

SIGRAD 2007

The Annual SIGRAD Conference

Special Theme: Computer Graphics in Healthcare

November 29–30, 2007

Uppsala, Sweden

Conference Proceedings

Organized by

SIGRAD, svenska lokalavdelningen av Eurographics

and

Uppsala University

Edited by

Anders Hast

Published for

SIGRAD, svenska lokalavdelningen av Eurographics

by Linköping University Electronic Press

Linköping, Sweden, 2007

The publishers will keep this document online on the Internet - or its possible replacement
from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to
read, to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional on the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its www
home page: http://www.ep.liu.se/.

Linköping Electronic Conference Proceedings, No. 28
Linköping University Electronic Press
Linköping, Sweden, 2007

ISBN 978-91-7393-990-4
ISSN 1650-3686 (print)
http://www.ep.liu.se/ecp/028/
ISSN 1650-3740 (online)
Print: LiU-Tryck, Linköpings universitet, 2007

Cover illustrations taken from various papers in these proceedings.
Painting of a university building by Jakob Nisell.

© 2007, The Authors

 ii

javascript:parent.M(13)

Table of Contents

Preface..iv
SIGRAD 2007 .. v

Keynotes

Visual Computing for Medicine... 1
Dirk Bartz

How to (and not to) Fool Your Brain to Perceive 3D .. 2
Stefan Seipel

Research Papers

Using a GPU-based Framework for Interactive Tone Mapping of Medical Volume Data 3
Matthias Raspe and Stefan Müller

Real-time Generation of Plausible Surface Waves...11
Kristian Yrjölä and Thomas Larsson

Clustering Geometric Data Streams ...17
Jiri Skala and Ivana Kolingerova

Improving Introductory Programming Courses by Using a Simple Accelerated
Graphics Library...24
Thomas Larsson and Daniel Flemström

Work in Progress Papers

Visualisation of Human Characteristics in Vehicle and Health Care Product Development31
Mikael Blomé, Maria Jönsson, Lars Hanson, Daniel Lundström, Dan Högberg and Dan Lämkull

Some Remarks about Geometry in Medicine...35
Krzysztof T. Tytkowski

Fragments from the Swedish History of Computer Graphics with SIGRAD39
Lars Kjelldahl

Graphical Literacy Development Using Learning Management System...42
Zoja Veide and Veronika Strozheva

Realistic Virtual Characters in Treatments for Social Disorders an Extensive
Agent Architecture ...46
Anna Johansson and Pierangelo Dell´Acqua

 iii

Preface
These proceedings contain the papers from the SIGRAD 2007 conference which was held on the 29th
and 30th of November in Uppsala, Sweden. The topic of this year’s conference is Computer Graphics
in Healthcare. As in previous years, we also welcome paper submissions in various other graphics
areas.

The SIGRAD conference has an explicit ambition to broaden its geographic scope beyond the national
borders of Sweden. We are therefore very happy to have several international contributions this year.
The keynote speakers this year are Dirk Bartz from the University of Leipzig and Stefan Seipel from
Uppsala University and we would like to thank them both for their interesting talks. The topic of the
Dirk’s keynote is “Visual Computing for Medicine” and the topic for Stefan’s keynote is “How to (and
not to) fool your brain to perceive 3D”.

We would also like to thank the program committee that provided timely reviews, and helped in
selecting the papers for these proceedings.

Many thanks to our generous sponsors: The Virtual IT faculty at Uppsala University and UPPMAX.
We wish all participants a stimulating conference, and hope they take the chance and to create new
connections in the European graphics community.

Anders Hast
Program Chair SIGRAD 2007

 iv

 v

SIGRAD 2007

The SIGRAD 2007 IPC committee consisted of experts in the field of computer graphics and
visualization from several European countries. We thank them for their comments and reviews.

Program Chair
Anders Hast, University of Gävle

Conference Organizing Committee Members
Anders Hast, University of Gävle
Kai-Mikael Jää-Aro, Telestream AB
Stefan Seipel , University of Gävle

International Program Chairs
Ewert Bengtsson, Uppsala Univeristy
Matt Cooper, Limköping University
Modris Dobelis, Riga Technical University
Anders Hast, University of Gävle
Kai-Mikael Jää-Aro, Telestream AB
Ivana Kolingerova, University of West Bohemia in Pilsen
Lars Kjelldahl, Royal Institute of Technology
Thomas Larsson, Mälardalen University
Ingela Nyström, Uppsala University
Lennart Ohlsson, Lund University
Stefan Seipel , University of Gävle
Krzysztof Tytkowski, Silesian University of Technology
Anders Ynnerman, Linköping University

 The SIGRAD Board for 2007
Kai-Mikael Jää-Aro, Chair

Thomas Larsson, Vice Chair
Lars Kjelldahl, Treasurer

Anders Hast, Secretary
Stefan Seipel, Member

Örjan Wretblad, Member
Anders Ynnerman, Member
Anders Backman, Substitute

Alex Olwal, Substitute

Visual Computing for Medicine

Dirk Bartz

University of Leipzig, Germany

Abstract

Medical visualization has been a long way down the road from the first - by today's standard -
crude images to the current sophisticated rendering results. However, for a successful application
of visualization, we need to look at the whole visual computing pipeline, which includes image
processing, visualization, interaction, and in addition into perceptual issues of visual computing.
In my talk, I will discuss certain aspects of this pipeline. Starting from early image filtering after
image acquisition (which by itself is also part of the medical imaging/image processing stage),
segmentation is need to identify specific organs, in particular if they cannot be identified by stan-
dard classification approaches. After the preparation of the potentially multi-value and multi-field
(modal) structured datasets, they are visualized using the whole variety of direct and indirect vol-
ume rendering approaches. Here, I will demonstrate that both approaches have advantages and
disadvantages, and hence their place in medical visualization. Finally, we need to interact with
the resulting renderings either pre-(post-)operatively for planning purposes, or in an intra-opera-
tive environment during an intervention. At all these stages, the intermediate and final results are
interpreted mostly through the visual system of humans. Hence, we also need to consider how
perception is not only influencing the interpretation, but also how we can improve it.

1

How to (and not to) fool your brain to perceive 3D

Stefan Seipel

Uppsala University, Sweden

Abstract

The use of “advanced” 3D visualizations has become standard in many scientific, commercial
and entertainment applications. Much of the term “advanced” is related to the techniques that
have emerged during the years to exploit human’s capability of perceiving depth from binocular
vision. While technical solutions are readily available to recreate high-quality stereo-graphic
images on planar displays, there are perceptual and physiological limits to our sensation of true
spatial images. In addition, there are other efficient mechanisms that help the observer to extract
the 3D layout of a perceived scene. In this tutorial I will give an introduction into stereo-graphic
display techniques and I will discuss perceptual limits, common pitfalls and trade-offs in
generating stereographic images. In the presentation I will give hints and tips on how to generate
and display 3D images.

2

Using a GPU-based Framework for
Interactive Tone Mapping of Medical Volume Data

Matthias Raspe∗ Stefan Müller†

Computer Graphics Working Group
Institute for Computational Visualistics

University of Koblenz-Landau

Figure 1: Direct volume rendering of high dynamic range volume data. The images on the left show a CT data set, on the right a PET scan
of a human body, with insets depicting a slice of the according volumes for reference. While the linear mapping (a, c) reveals only the highest
values of the data sets, tone mapping algorithms (b,d) can display the whole dynamic range in real-time.

Abstract

Medical workstations nowadays visualize large amounts of data
from image acquisition systems that have dynamic ranges usually
much higher than standard devices can display. In order to examine
the data or control other processing steps, the user specifies win-
dowing parameters to map the input values to the displayable output
range. While this operation can be performed efficiently even on
large datasets by using simple lookup tables, no acceptable perfor-
mance is achieved when advanced algorithms from high dynamic
range imaging are needed. Especially data from functional imaging
modalities has a much higher dynamic range and requires consid-
erable interaction for proper visualization using the traditional win-
dowing approach. Therefore, we propose to integrate tone mapping
algorithms into the visualization pipeline of volume data by exploit-
ing modern graphics hardware. To allow for a flexible implementa-
tion and integration with other processing steps, we will present our
programming framework and compare the performance to CPU im-
plementations. In addition, we will discuss different tone mapping
approaches in consideration of miscellaneous medical modalities
and the role of transfer functions in the context of high dynamic
range rendering.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing algorithms; I.4.3 [Image Processing and
Computer Vision]: Enhancement—Grayscale manipulation; I.4.10
[Image Processing and Computer Vision]: Image Representation—
Volumetric

Keywords: graphics hardware, volume data processing, medical
visualization, tone mapping

∗e-mail:mraspe@uni-koblenz.de
†e-mail:stefanm@uni-koblenz.de

1 Introduction

During the last years, programmable graphics hardware (GPU) has
become more important in different fields of applications [Owens
et al. 2007]. This is mainly due to the high computing power clearly
exceeding that of modern processors (CPUs) and thus offering a
much better price-to-performance ratio (see figure 2). Driven by
the growing entertainment market, the performance of the GPU’s
inherently parallel and integrated architecture can be increased at a
fast pace, making them especially attractive for data intensive tasks
such as image processing, visualization, simulation, etc. Utilizing
the graphics hardware not only for visualization is of particular in-
terest, because the data being processed can be displayed without
additional conversion or transfer, contrary to visualizing results of
CPU algorithms.

However, there are some drawbacks with this development. First,
using the graphics hardware for general purposes still involves
graphics programming and thus thorough knowledge in computer
graphics. In addition, complex algorithms are not easily ported
to the GPU due to limitations in memory access, programming
constructs, etc. This fact is even aggravated by the limited graph-
ics memory which is usually much smaller than the host system’s
memory. As a result, much communication between the GPU and
the host is needed, being a typical bottleneck especially for mem-
ory intensive tasks. In order to investigate the benefit of commod-
ity hardware for ”real world” applications, we have built the cross-
platform programming environment ”Cascada”. The main inten-
tion of this system is realizing volume processing and visualization
algorithms on GPUs, focused on (but not limited to) medical vol-

3

Figure 2: Development of raw performance for commodity graph-
ics hardware compared to CPUs. ([Owens et al. 2007])

ume data. As GPUs are optimized for two-dimensional textures
consisting of four channels, however, we use a compact volume
representation in order to exploit the graphics hardware’s capabili-
ties. This also allows for loading and working with volumes larger
than the maximum texture size and is in addition compatible with
older graphics systems. These textures are updated using an on-
demand scheme, i.e., data is converted and transferred to the cur-
rently needed representation only once. Thus, interchanging GPU
and CPU algorithms as part of a whole sequence processing the
same data is simple, yet achieving the best performance for data
transfer between the two devices. These sequences resemble one
layer of our hierarchical representation of workflows.

As the data acquired and processed usually has a higher value range
than standard output devices, different approaches can be applied
to map the range of values to the display. For medical data, con-
trolling a window of varying width and center that defines a linear
mapping within this window is the de-facto standard in examin-
ing image data. While this is straightforward to use and allows for
fast implementations, its results are limited and often require lots
of manual interaction. Depending on the focus of the diagnosis this
can become a tedious manual process.
In the field of computer graphics and computer vision, high dy-
namic range images are a common approach to represent simulated
or captured illumination without introducing errors due to band-
limiting the signal. These images are stored in data types of a larger
numerical range and/or precision, typically 16 or 32 bit integers or
floating point. However, displaying such HDR data by mapping the
input data linearly to the output device’s range is not sufficient, as
only the bright areas would be visible (see figure 3). To overcome
this issue, a lot of research has been done in both the computer
graphics and computer vision community. With such a foundation
it is quite obvious to apply those techniques to medical data in order
to improve the visualization. As each modality in medical image
acquisition requires a different interpretation – depending on the
protocol even single acquisitions – this topic has to be discussed
more thoroughly to avoid misinterpreting the results.

