
Clustering Geometric Data Streams

Jiřı́ Skála∗

Ivana Kolingerová†

University of West Bohemia

Abstract

Using recent knowledge in data stream clustering we present a mod-
ified approach to the facility location problem in the context of geo-
metric data streams. We give insight to the existing algorithm from
a less mathematical point of view, focusing on understanding and
practical use, namely by computer graphics experts. We propose
a modification of the original data stream k-median clustering to
solve facility location which is the case when we a priori do not
know the number of clusters in the input data. Like the original, the
modified version is capable of processing millions of points while
using rather small amount of memory. Based on our experiments
with clustering geometric data we present suggestions on how to set
processing parameters. We also describe how the algorithm handles
various distributions of input data within the stream. These findings
may be applied back to the original algorithm.

CR Categories: I.5.3 [Computing Methodologies]: Pattern
Recognition—Clustering; I.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Modeling

Keywords: data stream, clustering, facility location, geometric
data

1 Introduction

Data stream algorithms have been extensively studied in connec-
tion with databases and network statistics. However, there is not
much research dedicated to geometric data streams. Since geomet-
ric models are growing larger and larger like those from Stanford’s
3D Scanning Repository [Stanford 2007], data stream approach is
becoming essential to process such models. By clustering we can
significantly reduce the amount of data. Clusters can be then used
to create a multiresolution model. Data stream clustering is done
in a hierarchical way which gives a possibility to control the use of
memory. The algorithm runs with just several megabytes of mem-
ory while processing millions of points.

In our paper we propose a method for clustering geometric data in
a streaming fashion. Assuming we do not know how many clusters
there are, we think of the clustering as a facility location problem.
We present a modified k-median algorithm to solve the facility loca-
tion. Data stream processing is performed in blocks. Semi-results
from blocks are processed at higher levels. This leads to a hier-
archy which offers a possibility to build a multiresolution model.
Unlike many algorithms for large geometric data, our method can

∗e-mail: jskala@kiv.zcu.cz
†e-mail: kolinger@kiv.zcu.cz ; Work has been supported by the Ministry

of Education, Youth and Sports of the Czech Republic under the research
program LC-06008 (Centre for Computer Graphics).

process unordered points without any pre-processing. Based on our
experiments we give suggestions of algorithm parameter settings
and describe how the method works with various input data.

Section 2 briefly introduces problem background. Section 3
presents current state of the art in clustering and data stream al-
gorithms. Sections 4 and 5 describe the method in detail. Our mod-
ifications and improvements to the current algorithm are described
in Section 6. Section 7 presents the experimental evaluation. In
Section 8 we give a conclusion and suggest future work.

2 Background

2.1 Clustering

Clustering stands for a wide range of problems. It concerns group-
ing similar elements together to form clusters. Euclidean distance
is most often used as a measure of similarity. Perhaps the most
common is the k-centres or k-means clustering. In this case we di-
vide the elements (also referred to as points) into exactly k clusters
so that the sum of distances from each point to the corresponding
cluster centre is minimized. Another formulation of the problem is
the k-median or k-medoid clustering where we search for cluster
centres only among input points.

However, not always we know the number of clusters k. This prob-
lem is known as the facility location. A facility can be understood
as a cluster centre. Given a set of points we choose some of them
and open a facility there. All other points are connected to the clos-
est facility. The problem is then to determine at which points a
facility should be opened.

Since we want to minimize the distance between each point and its
facility, it would be best to open a facility everywhere. But that
is not what we want. That is why we introduce a facility cost -
a penalty for opening every facility. Since we assume no differ-
ences between facilities, we set the same cost for all of them. Then
we have the sum of distances between points and facilities on one
hand, and the sum of facility costs on the other hand. Facility cost
determines the balance between the cluster size and the number of
clusters. This leads to an overall clustering cost C which is the sum
of expenses for opening facilities plus the sum of distances from
points to their facilities.

C = k · fc +

N−1∑
i=0

‖ ci − fci ‖ (1)

where k is the number of open facilities, fc is the facility cost (the
same for all facilities), N is the number of points and ‖ ci − fci ‖
denotes the distance of point ci to its facility. Those points where
a facility is opened are supposed to be assigned to themselves thus
having zero distance from their facility.

