s so only the first state is shown in Fig. 2 a).
Fig. 2 b) displays snapshots from a simulation with the linear im-
plicit Euler stepper and our new regularized stepper in Fig.2 c),
both for time step∆t = 0.05s. The final position of the cube after a
given number of steps is visibly different for the differentsteppers.
In particular, the swinging motion is slower when using the linearly
implicit Euler stepper than for the regularized one.

This is illustrated more precisely in Fig. 3 where the heights of a
given particle is plotted as functions of time for all three methods
using∆t = 0.005s and for the two stable methods for∆t = 0.05 s.
A striking feature is that therate of fall is slowed down by the lin-
early implicit Euler method when using the larger time step,taking
nearly 35% more time to reach the minimum position, and this phe-
nomena gets proportionally worse when either the time step or the
stiffness is increased. The artificial damping of the integrator not
only models linear drags in the direction of the spring forces but af-
fects the physics of theentiresystem, even free fall under gravity!
Worse yet, even when the time step is reduced by a factor of 10,
down to less than one third of the natural frequency of the internal
springs, damping is still of the order of 10% per cycle.

When using the smaller time step, the symplectic Euler stepper re-
produces the same solution of as the regularized model. However,
the regularized stepper nearly produces same trajectory for both
time steps!

27

a) b) c)

Figure 2: An elastic cube anchored at one node, falling undergrav-
ity, is integrated with three different steppers:a) symplectic Euler
stepper, that explodes almost instantly,b) linearly implicit Euler
stepper andc) regularized stepper. The cubes are displayed at the
time pointst = 0.0,0.2,0.4,0.8 sand integrated with large time step
of ∆t = 0.05s; nearly 3 times larger than the natural oscillation pe-
riod of the structural springs. For the linear implicit Euler stepper
numerical damping makes the cube fall slower than with the regu-
larized stepper.

0 1 2
0

0.5

1

1.5

t

z

Figure 3: The height of one of the particles in the swinging cube as
function of time. The severe damping of the linear implicit Euler
stepper is clear. The motion is integrated with the linear implicit Eu-
ler stepper (circles for∆t = 0.05s, dotted line for∆t = 0.005s) and
the regularized symplectic Euler stepper (crosses for∆t = 0.05 s,
solid line for∆t = 0.005s).

The observations are summarized as follows. For a given time
step ∆t, the symplectic Euler stepper is only stable as long as
k < 4m/∆t2. In other words, the time step must satisfy∆t < T/π
where T is the natural period of the oscillators, given byT =
2π/ω,ω2 = k/m. For high stiffness, or short natural period, the
solutions escapes to infinity. The linearly implicit Euler stepper is
stable for much larger range of stiffness (which is difficultto de-
termine exactly) but it adds artificial and spurious dampingto the
system. The result is that even the rigid body motion of very stiff
materials are damped, producing noticeably inaccurate trajectories.
The regularized symplectic Euler, on the other hand, produces an
accurate trajectory even in the stiff limit and for large time steps.
Some of this numerical behavior can be understood by comparing
the matrices involved in the linear system of equations in Eq. (21)
and (19), namely:

Sn ≡ JnM−1JT
n + γ∆t−2α (22)

S
′
n ≡ 1−∆t2M−1 ∂Fn

∂xT

= 1+∆t2M−1
(

JT
n α−1Jn +

∂Jn

∂xT α−1φn

)

(23)

In the limit whereα → 0, the first of these matrices has the nice
limit: Sn → JnM−1JT

n . This is the same matrix equation that must

be solved to integrate the purely constrained system. However, the
matrix defined in Eq. (23) goes to infinity. Looking carefullyat
matrixS

′
n, it can fail to be positive definite, numerically at the very

least, even for moderately large values inα−1, at which point the
stepping is unstable and can diverge. As the identity term inS

′
n

becomes negligible in comparison with theα−1 terms, we get the
wrong physics due to numerical errors in solving the badly scaled
system of equations.

4 Simulating elastic deformable materials

We are proposing and investigating the combination of physically
based material energies and constraint regularization technique for
stable time stepping in simulations where the elasticity may range
from very soft to very stiff. Here we present the details in construct-
ing an actual simulation based on these ideas. We have identified
the symplectic Euler stepper in combination with constraint regu-
larization as a suitable numerical integrator. As mentioned earlier,
length and volume constraints (e.g. spring-and-damper models) is
a possibility, but is associated with an uncontrolled mixing of ma-
terial parameters. This makes it impractical to adjust the param-
eters for the object to behave as a specific material. Insteadwe
propose using constraints (or rather regularized with energy func-
tions) based on elasticity theory, that have been describedin sec-
tion 2.3. We divide the object into a mesh ofNT tetrahedra andN
nodes, or particles, as we did for the box in Fig. 2. Each tetrahe-
dron has four node particles(a) = (1),(2),(3),(4). For each tetra-
hedron we compute local quantities, e.g., strain and energy. These
are added to global quantities. Theglobal constraint vectorφ and
global JacobianJ then has dimensions 6NT and 6NT × 3N. The
local quantities are constructed by first defining thelocal position

vectorx̃T = (x(1)T
,x(2)T

,x(3)T
,x(4)T

)T which is of dimension 12.
We then define the local straiñε, that is of dimension 6 and in turn
the local constraint deviatioñφ (also this of dimension 6) and local
JacobianJ̃ = ∂ ε̃/∂ x̃T , having dimension 6×12. The algorithm for
the proposed method is

initialize positionsx = x0 and velocitiesv = v0
construct tetrahedral mesh
for each time stepn = 0,1,2, . . . do

accumulate external forces
loop {all tetrahedra}

read off particles(a) = (1),(2),(3),(4)
get local position vector ˜x
computeφ̃ ≡ ε̃
computeJ̃ = ∂ ε̃/∂ x̃T

add localε̃ andJ̃ to global matrix equation (20)
end loop
solve linear equation (20)→ vn+1
updatexn → xn+1

end for

The global matrix equation here, can be either Eq. (20) or Eq.(21),
depending on choice of linear equation solver. The most technical
part is the computation of the local Jacobian and solving thelinear
system of equations. Some of the steps in computing the Jacobian
are given in the Appendix.

5 Results

We now present results of validation and performance tests from an
implementation of our new method.

28

5.1 Visual checks

Casual visual observations of the method in action reveal several
nice properties, even with just a few tetrahedra. Still frames of sim-
ulation are shown in Fig. 4, where a beam made of 88 nodes and
105 tetrahedra is deformed by the action of a twisting force.The
method is clearly capable of handling large deformations with a
visually pleasing result, i.e., without kinks of collapsing regions.
The same beam is illustrated in Fig. 5 in which thenonlinearterms
in the Green strain, Eq. (13), were omitted. These terms are con-
ventionally omitted when the displacements are only small.Such
a linearization, whenever possible, largely improves the computa-
tional efficiency of the method. In that case the matrix in Eq.(20)
is constant and its inverse may be precomputed to allow fast ve-
locity updates. In the case of Fig. 5, the deformation is clearly too
large for omitting the nonlinear terms. Otherwise, the result is an
unrealistic volume deformation. We also show results for a sup-

Figure 4: The result of a twisting force acting on the short ends of
an elastic deformable beam.

Figure 5: The same setup as in Fig. 4, but with the nonlinear con-
tribution to the strain omitted. The result is an unrealistic volume
deformation.

ported beam bending under gravity in Fig. 6 (with mass 100ton)

and Fig. 7 (with mass 900ton). In both cases we have Young’s
modulusY = 1.0 GPa and the Poisson ratio is set toσ = 0.25 .
As expected, the material responds with stiffness increasing pro-
portionally with the Young’s modulus.

Figure 6: A supported beam of mass 100ton, Y = 1.0 GPa and
σ = 0.25.

Figure 7: A supported beam of mass 900ton, Y = 1.0 GPa and
σ = 0.25.

5.2 Physical performance

Next we validate the physical behavior by conducting pull/push and
twist tests and measuring the change in length and rotation for given
applied forces. We validate against the theoretical relations between
applied force and deformations from elasticity theory, i.e., Hooke’s
law for pull/push∆L/L = F/YA and twistθ = 2τL(1+ σ)/YK,
whereL is the rest length,F is the applied force,A is the cross-
section area,τ is the twisting moment,L is the length andK is
a geometrical factor (torsion section constant). The result of these
tests performed on a beam of 88 nodes and 105 tetrahedra are shown
in Figs. 8 and 9. The results fit theory, but with a clear dependence
on geometry/mesh. This is arguably, owed to the fact that we are

29

using 4-node tetrahedral mesh withlinear shape function–simplest
possible choice–which is known to be associated with particularly
large mesh dependence. Using either finer discretizations or higher
order shape functions should improve this. We also confirm that
incompressibility is achieved forσ = 0.5.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0 5e-05 0.0001 0.00015 0.0002

ln
(L

/L
0)

P/Y (Pressure/Pressure)

14.5 x 3.40 x 3.40 m
14.8 x 3.43 x 3.43 m
14.9 x 3.44 x 3.44 m
15.1 x 3.46 x 3.46 m
15.2 x 3.47 x 3.47 m
15.5 x 3.50 x 3.50 m

Figure 8: The pull/push test for five slightly varying geometries.

 0

 0.005

 0.01

 0.015

 0.02

 0 0.005 0.01 0.015 0.02

θ t
or

si
on

ML/(GKv)

14.8 x 4.3 x 4.3 m
14.9 x 4.4 x 4.4 m
15.0 x 4.5 x 4.5 m
15.1 x 4.6 x 4.6 m
15.2 x 4.7 x 4.7 m

Figure 9: The twist test for five slightly varying geometries.