The remainder of the paper is structured as follows: In the next
section we will discuss existing approaches, focusing on both GPU
implementations and tone mapping algorithms. In section 3 we will
present our system by outlining the environment with details about
our abstract representation of procedures, data handling, the mod-
ular concept for shader implementation, etc. Also, we will discuss
different tone mapping algorithms and already look at their possi-
ble application to different modalities. The results of applying the
techniques to medical volume data will be described in section 4
with a discussion of both performance and visual results. We will
conclude and propose directions of further investigation in the last
section.

2 Related work

In this section we will discuss existing approaches and techniques
to outline the context of this paper. Therefore, graphics hardware
developments are summarized, followed by a more closer look on
tone mapping methods.

2.1 General Purpose GPU

Using commodity graphics hardware for non-graphic application
has become an important research topic for several years. This
is mainly due to the rapid advances in hardware and program-
ming capabilities, allowing much more flexible programs (so-called
”shaders”) with unprecedented computing performance. In their
survey, Owens et al. give an exhaustive overview of today’s tech-
nology and its use in all kinds of applications [Owens et al. 2007].
Quite recently, graphics hardware companies have developed ded-
icated hardware and APIs for non-graphical applications [NVI
2007], [Hensley 2007] to overcome the graphics-only programming
concepts.
Although this trend is promising and will continue at an increase
rate clearly outperforming the development of current (multi-core)
CPUs, as depicted in figure 2, applications often suffer from limited
bandwidth for the data transfer to and especially from the graphics
memory. However, Langs et al. [Langs and Biedermann 2007] have
shown recently that for example advanced filtering of large video
data can still be performed several orders of magnitudes faster than
CPU-only implementations.

2.2 GPU programming

Aside from the hardware architecture itself, programming such de-
vices has also become more important. High-level languages like
Cg [Fernando and Kilgard 2003] or GLSL [Rost 2005] have be-
come the de-facto standard for GPU programming. Although this
already enables more flexible and rapid development of shaders, ap-
proaches aiming at another abstraction layer have been proposed.
McCool and others [McCool et al. 2002], [McCool et al. 2004]
have developed ”meta-languages” to integrate shader functionality
directly into the application code, with concepts like shader alge-
bra and a separation of frontend and backends for different plat-
forms. In addition, Buck et al. [Buck et al. 2004] have developed
a streaming-oriented extension that regards operations as kernels
applied to data, with according representations for the data, param-
eters, etc. on the graphics hardware.
Yet another approach is the representation of shader functional-
ity as directed graph, going back to concepts like Cook’s shade
trees [Cook 1984] that have been used in almost all systems for
computer generated images – even in the pre-GPU era. Using this
method, complex shaders can be constructed from rather simple and
optionally shared components. Related approaches from Abram
et al. [Abram and Whitted 1990] or, more recently, McGuire et
al. [McGuire et al. 2006] regard shaders as building blocks, empha-
sizing the specific features of shader programs like different types
or input parameters.

2.3 High dynamic range imaging

Mainly initiated by the seminal work of Debevec et al. [Debevec
and Malik 1997], a lot of research on high dynamic range imaging,
i.e., image data with luminance values of multiple orders of magni-
tude has been done since then. However, such HDR data is usually
displayed on devices with a much lower dynamic range. Although
first prototypes of HDR displays are available, so-called tone map-
ping (or tone reproduction) algorithms still need to be applied to
visualize the data adequately. For reference, Reinhard et al. review

4

existing approaches and address the whole ”pipeline” of high dy-
namic range imaging in their book [Reinhard et al. 2005].
Basically, tone mapping operators can be categorized into global or
local, some of them with an additional time-dependency. Global
operators define some function that maps equal input values to
equal output values, thus being computationally inexpensive. These
functions can be as simple as a linear function, whereas more ad-
vanced operators are more complex and usually incorporate a loga-
rithmic term and other properties of human perception. The results
of such tone mapping functions are illustrated in figure 3 and show
the already high potential of global operators.

Figure 3: Different global operators applied to an HDR scene:
linear (a), logarithmic (b), and exponential scaling (c), Reinhard’s
operator (d) (Images courtesy [Reinhard and Devlin 2005])

In contrast to the ”constant” mapping, local operators are able to
adapt to changes by considering the neighborhood of each value.
While this approach is very powerful, applying such locally vary-
ing operators to medical data needs some discussion. Lately, Bartz
et al. [Bartz et al. 2006] have proposed to use tone mapping op-
erators on medical data for improved visual representation. Their
algorithm is based on the local operator from Reinhard et al. [Rein-
hard et al. 2002] with an additional variant for regarding a three-
dimensional neighborhood, as is advantageous for most volumetric
data. Due to the local nature of the algorithm, the processing time
of several seconds for moderately sized volumes is obviously not
interactive. They also use only datasets of traditional modalities as
CT and MRI, the former providing even a constant mapping (i.e.,
Hounsfield units) of the measured values. More involved data like
PET or non-scalar MRI from functional or diffusion-tensor imag-
ing, that cannot be tone mapped locally without introducing errors
has not been considered or left as future work.
Finally, several work has been done to implement the techniques
on graphics hardware, as image processing is a particularly suitable
application for GPUs. In 2003 already, Goodnight et al. [Good-
night et al. 2003] have successfully realized a time-dependent (i.e.,
adapting over time, thus mimicking the human visual system) tone
mapping system for color images. Due to the much lower perfor-
mance and more restricted programming of graphics hardware back
then, they have not been able to achieve real-time frame rates. Voll-
rath et al. [Vollrath et al. 2005] have proposed a generic, real-time
capable framework to implement the volume rendering pipeline on
the graphics hardware. Their system implements Reinhard’s tone
mapping operator successfully, but they do not discuss it in the con-
text of medical data. Another representative work is that of Yuan
et al. [Yuan et al. 2006] who have developed a sophisticated system
for visualizing large high dynamic range data volumes at interac-
tive rates. The 3D and 4D data mainly from numerical simulations,
geosciences, etc. is processed with especially handling precision
issues. However, they also have not investigated in the applicability
of their methods on medical data sets.

3 Technical overview

In this section we will explicate the technical details of our con-
tribution. After describing our programming framework and dis-
cussing some of its key features related to GPU-accelerated volume

processing and visualization, we will outline the tone mapping al-
gorithms we have used for our experiments. In addition, we will
discuss the different modalities of medical data with respect to tone
mapping operators.

3.1 The GPU-based system ”Cascada”

Starting with a project on segmenting medical data, we have devel-
oped a system for (GP)GPU programming called ”Cascada”. This
cross-platform framework focuses on processing (medical) volume
data by applying modular algorithms implemented as shader pro-
grams, i.e., on graphics hardware. Using the GPU for such com-
putation is highly motivated by the rapid performance increases in
contrast to CPUs, as shown in the introduction of this paper. How-
ever, the raw performance of the graphics hardware does not in-
clude all other steps like data transfer, shader handling etc. To this
end, our framework is also used as platform for comparing different
types of algorithms aiming at general categories where the GPU is
preferable or where the overhead might outweigh the performance
gain.

3.1.1 Hierarchical representation of functionality

In order to abstract from the graphics programming details, algo-
rithms are represented hierarchically (see figure 4): so-called se-
quences encapsulate procedures that can range from simple thresh-
olding to more complex operations like region growing. Sequences
in turn consist of multiple passes, i.e., drawing geometry with as-
signed shader programs, usually to offscreen buffers to allow for
advanced processing. These passes can resemble single operations
or multiply run passes, controlled by a fixed number of iterations or
until some condition is met (e.g., region growing has converged).
The output of one pass is then used as input to the subsequent pass
by setting the texture parameters accordingly. Finally, shader pro-
grams resemble objects containing a GLSL vertex and fragment
program, together with an automatic infrastructure for handling
uniform parameters on both the CPU and GPU efficiently, concate-
nation of shaders, etc. 1

Sequence
RenderPass C

ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

Q until
converged

RenderPass B
ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

RenderPass A
ShaderProgram
Vertex
Program

Fragment
Program

Geometry

RenderTarget

Figure 4: Hierarchy of rendering components in Cascada. Se-
quences of render passes consist of shader programs which are ap-
plied to geometry. The passes can be controlled by conditions and
render into targets used as inputs for subsequent passes, read from
for CPU operations, etc.

1It should also be noted that by utilizing the composite pattern, se-
quences can contain sequences themselves, thus allowing for even more
flexible designs.

5

3.1.2 Internal data handling

The data itself is represented as volumes packed into RGBA-tuples,
thus allowing for direct rendering into the volume and exploiting
the SIMD architecture of GPUs. Therefore, four successive slices
of the scalar volume (or four DICOM slices) are combined into
one RGBA slice. For both backward compatibility and better per-
formance, the system uses aside from native 3D textures a two-
dimensional representation of the volumetric data as introduced by
Harris et al. [Harris et al. 2003]. As shown in [Langs and Bieder-
mann 2007], the time for accessing the flat-3D texture by convert-
ing the 3D texture coordinates into the 2D address is even less than
direct 3D access. This scheme is depicted in figure 5.

Original volume
with n slices

RGBA volume
with n/4 slices

RGBA flat volume
with n/4 tiles

Figure 5: Representation of volumes in Cascada: The scalar vol-
ume is ”compressed” into RGBA channels and finally spread into a
2D RGBA texture to be also used as render target.

Cascada also provides CPU equivalents of the aforementioned se-
quences and therefore allows for transferring data between graphics
and main memory. To this end, Cascada uses a ”lazy evaluation”
policy to avoid unnecessary bus communication for the complete
volume. As the CPU versions of the algorithms are not optimized
to leverage parallelism with SIMD units and instructions or utiliz-
ing multiple cores, they serve as reference with respect to the results
rather than performance.

3.1.3 Visualization and interaction

At the level of render passes in our hierarchical representation, the
system does not distinguish between processing and visualization
steps. The only difference is the target of the pass/sequence (i.e.,
offscreen/onscreen buffer) which can be changed during runtime,
if needed. Therefore, ”Cascada” implicitly allows for displaying
the results of algorithms while they are computed, with a negligible
performance overhead on modern graphics hardware. Currently,
our system provides several volume visualization modes:

• Standard multi-planar reformation display with slices mov-
able in the main directions

• GPU ray casting with different compositing modes (X-ray,
maximum intensity projection, isosurface rendering)

• Direct volume rendering with basic transfer function support
• Integration of geometric primitives (glyphs, lines, color cod-

ing) in volume rendering (work in progress)

Together with the support for additional interaction devices (3D
mouse, haptics devices) it is thereby possible to literally interact
with the algorithms: ”drawing” parameters for ray casting or con-
trolling iterative algorithms are two examples for the advantage of
computing directly on the graphics hardware.

3.1.4 Performance examples

In order to provide some measure for the efficiency of our frame-
work, we have compared its processing performance with MeVis-

Lab [MeVis 2007], a widely used software system for efficient
(medical) data processing and visualization. Most of MeVisLab’s
core is based on a sophisticated image processing library with high
performance even for very large data sets. Additionally, the mod-
ular system of the components in combination with the extremely
powerful, graph-oriented frontend enable the user to develop ap-
plications rapidly. However, the system does not utilize the graph-
ics hardware except for visualization purposes and graphical shader
programs.