2.2 Data Stream

Data stream is a sequenced set of data that can only be viewed in
order; there is no random access possible. Moreover, the set is
supposed to be too large to fit into main memory. The data may

17

come online in some time intervals or even the whole set may be
stored but in some slow external memory. So the data stream must
be processed in pieces and during one or very few linear scans.

3 State of the art

Clustering has been studied in many areas from many points of
view. An overview of clustering techniques may be found in [Jain
et al. 1999].

Several approaches exist for the facility location; a nice overview
can be found in [Shmoys 2000]. A fundamental approach is based
on linear programming relaxation [Chudak and Shmoys 2004;
Charikar and Guha 1999]. The facility location problem is formu-
lated as a linear programming (LP). The LP relaxation is solved in
polynomial time and gives an approximate solution to the original
problem. There is a related method also based on LP [Charikar
and Guha 1999; Chudak and Shmoys 2004]. It uses a primal-dual
scheme. A dual linear program is solved which gives a solution to
the primal problem.

Another approach uses a technique of local search [Charikar and
Guha 1999; Korupolu et al. 1998]. A coarse initial solution is iter-
atively improved by the local search. In each step a point is chosen
at random and it is determined whether it is profitable to open a fa-
cility there. If so, nearby points are reassigned to this new facility.
If there are facilities with a low number of points, these facilities
are closed and points reassigned elsewhere.

There are methods for clustering large databases. CLARANS [Ng
and Han 1994] views the problem of finding cluster centres as a
graph searching problem. Each set of centres is interpreted as a
graph node. By replacing one of the centres we get to a neighbour-
ing node. The task is to get to a node with the minimal clustering
cost. This is done by traversing the graph. To limit the computa-
tional complexity, CLARANS does a randomized search, i.e. it in-
spects just a random sample of neighbours for each node. BIRCH
[Zhang et al. 1996] uses another approach. For each cluster it
keeps a Clustering Feature - a vector of summary information about
the cluster. Clustering Features are organized in a CF tree. Leaf
nodes represent particular clusters. Higher nodes represent a clus-
ter formed by all the children subclusters. CURE [Guha et al. 1998]
uses a hierarchical clustering where small clusters are merged into
larger ones. CURE keeps a well scattered sample of points for each
cluster. It is a compromise between all-point and centroid-based
cluster representation. Samples are then used to identify nearby
clusters that should be merged together. Nevertheless, forenamed
methods do not perform true data stream processing. They require
the whole data set to be in the main memory.

[Muthukrishnan 2003] gives a nice overview of data stream algo-
rithms. Data stream clustering is extensively studied by Guha et
al. [Guha et al. 2000; O’Callaghan et al. 2002; Guha et al. 2003].
Using a hierarchical approach based on local search they solve
the k-median problem. Data stream processing is performed in
blocks. Semi-results from each block are maintained as a higher
level stream which is continuously reprocessed in the same way,
forming higher levels. [Meyerson 2001] deals with online facility
location. For each newly arrived point the algorithm measures the
distance to the nearest existing facility. It is then decided whether to
connect the point to that facility or whether to open a new facility at
the point. Charikar et al. propose algorithms that can handle outlier
points in input data [Charikar et al. 2001]. The main idea is that
some small fraction of points (outliers) may be left unassigned to
any cluster. A penalty is assigned to every outlier point and the sum
of penalties is added to the overall clustering cost (for the facility
location it is Equation 1).

Stream processing of geometric data is extensively studied by Isen-
burg et al. Their research ranges from streaming formats for poly-
gon meshes [Isenburg and Lindstrom 2005], streaming compres-
sion of geometric models [Isenburg et al. 2006a], to streaming com-
putation of Delaunay triangulation [Isenburg et al. 2006b]. Other
related works include polygonal models simplification [Lindstrom
2000] or approximate Voronoi diagrams [Sharifzadeh and Shahabi
2004]. Stream processing of points is addressed in [Pajarola 2005].
This work introduces so called stream operators which are applied
while sweeping sorted data. Perhaps the first use of clustering
for multiresolution models can be found in [Rossignac and Bor-
rel 1993]. It uses a simple clustering to create approximations
of 3D polyhedra for rendering complex scenes. More recent re-
search in clustering geometric data streams is described in [Frahling
and Sohler 2005] which is concerned with dynamic geometric data
streams. In such a case we have a set of points and the stream con-
sists of insert/delete operations among these points.

