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Abstract. In order to support the development of complex products, modeling 
tools and processes need to support co-design of software and hardware in an 
integrated way. Modelica is the major object-oriented mathematical modeling 
language for component-oriented modeling of complex physical systems and 
UML is the dominant graphical modeling notation for software. In this paper 
we propose ModelicaML UML profile as an integration of Modelica and UML. 
The profile combines the major UML diagrams with Modelica graphic connec-
tion diagrams and is based on the System Modeling Language (SysML) profile. 

1   Introduction 

The development in system modeling has come to the point where complete modeling 
of systems is possible, e.g. the complete propulsion system, fuel system, hydraulic 
actuation system, etc., including embedded software can be modeled and simulated 
concurrently. This does not mean that all components are dealt with down to the very 
smallest details of their behavior. It does, however, mean that all functionality is mod-
eled, at least qualitatively.  

In this paper, a UML profile for Modelica, named ModelicaML, is proposed. The 
ModelicaML UML profile is based on the OMG SysML™ (Systems Modeling Lan-
guage) profile and reuses its artifacts required for system specification. SysML dia-
grams are also extended to support all Modelica constructs. We argue that with Mode-
licaML system engineers are able to specify entire systems, starting from require-
ments, continuing with behavior and finally perform system simulations.  

2   SysML and Modelica 

The Unified Modeling Language (UML) has been created to assist software develop-
ment processes by providing means to capture software system structure and behav-
ior. This evolved into the main standard for Model Driven Development [5].  

The System Modeling Language (SysML) [4] is a graphical modeling language for 
systems engineering applications. SysML was developed by systems engineering ex-
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perts, and was adopted by OMG in 2006. SysML is built on top of UML and tailored 
to the needs of system engineers by supporting specification, analysis, design, verifi-
cation and validation of broad range of systems and system-of-systems. 

The main goal behind SysML is to unify and replace different document-centric 
approaches in the system engineering field with a single systems modeling language. 
A single model-centric approach improves communication, assists to manage com-
plex system design and allows its early validation and verification.  

The taxonomy of SysML diagrams is presented in Fig. 1. For a full description of 
SysML see (SysML, 2006) [4]. The major SysML extensions compared to UML are: 

• Requirements diagrams support requirements presentation in tabular or in graphi-
cal notation, allows composition of requirements and supports traceability, verifi-
cation and “fulfillment of requirements”.  

• Block diagrams extend the Composite Structure diagram of UML2.0. The purpose 
of this diagram is to capture system components, their parts and connections be-
tween parts. Connections are handled by means of connecting ports which may 
contain data, material or energy flows. 

• Parametric diagrams help perform engineering analysis such as performance 
analysis. Parametric diagrams contain constraint elements, which define mathe-
matical equations, linked to properties of model elements. 

• Activity diagrams show system behavior as data and control flows. Activity dia-
grams are similar to Extended Functional Flow Block Diagrams, which are already 
widely used by system engineers. Activity decomposition is supported. by SysML. 

• Allocations are used to define mappings between model elements: For example, 
certain Activities may be allocated to Blocks (to be performed by the block).  

SysML block definitions (Fig. 2) can include properties to specify block parts, values 
and references to other blocks. A separate compartment is dedicated for each of these 
features. To describe the behavior of a block the “Operations” compartment is reused 
from UML and it lists operations that describe certain behavior. SysML defines a spe-
cial form of an optional compartment for constraint definitions owned by a block. A 
“Namespace” compartment may appear if nested block definitions exist for a block. A 
“Structure” compartment may appear to show internal parts and connections between 
parts within a block definition.  

SysML defines two types of ports: standard ports and flow ports. Standard ports, 
which are reused from UML, are service-oriented ports required or provided by a 
block. Flow ports specify interaction points through which items may flow between 

Fig. 1. SysML diagram taxonomy. 

14



  

blocks, and between blocks and environment. A flow port definition may include sin-
gle item specification or complex flow specification through the FlowSpecification 
interface; flow ports define what “can” flow between the block and its environment. 
Flow direction can be specified for a flow port in SysML. SysML also defines a no-
tion of Item flows that specify “what” does flow in a particular usage context. 