5.3 Computational properties

We consider two aspects of computational performance: stability
and efficiency. The regularized symplectic Euler integrator is self-
stabilizing. This means that, much like the linear implicitEuler
method, the simulation dissipates energy and approaches a state of
equilibrium. It should be emphasized that the dissipation is re-
stricted to theinternal motionand does not affect rigid motion,
which the linear implicit Euler method does, c.f. the swinging
cube example in section 3. In real-time applications with time step
∆t = 0.015 s the simulations are stable for stiffnesses even well
above that of diamondY = 1000GPa. We achieve stable simula-
tion of very stiff materials under large tension and large deforma-
tions. It should be pointed out, however, that the time scaleof the
dissipation of internal vibrations becomes very short for stiff mate-
rials. In Fig. 10 we show results from a soft beam attached in one

end and swinging freely under gravity. This figure confirms that the
method is self-stabilizing. No energy dissipative terms have been
added to the system, still, the system gradually relaxes to astate
of equilibrium. The rate of numerical dissipation of the internal
motion increases with decreasing size of the time step and with in-
creasing stiffness. To resolve the issue of damped internalmotion,
the time stepper can be replaced with an energy preserving, though
computationally more expensive, time stepper, e.g., a variational
integrator as presented in ref. [Kharevych et al. 2006].

 0

 50

 100

 150

 200

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

D
ef

or
m

at
io

n
en

er
gy

 U
 (

J)

Time t (s)

∆t = 0.020 s
∆t = 0.015 s
∆t = 0.010 s
∆t = 0.005 s
∆t = 0.001 s

Figure 10: A beam is attached at one end and is swaying freely in a
uniform gravitational field. This shows how the deformationenergy
vary over time at different sized time steps. Material parameters
used areY = 8.0 kPaandσ = 0.25 applied on the 10 kg beam.

Next we consider the efficiency of the method and how the com-
putational time scales with system size. In this implementation we
build and solve the Eq. (21) rather than Eq. (20) directly, making use
of that the matrix is banded and achieve linear in time dependence
on the number of particles in the system. The computational bottle-
necks are recognized as the computation of the Jacobian and con-
straint, building and factorizing the matrix equation (21)and solv-
ing the equation. The contribution of these three processesin a sim-
ulation of a beam is displayed in Fig. 11. The simulation was run on
an Intel Pentium 4 2.4 GHz CPU, with 1025 Mb DDR2 RAM in-
ternal memory. Most time, in our implementation, is consumed on
factorizing the Schur complement matrix rather than solving it. The
method we present clearly scales linearly with system size and real-
time simulation (with time step of 15 ms) can be achieved for sys-
tems with size up to nearly 200 tetrahedra. There are severalways
to improve the efficiency further, besides more efficient building
and factorization of Eq. (21). In the computation of the new veloc-
ity, from Eq. (20), it is not necessary to build the Schur complement
and first solve the Lagrange multiplier. Although Eq. (20), is larger
in dimension than Eq. (21), it is a saddle-point matrix with awell
ordered and sparse structure. There are efficient techniques, with
linear complexity, for factorizing the matrix and solving this equa-
tion. The efficiency may be further increased using vector/parallel
hardware, e.g., performing computations on the graphics process-
ing unit. We estimate that with these optimizations real-time simu-
lation of systems of the size of 1000 tetrahedra should be possible
with currently available hardware.

30

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

T
im

e
t (

m
s)

Number of tetrahedra, NT

Factorize matrix and solve system
Factorize matrix

Calculate and build global Jacobian
Solve system Ax = b

Figure 11: The computational time for the bottlenecks for a time
step and the dependence on the number of tetrahedrons. The
method we present has linear in time complexity and real timesim-
ulation is achieved with system size of about 200 tetrahedra.

6 Summary and Conclusions

We have constructed and investigated a method for stable simula-
tions of elastically deformable objects at interactive rate with elas-
ticity ranging from very elastic to highly stiff. With the novel com-
bination of constraint regularization based on realistic material en-
ergies in combination with a symplectic Euler stepper we achieve
stable time stepping for any value of stiffness of practicaluse, in-
cluding the incompressible limit. This approach is compared to
using linear implicit Euler, which damps all motion strongly in this
limit. Any of the conventional integration methods for softmateri-
als, including the standard symplectic Euler, has an upper limit on
material stiffness for each size of time step - beyond this value the
simulation becomes unstable.

Energy functions based on elasticity theory gives a direct relation
between simulation parameters and real world measured material
parameters. Simulated objects respond as expected to external
forces and changes in the material parameters, e.g., Hook’slaw is
obeyed and the material turns incompressible for the Poisson ratio
σ = 0.5.

The method is self stabilizing. This guaranties stable simulation
even in the regime of very stiff materials undergoing large defor-
mations. On the downside, there is numerical, and thus artificial,
damping in the system. Internal vibrations damp out very quickly
for large material stiffness but rigid motion is unaffected. The nu-
merical damping in our new method is thus less severe than forthe
linear implicit Euler method. The issue with numerical damping
can be resolved by using time stepper that preserves this symmetry
in the equations to a higher degree. These time steppers, known as
variational integrators [Kharevych et al. 2006], are however more
computationally expensive, they involve solving a non-linear sys-
tem of equations rather than a linear system.

The method we present here scales linearly with system size.In
the current implementation we achieve real-time performance of
systems of the size of 200 tetrahedra. Performance can be improved
by using other solver strategies, e.g., combining an iterative method
and a good preconditioner, and utilizing vector/parallel hardware.
We estimate that real-time simulation of systems of the sizeof 1000
tetrahedra should be possible with currently available hardware.

In comparison with other methods, it should be emphasized that the
efficiency of the method we propose isindependent on the material
stiffnessand not flawed by instabilities in the stiff regime.

In future work, we will improve the scaling and performance of
the method, extend it to other type of constraints, e.g. contact con-
straints and improve the time stepping to reduce numerical dissipa-
tion without compromising stability and speed. Also, we will pur-
sue issues of plasticity, mesh elements and adaptive level of detail
techniques.

7 Acknowledgments

The research was supported in part by ProcessIT Innovations, ”Ob-
jective 1 Norra Norrlands” EU grant awarded to HPC2N/VRlab at
Umeå University, by Vinnova and the Foundation for Strategic Re-
search (#V-247) and by the Swedish Foundation for StrategicRe-
search (SSF-A3 02:128).

8 Appendix

Here we give some of the details in computing the Jacobian based
on the energy function given in Eq. (15) from elasticity theory.
Computing the Jacobian is part of building the equation 21. First,
we order the strain vectorε in its normal componentsεnormal ≡
(ε11,ε22,ε33)

T andshearcomponentsεshear≡ (ε12,ε13,ε23)
T such

that ε = (εT
normal,ε

T
shear)

T . We compute local quantities, e.g., the
strain and contribution to the Jacobian for each tetrahedron. The
local Jacobian is identified from the relatioñ̇φi = J̃i j ˙̃x j , where
j = 1,2, . . . ,12. Usingφ = ε we identify

J̃normal
i j = Λi ji +

(

∂uk

∂ r i

)

Λk ji +
ε̃normal

i

2
√

V

∂V
∂ x̃ j

(24)

J̃shear
i j =

1
2

ΓimkΛm jk+
ε̃shear

i

2
√

V

∂V
∂ x̃ j

+
1
2

χimk

[(

∂un

∂ rk

)

Λn jm+

(

∂un

∂ rm

)

Λn jk

]

(25)

where

Λi jk ≡
√

V
∂

∂ rk

∂ui

∂ x̃ j
. (26)

In all of these expressions the ranges of the indexes arei =
1,2, . . . ,6, j = 1,2, . . . ,12 andk,m,n = 1,2,3. For notational con-
venience we have introduced the constant matricesχ andΓ that are
both of size 3×3×3 and with the nonzero elements

χ112 = χ213 = χ323 = 1 (27)

Γ112 = Γ121 = Γ213 = Γ231 = Γ323 = Γ332 = 1 (28)

References

ALLEN , M. P. 2004. Introduction to molecular dynamics simu-
lation. N. Attig, K. Binder, H. Grubmller, and K. Kremer, ed-
itors, Computational Soft Matter: From Synthetic Polymersto
Proteins, John von Neumann Institue for Computing, Jlich, Ger-
many,.

31

BARAFF, D., AND WITKIN , A. 1998. Large steps in cloth simu-
lation. InSIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 43–54.

BARAFF, D. 1996. Linear-time dynamics using lagrange multipli-
ers. InSIGGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 137–146.

BAUMGARTE, J. 1972. Stabilization of constraints and integrals
of motion in dynamical systems.Computer Methods in Applied
Mechanics and Engineering 1, 1, 1–16.

BRO-NIELSEN, M., AND COTIN, S. 1996. Real-time volumetric
deformable models for surgery simulation using finite elements
and condensation.Computer Graphics Forum 15, 3, 57–66.

ERLEBEN, K., SPORRING, J., HENRIKSEN, K., AND
DOHLMANN , H. 2005. Physics-based Animation. Charles
River Media, Aug.

FUNG, Y. C., AND TONG, P. 2001.Classical and Computational
Solid Mechanics. World Scientific, Singapore.

HAUTH , M., GROSS, J., AND STRASSER, W. 2003. Interactive
physically based solid dynamics.Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation.

KHAREVYCH, L., WEIWEI, TONG, Y., KANSO, E., MARSDEN,
J. E., SCHRDER, P., AND DESBRUN, M. 2006. Geometric,
variational integrators for computer animation.to appear in
ACM/EG Symposium on Computer Animation 2006.

LACOURSIÈRE, C. 2006. A regularized time stepper for multibody
simulations.Internal report, UMINF 06.04, issn 0348-0542.

LANDAU , L., AND L IFSCHITZ, E. 1986. Theory of Elasticity.
Pergamon Press, Oxford, 3rd ed.

MARSDEN, J. E.,AND WEST, M. 2001. Discrete mechanics and
variational integrators.Acta Numerica 10, 357–514.

MULLER, M., KEISER, R., NEALEN, A., PAULY, M., GROSS,
M., AND ALEXA , M. 2004. Point based animation of elastic,
plastic and melting objects.Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation 14,
15.