4 The clustering algorithm

As stated in Section 1 we will be concerned with the facility lo-
cation problem. Our solution employs the Local Search algorithm
proposed by Charikar and Guha [Charikar and Guha 1999]. First
an approximate initial solution is generated. It is then iteratively
refined by a series of local search improvements.

First suppose we already have some initial solution. Local search
improvements can start. We take a point at random and we ask a
question: What if we open a facility here? Would it be beneficial?
First we will have to pay for opening the facility (if it is not already
open). We then inspect all other points and compare the distance to
their current facility with the distance to the new facility candidate.
If the candidate lies closer, the point is reassigned to it, sparing
some connection expenses. To limit computational complexity, any
point can be reassigned only to the facility candidate. The time
complexity of this first phase of one local search step is O(N),
where N is the number of all points (we compute the distance of
the facility candidate to all other points).

After that some facilities may contain just a few points. If we re-
assigned all of these remaining points (even if the new facility is
farther), we would be able to close their old facility and spare the
facility cost for it. But we must be careful whether the facility cost
spared will overweight the expenses for reassigning points to a far-
ther facility. This second phase has O(N) time complexity too. It
could be computed simultaneously with the first phase.

So for some point p taken at random we determine whether it would
be profitable to open a facility there. This is expressed by the gain
function. Let us first define a distance spare dsi as the distance
we spare by reassigning point ci to p. It is the difference between
distances to the current facility and to the facility candidate p. If
the difference is negative (current facility lies closer then p) we set
dsi = 0. Next we define a close spare csj as a cost we can spare
by closing facility fj . It is the facility cost minus expenses for
reassigning all points from fi to p. Again if csj is negative (we
cannot spare anything) we set csj = 0. The gain function is then
computed according to Formula 2

gain(p) = −fc +

N−1∑
i=0

dsi +

M−1∑
j=0

csj (2)

where fc is the facility cost (zero if there is a facility already open
at p), N is the number of all points and M is the current number of
facilities. As stated before, computing function gain takes O(N)
time.

18

Now to the initial solution. A very coarse one is sufficient, since
local search will improve it quickly. All facilities have the same
cost, so we use a simple algorithm proposed in [Meyerson 2001].
Points are taken in random order. At the first one a facility is always
created. At every other point a facility is opened with probability
d/fc, where d is the distance of the current point to the closest fa-
cility and fc is the facility cost. If d/fc > 1 we set the probability
to 1.

The described local search technique is repeated N log N times.
The number of iterations is derived in [Charikar and Guha 1999].
The initial solution can be generated in O(N2) time. Function gain
has O(N) time complexity and is evaluated N log N times. So
the complete clustering algorithm has an overall time complexity
of O(N2 log N).

5 Clustering a data stream

For clustering a data stream we use a hierarchical approach pro-
posed in [Guha et al. 2000]. The algorithm inputs a block of points
from the data stream and performs a clustering on it. Resulting
facilities are given a weight according to the number of points as-
signed to them. Thus clusters containing more points have more
importance. Weighted cluster centres are then passed to a higher
level. Remaining points are discarded and the algorithm proceeds
with another block from the data stream.

Facilities at higher levels are treated as weighted points and are
also processed in blocks. When enough points gather to fill up an
entire block, they are clustered again. This time the distance of
a point to its facility is multiplied by the point weight. Resulting
cluster centres are given a weight equal to the sum of weights of
points assigned to them. Weighted facilities are again passed to a
higher level. Figure 1 illustrates the hierarchical processing. Black
dots indicate cluster centres in particular blocks. Blocks in the data
stream are delimited by bold lines.

input data stream

the first level

the second level

Figure 1: Hierarchical clustering.

The number of levels l required to process the entire data stream
can be computed as

l =
log(N/m)

log(m/k)
(3)

where N is the number of all points, m is the block size and k
is the average number of clusters in one block. The equation was
presented in [Guha et al. 2000] without any further explanation. Let
us show how it can be derived. At the zero level the data stream is
divided into N/m blocks. These blocks will be clustered, resulting
in N/m ·k facilities divided into N/m ·k/m first-level blocks. The
situation repeats at higher levels until resulting l-level facilities fit
into a single block. We can write this as

N/m · k/m · k/m · . . . · k/m = 1 (4)

where k/m repeats l-times. After rearrangement

N/m = m/k ·m/k · . . . ·m/k = (m/k)l (5)

Taking a logarithm of Equation 5 we get

l = logm/k(N/m) =
log(N/m)

log(m/k)
(6)

6 Our modifications and improvements

6.1 Making Local Search More Local

We may speed up the evaluation of function gain by limiting the
number of points that need to be inspected. Given a facility cost
fc, any point can be connected to a facility at most fc far away.
Otherwise it is cheaper to open a new facility at that point. Let us
define the influence area of facility f to be the circle with centre f
and radius fc. All points connected to f must then lie within its
influence area.