 
Fig. 2. SysML block definitions. 

2.1   Modelica 

Modelica [2] [3] is a modern language for equation-based object-oriented mathemati-
cal modeling primarily of physical systems. Several tools, ranging from open-source 
as OpenModelica [1], to commercial like Dymola [11] or MathModelica [10] support 
the Modelica specification. 

The language allows defining models in a declarative manner, modularly and hier-
archically and combining various formalisms expressible in the more general Mode-
lica formalism. The multidomain capability of Modelica allows combining electrical, 
mechanical, hydraulic, thermodynamic, etc., model components within the same ap-
plication model. In short, Modelica has improvements in several important areas: 

• Object-oriented mathematical modeling. This technique makes it possible to create 
model components, which are employed to support hierarchical structuring, reuse, 
and evolution of large and complex models covering multiple technology domains. 

• Physical modeling of multiple application domains. Model components can corre-
spond to physical objects in the real world, in contrast to established techniques 
that require conversion to “signal” blocks with fixed input/output causality. In 
Modelica the structure of the model naturally correspond to the structure of the 
physical system in contrast to block-oriented modeling tools. 

• Acausal modeling. Modeling is based on equations instead of assignment state-
ments as in traditional input/output block abstractions. Direct use of equations sig-
nificantly increases re-usability of model components, since components adapt to 
the data flow context in which they are used. 
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Fig. 3. Hierarchical model of an industrial robot.

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1
r3Motor

r3ControlqdRef
1

S

qRef
1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

Srel = n*transpose(n)+(identity(3)- 
n*transpose(n))*cos(q)- 

skew(n)*sin(q);

Hierarchical system architectures can easily be described with Modelica thanks to its 
powerful component model. The Components are connected via the connection 
mechanism realized by the Modelica system, which can be visualized in connection 
diagrams. The component framework realizes components and connections, and en-
sures that communication works over the connections. For systems composed of 
acausal components with behavior specified by equations, the direction of data flow, 
i.e., the causality is initially unspecified for connections between those components 
and the causality is automatically deduced by the compiler when needed. Components 
have well-defined interfaces consisting of ports, also known as connectors, to the ex-
ternal world. A component may internally consist of other connected components, i.e., 
hierarchical modeling as in Fig. 3. 

2.2   SysML vs. Modelica 

The System Modeling Language 
(SysML) has recently been 

proposed and defined as an extension of 
UML targeting at systems engineers. As 

previously stated, the goal of 
SysML is to unify different 

approaches and languages used by system engineers into a single standard. SysML 
models may span different domains, for example, electrical, mechanical and software. 
Even if SysML provides means to describe system behavior like Activity and State 
Chart Diagrams, the precise behavior can not be described and simulated. In that re-
spect, SysML is rather incomplete compared to Modelica. 

Modelica also, was created to unify and extend object-oriented mathematical mod-
eling languages. It has powerful means for describing precise component behavior 
and functionality in a declarative way. Modelica models can be graphically composed 
using Modelica connection diagrams which depict the structure of designed system. 
However, complex system design is more that just a component assembly. In order to 
build a complex system, system engineers have to gather requirements, specify sys-
tem components, define system structure, define design alternatives, describe overall 
system behavior and perform its validation and verification.  

3   ModelicaML: a UML profile for Modelica 

ModelicaML reuses several diagrams types from SysML without any extension, ex-
tends some of them, and also provides several new ones. The ModelicaML diagram 
overview is shown in Fig. 4. Diagrams are grouped into four categories: Structure, 
Behavior, Simulation and Requirement. In the following we present the most impor-
tant ModelicaML profile diagrams. The full description of the ModelicaML profile is 
presented in [8]. The most important properties of the ModelicaML profile are out-
lined in the following:  
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• The ModelicaML profile supports modeling with all Modelica constructs and prop-
erties i.e. restricted classes, equations, generics, discrete variables, etc. 

• Using ModelicaML diagrams it is possible to describe multiple aspects of a system 
being designed and thus support system development process phases such as re-
quirements analysis, design, implementation, verification, validation and integra-
tion. 