MULLER, M., HEIDELRBERGER, B., TESCHNER, M., AND
GROSS, M. 2005. Meshless deformations based on shape
matching.ACM Transactions on Computer Graphics (ACM SIG-
GRAPH 2005).

NEALEN, A., MULLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically based deformable models in
computer graphics.Eurographics State-of-the-Art Report.

RUBIN , H., AND UNGAR, P. 1957. Motion under a strong con-
straining force. Communications on Pure and Applied Mathe-
matics X:65-67.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically deformable models.Communications on Pure
and Applied Mathematics 21, 205–214.

TESCHNER, M., HEIDELBERGER, B., MULLER, M., AND
GROSS, M. 2004. A versatile and robust model for geomet-
rically complex deformable solids. InCGI ’04: Proceedings of
the Computer Graphics International (CGI’04), IEEE Computer
Society, Washington, DC, USA, 312–319.

UMFPACK. http://www.cise.ufl.edu/research/sparse/
umfpack/.

WITKIN , A., GLEICHER, M., AND WELCH, W. 1990. Interactive
dynamics.Computer Graphics 24, 2, 11–21.

32

Summary

The paper presents results from the collaboration between
Polish coal mines and the Geometry and Graphics Center at the
Silesian University of Technology in Gliwice, concerning the
application of computer visualization in accidents prevention. The
collaboration consisted of making movies which reconstruct
accidents which have happened in coal mines. These movies are
shown to employees during their health and safety training and on
multimedia screens located in the plant. Further work carried out
in our center will be concerned withe the development of an
interactive simulator with which the employees would be able to
learn safe job procedures .

1. Introduction

For the last 5 years, the number of accidents in Polish mines
has stayed on the same level. On average, the number of deadly
accidents amounts to 25 annually, which is unacceptable for both
social and economic reasons. The main reasons of these accidents
are still man faults. The mines’ management is currently looking
for new ways of appealing to employees’ consciousness as far as
work safety is concerned. It is mainly done through a change in a
form and methodology of employee trainings [ILO 1993].

Fig. 1. The number of accidents in polish mines in last years.

For two years our center has been carried out work aimed at
creating a series of animated movies which are use for training
purposes and promoting safety among employees [Bogacki 2005].

Computer visualization is the best method for accident
reconstruction due to the following reasons:

• High costs connected with employing actors and hiring TV
equipment.

• Limited possibilities of using recording equipment (lighting,
cameras) under ground, in coal mines.

• Reconstruction of the majority of the situations using
traditional methods is not possible due to the high risk of the
dangerous situations involved in an accident.

• It is impractical to make a video since work needs to be
suspended at the location during the recording of the video.

The usage of computer visualization allows the reconstruction of
even the most dangerous of situations. There is a possibility of
modeling such events as tremors, inrush of water, methane or coal
dust explosion.

The visualization will show the reaction of a crew. It is possible to
reconstruct positions of their bodies and their actions. The scene
can be watched from any direction so it is possible to simulate the
field of view of each person involved in the accident. By using a
computer generated visualization it is possible to determine what
each person could see or even what he could not see.
Observations done through the eyes of a casualty gives better
understanding of the decision-action process which accompanied
the analyzed events. Thanks to this feature of the computer
generated visualization it is possible to use the visualization to
verify the statements of witnesses to the accident .

Fig. 2. Scene from movie, which reconstructed the accident in
coal mine.

Computer visualization in accident prevention in industry
Sławomir Bogacki

Geometry and Engineering Graphics Centre
The Silesian University of Technology in Gliwice

6570

4348

2986

224224202452 2352

0

1000

2000

3000

4000

5000

6000

7000

2005200420032002200120001999

33

2. Assumptions

In order for a movie to fulfill its didactic purposes and for the
employees to identify themselves with the presented situations the
following issues must be included:

• A movie should realistically show the place where the
accident happened, the machines, appliances and devices
should look realistic, in a way known to the employees.

• The ambient conditions must be taken into account
(lightning, dust).

• The movements of people and machines must correspond.

• Movie screenplay must be based on real events and the
movie itself should focus on the error which was the main
cause of the accident.

3. Production

The screenplay of the visualization needs to be based on the

investigation that was carried out at the mine. Particular care is
placed on witnesses’ statements, what they witnessed and when,

their location on the spot and their actions. The most convenient
notation for the screenplay is storyboards since the plot of the
visualization mainly consists of the movements of devices and
people, and rarely features dialogues .

By means of visualization employees behavior is illustrated,
their particular movements and activities. When each take is
constructed, it must be cleary stated, minute by minute what
movements the people and devices have made, including detailed
information about their individual positions [Jacinto 2002].

The scene is reconstructed from of drawings and pictures
of the location. All this data allows a detailed model to be
constructed including all technical equipment involced in the
situation. In order to simplify the creation of future visualizations,
a set of 3d models have been created. These models represent
machines and devices that are commonly used in polish mines.
They are harvesters, transporting machines, as well as casing
elements; however, for accidents reconstruction they do not have
to be very detailed. In fact these machines are very complex and
modeling of all their details would be a big drawback in scene
operation and it would significantly increase the time of
animation rendering. The immersion is increased when texturing
and lighting of elements matches their real-world counterparts.
This phase of the construction of visualizations has a big
influence of the acceptance of the visulalization.

d)

Fig. 3. Creation of spatial model of heading (railway crossover): a) sketch from accident’s records, b) spatial mesh of
heading, c) block model of heading, d) view of heading covered with textures.

b)a)

c)

34

For the purpose of modeling, animation and rendering 3ds
max program has been used. Animation of human figures has
been done by means of ‘biped’ procedure from Character Studio
module.

Figures play the most important element in the movie but at
the same time they cause the most troubles in animation. Other
elements of equipment can be modeled with great realism whereas
in case of human figures it is difficult to avoid superficiality,
especially in the way they move. Nevertheless, for the purpose of
events reconstruction some simplifications do not cause any
obstacles. Further work on the visualizations will be required to
increase the realism in the figures and movement of the
employees .

The last phase of production is editing rendered material and
adding sound corresponding to machines’ noise. Narrator’s
commentaries are recorded separately, which describe particular
situations. These commentaries are especially important when the
movie is shown without a person leading the training.

4. Conclusions

From the experience of Health and Safety Departments it results
that showing events reconstruction makes people realize how
dangerous it is not to obey safety rules . It is especially appalling
in case of dead bodies covered in blood.

 Fig. 6. Scene from movie, which reconstructed the accident in
coal mine.

Accident prevention should not be limited to the presentation of
error consequences but it should also show how to deal with
job procedures correctly, this includes emergency situations.
Further works connected with accidents prevention is aimed at
creating interactive simulator of production processes whose
principle of operation will be similar to 3D games. This simulator
will be used for teaching how to deal with job procedures safely
in both typical and unplanned situations. Currently, work is being
carried out on the development of a module for the creation of 3d
models for visualization of industry accidents. The rendering
engine from the open source Blender Modeling [Roosendaal and
Selleri 2004] system is being adapted to fit the needs of the
simulator .

References

BOGACKI S.: Accidents reconstruction. SEP Szczyrk 2005.

JACINTO C.: Work Accidents Investigation Technique. School of
Engineering - MME, The University of Birmingham, May 2002.

INTERNATIONAL LABOUR OFFICE Accident Prevention. A
Workers Education Manual. Geneva, 1993.

ROOSENDAAL T. SELLERI S.: The Official Blender 2.3 Guide
Stichting Blender Foundation 2004

a)

b)

c)

Fig. 4 Creation model of harvester AM 50 a) side view, b) spatial
mesh of harvester model, c) model of harvester covered with
textures.

a) b) c)

Fig. 5. Stages of creation of miner profile a) skeleton of profile,
used in movement generating, b) mesh of profile, c) profile
covered with material.

35

Incremental Spherical Interpolation with Quadratically Varying Angle

Anders Hast∗

Creative Media Lab,
University of Gävle

Tony Barrera†

Barrera Kristiansen AB
Ewert Bengtsson‡

Centre for Image Analysis
Uppsala University

Abstract

Spherical linear interpolation has got a number of important appli-
cations in computer graphics. We show how spherical interpola-
tion can be performed efficiently even for the case when the angle
vary quadratically over the interval. The computation willbe fast
since the implementation does not need to evaluate any trigonomet-
ric functions in the inner loop. Furthermore, no renormalization
is necessary and therefore it is a true spherical interpolation. This
type of interpolation, with non equal angle steps, should beuse-
ful for animation with accelerating or decelerating movements, or
perhaps even in other types of applications.

1 Introduction

Spherical linear interpolation (SLERP) [Glassner 1999] has got a
number of important applications in computer graphics, forin-
stance in animation [Shoemake 1985]. SLERP is different from
linear interpolation (LERP) in the way that the angle between each
vector or quaternion [Shankel 2000] will be constant, i.e. the move-
ment will have constant speed. In the following text we will refer to
quaternions even though everything presented can be used for vec-
tors of any dimension. Nevertheless, the most probable application
is for animation and here SLERP is used to interpolate quaternions.

LERP requires normalization and will also yield larger angles
in the middle of the interpolation sequence. This will causeani-
mated movements to accelerate in the middle, which is sometimes
undesirable [Parent 2002]. However, if we can control the accelera-
tion it should be useful in some cases since movements does not al-
ways have equal speed. There is already something called Spherical
Quadratic Interpolation [Watt 1992], which involves quadratic in-
terpolation between two linear interpolations and is therefore some-
thing completely different from what we propose herein. In our
case we will have a quadratically varying angle, ie. the stepsize
will will increase linearly.

The formula used for SLERP is

q(t) = q1
sin((1− t)θ)

sin(θ)
+q2

sin(tθ)

sin(θ)
(1)

wheret ∈ [0,1], andθ is the angle betweenq1 andq2 computed as

θ = cos−1(q1 ·q2) (2)

Note thatq can be a quaternion or a vector of any dimension as
explained above.