To give some idea of the performance relations between Cascada
and CPU-only implementations, we have set up some scenarios
of increasing computational complexity. We will provide both the
times for the pure GPU pass, and the time needed for data trans-
fer to and from the video memory for better comparison. Our
system has been an Intel Core2Duo (2.4 GHz) with 2 GB RAM
and an Nvidia Geforce 8800 GTS with 640 MB RAM, running on
Windows XP. For MeVisLab we have used the latest SDK version
(1.5.1) available from the website with default settings. We have
applied the algorithms in both applications on the same datasets: a
512 × 512 × 223 CT scan loaded from DICOM files (first value),
and an MRI scan 256× 256× 256 as raw file (second value).

Operation MeVisLab Cascada1 Cascada2

Binary 0.73 / 0.21 1.9 / 0.55 0.038 / 0.011
Gradient 2D 10.1 / 2.9 2.6 / 0.7 0.06 / 0.017
Gradient 3D 14.9 / 3.9 2.6 / 0.72 0.059 / 0.018

Gauss 2D 1.36 / 0.37 2.48 / 0.73 0.061 / 0.017
Gauss 3D 3.65 / 1.01 2.59 / 0.78 0.09 / 0.026

Table 1: Average computation times (in seconds) for applying oper-
ations of different complexity on the two data sets. 1 Timing includ-
ing data transfer to and from the GPU; 2 Time for image operation
only, but including shader and handling.

The results show a clear advantage of the GPU version over the
CPU implementation, with a speedup factor of up to 250. However,
the impact of the data transfer on the performance outweighs the
gain for simple operations (binary threshold) or filters with small
neighborhood (Gauss 2D). These timing give only some coarse im-
pression of the results, with Cascada being not fully optimized with
respect to data transfer yet.
In another test run we have compared a sequence consisting of al-
gorithms of different complexity (incl. iterative operations) to eval-
uate the relevance of data transfer, leaving the GPU (including all
overhead) at least one order of magnitude faster than the software
implementation. Therefore, our proposition of utilizing the graph-
ics hardware for image processing operations is highly advanta-
geous has been confirmed, even with the additional rendering in-
frastructure. However, not all operations have been considered yet,
especially where the GPU suffers from its architectural limitations.
We are still investigating in this to allow for a categorization of dif-
ferent algorithm types and be able to decide whether a GPU or CPU
implementation is more suitable over the other – even at run time
with our system already supporting the mixed use of both platforms.

3.2 Medical data

For medical diagnostics and, of course, depending on the current
problem, there are lots of different imaging modalities available,
with the majority being tomographic data nowadays. Dedicated
hardware and software integrated in those systems allow for rapid
reconstruction of the measured data resulting in slices of usually
scalar values. These slices have certain geometric properties (e.g.,

6

thickness, distance, resolution) and can thus be regarded as a vol-
ume representing the examined anatomy. That is, we assume a reg-
ular grid of voxels with each voxel containing a value at a certain
point in space. These values are usually scalar values, i.e., gray val-
ues within some range defined by the image acquisition system.
Due to technical and computational reasons the current range is
usually 16 bits, while not all bits have to be used; special DICOM
tags specify the exact layout. The following table lists typically
used bit depths and value ranges for the modalities discussed in this
work. Aside from these properties the data differ in their interpreta-

Modality Bit depth Typical range
CT 12 (integer) -1k...3k

MRI 10/12/16 (integer) 0...1-32k
fMRI 16 (integer/float) -32k...32k
DTI 16/32 (float) -32k...32k
PET 16 (integer/float) 0...32k

Table 2: Typical properties of data in common modalities

tion and thus need consideration for tone mapping alorithms. Com-
puted tomography data, for example, has a fixed relation between
the value at some position within the volume and the subject’s den-
sity at that position. That is, the higher the measured volume the
lower the radiographic density, and vice versa – a relation repre-
sented by the Hounsfield scale. In our case, transforming a CT sig-
nal I with some nonlinear global tone mapping function Φ would
imply to interpret the data as if the Hounsfield function H had also
been transformed, thus leading to the result IH , that can be used for
classification etc.:

IH = H(I) ⇐⇒ Φ(IH) = Φ(H(I)) (1)

In principle, only positron emission tomography (PET) also allows
for a proportional relation between the measured intensity and the
corresponding data (usually metabolic acitivity). All other modal-
ities discussed here do not provide a direct mapping between the
values and some scale, as even the values of different acquisitions
can have different meaning. Things become even more complicated
for diffusion tensor imaging (DTI) data, where not only scalar val-
ues per sample are to be interpreted: at least six entries for the
partial derivatives in all directions are computed. Usually an addi-
tional channel specifies a ”confidence” for the data at the current
position. Thus, any function for mapping the data needs to be de-
fined over six dimensions which is closely related to the topic of
transfer functions that will be discussed further in section 4.

Based on these considerations it is clear that only global tone map-
ping provides a reasonable chance to maintain an interpretation of
the data. Local operators, i.e., a non-uniform transformation of in-
put data depending on local neighborhood etc., would change it in
a way that interpreting or processing the data is practically impos-
sible. Therefore, we concentrate on global operators that consider
properties of the whole volume and can be adjusted by parameters
similar to the current windowing technique. Although implement-
ing such algorithms on graphics hardware faces the same compu-
tational complexity as CPU implementations, global tone mapping
algorithms are especially suitable for GPUs due to their inherent
parallelism. Thus, we expect a performance in the order of magni-
tude as shown before in table 1.

3.3 Tone mapping

As already described in sections 1 and 2, tone mapping is an im-
portant procedure in high dynamic range imaging. As explicated in
the preceding section, the data in diagnostic visualizations is manu-
ally compressed by specifying a window of controllable width and

center position. Although this linear interpolation between the min-
imum and maximum of the output device can also be regarded as
tone mapping function, it cannot achieve proper, data-driven results
automatically. In addition, the mapping will result in an informa-
tion loss if the input range is larger than the output range – which
is usually the case for medical data (see 3.2). In order to inves-
tigate the results of applying tone mapping algorithms from high
dynamic range imaging to medical volume data while not sacrific-
ing the real-time visualization of the system, we have decided to
use global operators.

All of the following algorithms require some information about
the data itself and some global user definable parameter. First,
the so-called background intensity Iavg has to be estimated. In-
stead of simple averaging the intensities by computing the arith-
metic mean, we have used the geometric average as suggested by
Reinhard [Reinhard et al. 2005]:

Iavg = exp

1

N

NX
i=1

log(Ii + ε)

!
(2)

In addition, the unitless parameter α is known as the key and rep-
resents the overall light level of the data in an interval of [0...1].
Let L be the luminance if the input data, then α can be estimated
according to [Reinhard et al. 2005] by: 2

f =
2 log Lavg − log Lmin − log Lmax

log Lmax − log Lmin
, α = 0.18 · 4f (3)

While α can also be controlled by the user, providing some rea-
sonable default value is usually preferable. Some of the following
algorithms that we have implemented introduce further parameters
that will be discussed with the according description.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

log(Lmax)

log(Lavg)

exp(Lavg)

exp(Lmax)

Lin

L
o
u

t

Figure 6: Graphs for the default logarithmic/exponential tone map-
ping curves with varying parameters.

3.3.1 Logarithmic and exponential scaling

Using the logarithm or an exponential mapping function is quite
straightforward and has its background in Weber-Fechner’s law
considering the relationship between measured and perceived stim-
uli. However, these approaches only achieve reasonable results for
medium ranged images, i.e., in our case CT or low-valued MRI
data. First the logarithmic function: 3

Lo(~x) =
log(1 + Li(~x))

log(1 + Limax)
(4)

2Note that the logarithms used in the following equations are assumed
to be to the base of 10, if not stated otherwise.

3For the equations in the following subsections we use the luminance
function’s input parameter as n-dimensional vector ~x, where n denotes the
dimension of the data (n = 3 for volumetric scalar data)

7

The exponential function in (5) maps input luminances to output
luminances, where input values close to zero are mapped to zero,
infinitely bright values are mapped to 1.0. This implies a renormal-
ization because the output will never cover the full range available.
Reinhard [Reinhard et al. 2005] reports that exchanging Limax with
Liavg and vice versa yields a different effect, also shown in the cor-
responding graph in figure 6.

Lo(~x) = 1− exp

„
−Li(~x)

Liavg

«
(5)

3.3.2 Extended logarithmic scaling

Following the logarithmic behaviour of the human visual system,
Drago et al. [Drago et al. 2003] have further investigated in im-
provements of logarithmic functions. They proposed to adjust the
logarithm’s base with the input value and thus achieve a wider range
of values to be reasonably mapped. As can be seen in the second
term of the following equation, this base is interpolated within the
range of 2 and 10:

Lo(~x) =
Lomax · 0.01

log(1 + Limax)
· log(1 + Li(~x))

log

2 + 8

“
Li(~x)

Limax

” log(p)
log(0.5)

! (6)

There are two parameters that can be specified by the user: the bias
p controls the contrast, with larger values reducing the contrast.
Also, the maximum output luminance Lomax (in cd/m2) can be
set, with a default value of 100.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

Lin

L
o
u

t

p = 0.7
p = 0.75

p = 0.8
p = 0.85

p = 0.9

Figure 7: Graphs for the tone mapping after [Drago et al. 2003]
with varying parameters.

3.3.3 Photoreceptor Model

While assuming that the human visual systems is of logarithmic
nature is basically correct, Reinhard et al. [Reinhard and Devlin
2005] propose that this holds only for a certain range of values.
As logarithms produce negative values and have no upper bound,
they need to be modified for an adequate model. This leads to the
following relation:

Lo(~x) =
Li(~x)

Li(~x) + σ(Lia(~x))
(7)

σ(Lia(~x)) = (fLia(~x))m (8)

k =
Limax − Liavg

Limax − Limin

, m = 0.3 + 0.7k1.4 (9)

In the equations (7) and (8), the term Lia denotes the adaptation
level and can be set to Liavg in our case, as no temporal or chro-
matic adaptation is needed. In addition, σ is often regarded as
semisaturation constant. The following graphs illustrate the influ-
ence of the parameters k and f on the result:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

Lin

L
o
u

t

f = 0.1
f = 0.5
f = 1.0
f = 2.0
f = 4.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10 100 1000 10000

Lin

L
o
u

t

k = 0.0
k = 0.25

k = 0.5
k = 0.75

k = 1.0

Figure 8: Graphs for the tone mapping curves according to [Rein-
hard and Devlin 2005] with varying luminance parameter (top) and
key parameter (bottom).

4 Results and Discussion

We have used different kinds of datasets, focusing on modalities
with a large dynamical range. Therefore, the data sets used in this
paper are CT and PET data, with properties specified in the fol-
lowing table. As can be seen from the images, the rendering is in
our case currently without using transfer functions. This is mainly
due to the different ways how transfer functions can be used in the
context of high dynamic range rendering and is subject to further
investigation.