• ModelicaML is partly based on SysML, but reuses and extends its elements. 
• The profile supports mathematical modeling with equations since equations specify 

behavior of a (Modelica) system. Algorithm sections are also supported. 
• Simulation diagrams are introduced to model and document simulation parameters 

and results in a consistent and usable way. 
• The ModelicaML meta-model is consistent with SysML in order to provide 

SysML-to-ModelicaML conversion. 

 
Fig. 4. ModelicaML diagrams overview. 

Three SysML diagram types have been partly reused and changed for the Modeli-
caML profile. The rest of the diagram types we used in ModelicaML unchanged: 

• The SysML Block Definition Diagram has been updated and renamed to Modelica 
Class Diagram. 

• The SysML Internal Block Diagram has been updated and renamed to Modelica 
Internal Class Diagram (some of the SysML constructs are disabled). 

• The Package Diagram has been changed in order to fully support the Modelica 
language (i.e. Modelica package constants, Generic Packages, etc). 

• Other SysML diagram types such as Use Case Diagram, Activity Diagrams and 
Allocations, and State Machine Diagrams are included in ModelicaML without 
modifications. ModelicaML reuses Sequence Diagrams from SysML and changes 
the semantics of message passing. Modelica doesn’t support method declaration 
within a single class but supports declaration of functions as a restricted class type. 

Thus, the following diagram types are available in the ModelicaML profile: 

• The Modelica Class Diagram usually describes class definitions and their relation-
ships such as inheritance and containment. 
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• The Modelica Internal Class Diagram describes the internal class structure and 
interconnections between parts. 

• The Package Diagram groups logically connected user defined elements into pack-
ages. In ModelicaML the primarily purpose of this diagram is to support the specif-
ics of the Modelica packages. 

• Activity, Sequence, State Machine, Use Case, Parametric and Requirements dia-
grams have been reused without modification from SysML. 

• Two new diagrams, Simulation Diagram and Equation Diagram, not present in 
SysML, have been included in the ModelicaML profile. 

3.1   Package Diagram 

A UML Package is a general purpose model element for grouping other elements 
within a separate namespace. With a help of packages, designers are able group ele-
ments to correspond to different structures/views of a system. ModelicaML extends 
UML packages in order to support Modelica packaging features, in particular: pack-
age inheritance, generic packages, constant declaration within a package, package 
“instantiation” and renaming import (see [2] for Modelica packages details).  

A diagram which contains package elements and their relationships is called a 
Package Diagram. Modelica packages have a hierarchical structure containing pack-
age elements as nodes. In Modelica, packages are used to structure model elements 
into libraries. A snapshot of the Modelica Standard Library hierarchy is shown in Fig. 
5 using UML notation. Package nodes in the hierarchy are connected via the package 
containment link as in the example in Fig. 6. 

 
Fig. 5. Package hierarchy modeling. 

 
Fig. 6. Package hierarchy modeling 

3.2   Modelica Class Diagrams 

Modelica uses restricted classes such as class, model, block, connector, func-
tion and record to describe a system. Modelica classes have essentially the same 
semantics as SysML blocks specified in [4] and provide a general-purpose capability 
to model systems as hierarchies of modular components. ModelicaML extends 
SysML blocks by defining features which are relevant or unique to Modelica.  

The purpose of the Modelica Class Diagram is to show features of Modelica 
classes and relationships between classes. Additional kind of dependencies and asso-
ciations between model elements may also be shown in a Modelica Class Diagram. 
For example, behavior description constructs – equations, may be associated with 
particular Modelica Classes. The detailed description of structural features of Modeli-
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caML is provided below. ModelicaML structural extensions are defined based on the 
SysML block definition outlined in section 2. 

 
Fig. 7. ModelicaML class definitions. 