∗e-mail: aht@hig.se
†e-mail: tony.barrera@spray.se
‡e-mail: ewert@cb.uu.se

It has been shown that SLERP can be efficiently performed with-
out any computation of trigonometric functions in the innerloop
[Barrera 2004]. In this paper we will show that it is possibleto
compute SLERP with a quadratically varying angle in a similar
way. This type of interpolation should be useful for cases when the
speed of the movement is close to quadratic, i.e accelerating or de-
celerating. The movement will be quadratic and the angle between
two intermediate quaternions will increase linearly.

In [Barrera 2004] a number of alternative approaches are dis-
cussed that give efficient computation in the inner loop. Thefastest
one is the approach which uses Chebyshev’s recurrence [Barrera
2004] but it requires equal angle interpolation. Another approach
uses the De Moivre’s formula [Hast 2003] and we shall concentrate
on this approach in this paper since it can be changed to a quadrat-
ically varying angle interpolation quite easily.

1.1 Fast Incremental SLERP

The equation (1) can be rewritten as

q(n) = q1 cos(nKθ)+qo sin(nKθ) (3)

whereqo is the quaternion obtained by applying one step of Gram-
Schmidt’s orthogonalization algorithm [Nicholson 1995] and then
it is normalized. The following code in matlab performs thisoper-
ation and is assumed to come before the following code examples.

qo=q2-(dot(q2,q1))*q1;
qo=qo/norm(qo);

The quaternionq0 is orthogonal toq1 and lies in the same hyper
plane spanned byq1 andq2. Furthermore, if there arek steps then

the angle between each quaternion isKθ = cos−1(q1·q2)
k .

theta=acos(dot(q1,q2));
kt=theta/k;
q(1,:)=q1;

The code that follows on these three lines can be used for comput-
ing incremental SLERP. Usually SLERP is computed using trigono-
metric functions in the inner loop in the following way

b=kt;
for n=2:k+1
q(n,:)=q1*cos(b)+qo*sin(b);
b=b+kt;

end

However, by applying the De Moivre’s formula [Nicholson 1995]
it can also be computed efficiently using complex multiplication in
this way

Z1=cos(kt)+i*sin(kt);
Z=Z1;
for n=2:k+1
q(n,:)=q1*real(Z)+qo*imag(Z);
Z=Z1*Z;

end

36

We can split the complex multiplication for each step into two
different steps. But first we shall discuss quadratic interpolation in
general in next section.

1.2 Quadratic Interpolation

We will start by showing how the quadratic interpolation forSLERP
can be setup. Then in next section we will show how it can be
computed efficiently. In [Hast 2003] it is shown how a quadratic
interpolation can be setup so that it is computed by 2 additions only
as it was proposed for shading by Duff [Duff 1979].

It is shown that a quadratic recurrence

t(n) = An2 +Bn+C (4)

wheren = [1..k] can be evaluated as

ti+1 = ti +dti (5)

dti+1 = dti +d2t (6)

wheredt0 = A+B, d2t = 2A andC = 0 since we always start from
the beginning of the interval between the vectors or quaternions.

2 Spherical Interpolation with Varying An-

gle

We can now put together an algorithm that uses the De Moivre’s
formula to interpolate spherically with a varying angle. Let us first
split the angle

α = σθ (7)

β = θ −α (8)

whereσ ∈ [−1,1] is a scaling factor that will affect the change in
speed.

Now we need to split upθ so that we will have a recurrence
going from 0 toθ usingα andβ in k steps. We can do this by

A = α/k2 (9)

B = β/k (10)

To prove that this is the right way to do it, we put this into equa-
tion (4) for n = k and we get

t(k) =
(α

k2

)

k2 +

(

θ −α
k

)

k = θ (11)

We know how to interpolate the angle quadratically and we can
perform the spherical interpolation as exemplified in the following
matlab code

theta=acos(dot(q1,q2));
A=sigma*theta; B=theta-A;
A=A/(k*k); B=B/k;
d2t=2*A;
dt=A+B;
t=0;

for n=1:k
t=t+dt;
dt=dt+d2t;
qn(n,:)=q1*cos(t)+qo*sin(t);

end

Figure 1: Interpolation withσ = 1.0.

Figure 2: Interpolation withσ = 0.5.

We can now set up the SLERP with Quadratically varying angle
by using the approach recently explained and the code becomes

A=sigma*theta; B=theta-A;
A=A/(k*k); B=B/k;

Z1=cos(A+B)+i*sin(A+B);
Z2=cos(2*A)+i*sin(2*A);
Z=1;

for n=1:k
Z=Z*Z1;
Z1=Z1*Z2;
q1*real(Z)+qo*imag(Z)
qd(n,:)=q1*real(Z)+qo*imag(Z);

end

3 Results and Conclusions

We have shown how fast incremental spherical interpolationcan be
performed for a quadratically varying angle, which can be used for
animation of accelerating and decelerating movements.

Figure 1 shows how the angle increases in the interpolation.Here
σ = 1.0. Figure 2 shows that the rate of change can be modified by
σ . Hereσ = 0.5. If σ is very small then the approach becomes
regular SLERP as shown in figure 3.

It is also possible to create a decelarating movement in a simi-
lar way by lettingσ < 0. We have not investigated how the other

37

Figure 3: Interpolation withσ = 0.000001.

approaches for incremental SLERP can be modified for the varying
angle approach but is something that should be done in the future.
Hopefully this approach can be useful for animation and other ap-
plications. It is fast since no trigonometric functions need to be
evaluated in the inner loop and the resulting quaternions orvectors
will have unit length (if the starting and ending quaternions/vectors
have unit length)

References

T. BARRERA, A. HAST, E. BENGTSSON 2004. Faster shading
by equal angle interpolation of vectors IEEE Transactions on
Visualization and Computer Graphics, pp. 217-223.

T. BARRERA, A. HAST, E. BENGTSSON2005.Incremental Spher-
ical Linear Interpolation SIGRAD 2004, pp. 7-10.

T. DUFF 1979.Smoothly Shaded Renderings of Polyhedral Objects
on Raster Displays ACM, Computer Graphics, Vol. 13, 1979, pp.
270-275.

A. GLASSNER 1999. Situation Normal Andrew Glassner’s
Notebook- Recreational Computer Graphics, Morgan Kaufmann
Publishers, pp. 87-97.

A. HAST, T. BARRERA, E. BENGTSSON2003.Shading by Spher-
ical Linear Interpolation using De Moivre’s Formula WSCG’03,
Short Paper, pp. 57-60.

A. HAST, T. BARRERA, E. BENGTSSON 2003. Improved Shad-
ing Performance by avoiding Vector Normalization, WSCG’01,
Short Paper,2001, pp. 1-8.

W. K. NICHOLSON 1995.Linear Algebra with Applications PWS
Publishing Company, pp. 275,276.

R. PARENT 2002. Computer Animation - Algorithms and Tech-
niques Academic Press, pp. 97,98.

J. SHANKEL 2000.Interpolating Quaternions Game Programming
Gems. Edited by M. DeLoura. Charles River Media, pp. 205-213

K. SHOEMAKE 1985.Animating rotation with quaternion curves
ACM SIGGRAPH, pp. 245-254.

A. WATT, M. WATT 1992.Advanced Animation and Rendering
Techniques - Theory and Practice Addison Wesley, pp. 363, 366.

38

A Driving Simulator Based on Video Game Technology

Mikael Lebram∗

University of Skövde

Henrik Engström†

University of Skövde

Henrik Gustavsson‡

University of Skövde

Abstract

This paper presents the design and architecture of a mid-range driv-
ing simulator developed at the University of Skövde. The aim is to
use the simulator as a platform for studies of serious games. The
usage of video game technology and software has been a central
design principle. The core of the simulator is a complete car sur-
rounded by seven screens. Each screen is handled by a standard
PC, typically used for computer games, and the projection on the
screens is handled by budget LCD-projectors. The use of consumer
electronics, standard game technology and limited motion feedback
makes this simulator relatively inexpensive. In addition, the archi-
tecture is scalable and allows for using commercial video games in
the simulator.

Observations from a set of experiments conducted in the simula-
tor are presented in this paper. In these experiments driving school
students were instructed to freely explore a driving game specifi-
cally designed for the simulator platform. The result shows that the
level of realism is sufficient and that the entertainment value was
considered to be high. This opens the possibilities to employ and
use driving simulators for a wider set of applications. Our current
research focuses on its use with serious games for traffic education.

CR Categories: I.3.2 [Computing Methodologies]: Computer
Graphics—Graphics Systems; I.6.3 [Computing Methodologies]:
Simulation and Modeling—Applications

Keywords: driving simulator, virtual reality, computer games, se-
rious games

1 Introduction

The use of simulators for training is an old and well accepted
method used in situations where training in real environments is
difficult, dangerous and/or expensive. In particular, simulators for
civil and military air pilot training are well established [Rolfe and
Staples 1988]. Computer based flight simulators have been used
since the 1960’s. In the light of this, the usage of car driving simu-
lators is less common. There exists advanced simulators for traffic
safety research [Kuhl et al. 1995; ITS 2006; Östlund et al. 2006]
and there are some examples of simulators for driving education
[INRETS 2006], but for the vast majority of drivers the training is
solely conducted in real traffic environments. The potential advan-
tage of using driving simulators in, for example, traffic education

∗e-mail: mikael.lebram@his.se
†e-mail: henrik.engstrom@his.se
‡e-mail: henrik.gustavsson@his.se

is that it enables generation of extreme situations or traffic environ-
ments not available in the student’s surroundings.

Using simulators for drivers’ education is different from pilot edu-
cation in many ways. The volume of students involved in driving
education is larger than that of pilot training. The cost associated
with a driving training program is also much lower. This implies
that simulators for drivers’ education need to be less expensive in
order to be widely adopted.

In the video game area, driving and racing has been a central theme
for a long time. Since Night Driver (1976) [Atari 2006], the origi-
nal first-person racing game, hundreds of racing titles have been re-
leased. In addition, car driving is a central activity in games of other
genres as well. Over the last 30 years driving games has gone from
relatively simple simulations in arcade-machines to highly realis-
tic rally simulations that runs on an off-the-shelf personal computer
(Figure 1).