Data set Resolution Bit depth min/max
CT backpack 512× 512× 373 12 (int) 0 / 4072

PET body 168× 168× 715 16 (int) 2 / 32767
PET head 128× 128× 83 16 (int) 0 / 32767

Table 3: Properties of the data sets used in this paper

4.1 Performance

As expected, the higher the dynamic range of values, the larger
the improvement over linear mapping. MRI data sets, for exam-
ple, usually provide values up to approximately 1k and thus do not
benefit much from tone mapping. As can be seen in figure 9, the
implemented algorithms result in quite different renderings, with
Drago’s algorithm being a good candidate also for other modali-
ties. In addition, with only one parameter (see 3.3.2) this operator
is very easy to use.
The algorithms have been implemented directly within the display-
ing shader programs. Without exhaustive optimization, the perfor-
mance overhead is negligible for all renderings: even ray casting
of the whole volume maintains real time performance on current
commodity hardware. Adjusting the user parameters as well as the
statistical data of the volume data is done via uniform variables that
are transferred to the graphics hardware only when updated and
thus do not impose a performance penalty.

8

4.2 Usability

In comparison to the standard windowing scheme, only little inter-
action is needed with our approach. While this automatic initial-
ization of the visualization parameters is generally considered pos-
itive, medical staff emphasize to still be able to manually focus on
specific ranges. The parameters for the tone mapping algorithms,
however, are hard to relate with the traditional approach. There-
fore, we propose to combine the two techniques by approximating
the automatically determined tone mapping function linearly with
adequate windowing parameters.
Also, for registration purposes the visualization of the whole range
of values is considered to be useful. The more detailed structures in
the tone mapped data (as in figure 1, for example) provide a better
visual guidance when specifying landmarks in two modalities with
different value ranges, e.g. PET and CT or MRI data.

5 Conclusion and future work

In this paper, we have shown that using the GPU is advantageous
for improving the visualization of volume data of higher dynamic
range than the output device. After reviewing several approaches
to compress high dynamic range data, we have discussed their ap-
plicability to medical data. Global operators offer a good way of
transforming the data while being computationally less expensive
and inherently amenable to parallel architectures. On the other
hand, local operators would introduce an uncertainty into the vi-
sual representation impeding diagnostic interpretation. Therefore,
we have implemented some representative global operators in our
GPU framework and discussed how to extend the method in differ-
ent ways.

As the results are promising, we would like to further investigate
in this topic. First, applying such operators to other, more specific
image modalities like fMRI/DTI has not been addressed in detail
yet. Especially the growing importance of functional imaging with
data not simply corresponding to scalar properties such as lumi-
nance or density will lead to more complex algorithms. With the
real time performance at hand, visual approaches such as rendering
different settings as preview (so-called ”design galleries”) would
improve both the handling of the algorithms’ parameters and mul-
tiple dimensions.
Another direction of research is the role of the transfer function in
the context of high dynamic range imaging. Similar to pre-/post-
classification in volume rendering, one can use the (HDR) transfer
function with the original data and apply tone mapping procedures
afterwards. Alternatively, the transfer function can be accessed by
(low dynamic) values of the volume that has been tone mapped be-
fore. The implications are subject to further research, as well as its
applicability to different modalities, especially for non-scalar types.

Acknowledgements

We would like to thank Guido Lorenz for his great support in the
development of our framework, as well as all the students helping
to extend Cascada’s possibilities. Also thanks to Cornela Massin
and Stephan Palmer for inspiring parts of this work by their theses,
and our co-operation partners at the hospitals for discussion, collab-
oration and providing data sets. Additional data sets are courtesy of
OsiriX’s sample image website [Rosset et al. 2007].
The author would also like to thank many people at the Centre for
image analysis of Uppsala University for providing a great working
environment during the first development stages of Cascada. Fi-
nally, we would like to thank the reviewers for their feedback to
improve this paper.

Figure 9: Overview of all the tone mapping algorithms imple-
mented, applied to a human head/neck PET scan (coronal view).
The linear mapping (a) is compared to the operators by Reinhard
(b), Drago (c) and the logarithmic (d) and exponential (e) methods.
The right column shows the subtraction of the linear mapping, with
blue colors denoting positive, red colors denoting negative values.

9

References

ABRAM, G. D., AND WHITTED, T. 1990. Building Block Shaders.
In SIGGRAPH ’90: Proceedings of the 17th annual conference
on Computer graphics and interactive techniques, ACM, New
York, NY, USA, 283–288.

BARTZ, D., SCHNAIDT, B., CERNIK, J., GAUCKLER, L., FIS-
CHER, J., AND DEL R ÍO, A. 2006. Volumetric High Dynamic
Range Windowing for Better Data Representation. In Afrigaph
’06: Proceedings of the 4th international conference on Com-
puter graphics, virtual reality, visualisation and interaction in
Africa, ACM, New York, NY, USA, 137–144.

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for
GPUs: stream computing on graphics hardware. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Papers, ACM, New York, NY,
USA, 777–786.

COOK, R. L. 1984. Shade Trees. In SIGGRAPH ’84: Proceed-
ings of the 11th annual conference on Computer graphics and
interactive techniques, ACM, New York, NY, USA, 223–231.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dynamic
range radiance maps from photographs. In ACM SIGGRAPH
Conference Proceedings, 369–378.

DRAGO, F., MYSZKOWSKI, K., ANNEN, T., AND CHIBA, N.
2003. Adaptive Logarithmic Mapping For Displaying High Con-
trast Scenes. In Proc. of EUROGRAPHICS 2003, Blackwell,
Granada, Spain, P. Brunet and D. W. Fellner, Eds., vol. 22 of
Computer Graphics Forum, 419–426.

FERNANDO, R., AND KILGARD, M. J. 2003. The Cg Tuto-
rial – The Definite Guide to Programmable Real-Time Graphics.
Addison-Wesley Professional.

GOODNIGHT, N., WANG, R., WOOLLEY, C., AND HUMPHREYS,
G. 2003. Interactive Time-Dependent Tone Mapping Using Pro-
grammable Graphics Hardware. In Proceedings of the 14th Eu-
rographics workshop on Rendering, Eurographics Association,
26–37.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND LAS-
TRA, A. 2003. Simulation of Cloud Dynamics on Graph-
ics Hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
92–101.

HENSLEY, J., 2007. Close to the metal. Course 24 - GPGPU:
General-Purpose Computation on Graphics Hardware. ACM
SIGGRAPH, San Diego, CA., August.

LANGS, A., AND BIEDERMANN, M. 2007. Filtering Video Vol-
umes Using the Graphics Hardware. In SCIA, Springer, B. K.
Ersbøll and K. S. Pedersen, Eds., vol. 4522 of Lecture Notes in
Computer Science, 878–887.

MCCOOL, M. D., QIN, Z., AND POPA, T. S. 2002. Shader
Metaprogramming. In HWWS ’02: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 57–68.

MCCOOL, M., TOIT, S. D., POPA, T., CHAN, B., AND MOULE,
K. 2004. Shader Algebra. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, ACM, New York, NY, USA, 787–795.

MCGUIRE, M., STATHIS, G., PFISTER, H., AND KRISHNA-
MURTHI, S. 2006. Abstract Shade Trees. In I3D ’06: Pro-

ceedings of the 2006 symposium on Interactive 3D graphics and
games, ACM, New York, NY, USA, 79–86.

MEVIS, 2007. MeVisLab: A Development Environment for Medi-
cal Image Processing and Visualization.
http://www.mevislab.de.

NVIDIA CORPORATION. 2007. NVIDIA CUDA compute unified
device architecture programming guide, Jan.
http://developer.nvidia.com/cuda.

OWENS, J. D., LUEBKE, D., GOVINDARAJU, N., HARRIS, M.,
KRÜGER, J., LEFOHN, A. E., AND PURCELL, T. J. 2007. A
Survey of General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum 26, 1, 80–113.

REINHARD, E., AND DEVLIN, K. 2005. Dynamic Range Reduc-
tion Inspired by Photoreceptor Physiology. IEEE Transactions
on Visualization and Computer Graphics 11, 1, 13–24.

REINHARD, E., STARK, M., SHIRLEY, P., AND FERWERDA, J.
2002. Photographic Tone Reproduction for Digital Images. ACM
Trans. Graph. 21, 3, 267–276.

REINHARD, E., WARD, G., PATTANAIK, S., AND DEBEVEC,
P. E. 2005. High Dynamic Range Imaging – Acquisition, Dis-
play, and Image-Based Lighting. Morgan Kaufmann, November.

ROSSET, A., ET AL., 2007. OsiriX Medical Imaging Software.
http://www.osirix-viewer.com.

ROST, R. J. 2005. OpenGL(R) Shading Language (2nd Edition).
Addison-Wesley Professional.

VOLLRATH, J. E., WEISKOPF, D., AND ERTL, T. 2005. A Generic
Software Framework for the GPU Volume Rendering Pipeline.
In Vision, Modeling, and Visualization VMV ’05 Conference Pro-
ceedings,, 391–398.

YUAN, X., NGUYEN, M. X., CHEN, B., AND PORTER, D. H.
2006. HDR VolVis: High Dynamic Range Volume Visualization.
IEEE Trans Vis Comput Graph 12, 4, 433–45.

10

Real-time Generation of Plausible Surface Waves

Kristian Yrjölä and Thomas Larsson
Department of Computer Science and Electronics

Mälardalen University

Abstract

We present a fast and flexible algorithm for the simulation and ren-
dering of ocean waves. The method is designed to support effi-
cient view frustum culling and various simple wave effects such
as choppy waves, capillary waves, wave refraction, round waves,
and wave-land interaction, which makes the model suitable in, e.g.,
computer games. The waves are numerically robust, and the exe-
cution time of the generated waves can be controlled dynamically.
Finally, experimental results illustrate the interactive performance
and the visual quality of the generated waves.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: water, waves, animation, culling, graphics, simulation

1 Introduction

Simulation of realistic water waves is a computationally challeng-
ing problem [Semtner 2000; Hinsinger et al. 2002; Iglesias 2004].
There are many different types of waves, e.g., the tides, seis-
mic tsunami waves, internal waves (waves below the water sur-
face), object interaction waves, gravitational waves, and capillary
waves [Peachey 1986]. The latter two are also called wind waves,
and it is the generation of plausible wind waves in real-time that is
in focus here.

Some previously proposed wave generating methods for computer
graphics applications have been based on the summation of sine
waves, such as Gerstner’s and/or Biesel’s wave models [Fournier
and Reeves 1986; Cieutat et al. 2001; Hinsinger et al. 2002]. Ad-
ditional details to the water surface can be added by using noise
functions [Thon et al. 2000]. Wave refraction can be simulated with
wave tracing [Ts’o and Barsky 1987; Gonzato and Sac 1997].

Other approaches rely on fast Fourier transforms [Tessendorf 2004;
Hu et al. 2004], and solving the Navier Stokes equations for
physically-based simulation of fluids [Kass 1991; Stam 1999; Fos-
ter and Fedkiw 2001; Mihalef et al. 2004]. Realistic simulation of
fluids, however, can be extremely time consuming, and therefore
inappropriate for interactive computer graphics applications. Nev-
ertheless, Stam has proposed a fast and useful algorithm that solves
the Navier–Stokes equations and produces complex fluid-like flows
in real-time [Stam 1999; Stam 2003].

Several other methods are based on a combination of summing sine
waves, spectral approaches, and other techniques [Thon et al. 2000;
He et al. 2005]. Some approaches also use the modern programma-
bility features of GPUs [Schneider and Westermann 2001; Isidoro
et al. 2002; Kryachko 2005; Baboud and Décoret 2006]. We refer
to the survey by Iglesias [2004] for a broader presentation of related
work than the one given here.