When computing the gain function we can inspect just those points
whose distance from the facility candidate is at most fc. How do
we find them? Any cluster can contain just points lying within ra-
dius fc from the cluster centre. So when we take all facilities in a
2 · fc radius around the facility candidate, and examine all points
connected to those facilities, we can be sure that we inspected all
necessary points.

The situation is illustrated in Figure 2. Facilities are shown as dots
with an influence area drawn as dotted circle. The facility candi-
date is designated black. We need to inspect all points that may lie
within its influence area IA. Such points can only belong to facili-
ties whose influence area overlaps with IA. Such facilities (shown
as diamonds) lie within the dashed circle with radius 2 · fc.

IA

Figure 2: Finding points that may lie within the facility candidate’s
influence area.

For weighted points the situation is a bit more complicated because
distances are multiplied by point weights. So a point with a small
weight can be connected to a distant facility, while a point with
a high weight should be connected to a nearby facility. But the
above idea can still be used. For each facility we find the point with
minimal weight wmin. The influence area radius is then fc/wmin.
So we need to inspect all points assigned to facilities lying at most
2·fc/wmin away from the facility candidate. Note that wmin could
be different for each facility.

6.2 From k-median to Facility Location

Cited papers deal with the k-median problem. They compute facil-
ity location repeatedly and using binary search they find such facil-
ity cost that yields exactly k clusters. Our modification computes
the clustering just once. Solving the facility location itself seems
to be just part of the original method, but it is not so simple. Since
we have no k we must choose a suitable facility cost to get natural

19

clusters. We suggest setting the facility cost for each block of data
equal to the diagonal of bounding box. This is discussed in detail
in Section 7.1.

Another problem brings clustering at higher levels. Points have
weights so all distances are multiplied by some (possibly large)
numbers. If we perform the clustering as usual, a facility would
be opened at almost every point because weights make them sev-
eral times farther from each other. We could increase the facility
cost but point weights will grow higher with increasing level and
we may encounter numerical problems. Instead of scaling the facil-
ity cost we decided to introduce weight normalization.

Points at level zero have unit weight. We would like to keep weights
around one also at higher levels. Therefore we divide all weights by
their average. The average of new weights will be one, exactly as
we wanted. It is important to do the normalization of all the points
in a block at the same time. That means not earlier then the block is
full. Normalizing weights right after clustering a lower level block
(before passing points to higher level) is wrong. Each block may
have a different number of clusters so the average weight may also
vary. Thus points from different blocks would not be normalized
equally.

7 Experiments and results

It this section we present experiments made with clustering geomet-
ric data. We discuss how the result depends on parameter settings
and on the distribution of points in the stream. We give recommen-
dations on how to set parameters to get a good clustering.

The algorithm was implemented in C# 2.0. Experiments were done
on Intel Pentium 4 3.2 GHz with 2 GB RAM and SATA HDD, run-
ning Windows XP Professional. All measured times include I/O
operations. Memory requirements were measured using the Perfor-
mance Monitor in Windows XP.

7.1 Setting the Facility Cost

The facility cost determines how strongly the data will be clustered.
High setting means an aggressive clustering resulting in a lower
number of large clusters. Low setting will cluster just moderately
producing many smaller clusters.

Some experiments are usually needed to find a facility cost that best
fits your needs. It is a counterbalance to point distances. We need
a small facility cost for clustering points in a unit square, and a
high one for points in [0; 106] interval. To avoid time consuming
normalization, the facility cost must be derived from the range of
point coordinates. Coordinate magnitude does not matter because
we only care about point distances. We suggest setting the facil-
ity cost for each block equal to the diagonal of bounding box. It
mostly produces good results. You can double the facility cost for
a stronger clustering or divide it by two (or even by four) to get a
moderate clustering.