Figure 1: 30 years of racing games. Night Driver [Atari 2006] (left)
from 1976 and GTR II [SimBin 2006] (right) from 2006

Over the years the graphical quality of computer games has in-
creased exponentially, the current level of detail of graphical mod-
els is sufficient for most training simulator purposes. In addition,
video game developers have high skills in producing entertaining,
immersive products that motivate their users to spend many hours
a week [ESA 2005]. The games are sold as consumer products in
large volumes which implies that the price is only a fraction of the
price of a specialised simulator product.

The goal for the simulator presented in this paper is to utilize the
developments in the video game area to create an advanced driv-
ing simulator using video game technology. This includes the use
of standard of-the shelf soft- and hardware infrastructure as well as
adaptation of commercial-of-the-shelf (COTS) games. The simu-
lator is currently used to explore how serious games [LoPiccolo
2004; Zyda 2005; Blackman 2005] can be developed and used in
traffic education.

This paper is organized as follows: In Section 2 we give a back-
ground presentation of driving simulator technology. In Section 3
we present the architecture and design of our driving simulator fol-
lowed by Section 4 where we report experiences from using the
simulator in a set of experiments. In Section 5 we draw conclusions
and elaborate on the implications of our approach.

39

2 Background

Driving simulators are developed and used for research purposes
mainly within the traffic safety context. The French national insti-
tute for transport and safety research presents a survey of simula-
tors [INRETS 2006] including 50 simulators for research purposes,
a handful for corporate purposes (e.g. car industry) and 20 driving
training simulators. The research simulators are generally in the
high-end with large budgets while the training simulators are typi-
cally low-range products targeted at driving schools.

A driving simulator is composed of a number of components, illus-
trated in Figure 2.

The driver environment

Software environment

Computer architecture

Physical feedback systems

Graphical environment

Figure 2: Components of a driving simulator

The driver environment may be more or less realistic ranging from
an authentic complete car to a steering wheel (or even mouse and
keyboard). The graphical environment renders the simulated world
to the driver. It may differ in graphical quality, the size and range of
the projection as well as the technology used to generate the view
(CRT displays, 2D projection, 3D shutter-glasses etc.). The phys-
ical feedback system is responsible for generating other inputs to
the driver, such as sound, motion and other haptic feedback. The
computer architecture ties the various systems together and consti-
tutes the platform for generating and monitoring the simulation by
the software. The software available for a simulator is governed by
the nature of the underlying systems. Specialised software may be
needed if the underlying hardware is tailor made.

The most notable difference between high-end and low-end sim-
ulators is the physical feedback systems. The research simulators
have large mechanical systems that generates g-forces in different
directions. As an example, the Leeds Advanced Driving Simulator
[ITS 2006] is a 4 million Euro project with a spherical projection
dome. The driver environment and the dome are appended to a mo-
tion base that has 8 degrees of freedom. The simulator is hosted in
a 14x12x7 meter hall. As a contrast S-4150, a basic training sim-
ulator from Simulator Systems International [SSI 2006], consists
of a steering wheel and a CRT display in front of the driver. The
simulator has clutch and brake and no physical feedback system.
The cost of S-4150 is approximately 5 000 Euro.

In addition to the simulators mentioned above there exists a large
number of ”driving simulators” in the shape of video games. We
refer to these as gaming simulators. A gaming simulator may be an
arcade machine designed to give an entertaining experience and not
necessarily a realistic one. There however exists gaming simulators

that are designed to produce a realistic driving experience. As an
example, the GTR racing game has been developed by a racing
team [SimBin 2006] with a goal to produce a highly realistic racing
experience. For example, the simulation is so good that it is used by
racing drivers to memorize courses [Björklund 2006]. The cost of
a driving simulator composed of a PC, some CRT:s, a racing wheel
and a game is typically less than 1 000 Euro.

3 The Driving Simulator

The goal of the driving simulator developed at the University of
Skövde is to utilize the cost-effective and entertaining aspects from
gaming simulators. The system is composed of 8 standard game
PCs - 7 clients and a server. Each client is connected to a budget
LCD-projector projecting on screens surrounding a real car. As the
simulator is intended to be used for video games, the requirements
on realism are somewhat different compared to high-end simulators
used for traffic safety research. For games there is always an enter-
tainment requirement that has to be considered. By using of-the-
shelf hardware components it is possible to utilize game software
and technology. We have successfully modified a number of COTS
games to run on the simulator platform. In this section we present
the architecture and design of the simulator.

3.1 The driver environment

The driver environment is a complete Volvo S80 with authentic con-
trols and instrumentation. Figure 3 shows the driver environment.

Figure 3: The driver environment

The use of a real car provides a great deal of realism to the simu-
lator. Users of the system have no problems in understanding the
functionality of the interface to the simulator. In addition the feeling
of being inside a car is a familiar situation which, for most people,
is associated with a responsibility for the car and fellow road users.
This brings a sense of seriousness to the driving.

3.2 Graphical environment

The graphics generated in the simulator is projected on seven flat
screens as illustrated in Figure 4. These screens cover the whole
field-of-view for the driver and the parts covered by the rear view
mirrors. In the design phase an alternative solution, to back-project
the graphics directly on the windshield, was rejected for a number

40

of reasons: Firstly this solution gives a very closed and flat projec-
tion where the external parts of the car are not visible. It is also
not possible for the driver or passengers to move their heads to get
a different perspective on the surroundings (e.g. if the windshield
post is covering some part of the view). Another aspect to consider
is the distance from the observer to the projected screen. The sim-
ulations are generated using window-projection [Cruz-Neira et al.
1992] that is computed from the perspective of the driver which
means the passengers will experience a distortion. With the chosen
solution the distance to the screens is greater and the distortion for
passengers is acceptable. An additional advantage by using screens
outside the car is that it enables the original rear mirrors to be used
and it is possible for the driver to turn his head and look in the
rear window. The latter is not possible when, for example, LCD-
displays are used as rear mirrors.

Figure 4: The simulator car surrounded by screens (1-7)

The projection on the screens is similar to that used in a Cave
[Cruz-Neira et al. 1992]. The choice of rectilinear projection in-
stead of cylindrical or spherical is mainly economical. Each screen
is handled by a budget LCD-projector and as the screens are not
projected seamlessly there are low requirements on the calibration.
This also makes it possible to use a large number of screens and
hence cover a larger fraction of the field-of-view, than is common
in mid-range simulators. The forward visual field-of-view is 220 by
30 degrees, and 60 by 30 degrees in the rear direction. As a com-
parison, the high-end simulator used in [Peters and Östlund 2005]
has a forward visual field-of-view of 120 by 30.

3.3 Physical feedback systems

The generation of physical feedback in a driving simulator may
be extremely complex. The simulator at the university of Skövde
adopts a fixed-based approach which means that no g-forces are
generated. This is in total contrast with the mid-range simulator
presented by Huang and Chen [Huang and Chihsiuh 2003] which
emphasises on the motion system in favour of the graphical system
and the driver environment.

The illusion of movement in our simulator is generated by the use of
sound, vibrations and the car’s fan. The sound is generated in the in-

ternal surround system of the car. In addition a ”ButtKicker” [Gui-
tammer 2005] is used to generate vibrations in the body of the car
which are propagated to the whole car including the steering wheel.
One important property relating to physical feedback in a driving
simulator is the haptics of the steering wheel. In a car with servo-
steering there is not as much movements as when there is a direct
connection between the steering wheel and the tyres. The most im-
portant remaining physical property is that the wheels should strive
to return to their original position. In the simulator this has been
achieved by placing each front wheel on an axial ball bearing. Due
to the steering axis inclination there will be a strive to return the
wheels to a parallel position. In addition, the movements of the
front wheels gives a notable movement of the car that can be con-
sidered to be a form of passive physical feedback.

The physical feedback component that possibly contributes most to
the perception of speed in the simulator is the internal fan. It is
controlled by the simulation and the force of the fan is linear to the
speed of the car [Carraro et al. 1998]. When the driver is reaching
a high speed the wind and the substantial noise from the fan con-
tributes to create a high speed perception. It is well known that it
is difficult to get a good perception of speed in computer generated
simulations [Godley and Fildes ; Östlund et al. 2006]. The use of
a fan is a simple but effective way to increase the perceived speed.

3.4 Computer Architecture

The computer architecture in the simulator consists of 8 standard
gaming PCs equipped with a mid-range graphics card. One com-
puter is acting as server while the other are clients each responsible
for one screen. The clients and server are typically running iden-
tical simulations with the only difference that the server is send-
ing synchronize messages to the clients. The clients differ only in
the camera position used when rendering. The computers are con-
nected in an Ethernet LAN. All hardware components are standard
consumer products. The only tailored component of the simulator
is the interface with the car [Mine 1995]. The movements of the
steering wheel and other controls are monitored by microcontrollers
that communicate with the server via a USB game control protocol.
In this way the car can be seen as a highly specialised joystick. The
advantage with this approach is that the simulator can be used with
any computer game that supports joysticks.

3.5 Software Environment

As mentioned above, almost any computer game can be played on
the simulator platform. In most situations it will however be lim-
ited to use only one screen. To utilize all 7 screens the software
has to support multiple clients with adjustable camera positioning.
The extensions required are hence very small and we have success-
fully managed to adjust several commercial games to be used in the
simulator using multiple screens. In addition to using COTS games
we have also developed an infrastructure based on an open source
game engine. This allows for custom made simulation application
and games.

4 Experiments

The simulator has been used in an experimental study with 24 driv-
ing school students as subjects. The gaming background of the stu-
dents varied from inexperienced (13) to experienced players (5).
The experimental setup was such that the subjects were offered as

41

much time they wanted (up to a maximum of 30 minutes) playing
and exploring a game. This was followed by a number of evaluative
tests where they were instructed to perform certain tasks, followed
by a questionnaire. All simulations were monitored and logged.