3.2.1 Modelica Class Definition 
The graphical notation of ModelicaML class definitions is shown in Fig. 7. Each class 
definition is adorned with a stereotype name that indicates the class type it represents. 
The ModelicaML Class Definition has several compartments to group its features: 
parameters, parts, variables. We designed the parameters compartment separately 
from variables because the parameters need to be assigned values in order to simulate 
a model (see the Simulation Diagram later on). Some compartments are visible by 
default; some are optional and may be shown on ModelicaML Class Diagram with the 
help of a tool. Property signatures follow the Modelica textual syntax and not the 
SysML original syntax, reused from UML. A ModelicaML/SysML tool may allow 
users to choose between UML or Modelica style textual signature presentation. Using 
Modelica syntax on a diagram has the advantage of being more compatible with 
Modelica and being more straightforward for Modelica users. The Modelica syntax is 
quite simple to learn even for users not acquainted with Modelica. 

ModelicaML provides extensions to SysML in order to support the full set of Mod-
elica constructs and features. For example, ModelicaML defines unique class defini-
tion types ModelicaClass, ModelicaModel, ModelicaBlock, ModelicaConnector, 
ModelicaFunction and ModelicaRecord that correspond to class, model, block, 
connector, function and record restricted Modelica classes. We included the 
Modelica specific restricted classes because a modeling tool needs to impose their 
semantic restrictions (for example a record cannot have equations, etc). 

3.2.2   Modelica Internal Class Diagram 
The Modelica Internal Class Diagram is based on the SysML Internal Block Diagram 
but the connections are based on ModelicaConnector. The Modelica Class Diagram 
defines Modelica classes and relationships between classes, like generalizations, asso-
ciation and dependencies, whereas a Modelica Internal Class Diagram shows the in-
ternal structure of a class in terms of parts and connections. The Modelica Internal 
Class Diagram is similar to Modelica connection diagram, which presents parts in a 
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graphical (icon) form. An example Modelica model presented as a Modelica Internal 
Class diagram is shown in Fig. 8. 

Usually Modelica models are presented graphically via Modelica connection dia-
grams (Fig. 8, bottom). Such diagrams are created by the modeler using a graphic 
connection editor by connecting together components from available libraries. Since 
both diagram types are used to compose models and serve the same purpose, we 
briefly compare the Modelica connection diagram to the Modelica Internal Class Dia-
gram. The main advantage of the Modelica connection diagram over the Internal 
Class Diagram is that it has better visual comprehension as components are shown via 
domain-specific icons known to application modelers. Another advantage is that 
Modelica library developers are able to predefine connector locations on an icon, 
which are related to the semantics of the component. In the case of a ModelicaML 
Internal Class Diagram a SysML/ModelicaML tool should somehow point out at 
which side of a rectangular presentation of a part to place a port (connector). 

 
Fig. 8. ModelicaML Internal Class vs. Modelica Connection Diagram. 

One of the advantages of the Internal Class Diagram is that it directly supports nested 
structures. However, nested structures are also available behind the icons in a Mode-
lica connection diagram, thus using the drawing area more effectively.  

The main advantage of the Internal Class Diagram is that it highlights top-level 
Modelica model parameters and variables specification in separate compartments.  

Other SysML elements, such as Activities and Requirements which do not exist in 
Modelica but are very important for additional model specification can be combined 
with both Internal Class Diagram and Modelica connection diagrams. 

3.4   Parametric Diagrams vs. Equation Diagrams 

SysML defines Constraint blocks which specify mathematical expressions, like equa-
tions, to constrain physical properties of a system. Constraint blocks are defined in the 
Block Definition diagram and can be packaged into domain-specific libraries for later 
reuse. There is a special diagram type called Parametric Diagram which relates block 
parameters with certain constraints blocks. The Parametric Diagram is included in 
ModelicaML without any modifications to keep the compatibility with SysML. 
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The Modelica class behavior is usually described by equations, which also constrain 
Modelica class parameters, and have a domain-specific usage. SysML constraint 
blocks are less powerful means of domain model description than Modelica equations. 
Modelica equations include some type of equations, which cannot be modeled using 
Constraint blocks, i.e.: if, for, when equations. Also, modeling complexity is an 
issue, as for example in Fig. 9 there are only four equations, and the diagram is al-
ready quite complex. However, grouping constraint blocks into libraries can be useful 
for system engineers who use Modelica and SysML. SysML Parametric diagram may 
be used during the initial design phase, when equations related to a class are being 
identified using Parametric Diagrams and finally associated (via an Equation Dia-
gram) with a Modelica class or set of classes.  