Our solution is based on oriented Wave Train Boxes (WTBs), which
are responsible for generating waves over spatially limited sea ar-
eas. The basic shapes of the waves are computed using Gerstner’s
equations [Tessendorf 2004], but by using several extensions and
tracing wave rays inside the WTBs in the wind direction, simple
forms of some natural wave effects are achieved, e.g., wave–land

Figure 1: An image of waves generated with the proposed method.

collisions, wave refraction, capillary waves, and round waves. In
Figure 1, an example image of the generated waves is shown. The
computational complexity of our approach is linear in the number
of water surface points.

The main contribution of this paper is a simple and flexible wave
model for the fast generation of plausible water surfaces with
the following advantages: (1) The generated waves are frame-
independent, which means the water surface is re-calculated from
its rest position each frame. This is both memory friendly and nu-
merically robust. (2) Wave trains are spatially limited, and mutually
independent, which means that View Frustum Culling (VFC) can be
used to speed-up the calculations. (3) The complexity of the water
surfaces can be interactively controlled, since the computations are
arranged in layers with the most basic features applied first. Fur-
thermore, the water surface is generated as a combination of an ar-
bitrary number of independently processed simple wave trains, so
the most important can be selected according to a given time bud-
get. (4) The model supports a simple and fast method for affecting
the waves near land (wave refraction). (5) Land obstacles are de-
tected, and in the water area behind them, the waves are canceled
out. (6) The method produces plausible waves at interactive rates,
see benchmarks in Section 3.

2 Wave model

A water surface is represented by a uniformly sampled height field
which we call the water grid. For the generation of the waves, ori-
ented WTBs are associated with the water grid. A WTB is used to
handle the creation and simulation of a restricted rectangular area
of waves. Each WTB handles a set with one or more wave trains
traveling in roughly the same direction.

To create waves, a wind is associated with each WTB. Wind param-
eters are wind speed, direction vector, wind origin, life length, and
area defined by fetch and width. When a wind starts, the size of the
WTB grows during a build-up phase up to a maximum. Some prop-
erties of the wind directly define parts of the WTB, such as direc-
tion, width and origin point. The other properties help to build-up,
sustain and in the end kill the WTB.

11

Figure 2: A WTB with six wave rays. The internal coordinate sys-
tem has its origin in the lower left corner when looking along u.
Action points are registered around obstacles in order to change
wave train parameters at those specific points.

Figure 3: Images generated from a WTB with a single wave train
(left), and a WTB with three wave trains (right). As expected, more
wave trains give a more irregular surface.

There are one or more wave trains per WTB, each with its own di-
rection, amplitude, wave length, and phase. The more wave trains
used, the more complex waves are generated. Example waves re-
sulting from a WTB with a single wave train and another with three
wave trains are shown in Figure 3.

A WTB also has a set of wave rays in order to gain control over the
wave train parameters locally. With this local control, the height of
a wave can be increased as it approaches land, and waves behind
an obstacle can be damped. However, when there are no land ob-
stacles inside a WTB, it is possible to iterate over the water grid
points in any order since each point’s location is then calculated
independently.

In Figure 2, the most important structural elements of a WTB are
shown. The direction vectors u and v define the internal coordi-
nate system of the WTB, with the origin always in the lower left
corner looking along u. The lengths of these vectors are the actual

Figure 4: Smoothening area along the side of a WTB.

uniform lengths between the water grid points. Thus, the WTB has
as many wave rays as it spans over grid points in width. If some-
thing obstructs the surface, action points are registered as shown
in Figure 2. An action point indicates a change of the wave train
parameters will take place at that specific point.

Figure 5: Dampening of waves due to wave ray land collisions.

The actual computation of the wave shape is based on Gerstner’s
wave model, which was suggested more than two hundred years
ago in oceanography (see e.g. [Tessendorf 2004; Fournier and
Reeves 1986]). This model is chosen because its inherent linear
time complexity in the number of computed water surface points,
but still, the computed wave shapes look plausible.

Waves are created by specifying a wind speed, h. The maximum
wave height, H , of fully developed seas can then be approximated
by

H = α
h2

g
(1)

where g is the gravitational constant, and α is a dimensionless con-
stant. This simple equation is the result of an early hypothesis sug-
gesting a direct relation between wind speed and wave height. A
reasonable approximation for fully developed wave heights can be
computed by using α = 0.21 [Resio et al. 1999]1.

The animation of the water grid points is handled by Gerstner’s
parametric wave equations. The goal is to make a point p0 =
(x0, z0) on the rest surface of the water (where y0 = 0) to travel in
a stationary circular orbit. However, by displacing the point at time
t to

p = p0 − k
k

A sin(k · p0 − wt) (2)

y = A cos(k · p0 − wt) (3)

the surface is perturbed into repeated trochoids, thereby also sup-
porting the generation of so called choppy waves, depending on the
relationship between k and A, where A is the amplitude. The wave
vector, k = (kx, kz) is the horizontal direction in which the wave
travels. The magnitude of k is related to the wave length λ, and is
given by k = 2π/λ. The frequency w is related to k and the water
depth D at p0 according to

w =
√

gk tanh(kD) (4)

This equation makes the waves slow down as the water depth de-
creases. However, when the water depth is large enough, we can

1Fournier and Reeves [1986] suggest another simple equation for deter-
mining the wave height given only the wind speed.

12

Figure 6: Waves with no phase shift (left) and waves with a phase shift as a function of water depth (right).

ignore the depth and simply use

w =
√

gk (5)

Note that the equations 2 and 3 only create a wave with a very un-
realistic regular shape. Therefore, to create a plausible wave shape,
a set of N such sine waves are used and added together according
to

p = p0 −
N−1∑

i=0

ki

ki
Ai sin(ki · p0 − wit + Φi) (6)

y =

N−1∑

i=0

Ai cos(ki · p0 − wit + Φi) (7)

As can be seen, each sine wave has its own wave vector, ki, ampli-
tude, Ai, frequency wi, and a phase shift Φi.

To avoid waves that are abruptly ended at the sides of the WTBs,
a way to make the waves gradually disappearing into the water is
needed. Therefore, each WTB has a smoothening area along its
sides where the wave height is decreasing linearly, which is illus-
trated in Figure 4.

When the height of the water grid points inside the WTB is updated,
the internal coordinate system is traversed along the wave rays.
Since the rays are arbitrarily oriented, we have to detect which wa-
ter grid points are closest. Some precautions must be taken to avoid
neighboring rays updating the same grid points, or that no rays will
access some grid points, resulting in visual artifacts. Therefore, for
every internal grid point, the small quadrant area behind to the left
is scanned for actual surface grid points, marked as a pink square
in Figure 2. Because the internal grid of the WTB has the same
distance between points as the water grid, albeit oriented, there can
only be three possible outcomes for such a scan: zero, one or two
points inside. The height is summed up for all wave trains at these
points, and stored. If there is an action point, the parameters of the
wave trains are adjusted. If the wave is approaching land and the
depth is decreasing, the amplitude is increased slightly, but set to
zero as land peaks above the surface. After the obstacle, if it is wa-
ter behind it (from the wave direction point of view), the amplitude
is increased again gradually to the full amplitude.

By computing the position of the water grid points along the wind
direction, land collisions becomes trivial to detect, and the handling
of waves hitting a land obstacle becomes extremely efficient. The
land collision points can even be pre-computed as long as the WTBs
are stationary. In Figure 5, this way of detecting land collisions
and setting the wave amplitude to zero afterwards is shown. In
nature, however, the broken waves would pass along the sides of the
obstacle, grow along the crest and perhaps meet again depending on
the size of the obstacle. This phenomenon is called diffraction.

Finally, note that some visual artifacts may arise during the wave
animation near land when the amplitude is too high or the slope
is low (like on a beach) because of land peeking through the bot-
tom of the waves. One possible solution to this could be to adjust
the parameters of the waves to make the trough of the wave stay
above land. For example, the water level can be raised somewhat to
simulate run-up, and decreasing the amplitude instead of increas-
ing it can also help. Some visual artifacts may also arise when
polygons of the water surface are coplanar with land polygons due
to z-fighting. Increasing the depth buffer resolution can alleviate
these artifacts, but can never remove the problem completely.

Figure 7: Example of waves starting to queue up towards land.

2.1 Wave effects

While updating the parts of the water grid covered by a WTB, sev-
eral effects adding more details and variations can be applied. For
example, a simple form of wave refraction can be achieved simply
by shifting the phase of the waves locally depending on the water
depth. In Figure 6, it is shown how the resulting waves look with
and without this type of refraction. In contrast to this, the usual way
to achieve wave refraction for Gerstner waves is to change the wave
frequency according to Equation 4. However, when the frequency is
changed, waves may easily start to queue up towards land as the an-
imation proceeds according to Figure 7. This is because the speed is
reduced to almost zero. Our approach keeps the propagation speed,
and focuses on bending the waves.

In reality, there are also a great number of water waves that make up
irregular patterns of waves with different heights. To model a seem-
ingly irregular height variation, we can simply change the height
value y along a wave in the v-direction of the WTBs by modifying
the amplitude according to the formula

A′ = A − a sin(t + u) sin(vf) (8)

where a is scale factor, and f determines how often a higher wave
will appear in the v-direction. Of course, some randomness can
also be added to Equation 8. However, the resulting waves look
more chaotic even without it, as can be seen in Figure 8.

There are also capillary waves giving rise to fine grained details
on the water surface. Therefore, we add more details to the water

13

Figure 8: Waves without the sideways height variation effect (left), and with it (right).

Figure 9: A water surface without noise (left) and with noise (right).

surface by applying a noise function adjusting the height of each
water grid points slightly using the equation

y′ = y + b sin(rt) (9)

where b is the noise amplitude, and r ∈ [0, 1] is a random value.
The effect of this noise function is shown in Figure 9. To avoid
a completely flat water surface in areas where no wave trains are
applied, the noise function must be applied directly to all visible
water grid points, independently of where the WTBs are located.

Figure 10: Round waves resulting from waves spreading outwards
from the water–wind contact area.

Another effect that may arise can be referred to as round waves.
When a wind blows over a surface with a limited width, the arising
waves tend to spread outwards from the contact area. This effect
can easily be incorporated into our model by a function shifting the
phase of the waves in the v-direction of the WTB. For example,
using the formula

Φ =
(v − 0.5V)2

V
(10)

where V is the width of the WTB, the phase shift becomes sym-
metric around the center of the WTB giving rise to the round waves
depicted in Figure 10.

2.2 View frustum culling

The concept of WTBs is well-suited for view frustum culling. Each
WTB is a container for wave trains, and it defines a limited rectan-
gular area where these wave trains affect the water grid points. For
each WTB, we create an enclosing volume, an Oriented Bounding
Box (OBB). The dimensions of the OBB are defined by the rect-
angular area of the WTB together with the maximum wave height,
which is given by the sum of all the maximum heights of all in-
volved wave trains.

The actual visibility check is made by extracting the planes of the
view frustum each frame from the combined view and projection
transformation matrices A = MP, which is done very efficiently
by adding columns of A [Gribb and Hartmann 2001]. Then an
OBB–plane overlap test is executed for each plane of the frus-
tum, which can be computed very efficiently [Akenine-Möller and
Haines 2002].

However, we need to take precaution to avoid potential false culling
of overlapping WTBs. When two or more WTBs overlap, the max-
imum wave height inside the overlap area is the sum of the maxi-
mum wave height for each involved WTB. Therefore, when we de-
termine the height of the OBB, we take all overlapping WTBs into
account. Note that this computation can be done as a pre-process, if
the WTBs are placed at fixed locations in the virtual environment.