The game used in these experiments is relatively simple. The player
is driving on a five-lane motorway following an ambulance. The
difficulty of the game increases by the intensity of the traffic and the
behaviour of fellow road users. Although we had other main goals
with these experiments, they have also provided some feedback on
the performance of the simulation environment.

First of all, the subjects where extremely positive concerning the
entertainment value of the simulator. In the questionnaire subjects
were asked to specify how they agreed to the statement ”it was
fun to drive”, on a 5-graded Likert scale where 1=fully disagree
and 5=fully agree. The average for all subjects where 4.6 which is
a very high result considering the relative simplicity of the game.
This result may also be derived from the amount of time the sub-
jects spent in the simulator. They were explicitly instructed to de-
cide themselves when to stop driving. The result was that experi-
enced gamers spent on average 29 minutes playing the game com-
pared to 23 minutes for inexperience players. This is a statistically
significant difference which is interesting as one may suspect that
experienced gamers would not appreciate a game that is far from a
state-of-the-art racing game. One possible interpretation is that the
simulator platform itself contributed to the positive experience, in
particular for gamers.

Concerning the realism of the game and simulator the average of
the subjects was 3.6 for the statement ”the driving was realistic”
(using a 5-gradet Likert scale). This is clearly above average which
indicates that the simulator is efficient. Some users commented on
initial problems with the control of the car. These initial problems
do not seem to have had any negative impact on the overall expe-
rience and performance of the drivers. This can be confirmed from
analysis of how the drivers managed to position their car in the lane
(lateral position). Lateral position is commonly used for validation
of driving simulators [Green 2005; de Waard et al. 2005]. Fig-
ure 5, illustrates the relative lateral position of the car during all
experiments.

0

5

10

15

20

25

30

-1

-0
.5 0

0
.5 1

Relative position

P
e
rc

e
n

ta
g

e
 o

f
ti

m
e

Figure 5: Histogram of the relative lateral position of the car

The total driving time for all subjects was almost 12 hours. The
position of the car was sampled at 10Hz. The histogram in Figure 5
is based on all logs from all experiments (413 973 samples). The
relative position of the car in the lane was divided into 21 discrete
intervals. The histogram was created by summarizing the number
of times the car was positioned in respective interval and then divide
it with the total number of samples. Note that the recorded informa-

tion only considers the relative position within the lane (irrespective
of what lane the car was in). The tails in the histogram are due to
lane changes and the gameplay is such that frequent lane-changes
are required to succeed. In fact, the drivers changed lane on aver-
age every 15 seconds. The most notable property of the histogram
is the large bar in the middle. Despite the frequent lane changes the
drivers spent almost 25% of the time exactly centred in the middle
of the lane. The central bar is moreover more than double the size
of the surrounding bars. We interpret this as the drivers have intu-
itively managed to position the car very close to the centre of the
lane. This implies that the visual representation gives a realistic im-
pression of the position of the car. The rectilinear projection hence
seems to work very well.

The use of original rear view mirrors also seems to be efficient.
The subjects’ use of the mirrors was monitored during experiments
and the result shows that they used both the internal as well as the
external mirrors frequently. In fact, the use of mirrors was more
frequent than the lane-changing. On average the subjects used the
mirrors every 10 seconds compared to 15 seconds for lane changes.

Simulator sickness (also termed cybersickness) is a well known
problem in simulators and is related to motion sickness [Harm
2002; AGARD 1988]. As much as 30% of the users of simula-
tors may experience symptoms severe enough to discontinue use
[Harm 2002]. Simulator sickness is believed to be caused by con-
fusion between the perceived motion and the actual motion [Bertin
et al. 2004]. The problem seems to be difficult to totally eliminate,
even for high-end simulators [Peters and Östlund 2005].

Since the simulator presented in this paper is a fixed-based system,
problems with simulator sickness was not unexpected. These prob-
lems were however minor in the experiments. Four subjects (17%)
reported sickness as one of the reasons they decided to stop playing
the game. The average playing time of these four subjects was 21
minutes compared to 25 minutes for those that did not report any
sickness problems. The relatively small difference in time makes
us believe these subjects did not experience severe problems with
simulator sickness.

5 Discussion

In this paper we have presented a driving simulator based on video
game technology. Our approach has been to use relatively inex-
pensive hardware components to create a graphical system that sur-
rounds a real car whose instrumentation has been adopted to be used
as a game control. A main difference to high-end simulators is the
modest physical feedback system. The presented simulator uses
a fan, vibrations and sound in addition to the graphical feedback.
The driving simulator has successfully been used in an experimen-
tal study. Observations from this study indicate that the simulator is
efficient in that it creates a realistic and entertaining experience to
the users. The absence of physical feedback does not seem to incur
serious problems with simulator sickness. In addition the rectilinear
projection gives a realistic perception of the simulated environment.
This has been shown by analysing the lateral positioning of the car.

When developing a simulator one goal is to create a realistic experi-
ence. Realism comes to a price and with a limited budget the benefit
has to be balanced with its price. In our approach we have decided
to sacrifice the physical movement realism in favour of the realism
of having a real car as the driver environment. We believe that the
use of a real car is one of the key benefits of the presented simula-
tor. The smell and touch of a car gets the driver in the mind-set of
driving. In addition, our simulator allows for passengers, which is

42

a typical driving property which is neglected in many other simula-
tors. The driving task is, for example, much harder to handle when
there are two fighting children in the backseat.

The simulator architecture presented in this paper is flexible and
scalable. For example, the number of screens used can easily be
extended by adding a projector and a PC for each screen. The server
can broadcast messages to all involved clients which mean that the
total load of the system is in practice independent of the number of
screens. Each PC handles the rendering of one screen which differs
only in their camera positioning. The flexibility of the architecture
is illustrated by the fact that we have successfully modified several
COTS games to be playable on the simulator platform. The ability
to adopt and use commercial software is important as the cost of
software development may be huge. In future studies we plan to
use COTS racing games whose graphical quality require budgets
way beyond that of the simulator hardware.

To summarize, the contribution of the presented work is that we
have combined the quality and cost-effectiveness of the gaming
technology with the extensiveness of the mid-range to high-end
simulators. We estimate that the hardware cost of the presented
simulator is less than 20 000 Euro excluding the cost of the car.

In our ongoing and future research we will use the simulator to
explore the potential benefit of using computer games in traffic ed-
ucation. We will test whether a serious driving game designed with
the specific purpose of enhancing certain traffic safety variables is
effective. The general idea is to combine the strengths of traditional
simulators with the fun of games.

Acknowledgements

This work has been sponsored by Länsförsäkringsbolagens Forskn-
ingsfond, Skövde Kommun, Tillväxt Skaraborg, and Volvo Cars.

References

AGARD, 1988. Motion cues in flight simulation and simulator
induced sickness. Advisory Group for Aerospace Research &
Development, Conference proceedings.

ATARI, 2006. Atari inc. Retrieved 2006-9-23, from
http://www.atari.com.

BERTIN, R., GUILLOT, A., COLLET, C., VIENNE, F., ESPIÉ,
S., AND GRAF, W., 2004. Objective measurement of simula-
tor sickness and the role of visual-vestibular conflict situations:
a study with vestibular-loss (a-reflexive) subjects. Neuroscience,
San Diego, California.

BJÖRKLUND, P., 2006. Chief technical officer SimBin develop-
ment team AB. Personal Communication.

BLACKMAN, S. 2005. Serious games...and less! SIGGRAPH
Computer Graphics 39, 1, 12–16.

CARRARO, G. U., CORTES, M., EDMARK, J. T., AND ENSOR,
J. R. 1998. The peloton bicycling simulator. In VRML ’98:
Proceedings of the third symposium on Virtual reality modeling
language, ACM Press, New York, NY, USA, 63–70.

CRUZ-NEIRA, C., SANDIN, D. J., DEFANTI, T. A., KENYON,
R. V., AND HART, J. C. 1992. The cave: audio visual ex-
perience automatic virtual environment. Commun. ACM 35, 6,
64–72.

DE WAARD, D., STEYVERS, F., AND BROOKHUIS, K. 2005. How
much visual road information is needed to drive safely and com-
fortably? Safety Science 42, 7, 639–655.

ESA, 2005. Entertainment software association -
game player data. Retrieved 2005-04-13, from
http://www.theesa.com/facts/gamer data.php.

GODLEY, S. T., AND FILDES, B. N. Driving simulator validation
for speed research. Accident analysis & prevention 34.

GREEN, P., 2005. How driving simulator data quality can be im-
proved. DSC 2005, Orlando.

GUITAMMER, 2005. Buttkicker. Retrieved 2006-10-02, from
http://thebuttkicker.com/.

HARM, D., 2002. Motion sickness neurophysiology, physiological
correlates, and treatment. in Handbook of Virtual Environments,
Stanney (edt.).

HUANG, A., AND CHIHSIUH, C. 2003. A low-cost driving sim-
ulator for full vehicle dynamics simulation. IEEE Transactions
on Vehicular Technology 52, 1, 162–172.

INRETS, 2006. Driving simulators. Retrieved 2006-10-02, from
http://www.inrets.fr/ur/sara/Pg simus e.html.

ITS, 2006. Leeds advanced driving simulator. Retrieved 2006-10-
02, from http://www.its.leeds.ac.uk/facilities/lads/.

KUHL, J., EVANS, D., PAPELIS, Y., ROMANO, R., AND WAT-
SON, G. 1995. The iowa driving simulator: An immersive re-
search environment. Computer 28, 7, 35–41.

LOPICCOLO, P. 2004. Serious games. Computer Graphics World
27, 2.

MINE, M. R. 1995. Virtual environment interaction techniques.
Tech. rep., Chapel Hill, NC, USA.

ÖSTLUND, J., NILSSON, L., TÖRNROS, J., AND FORSMAN, A.,
2006. Effects of cognitive and visual load in real and simulated
driving. VTI rapport 533A-2006, Swedish Road and Transport
Research Institute (VTI), Linköping, Sweden.