 
Fig. 9. Parametric Diagram Example 

   

partial class TwoPin 
  Pin p, n; 
  Voltage v; 
  Current i; 
equation 
  v = p.v – n.v; 
  0 = p.i + n.i; 
  i = p.i; 
end TwoPin; 
 
class Resistor  
  extends TwoPin; 
  parameter Real R(unit = "Ohm"); 
equation 
  R * I = v; 
end Resistor;  

Fig. 10. Equation modeling example with a Modelica Class Diagram. 

In Fig. 10, Fig. 11 we present examples of behavior specification via Equation Dia-
grams in ModelicaML. Equations do not prescribe a certain data flow direction which 
means that the order in which equations appear in a model do not influence their 
meaning and semantics. The only requirement for a system of equations is to be solv-
able. For further details about Modelica equations, see [2]. Besides simple equality 
equations, Modelica allows other kind of equations be presented within a model. For 
each of such kind of equations (i.e. when/if/initial equations) ModelicaML defines a 
graphical construct. It’s up to designer to decide whether to use simple equations 
block representation or specific construct for equation modeling. Algorithm sections 
are modeled similar to equations, as text. 
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With a help of Equation Diagram top-down modeling approach is applied to behavior 
modeling. First, the primarily equations may be captured, then conditional constructs 
applied, equations text description substituted with mathematical expressions or even 
equations refactored by moving to other classes. In the similar way as Modelica 
classes are grouped by physical domain libraries, common equations can be packaged 
into domain-specific libraries and be reused during a design process. Moreover, equa-
tion constructs shown on Equation Diagram can be linked to Activity elements or 
with Requirement elements to show that a specific requirement has been fulfilled. 

  

 
Fig. 11. ModelicaML nested/extern Equation diagrams 

3.5   Simulation Diagram 

ModelicaML introduces a new diagram type, called Simulation Diagram (Fig. 12), 
used for simulation modeling. Simulation is usually performed by a simulation tool 
which allows parameter setting, variable selection for output and plotting. The Simu-
lation Diagram may be used to store any simulation experiment, thus helping to keep 
the history of simulations and its results. When integrated with a modeling and simu-
lation environment, a simulation diagram may be automatically generated. 

The Simulation Diagram provides facilities for simulation planning, structured 
presentation of parameter passing and simulation results. Simulations can be run di-
rectly from the Simulation Diagram. Association of simulation results with require-
ments from a domain expert and additional documentation (e.g. by: Note, Problem 
Rationale text boxes of SysML) are also supported by the Simulation Diagram. The 
Simulation Diagram introduces new diagram elements: “Parameter” element and two 
stereotyped dependency associations, “simParameter” and “simResults”.  Parameter 
values are associated with a class via simParameter for a simulation. Simulation re-
sults are associated with a model via simResults which specify which variable is to be 
plotted and for what time interval.  
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For simulation purposes, the Simulation Diagram can be integrated with any Modelica 
modeling and simulation environment. We are currently in the process of designing a 
ModelicaML development environment which integrates with the OpenModelica 
modeling and simulation environment. 

 
Fig. 12. Simulation Diagram example. 

 

4   Conclusion and Future Work 

In this paper we propose the ModelicaML profile that integrates Modelica and UML. 
UML Statecharts and Modelica have been previously integrated, see e.g. [9][15]. 
SysML is rather new but it was already adopted for system on chip design [13] evalu-
ated for code generation [14] or extended with bond graphs support [12].  

The support for Modelica in ModelicaML allows precisely defining, specifying and 
simulating physical systems. Modelica provides the means for defining behavior for 
SysML block diagrams while the additional modeling capabilities of SysML provides 
additional modeling and specification power to Modelica (e.g. requirements and in-
heritance diagrams, etc).  

As a future project we plan to implement an Eclipse-based [6] graphical editor for 
ModelicaML as a part of our Modelica Development Tooling (MDT) [7]. 
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