2.3 Interactive control

To be able to interactively control the frame rate, our approach
admits generating the waves using a computationally layered ap-
proach, where the most fundamental and important features are ap-
plied first. We start with conservative view frustum culling of the
WTBs. Then, for each remaining WTB, the positions of the af-
fected water grid points are computed, as they are passed by the
wave rays. Note that the actual computations of the positions of the
water grid points are made with the currently enabled wave trains
and the possible effects either turned on or off. Finally, the noise
effect may be added to the water grid.

14

If time permits, it would also be possible to make an additional
pass over all water grid points that fall inside any of the WTBs
to add other special effects, such as foam or spray, by considering
the roughness of the water around each water grid point. It would
also be possible to add new WTBs on the fly. However, then the
computation of overlapping WTBs, and land collision points, must
also be done on the fly, which otherwise are pre-computations.

2.4 Computational complexity

The performance of the algorithm is adaptive to the actual number
of water grid points computed per frame. Since a single water sur-
face point is processed in constant time, the worst case for the com-
putational complexity of the algorithm is given by O(kn), where k
is the number of WTBs, and n is the number of water grid points.

In the best case, the algorithm is in O(k), which occurs when all
WTBs, and thus all wave trains, are completely outside the view
frustum, and when the (global) noise effect is turned off. Therefore,
from a scene design point of view, it makes sense to define the size
of neighboring WTBs with efficient VFC in mind.

3 Results

Our wave generation method has been implemented in C++ and
we have evaluated the performance by using some benchmark sce-
narios. The test equipment was an AMD64 3000+ 2.0 GHz CPU,
with 1 GB RAM and graphics hardware ATI9800 pro with 128 MB
RAM. No optical effects were used in the lighting calculation ex-
cept OpenGL’s own fixed-function pipeline with one light source.
All animation calculations are done on the CPU, and VFC is only
done for WTBs and not for the land and water geometries them-
selves. Some captured animations are available showing our wave
generation approach in action2.

Figure 11: Bird-eye view over the WTBs in the first scenario.

LOD 64x64 128x128 256x256 512x512
WC 3.20 ms 12.2 ms 49.9 ms 199 ms
WR 0.80 ms 2.80 ms 10.8 ms 44.0 ms
FPS >75 42 13 4

Table 1: Wave Calculation (WC) and Water Rendering (WR) times
in the first scenario.

In the first scenario, there are two WTBs, both of them covering
most of the water surface, see Figure 11. One of the WTBs in-
cludes one wave train, and the other two wave trains. The effects

2See http://www.idt.mdh.se/personal/tla/waves/

Figure 12: Wireframe rendering of the waves in the first scenario
with water grid LOD 512x512.

used were basic Gerstner waves and depth-dependent wave refrac-
tion. The measurements were repeated for four different levels-of-
detail (LODs) of the water grid, see Figure 12 for an example. The
execution times are presented in Table 1. As can be seen, the time
to generate the waves increases linearly with the number of grid
points as expected.

Figure 13: Scenario 2 with seven WTBs inside the view frustum.

In the second scenario, seven WTBs, with one wave train in each,
were included to be able to examine how VFC affected the execu-
tion time. A fixed water grid of size 256x256 was used. Again, ba-
sic Gerstner waves and depth-dependent wave refraction were used.
When all seven WTBs were visible (see Figure 13) the water calcu-
lation time was 57.7 ms. With none of the WTBs visible, the water
calculation time decreased to 0.6 ms. In cases where one or more
WTBs were culled, a speed-up of 3–10 ms per WTB was observed
depending on their sizes. When the water grid size was increased
to 512x512 in the same scenario, the water calculation time was
232.2 ms with all WTBs inside the view frustum, and the gain per
culled WTB was between 20–40 ms.

Effect 256x256 512x512
Depth-dependent refr. 1.2 ms 6 ms
Noise 3 ms 13 ms
Irregular height 9.5 ms 39 ms
Round waves 0.5 ms 1.4 ms

Table 2: The execution times of the tested wave effects for two
LODs of the water grid.

15

The second scenario was also used to measure the computation time
for various parts of the algorithm. The measured parts were depth-
dependent refraction, noise, irregular height, and round waves. The
results from this experiment, with all seven WTBs inside the view
frustum, are shown in Table 2.

4 Conclusion and future work

Even though realistic physically-based simulation of ocean waves is
too complex for real-time graphics application, it is clear that sim-
pler solutions, with a plausible look and feel, can be incorporated
with success in, e.g., computer games or virtual reality applications.
The key features which make plausible wind waves possible in our
approach are the linear time complexity, flexible and independent
wave effects, and VFC of WTBs. We expect that an implemen-
tation of our approach based on, e.g., the SIMD SSE instruction
set and multiple core CPUs, would improve the performance by an
order of magnitude making the computation of water surfaces of
1024x1024 grid points feasible in real-time. Some computations
can also be moved to the GPU for further improvements.

Possible future work includes examining various approaches to add
plausible foam, spray and breaking waves in an additional pass over
the visible WTBs. Working with dynamically moving WTBs would
also be interesting, e.g., to achieve waves generated by boats in mo-
tion. Another possibility would be to further accelerate the wave
generation process by improving the VFC. For example, this in-
cludes examining ways to efficiently clip WTBs only partly inside
the frustum.

References

AKENINE-MÖLLER, T., AND HAINES, E. 2002. Real-Time Ren-
dering (2nd Edition). A K Peters, Ltd.

BABOUD, L., AND DÉCORET, X. 2006. Realistic water volumes
in real-time. In Eurographics Workshop on Natural Phenomena,
Eurographics.

CIEUTAT, J. M., GONZATO, J. C., AND GUITTON, P. 2001. A new
efficient wave model for maritime training simulator. In SCCG
’01: Proceedings of the 17th Spring conference on Computer
graphics, IEEE Computer Society, Washington, DC, USA, 202.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In SIGGRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 23–30.

FOURNIER, A., AND REEVES, W. T. 1986. A simple model
of ocean waves. In SIGGRAPH ’86: Proceedings of the 13th
annual conference on Computer graphics and interactive tech-
niques, ACM Press, New York, NY, USA, 75–84.

GONZATO, J.-C., AND SAC, B. L. 1997. A phenomenological
model of coastal scenes based on physical considerations. In
8th Eurographics Workshop on Computer Animation and Simu-
lation, Springer-Verlag, Berlin, Heidelberg, Germany, 137–148.

GRIBB, G., AND HARTMANN, K., 2001. Fast extraction of view-
ing frustum planes from the world-view-projection matrix.

HE, H., LIU, H., ZENG, F., AND YANG, G. 2005. A way to real-
time ocean wave simulation. In Proceedings of the Computer
Graphics, Imaging and Vision: New Trends (CGIV’05), IEEE
Computer Society, Washington, DC, USA, 409–415.

HINSINGER, D., NEYRET, F., AND CANI, M.-P. 2002. Interac-
tive animation of ocean waves. In SCA ’02: Proceedings of the

2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 161–166.

HU, Y., VELHO, L., TONG, X., GUO, B., AND SHUM, H. 2004.
Realistic, real-time rendering of ocean waves. Computer Anima-
tion and Virtual Worlds. Special Issue on Game Technologies..

IGLESIAS, A. 2004. Computer graphics for water modeling and
rendering: a survey. Future Generation Computer Systems 20,
8, 1355–1374.

ISIDORO, J., VLACHOS, A., AND BRENNAN, C. 2002. Render-
ing ocean water. In ShaderX: Vertex and Pixel Shader Tips and
Tricks. Wordware Publishing.

KASS, M. 1991. Height-field fluids for computer graphics. In WSC
’91: Proceedings of the 23rd conference on Winter simulation,
IEEE Computer Society, Washington, DC, USA, 1194–1198.

KRYACHKO, Y. 2005. Using vertex texture displacement for realis-
tic water rendering. In GPU Gems 2, Programming Techniques
for High-Performance Graphics and General-Purpose Compu-
tation. Addison-Wesley, ch. 18, 283–294.

MIHALEF, V., METAXAS, D., AND SUSSMAN, M. 2004. Anima-
tion and control of breaking waves. In SCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM Press, New York, NY, USA, 315–324.

PEACHEY, D. R. 1986. Modeling waves and surf. In SIGGRAPH
’86: Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, ACM Press, New York, NY,
USA, 65–74.

RESIO, D. T., SWAIL, V. R., JENSEN, R. E., AND CARDONE,
V. J. 1999. Wind speed scaling in fully developed seas. Journal
Of Physical Oceanography 29, 1801–1811.

SCHNEIDER, J., AND WESTERMANN, R. 2001. Towards real-time
visual simulation of water surfaces. In VMV, 211–218.

SEMTNER, A. 2000. Ocean and climate modeling. Communica-
tions of the ACM 43, 4, 80–89.

STAM, J. 1999. Stable fluids. In SIGGRAPH ’99: Proceedings
of the 26th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 121–128.

STAM, J. 2003. Real-time fluid dynamics for games. In Proceed-
ings of the Game Developer Conference.

TESSENDORF, J. 2004. Simulating ocean water. In SIGGRAPH
’04: ACM SIGGRAPH 2004 Course Notes, ACM Press, New
York, NY, USA.

THON, S., DISCHLER, J.-M., AND GHAZANFARPOUR, D. 2000.
Ocean waves synthesis using a spectrum-based turbulence func-
tion. In CGI ’00: Proceedings of the International Conference
on Computer Graphics, IEEE Computer Society, Washington,
DC, USA, 65.

TS’O, P. Y., AND BARSKY, B. A. 1987. Modeling and rendering
waves: wave-tracing using beta-splines and reflective and refrac-
tive texture mapping. ACM Trans. Graph. 6, 3, 191–214.

16

Clustering Geometric Data Streams

Jiřı́ Skála∗

Ivana Kolingerová†

University of West Bohemia

Abstract

Using recent knowledge in data stream clustering we present a mod-
ified approach to the facility location problem in the context of geo-
metric data streams. We give insight to the existing algorithm from
a less mathematical point of view, focusing on understanding and
practical use, namely by computer graphics experts. We propose
a modification of the original data stream k-median clustering to
solve facility location which is the case when we a priori do not
know the number of clusters in the input data. Like the original, the
modified version is capable of processing millions of points while
using rather small amount of memory. Based on our experiments
with clustering geometric data we present suggestions on how to set
processing parameters. We also describe how the algorithm handles
various distributions of input data within the stream. These findings
may be applied back to the original algorithm.

CR Categories: I.5.3 [Computing Methodologies]: Pattern
Recognition—Clustering; I.3.5 [Computing Methodologies]: Com-
puter Graphics—Computational Geometry and Object Modeling

Keywords: data stream, clustering, facility location, geometric
data

1 Introduction

Data stream algorithms have been extensively studied in connec-
tion with databases and network statistics. However, there is not
much research dedicated to geometric data streams. Since geomet-
ric models are growing larger and larger like those from Stanford’s
3D Scanning Repository [Stanford 2007], data stream approach is
becoming essential to process such models. By clustering we can
significantly reduce the amount of data. Clusters can be then used
to create a multiresolution model. Data stream clustering is done
in a hierarchical way which gives a possibility to control the use of
memory. The algorithm runs with just several megabytes of mem-
ory while processing millions of points.