Of course each block may have a different bounding box. So the
clustering will be performed in each block with a different facility
cost. But this is not a problem since we use weights. For a low
facility cost we get many facilities with a low weight. High facility
cost produces few facilities with big weight. Figure 3 shows an
example of clustering with a facility cost set to double and half
the diagonal respectively. Numbers show facility weights (before
normalization).

Remember that a strong clustering reduces the amount of data
faster. The algorithm may then run with fewer clustering levels,

Figure 3: Clustering with a double facility cost (left) and a half
facility cost (right). Figures cropped.

having lower memory requirements and shorter execution time. In-
deed, the opposite holds for a moderate clustering.

7.2 Input Point Distribution

Most authors concerned with large geometric data often rely on that
input data will be more or less ordered. Our algorithm can handle
unordered data as well.

If points arrive in order the algorithm processes them successively
cluster by cluster. Transitions between clusters are generally han-
dled correctly. The situation is illustrated in Figure 4. The dataset
contains 2200 points in four groups (550 points each). It was pro-
cessed with facility cost set equal to the bounding box diagonal,
block size 750. Frames a)–c) show three blocks at level zero. Re-
sulting facilities are passed to a block at the first level shown in
Frame d).

a) b)

c) d)

Figure 4: Clustering ordered data.

If points are scattered in the stream, and they come in a rather ran-
dom order, it does not mean any trouble. The algorithm will process
several points from different clusters at once. These points form
something like cluster fragments which will be merged at higher
levels. You can see an example in Figure 5. This is the same data

20

as in Figure 4, they were just shuffled. Processing parameters were
also the same. Frames a)–c) show three blocks at level zero. Result-
ing facilities are passed to a block at the first level which is shown
in Frame d).

a) b)

c) d)

Figure 5: Clustering unordered data.

7.3 The Block Size

The clustering also depends on the size of block in which input
data are processed. Block size basically affects execution time, the
amount of memory used and also the clustering result.

Let N be the number of all points, m be the block size and k be the
average number of clusters in each block. The number of all blocks
at all levels will be

N/m + N/m · k/m + N/m · k/m · k/m + . . . =

= N/m · [1 + k/m + (k/m)2 + . . .] =

= N/m · 1/(1− k/m) = N/m ·m/(m− k) =

= N/(m− k) (7)

As proved in [Charikar and Guha 1999], m log m local search itera-
tions are necessary for each block. So the total number of iterations
over all blocks will be

N/(m− k) ·m log m (8)

Because k is proportional to m, we can write

N/(m− c1 ·m) ·m log m = c2 ·N · log m (9)

where c1, c2 are some constants. So by decreasing block size m,
the number of iterations necessary to process the whole data set also
decreases.

Lowering the block size also decreases memory requirements. Let
l be the number of all levels. The amount of memory required is
proportional to

m · l = m · log(N/m)

log(m/k)
(10)

Since m/k can be considered constant, we can write

m · l ≈ m · log(N/m) (11)

whereas N � m. Figure 6 shows a graph plot of Equation 11
for N = 106 (the black line). In practice we must use an integer
number of levels (rounded up). This is shown as the grey line. You
can see spikes where the number of levels changes.

0

5 000

10 000

15 000

20 000

25 000

30 000

memory

block
size

14 00012 00010 0008 0006 0002 000 4 0000

m log(N/m)
m log(N/m)

Figure 6: Graph plot of memory requirements.

It would seem that it is best to process data in very small blocks,
but there is a drawback. When processing points in distinct blocks
the result is an approximation of an ideal clustering. Of course the
smaller the block, the worse the approximation. See [Guha et al.
2003] for details. According to our experiments, when varying
block size, the clustering also varies somewhat but it still looks
well. The major difference is that clustering in small blocks pro-
duces higher number of smaller clusters. Table 1 summarizes our
experiments with the Lucy model [Stanford 2007], 10 072 906 ver-
tices. The facility cost was set equal to the bounding box diagonal.

Table 1: The influence of block size on the clustering.
block
size

time
[h:m]

memory
[MB]

number of clusters
at particular levels

[points] level 1 level 2
1250 1:01 4.44 29 047 404
2500 1:58 3.97 28 400 366
5000 3:51 4.09 28 298 337
7500 5:43 5.27 28 270 336
10000 7:36 5.78 28 062 303

7.4 The Number of Iterations

[Charikar and Guha 1999] proved that O(m log m) local search it-
erations are necessary for a constant factor approximation to the
facility location. If we use large blocks, running time grows un-
pleasantly. We have made experiments with the number of itera-
tions and it seems that it can be reduced significantly without ma-
jor impact on results. Only about 0.1m iterations were necessary
for uniformly distributed data. Data with obvious clusters required
even less iterations.