PETERS, B., AND ÖSTLUND, J., 2005. Joystick controlled driving
for drivers with disabilities. VTI rapport 506A-2005, Swedish
Road and Transport Research Institute (VTI), Linköping, Swe-
den.

ROLFE, J., AND STAPLES, K., Eds. 1988. Flight Simulation. Cam-
bridge University Press.

SIMBIN, 2006. Simbin development team. Retrieved 2006-9-23,
from http://www.simbin.se.

SSI, 2006. Simulator systems international. Retrieved 2006-10-02,
from http://www.simulatorsystems.com.

ZYDA, M. 2005. From visual simulation to virtual reality to games.
Computer 38, 9, 25–32.

43

The Verse Networked 3D Graphics Platform

Emil Brink∗

Royal Institute of Technology
Eskil Steenberg†

Royal Institute of Technology
Gert Svensson‡

Royal Institute of Technology

Figure 1: Screenshot rendered by Quel Solaar, showing multiple materials, texture-mapping, shadows and per-pixel lighting.

Abstract

This paper introduces the Verse platform for networked multiuser
3D graphics applications. The client/server-oriented use of the net-
work architecture is described, as is the highly heterogeneous client
concept. The data storage model is introduced, as are several fea-
tures of the object representation. A single-primitive approach to
high-quality graphics based on a hybrid of Catmull-Clark and Loop
subdivision surfaces is described, together with a high-level mate-
rial description system.

Keywords: network, 3D, graphics, subdivision, open, platform,
cooperation, distributed

1 Introduction

The Verse1[Brink and Steenberg 2006] project was started at the In-
teractive Institute in June of 1999, in an attempt to make the thresh-
old for working with networked 3D graphics applications lower. It
was felt that existing tools and architectures either were not open
enough, lacking in modern features, or both. The first version of
the protocol was developed by Eskil Steenberg and Emil Brink.

∗e-mail: ebr@kth.se
†e-mail:eskil@obsession.se
‡e-mail:gert@pdc.kth.se

1See http://verse.blender.org/

In 2001 Eskil Steenberg continued the Verse development by writ-
ing a second version of Verse independent of the Institute. In 2002
researchers from the Royal Institute of Technology and the Inter-
active Institute met to formulate a proposal for a European Com-
mission three-year project formed by seven European research in-
stitutes and companies. The project was granted funding and was
launched in February 2003 under the name Uni-Verse2. The idea
with this project is mainly to develop and evaluate 3D tools based
on the Verse protocol.

Verse is, at its core, a custom network protocol optimized to de-
scribe 3D graphics data according to a certain data format. The
data format, in turn, is designed to be flexible and dynamic. Around
these two components, we are trying to build an entire platform. By
basing the platform on an openly available communications proto-
col, we try to encourage and simplify independent development and
interoperability.

1.1 General Philosophy

The general idea with Verse is to create a platform that can sup-
port various kinds of applications involving networked 3D graphics.
We want the platform itself to have a fairly “low profile,” so that it
leaves as many design and policy issues as possible to the applica-
tion developer. Data describing graphics should be of the highest
possible quality, and should describe the objects without regard to
how they are rendered by clients. Verse is not intended to be just a
research prototype, but should be good enough for real-world use.

2 Architecture

The bulk of this paper will describe various aspects of Verse’s ar-
chitecture, including network and data storage issues.

2See http://www.uni-verse.org/

44

2.1 Client/Server

The Verse protocol is designed to support any network architecture
but is often used as a client/server system. Normally there is a single
central server, to which multiple clients connect. The server stores
the data describing the world, and clients can then connect to the
server and read and write the data it stores. The server “knows”
which clients are reading which data, and distributes any changes
accordingly.

We favor a client/server approach rather than a peer-to-peer or hy-
brid network architecture for several reasons. One is that by making
all the data describing a world reside in a single process, adminis-
tration and ownership of the world becomes easier to understand.
Also, we feel that access security is easier to achieve if there is a
single point through which all accesses must go. Persistence also
comes naturally in a client/server system: as long as the server is
kept running, the world persists.

2.1.1 A Lightweight Server

The most important characteristic of the server in the Verse archi-
tecture is that it is small, both theoretically (it has few responsibil-
ities) and in practice (as a computer program it is not very big3).
Conceptually, all the server does is store data, provide an interface
through which that data can be accessed, keep track of which client
is accessing what data, and forward changes.

2.1.2 Heterogeneous Clients and Servlets

The word “client” is heavily used when discussing Verse. This is
because since the server does so little, much of the work other sys-
tems might put in the server is delegated into clients. Programs
that are “server-like” in their nature, but technically Verse clients,
are often called “servlets”. We assume that the administrator of a
server also will chose a set of desired additional services and run
the required servlets on (or near) the machine that hosts the server
itself.

2.2 Data Organization

From one perspective, Verse can be seen as a network-accessible
special-purpose database. This section describes how data are
stored and managed in Verse.

2.2.1 Nodes

Data stored by the Verse server are divided into a set of discrete
entities called nodes. Several distinct types of nodes exist, each one
is specialized to store a subset of the data required to describe a
world. Currently, the types object, geometry, material, bitmap, text,
curve and audio have been defined.

Object nodes are used to represent entities that should be visible in
the world. An object is given a “look” by linking it to geometry
and material nodes. Material nodes in turn link to bitmap nodes
for textures and other image-like data. Text nodes are used to store
text, for whatever purpose. Curve nodes store multi-dimensional
interpolation curves, for animation. Audio nodes store and stream
sampled audio.

3Currently, the server is roughly 169 KB in binary executable form
(stripped, Linux x86)

Each node instance is identified by a 32-bit unsigned integer num-
ber, assigned by the server upon creation. Node IDs are globally
unique in each connection to a server. All nodes also support
human-readable textual names. Furthermore, each node supports
tags, which are simply named values of various types. Tags are
collected into named groups.

2.2.2 Node Commands

Each node type defines its own set of commands that operate on
the data stored in the node. Node commands are the only thing
sent by the Verse network protocol; all communication between
a Verse server and its connected clients is done using node com-
mands. Commands are symmetrical, meaning that the same com-
mand is often used both as a request and as a reply. Communi-
cation in Verse is mainly client-driven; the server does not send
unrequested data to clients.

2.2.3 Subscriptions

The concept of subscription forms the basis of Verse’s data distri-
bution design. Clients need to actively tell the server which nodes
they are interested in, by subscribing to them. Nodes typically con-
tain smaller parts 4 which are in turn subscribable. A client learns
about the subscribable parts of a node by subscribing to something
at the next higher level, beginning by subscribing to the node itself.

2.2.4 Dynamic Data

One of the most important aspects of Verse, that differentiates it
from many existing systems, is that all data stored and handled by
it are fully dynamic. Things such as an objects geometric represen-
tation, or a color bitmap for texturing, are transmitted and handled
so that very small parts of these data structures are always address-
able and thereby changeable at any time. For example, any vertex
in a Verse geometry node can be moved at any time, polygons can
be created and destroyed at will, bitmaps can be repainted on the
fly, and so on.

This dynamic nature makes Verse well suited for interactive net-
worked cooperative applications. The data storage formats and the
node commands that express them have been designed so that, from
a client’s perspective, there really is no difference between the orig-
inal and changed versions of e.g. a vertex position. They both look
exactly the same, which makes it easier to write clients to support
the dynamic properties of the data model.

2.3 Network Layer

Networking is of course important in a system such as Verse. We
use a custom-built asynchronous protocol designed to send node
commands, layered on top of standard unicast UDP.

2.3.1 UDP

Verse uses UDP, a low-level datagram transport protocol that is part
of the TCP/IP standard suite of protocols. UDP, unlike TCP, does
not guarantee that datagrams sent actually reach their destination;

4Such as tag groups, layers, buffers, streams etc.

45

they can be dropped at any point in the network. This means that
Verse must handle dropped datagrams itself, by doing resends.

Verse uses UDP rather than TCP because it is inherently better
suited for interactive applications, and also because it gives us more
control over the network traffic.

2.3.2 Unicast

Verse datagrams are sent using “classic” unicast semantics, i.e.
each datagram has only one recipient. This is in contrast to the
use of multicast[Deering 1989], where each datagram is sent to an
entire group of recipients. There are many reasons why we do not
use multicast in Verse. One is that the basic service provided by
it, efficient one-to-many data distribution, does not fit well with a
general 3D world. All clients do not want all data; each client only
wants the data it is subscribing to.

An alternative might be to use one multicast group per node, but that
is not very appealing either. First, IPv4 reserves no more than 24
bits (0.39%) of its address space for multicast groups, while Verse’s
node ID space is a full 32 bits. Second, separating transmissions
into distinct multicast groups means more datagrams in total, which
increases the cost of per-datagram overhead. Third, Internet-wide
support for multicast is still rather limited.

2.3.3 Asynchronous

The network layer is asynchronous. This means that messages are
generally sent one way only, and the sender does not wait for a re-
sponse before continuing and sending the next message. Messages
generally consist of commands, which are either system-level or
sent to a specific node instance.

Commands are collected into datagrams which are then emitted.
The layer decodes the datagram and generates a stream of com-
mand invocations, which is delivered to the application-level soft-
ware. The application might be either the server or a client. Each
datagram is handled separately, without regard for the datagrams
that preceded it, or the ones that will succeed it. The datagrams
are given a sequential number, so that lost (dropped) ones can be
detected. When this happens, a resend is eventually done.

When commands are collected into datagrams to be sent, the net-
work layer uses knowledge it has about each command’s content to
overwrite duplicates when possible. This is a form of event com-
pression, and conserves bandwidth by not sending redundant data
over the network.