In our paper we propose a method for clustering geometric data in
a streaming fashion. Assuming we do not know how many clusters
there are, we think of the clustering as a facility location problem.
We present a modified k-median algorithm to solve the facility loca-
tion. Data stream processing is performed in blocks. Semi-results
from blocks are processed at higher levels. This leads to a hier-
archy which offers a possibility to build a multiresolution model.
Unlike many algorithms for large geometric data, our method can

∗e-mail: jskala@kiv.zcu.cz
†e-mail: kolinger@kiv.zcu.cz ; Work has been supported by the Ministry

of Education, Youth and Sports of the Czech Republic under the research
program LC-06008 (Centre for Computer Graphics).

process unordered points without any pre-processing. Based on our
experiments we give suggestions of algorithm parameter settings
and describe how the method works with various input data.

Section 2 briefly introduces problem background. Section 3
presents current state of the art in clustering and data stream al-
gorithms. Sections 4 and 5 describe the method in detail. Our mod-
ifications and improvements to the current algorithm are described
in Section 6. Section 7 presents the experimental evaluation. In
Section 8 we give a conclusion and suggest future work.

2 Background

2.1 Clustering

Clustering stands for a wide range of problems. It concerns group-
ing similar elements together to form clusters. Euclidean distance
is most often used as a measure of similarity. Perhaps the most
common is the k-centres or k-means clustering. In this case we di-
vide the elements (also referred to as points) into exactly k clusters
so that the sum of distances from each point to the corresponding
cluster centre is minimized. Another formulation of the problem is
the k-median or k-medoid clustering where we search for cluster
centres only among input points.

However, not always we know the number of clusters k. This prob-
lem is known as the facility location. A facility can be understood
as a cluster centre. Given a set of points we choose some of them
and open a facility there. All other points are connected to the clos-
est facility. The problem is then to determine at which points a
facility should be opened.

Since we want to minimize the distance between each point and its
facility, it would be best to open a facility everywhere. But that
is not what we want. That is why we introduce a facility cost -
a penalty for opening every facility. Since we assume no differ-
ences between facilities, we set the same cost for all of them. Then
we have the sum of distances between points and facilities on one
hand, and the sum of facility costs on the other hand. Facility cost
determines the balance between the cluster size and the number of
clusters. This leads to an overall clustering cost C which is the sum
of expenses for opening facilities plus the sum of distances from
points to their facilities.

C = k · fc +

N−1∑
i=0

‖ ci − fci ‖ (1)

where k is the number of open facilities, fc is the facility cost (the
same for all facilities), N is the number of points and ‖ ci − fci ‖
denotes the distance of point ci to its facility. Those points where
a facility is opened are supposed to be assigned to themselves thus
having zero distance from their facility.

2.2 Data Stream

Data stream is a sequenced set of data that can only be viewed in
order; there is no random access possible. Moreover, the set is
supposed to be too large to fit into main memory. The data may

17

come online in some time intervals or even the whole set may be
stored but in some slow external memory. So the data stream must
be processed in pieces and during one or very few linear scans.

3 State of the art

Clustering has been studied in many areas from many points of
view. An overview of clustering techniques may be found in [Jain
et al. 1999].

Several approaches exist for the facility location; a nice overview
can be found in [Shmoys 2000]. A fundamental approach is based
on linear programming relaxation [Chudak and Shmoys 2004;
Charikar and Guha 1999]. The facility location problem is formu-
lated as a linear programming (LP). The LP relaxation is solved in
polynomial time and gives an approximate solution to the original
problem. There is a related method also based on LP [Charikar
and Guha 1999; Chudak and Shmoys 2004]. It uses a primal-dual
scheme. A dual linear program is solved which gives a solution to
the primal problem.

Another approach uses a technique of local search [Charikar and
Guha 1999; Korupolu et al. 1998]. A coarse initial solution is iter-
atively improved by the local search. In each step a point is chosen
at random and it is determined whether it is profitable to open a fa-
cility there. If so, nearby points are reassigned to this new facility.
If there are facilities with a low number of points, these facilities
are closed and points reassigned elsewhere.

There are methods for clustering large databases. CLARANS [Ng
and Han 1994] views the problem of finding cluster centres as a
graph searching problem. Each set of centres is interpreted as a
graph node. By replacing one of the centres we get to a neighbour-
ing node. The task is to get to a node with the minimal clustering
cost. This is done by traversing the graph. To limit the computa-
tional complexity, CLARANS does a randomized search, i.e. it in-
spects just a random sample of neighbours for each node. BIRCH
[Zhang et al. 1996] uses another approach. For each cluster it
keeps a Clustering Feature - a vector of summary information about
the cluster. Clustering Features are organized in a CF tree. Leaf
nodes represent particular clusters. Higher nodes represent a clus-
ter formed by all the children subclusters. CURE [Guha et al. 1998]
uses a hierarchical clustering where small clusters are merged into
larger ones. CURE keeps a well scattered sample of points for each
cluster. It is a compromise between all-point and centroid-based
cluster representation. Samples are then used to identify nearby
clusters that should be merged together. Nevertheless, forenamed
methods do not perform true data stream processing. They require
the whole data set to be in the main memory.

[Muthukrishnan 2003] gives a nice overview of data stream algo-
rithms. Data stream clustering is extensively studied by Guha et
al. [Guha et al. 2000; O’Callaghan et al. 2002; Guha et al. 2003].
Using a hierarchical approach based on local search they solve
the k-median problem. Data stream processing is performed in
blocks. Semi-results from each block are maintained as a higher
level stream which is continuously reprocessed in the same way,
forming higher levels. [Meyerson 2001] deals with online facility
location. For each newly arrived point the algorithm measures the
distance to the nearest existing facility. It is then decided whether to
connect the point to that facility or whether to open a new facility at
the point. Charikar et al. propose algorithms that can handle outlier
points in input data [Charikar et al. 2001]. The main idea is that
some small fraction of points (outliers) may be left unassigned to
any cluster. A penalty is assigned to every outlier point and the sum
of penalties is added to the overall clustering cost (for the facility
location it is Equation 1).

Stream processing of geometric data is extensively studied by Isen-
burg et al. Their research ranges from streaming formats for poly-
gon meshes [Isenburg and Lindstrom 2005], streaming compres-
sion of geometric models [Isenburg et al. 2006a], to streaming com-
putation of Delaunay triangulation [Isenburg et al. 2006b]. Other
related works include polygonal models simplification [Lindstrom
2000] or approximate Voronoi diagrams [Sharifzadeh and Shahabi
2004]. Stream processing of points is addressed in [Pajarola 2005].
This work introduces so called stream operators which are applied
while sweeping sorted data. Perhaps the first use of clustering
for multiresolution models can be found in [Rossignac and Bor-
rel 1993]. It uses a simple clustering to create approximations
of 3D polyhedra for rendering complex scenes. More recent re-
search in clustering geometric data streams is described in [Frahling
and Sohler 2005] which is concerned with dynamic geometric data
streams. In such a case we have a set of points and the stream con-
sists of insert/delete operations among these points.

4 The clustering algorithm

As stated in Section 1 we will be concerned with the facility lo-
cation problem. Our solution employs the Local Search algorithm
proposed by Charikar and Guha [Charikar and Guha 1999]. First
an approximate initial solution is generated. It is then iteratively
refined by a series of local search improvements.

First suppose we already have some initial solution. Local search
improvements can start. We take a point at random and we ask a
question: What if we open a facility here? Would it be beneficial?
First we will have to pay for opening the facility (if it is not already
open). We then inspect all other points and compare the distance to
their current facility with the distance to the new facility candidate.
If the candidate lies closer, the point is reassigned to it, sparing
some connection expenses. To limit computational complexity, any
point can be reassigned only to the facility candidate. The time
complexity of this first phase of one local search step is O(N),
where N is the number of all points (we compute the distance of
the facility candidate to all other points).

After that some facilities may contain just a few points. If we re-
assigned all of these remaining points (even if the new facility is
farther), we would be able to close their old facility and spare the
facility cost for it. But we must be careful whether the facility cost
spared will overweight the expenses for reassigning points to a far-
ther facility. This second phase has O(N) time complexity too. It
could be computed simultaneously with the first phase.

So for some point p taken at random we determine whether it would
be profitable to open a facility there. This is expressed by the gain
function. Let us first define a distance spare dsi as the distance
we spare by reassigning point ci to p. It is the difference between
distances to the current facility and to the facility candidate p. If
the difference is negative (current facility lies closer then p) we set
dsi = 0. Next we define a close spare csj as a cost we can spare
by closing facility fj . It is the facility cost minus expenses for
reassigning all points from fi to p. Again if csj is negative (we
cannot spare anything) we set csj = 0. The gain function is then
computed according to Formula 2

gain(p) = −fc +

N−1∑
i=0

dsi +

M−1∑
j=0

csj (2)

where fc is the facility cost (zero if there is a facility already open
at p), N is the number of all points and M is the current number of
facilities. As stated before, computing function gain takes O(N)
time.

18

Now to the initial solution. A very coarse one is sufficient, since
local search will improve it quickly. All facilities have the same
cost, so we use a simple algorithm proposed in [Meyerson 2001].
Points are taken in random order. At the first one a facility is always
created. At every other point a facility is opened with probability
d/fc, where d is the distance of the current point to the closest fa-
cility and fc is the facility cost. If d/fc > 1 we set the probability
to 1.

The described local search technique is repeated N log N times.
The number of iterations is derived in [Charikar and Guha 1999].
The initial solution can be generated in O(N2) time. Function gain
has O(N) time complexity and is evaluated N log N times. So
the complete clustering algorithm has an overall time complexity
of O(N2 log N).

5 Clustering a data stream

For clustering a data stream we use a hierarchical approach pro-
posed in [Guha et al. 2000]. The algorithm inputs a block of points
from the data stream and performs a clustering on it. Resulting
facilities are given a weight according to the number of points as-
signed to them. Thus clusters containing more points have more
importance. Weighted cluster centres are then passed to a higher
level. Remaining points are discarded and the algorithm proceeds
with another block from the data stream.

Facilities at higher levels are treated as weighted points and are
also processed in blocks. When enough points gather to fill up an
entire block, they are clustered again. This time the distance of
a point to its facility is multiplied by the point weight. Resulting
cluster centres are given a weight equal to the sum of weights of
points assigned to them. Weighted facilities are again passed to a
higher level. Figure 1 illustrates the hierarchical processing. Black
dots indicate cluster centres in particular blocks. Blocks in the data
stream are delimited by bold lines.

input data stream

the first level

the second level

Figure 1: Hierarchical clustering.

The number of levels l required to process the entire data stream
can be computed as

l =
log(N/m)

log(m/k)
(3)

where N is the number of all points, m is the block size and k
is the average number of clusters in one block. The equation was
presented in [Guha et al. 2000] without any further explanation. Let
us show how it can be derived. At the zero level the data stream is
divided into N/m blocks. These blocks will be clustered, resulting
in N/m ·k facilities divided into N/m ·k/m first-level blocks. The
situation repeats at higher levels until resulting l-level facilities fit
into a single block. We can write this as

N/m · k/m · k/m · . . . · k/m = 1 (4)

where k/m repeats l-times. After rearrangement

N/m = m/k ·m/k · . . . ·m/k = (m/k)l (5)

Taking a logarithm of Equation 5 we get

l = logm/k(N/m) =
log(N/m)

log(m/k)
(6)

6 Our modifications and improvements

6.1 Making Local Search More Local

We may speed up the evaluation of function gain by limiting the
number of points that need to be inspected. Given a facility cost
fc, any point can be connected to a facility at most fc far away.
Otherwise it is cheaper to open a new facility at that point. Let us
define the influence area of facility f to be the circle with centre f
and radius fc. All points connected to f must then lie within its
influence area.