You can see examples of clustering in Figure 7. The data set con-
tains 1640 points. They were processed in a single block with fa-
cility cost equal to the bounding box diagonal. Black dots indicate
points assigned to a different facility than to the closest one. It can
be used as an approximate measure of error. But remember that it
takes into account only the current set of facilities. No black dots
mean optimal assignment to currently open facilities. With a differ-
ent set of facilities, the clustering may be better.

21

Figure 7 a) shows the result after mdlog me = 6560 iterations,
clustering cost is 187. Figure 7 b) shows the result after 0.1m =
164 iterations; clustering cost is 194.6 which is 4% more then a).
Table 2 summarizes experiments with the Lucy model. The facility
cost was set equal to the bounding box diagonal. You can compare
time required for m log m and 0.1m iterations. If we use the re-
duced number of iterations, the clustering cost is slightly higher in
each block. The table records statistics about this error so you can
review the impact on clustering quality.

a) b)

Figure 7: Clustering results a) after 6560 iterations, b) after 164 it-
erations.

8 Conclusion and future work

We have presented a modified data stream approach to solve the
facility location problem on geometric data. We suggested an im-
provement to the facility location algorithm to limit the number of
points inspected when computing the gain function. We proposed
the facility weight normalization so that clustering works correctly
at higher levels. We also performed experiments on clustering ge-
ometric data, described algorithm behaviour in various situations
and discussed proper settings of particular parameters.

As a future work we would like to use this clustering method to
create multiresolution geometric models where the user can select
different levels of detail in various parts. It might be also interesting
to add topological constraints so that points from different parts of
model will not be joined into one cluster. Another interesting task
is to cluster a triangular mesh so that clusters are consistent with
the mesh topology. We could also take into account distribution of
points in the data stream. Points arriving short one after another will
be assigned to the same cluster, while points from different parts of
the stream (even geometrically close together) will go into different
clusters.

References

CHARIKAR, M., AND GUHA, S. 1999. Improved combinato-
rial algorithms for the facility location and k-median problems.
In IEEE Symposium on Foundations of Computer Science, 378–
388.

CHARIKAR, M., KHULLER, S., MOUNT, D. M., AND
NARASIMHAN, G. 2001. Algorithms for facility location prob-
lems with outliers. In Symposium on Discrete Algorithms, 642–
651.

CHARIKAR, M., GUHA, S., ÉVA TARDOS, AND SHMOYS, D. B.
2002. A constant-factor approximation algorithm for the k-
median problem. Journal of Computer System Sciences 65, 1,
129–149.

CHARIKAR, M., O’CALLAGHAN, L., AND PANIGRAHY, R. 2003.
Better streaming algorithms for clustering problems. In Proc. of
35th ACM Symposium on Theory of Computing (STOC), 30–39.

CHUDAK, F. A., AND SHMOYS, D. B. 2004. Improved approx-
imation algorithms for the uncapacitated facility location prob-
lem. SIAM Journal on Comp. 33, 1, 1–25.

FRAHLING, G., AND SOHLER, C. 2005. Coresets in dynamic
geometric data streams. In Proceedings of the 37th annual ACM
symposium on Theory of computing (STOC), 209–217.

GUHA, S., AND KHULLER, S. 1998. Greedy strikes back: Im-
proved facility location algorithms. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 649–657.

GUHA, S., RASTOGI, R., AND SHIM, K. 1998. CURE: An ef-
ficient clustering algorithm for large databases. In Proceedings
of ACM SIGMOD International Conference on Management of
Data, 73–84.

GUHA, S., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN,
L. 2000. Clustering data streams. In IEEE Symposium on Foun-
dations of Computer Science, 359–366.

GUHA, S., MEYERSON, A., MISHRA, N., MOTWANI, R., AND
O’CALLAGHAN, L. 2003. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data Engineer-
ing 15, 3, 515–528.