2.3.4 The Verse API

Programmers who wish to develop for Verse do not need to know
much about how Verse looks “on the wire”. Instead, they use our
application programming interface (API), which is delivered as a C
link library5. By calling functions in the Verse API, a client pro-
gram can establish a connection to a server, and also exchange data
with it. For the most part, functions in the API map 1:1 to node
commands, which are sent to the server. When a reply comes back,
the client program is notified through a callback function, which
is called with the command’s parameters (if any) as its arguments.
The server is also implemented on top of the same API.

5Called “libverse.a”

2.4 Object Nodes

Nodes of type object are arguably the most important nodes used in
Verse. For something to be visible in a world, it has to be associated
in some way with an object node. Each connected client is given
an object node that represents that client in the world hosted by
the server. This object is known as the client’s avatar, but there is
nothing special about it. It is just like all other object nodes.

2.4.1 Transform

Verse currently uses a fairly simple transform system to express
object movements. It is based on a clock which is synchronized
between client and server when the client connects, using a sim-
plistic measurement of the network latency that separates the two.
An object’s transform consists of the three quantities position, ro-
tation and scale. Changes to each of these three quantities can be
done at the zero’th, first or second derivative.

Because all commands that handle transforms using this system in-
clude a timestamp for when they should take effect, it is possible
to build up a queue of events in advance, if the events are known
beforehand. This decouples the network traffic that describes a se-
ries of transform changes from the changes themselves, which is
sometimes useful.

Setting a transform quantity’s value directly (at derivative level 0)
is akin to “teleporting” the object, and will likely be restricted in
worlds that try to appear realistic. In this case, movement must be
done by setting either a velocity or an acceleration. The object-level
transform system handles only the entire object as a rigid whole.
The animation system supports defining a hierarchical skeleton of
bones, with weighted influences on the vertices of the object. Ob-
jects can have child objects, to build hierarchical transformations at
the object-level, too.

2.4.2 Methods

In addition to the tag system, which stores application-defined “pas-
sive” data in objects, there is also support for storing something
called methods[Brink 2000]. A method is simply a description of
a program entry point associated with the object. The description
does not include any code or other implementation of the method;
this is left to dedicated clients. Methods can accept parameters of
various types, much like functions in C. However, object methods
do not have return values, mainly because the underlying network
layer is inherently asynchronous.

Methods are collected into method groups, which are named and
subscribable. The intended use is to allow various kinds of special-
ized behavior and/or “intelligence” to be associated with objects.
In the full-fledged version of method use, the code that implements
each method is stored on the server in a text node, and interpreted
by a general virtual machine client. It is, however, entirely possi-
ble to write dedicated clients that only deal with handling calls to
methods in a given group, bypassing the text node and online code
interpretation completely.

As an example of how methods could be used, consider a general
3D world where clients connect and navigate around through the
use of avatars. Navigation might be done through the use of key-
board and mouse input, as is common on the PC platform.

Without methods, the browsing client would directly translate key-
presses into transform commands sent to the object node represent-
ing the avatar. If the avatar is given a set of methods for move-

46

ment, the client would instead issue calls to these methods when
corresponding keyboard keys are pressed. Somewhere, perhaps on
the same machine as the server, another client would receive the
method calls and translate them into object transform commands.
Using the method system in this way allows important properties
of an object, such as its control interface, to be abstracted out in a
way we find very flexible.

2.4.3 Linking

Object nodes do not contain data about things such as geometry or
material properties directly. Instead, such data is stored and man-
aged by instances of dedicated node types, and the object node sim-
ply links to these instances as needed. Other nodes can also contain
node pointers, for example material nodes often need to refer to
bitmap nodes that act as data sources for texture mapping and fil-
tering.

Data stored in a node can be shared between multiple users by sim-
ply letting each user link to the desired node. For example, two ob-
jects with the same geometry will link to the same geometry node.
They can still have different materials, by linking to distinct mate-
rial nodes.

2.5 Graphics

Since Verse is ultimately a system for building networked 3D
graphics applications, it naturally contains quite a bit of mecha-
nism for handling the actual graphics. Specifically, it has a flexible
geometric primitive and a material description system.

2.5.1 Creased Subdivision Surfaces

Unlike many other systems and file formats for virtual reality and
networked graphics, Verse has a single primitive used to repre-
sent graphics. We use a hybrid of Catmull-Clark[Catmull and
Clark 1978] and Loop[Loop 1987] subdivision surfaces, and sup-
port meshes that mix triangles and quadrilaterals freely. Also, these
surfaces have been extended with crease data for vertices and edges,
allowing sharp features to be expressed simply and accurately.

2.5.2 Material System

Verse features a very powerful and flexible material system. Rather
than supporting a set of pre-defined complete shading models (such
as a Blinn shader, a Phong shader, and so on), Verse lets the user
define the material from scratch. This is done by building a shading
tree, consisting of various fragments. Each fragment represents a
simple operation, such as the application of a constant color, the
light hitting the surface, blending two colors, and so on. Currently,
there are 16 such fragments defined.

3 Working with Verse

3.1 Replacing File Transfers

In the Verse way of working, the 3D data is stored in a server and
clients connect to that server and subscribe to the data that each

Figure 2: A number of sample materials, including transparency,
displacement mapping, reflections, multi-texturing, and refraction.

client is interested in. This means that different tools can collabo-
rate directly and without file transfers and file conversion that often
are quite cumbersome for 3D data.

3.2 Single-User Use

Verse is a big advantage also for a single user on a single computer.
As a matter of fact several tools can collaborate with Verse as if they
were part of a single 3D application, and this is valid on a single
computer or distributed over the LAN in a company or distributed
over Internet.

Traditionally, it was convenient to use a large monolithic 3D appli-
cation for all steps in the 3D content creation process. With Verse-
enabled tools, it is possible to choose the most appropriate tool for
each task, and combine them into a virtual production pipe-line.
This also means that tools can be smaller, and much simpler com-
pared to the monolithic approach. This opens the possibility for
smaller companies and open source volunteers to implement tools
which are optimal for a single task.

3.3 3D Texture Painting

3D texture painting is a simple example of how Verse can speed
up the process of content creation. If you are using open source
tools you may use The GIMP[Kimball and Mattis 1996-2006] for
texture painting and Blender[Blender Foundation 2002-2006] for
the geometric modeling. Although Blender has its own set of tex-
ture painting tools built-in, being able to directly benefit from the
much larger set of tools available in applications such as The GIMP
would be a boon to artists. Without Verse, artists that want to use
The GIMP to manipulate textures need to go through a save/reload
cycle. With Verse the artists can see the result in the 3D world
directly as they paint

3.4 Distributed Use

Today’s companies and organizations become more and more geo-
graphically distributed, and the 3D content creation industry is no
exception. Just having a customer review with the customer on a re-
mote location and the possibility to change the model interactively

47

and have the customer review and directly comment on the changes
opens up new ways of working.

3.5 Available Clients

In the Uni-Verse project a number of new Verse clients have been
developed, and popular existing 3D tools have been adopted to
communicate using Verse.

A set of tools which has been developed for Verse from the begin-
ning consists of the modeling tool Loq Airou, the symbolic data
manipulation and inspection tool Connector, the UV tool UV Edit
and the geometry layer painter Layer Painter.

A tool called Purple[Brink 2005] for manipulation of Verse data
with a data flow graph approach has been developed, hoping to il-
lustrate how a future 3D package might be designed around Verse,
and also to help get programmers “on board”, by lowering the
threshold to program for Verse.

Several rendering clients exist. Quel Solaar (see Figure 1) is high-
quality, high-performance rendering client which has been designed
for Verse from the beginning. This means that Quel Solaar supports
changing the rendered data at any time. Quel Solaar also supports
global illumination, dynamic shadows, the OpenGL 2.0 shader lan-
guage, reflections, refractions and transparency as well as displace-
ment mapping.

Furthermore, a rendering client based on OpenSG has been devel-
oped. It supports clustered rendering, where many computers co-
operate to render for a single physical display.

A Verse plug-in to Autodesk 3ds Max[Autodesk Corporation 2006]
has been developed, as well as a Verse connection for the major
open source 3D package Blender.

Finally, an acoustic simulation client is being developed. The client
makes realistic simulations of a building model in Verse, for use
by architects and acoustic consultants. The model can be changed
interactively and the acoustic simulation is then automatically up-
dated. To achieve interactive speeds of the acoustic simulation the
complexity of the geometric model is first automatically reduced
(by a separate, dedicated client).

4 Conclusions

Verse is a network protocol for dynamic exchange of 3D data in
a variety of situations. Verse clients have been developed for the
standard tasks in 3D modeling and rendering.

The Verse way of connecting applications has been shown to in-
crease productivity in the content creation process. We have the
goal to establish Verse as an open industry standard for connecting
3D applications interactively.

5 Acknowledgments

The Verse project was funded by the Interactive Institute be-
tween 1999 and 2001. The Uni-Verse project runs between 2003
and 2007, supported by the European Commission’s 6:th Frame-
work Programme under the Information Society Technologies Pro-
gramme.

References

AUTODESK CORPORATION, 2006. 3ds max. http://www.
autodesk.com/3dsmax.

BLENDER FOUNDATION, 2002-2006. Blender. http://www.
blender.org/.

BRINK, E., AND STEENBERG, E., 2006. The Verse Spec-
ification. http://verse.blender.org/cms/fileadmin/
verse/spec/.

BRINK, E. 2000. Dynamic Method Calls In A Networked 3D Envi-
ronment (TRITA-NA-E0077). Master’s thesis, Royal Institute of
Technology.

BRINK, E., 2005. Purple. http://purple.blender.org/.

CATMULL, E., AND CLARK, J. 1978. Recursively generated
b-spline surfaces on arbitrary topological surfaces. Computer
Aided Design 10, 350–355.

DEERING, S. E. 1989. Host extensions for ip multicasting. RFC
1112, IETF, November.

KIMBALL, S., AND MATTIS, P., 1996-2006. The GNU Image
Manipulation Program. http://www.gimp.org/.

LOOP, C. 1987. Smooth subdivision surfaces based on triangles

.

Master’s thesis, Department of Mathematics, University of Utah,
Salt Lake City.

48