ISENBURG, M., AND GUMHOLD, S. 2003. Out-of-core compres-
sion for gigantic polygon meshes. In SIGGRAPH’03 Conference
Proceedings, 935–942.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
In Proceedings of Visualization’05, 231–238.

ISENBURG, M., LINDSTROM, P., AND SNOEYINK, J. 2005.
Streaming compression of triangle meshes. In Proceedings of the
3rd Eurographics symposium on Geometry processing (SGP),
111.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND
SHEWCHUK, J. 2006. Streaming compression of tetrahedral
volume meshes. In Graphics Interface, 115–121.

ISENBURG, M., LIU, Y., SHEWCHUK, J., AND SNOEYINK, J.
2006. Streaming computation of delaunay triangulations. ACM
Trans. Graph. 25, 3, 1049–1056.

JAIN, K., AND VAZIRANI, V. V. 1999. Primal-dual approximation
algorithms for metric facility location and k-median problems.
In IEEE Symposium on Foundations of Computer Science, 2–13.

JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. 1999. Data
clustering: A review. ACM Computing Surveys 31, 3, 264–323.

KAUFMAN, L., AND ROUSSEEUW, P. J. 1990. Finding groups
in data: An introduction to cluster analysis. John Wiley, New
York.

KORUPOLU, M. R., PLAXTON, C. G., AND RAJARAMAN, R.
1998. Analysis of a local search heuristic for facility location
problems. In 9th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1–10.

LINDSTROM, P. 2000. Out-of-core simplification of large polyg-
onal models. In Siggraph 20000, Computer Graphics Proceed-
ings, 259–262.

MAHDIAN, M., MARKAKIS, E., SABERI, A., AND VAZIRANI,
V. V. 2001. A greedy facility location algorithm analyzed using

22

Table 2: Experiments on the number of iterations.
block size
[points]

time for m log m
[h:m:s]

time for 0.1m
[h:m:s]

percent of time
used for 0.1m

min.
error

avg.
error

max.
error

1250 1:01:24 0:02:41 4.4% 0 1.5% 14.8%
2500 1:58:00 0:04:29 3.8% 0.2% 1.6% 5.0%
5000 3:51:01 0:07:45 3.4% 0.5% 1.7% 4.9%
7500 5:43:21 0:11:09 3.3% 0.5% 1.7% 3.5%
10000 7:36:36 0:14:32 3.2% 0.8% 1.6% 3.2%

dual fitting. In 4th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX),
127–137.

MEYERSON, A. 2001. Online facility location. In Proceedings of
the 42nd IEEE symposium on Foundations of Computer Science
(FOCS), 426.

MUTHUKRISHNAN, S. 2003. Data streams: Algorithms and appli-
cations. In Proceedings of the 14th annual ACM-SIAM sympo-
sium on discrete algorithms.

NG, R. T., AND HAN, J. 1994. Efficient and effective clustering
methods for spatial data mining. In 20th Intl. Conference on Very
Large Data Bases, 144–155.

O’CALLAGHAN, L., MISHRA, N., MEYERSON, A., GUHA, S.,
AND MOTWANI, R. 2002. Streaming-data algorithms for high-
quality clustering. In 18th International Conference on Data
Engineering (ICDE), 685.

PAJAROLA, R. 2005. Stream-processing points. In Proceedings
IEEE Visualization, 239–246.

ROSSIGNAC, J. R., AND BORREL, P. 1993. Multi-resolution
3D approximations for rendering complex scenes. In Geomet-
ric Modeling in Comp. Graphics, 455–465.

SHARIFZADEH, M., AND SHAHABI, C. 2004. Approximate
voronoi cell computation on geometric data streams. Tech. Rep.
04-835, University of Southern California, Computer Science
Department.

SHMOYS, D. B. 2000. Approximation algorithms for facility lo-
cation problems. In Proceedings of International Workshop on
Approximation Algorithms for Combinatorial Optimization (AP-
PROX), 27–33.

STANFORD, 2007. Stanford 3D scanning repository.
http://graphics.stanford.edu/data/3Dscanrep/.

ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996.
BIRCH: An efficient data clustering method for very large
databases. In ACM SIGMOD International Conference on Man-
agement of Data, 103–114.

23

	ecp07028_B.pdf
	ecp072801
	ecp072802
	ecp072803
	ecp072804
	ecp072805
	ecp072806
	ecp072807pdf
	ecp072808
	ecp072809
	ecp072810
	ecp072811