When computing the gain function we can inspect just those points
whose distance from the facility candidate is at most fc. How do
we find them? Any cluster can contain just points lying within ra-
dius fc from the cluster centre. So when we take all facilities in a
2 · fc radius around the facility candidate, and examine all points
connected to those facilities, we can be sure that we inspected all
necessary points.

The situation is illustrated in Figure 2. Facilities are shown as dots
with an influence area drawn as dotted circle. The facility candi-
date is designated black. We need to inspect all points that may lie
within its influence area IA. Such points can only belong to facili-
ties whose influence area overlaps with IA. Such facilities (shown
as diamonds) lie within the dashed circle with radius 2 · fc.

IA

Figure 2: Finding points that may lie within the facility candidate’s
influence area.

For weighted points the situation is a bit more complicated because
distances are multiplied by point weights. So a point with a small
weight can be connected to a distant facility, while a point with
a high weight should be connected to a nearby facility. But the
above idea can still be used. For each facility we find the point with
minimal weight wmin. The influence area radius is then fc/wmin.
So we need to inspect all points assigned to facilities lying at most
2·fc/wmin away from the facility candidate. Note that wmin could
be different for each facility.

6.2 From k-median to Facility Location

Cited papers deal with the k-median problem. They compute facil-
ity location repeatedly and using binary search they find such facil-
ity cost that yields exactly k clusters. Our modification computes
the clustering just once. Solving the facility location itself seems
to be just part of the original method, but it is not so simple. Since
we have no k we must choose a suitable facility cost to get natural

19

clusters. We suggest setting the facility cost for each block of data
equal to the diagonal of bounding box. This is discussed in detail
in Section 7.1.

Another problem brings clustering at higher levels. Points have
weights so all distances are multiplied by some (possibly large)
numbers. If we perform the clustering as usual, a facility would
be opened at almost every point because weights make them sev-
eral times farther from each other. We could increase the facility
cost but point weights will grow higher with increasing level and
we may encounter numerical problems. Instead of scaling the facil-
ity cost we decided to introduce weight normalization.

Points at level zero have unit weight. We would like to keep weights
around one also at higher levels. Therefore we divide all weights by
their average. The average of new weights will be one, exactly as
we wanted. It is important to do the normalization of all the points
in a block at the same time. That means not earlier then the block is
full. Normalizing weights right after clustering a lower level block
(before passing points to higher level) is wrong. Each block may
have a different number of clusters so the average weight may also
vary. Thus points from different blocks would not be normalized
equally.

7 Experiments and results

It this section we present experiments made with clustering geomet-
ric data. We discuss how the result depends on parameter settings
and on the distribution of points in the stream. We give recommen-
dations on how to set parameters to get a good clustering.

The algorithm was implemented in C# 2.0. Experiments were done
on Intel Pentium 4 3.2 GHz with 2 GB RAM and SATA HDD, run-
ning Windows XP Professional. All measured times include I/O
operations. Memory requirements were measured using the Perfor-
mance Monitor in Windows XP.

7.1 Setting the Facility Cost

The facility cost determines how strongly the data will be clustered.
High setting means an aggressive clustering resulting in a lower
number of large clusters. Low setting will cluster just moderately
producing many smaller clusters.

Some experiments are usually needed to find a facility cost that best
fits your needs. It is a counterbalance to point distances. We need
a small facility cost for clustering points in a unit square, and a
high one for points in [0; 106] interval. To avoid time consuming
normalization, the facility cost must be derived from the range of
point coordinates. Coordinate magnitude does not matter because
we only care about point distances. We suggest setting the facil-
ity cost for each block equal to the diagonal of bounding box. It
mostly produces good results. You can double the facility cost for
a stronger clustering or divide it by two (or even by four) to get a
moderate clustering.

Of course each block may have a different bounding box. So the
clustering will be performed in each block with a different facility
cost. But this is not a problem since we use weights. For a low
facility cost we get many facilities with a low weight. High facility
cost produces few facilities with big weight. Figure 3 shows an
example of clustering with a facility cost set to double and half
the diagonal respectively. Numbers show facility weights (before
normalization).

Remember that a strong clustering reduces the amount of data
faster. The algorithm may then run with fewer clustering levels,

Figure 3: Clustering with a double facility cost (left) and a half
facility cost (right). Figures cropped.

having lower memory requirements and shorter execution time. In-
deed, the opposite holds for a moderate clustering.

7.2 Input Point Distribution

Most authors concerned with large geometric data often rely on that
input data will be more or less ordered. Our algorithm can handle
unordered data as well.

If points arrive in order the algorithm processes them successively
cluster by cluster. Transitions between clusters are generally han-
dled correctly. The situation is illustrated in Figure 4. The dataset
contains 2200 points in four groups (550 points each). It was pro-
cessed with facility cost set equal to the bounding box diagonal,
block size 750. Frames a)–c) show three blocks at level zero. Re-
sulting facilities are passed to a block at the first level shown in
Frame d).

a) b)

c) d)

Figure 4: Clustering ordered data.

If points are scattered in the stream, and they come in a rather ran-
dom order, it does not mean any trouble. The algorithm will process
several points from different clusters at once. These points form
something like cluster fragments which will be merged at higher
levels. You can see an example in Figure 5. This is the same data

20

as in Figure 4, they were just shuffled. Processing parameters were
also the same. Frames a)–c) show three blocks at level zero. Result-
ing facilities are passed to a block at the first level which is shown
in Frame d).

a) b)

c) d)

Figure 5: Clustering unordered data.

7.3 The Block Size

The clustering also depends on the size of block in which input
data are processed. Block size basically affects execution time, the
amount of memory used and also the clustering result.

Let N be the number of all points, m be the block size and k be the
average number of clusters in each block. The number of all blocks
at all levels will be

N/m + N/m · k/m + N/m · k/m · k/m + . . . =

= N/m · [1 + k/m + (k/m)2 + . . .] =

= N/m · 1/(1− k/m) = N/m ·m/(m− k) =

= N/(m− k) (7)

As proved in [Charikar and Guha 1999], m log m local search itera-
tions are necessary for each block. So the total number of iterations
over all blocks will be

N/(m− k) ·m log m (8)

Because k is proportional to m, we can write

N/(m− c1 ·m) ·m log m = c2 ·N · log m (9)

where c1, c2 are some constants. So by decreasing block size m,
the number of iterations necessary to process the whole data set also
decreases.

Lowering the block size also decreases memory requirements. Let
l be the number of all levels. The amount of memory required is
proportional to

m · l = m · log(N/m)

log(m/k)
(10)

Since m/k can be considered constant, we can write

m · l ≈ m · log(N/m) (11)

whereas N � m. Figure 6 shows a graph plot of Equation 11
for N = 106 (the black line). In practice we must use an integer
number of levels (rounded up). This is shown as the grey line. You
can see spikes where the number of levels changes.

0

5 000

10 000

15 000

20 000

25 000

30 000

memory

block
size

14 00012 00010 0008 0006 0002 000 4 0000

m log(N/m)
m log(N/m)

Figure 6: Graph plot of memory requirements.

It would seem that it is best to process data in very small blocks,
but there is a drawback. When processing points in distinct blocks
the result is an approximation of an ideal clustering. Of course the
smaller the block, the worse the approximation. See [Guha et al.
2003] for details. According to our experiments, when varying
block size, the clustering also varies somewhat but it still looks
well. The major difference is that clustering in small blocks pro-
duces higher number of smaller clusters. Table 1 summarizes our
experiments with the Lucy model [Stanford 2007], 10 072 906 ver-
tices. The facility cost was set equal to the bounding box diagonal.

Table 1: The influence of block size on the clustering.
block
size

time
[h:m]

memory
[MB]

number of clusters
at particular levels

[points] level 1 level 2
1250 1:01 4.44 29 047 404
2500 1:58 3.97 28 400 366
5000 3:51 4.09 28 298 337
7500 5:43 5.27 28 270 336
10000 7:36 5.78 28 062 303

7.4 The Number of Iterations

[Charikar and Guha 1999] proved that O(m log m) local search it-
erations are necessary for a constant factor approximation to the
facility location. If we use large blocks, running time grows un-
pleasantly. We have made experiments with the number of itera-
tions and it seems that it can be reduced significantly without ma-
jor impact on results. Only about 0.1m iterations were necessary
for uniformly distributed data. Data with obvious clusters required
even less iterations.

You can see examples of clustering in Figure 7. The data set con-
tains 1640 points. They were processed in a single block with fa-
cility cost equal to the bounding box diagonal. Black dots indicate
points assigned to a different facility than to the closest one. It can
be used as an approximate measure of error. But remember that it
takes into account only the current set of facilities. No black dots
mean optimal assignment to currently open facilities. With a differ-
ent set of facilities, the clustering may be better.

21

Figure 7 a) shows the result after mdlog me = 6560 iterations,
clustering cost is 187. Figure 7 b) shows the result after 0.1m =
164 iterations; clustering cost is 194.6 which is 4% more then a).
Table 2 summarizes experiments with the Lucy model. The facility
cost was set equal to the bounding box diagonal. You can compare
time required for m log m and 0.1m iterations. If we use the re-
duced number of iterations, the clustering cost is slightly higher in
each block. The table records statistics about this error so you can
review the impact on clustering quality.

a) b)

Figure 7: Clustering results a) after 6560 iterations, b) after 164 it-
erations.

8 Conclusion and future work

We have presented a modified data stream approach to solve the
facility location problem on geometric data. We suggested an im-
provement to the facility location algorithm to limit the number of
points inspected when computing the gain function. We proposed
the facility weight normalization so that clustering works correctly
at higher levels. We also performed experiments on clustering ge-
ometric data, described algorithm behaviour in various situations
and discussed proper settings of particular parameters.

As a future work we would like to use this clustering method to
create multiresolution geometric models where the user can select
different levels of detail in various parts. It might be also interesting
to add topological constraints so that points from different parts of
model will not be joined into one cluster. Another interesting task
is to cluster a triangular mesh so that clusters are consistent with
the mesh topology. We could also take into account distribution of
points in the data stream. Points arriving short one after another will
be assigned to the same cluster, while points from different parts of
the stream (even geometrically close together) will go into different
clusters.

References

CHARIKAR, M., AND GUHA, S. 1999. Improved combinato-
rial algorithms for the facility location and k-median problems.
In IEEE Symposium on Foundations of Computer Science, 378–
388.

CHARIKAR, M., KHULLER, S., MOUNT, D. M., AND
NARASIMHAN, G. 2001. Algorithms for facility location prob-
lems with outliers. In Symposium on Discrete Algorithms, 642–
651.

CHARIKAR, M., GUHA, S., ÉVA TARDOS, AND SHMOYS, D. B.
2002. A constant-factor approximation algorithm for the k-
median problem. Journal of Computer System Sciences 65, 1,
129–149.

CHARIKAR, M., O’CALLAGHAN, L., AND PANIGRAHY, R. 2003.
Better streaming algorithms for clustering problems. In Proc. of
35th ACM Symposium on Theory of Computing (STOC), 30–39.

CHUDAK, F. A., AND SHMOYS, D. B. 2004. Improved approx-
imation algorithms for the uncapacitated facility location prob-
lem. SIAM Journal on Comp. 33, 1, 1–25.

FRAHLING, G., AND SOHLER, C. 2005. Coresets in dynamic
geometric data streams. In Proceedings of the 37th annual ACM
symposium on Theory of computing (STOC), 209–217.

GUHA, S., AND KHULLER, S. 1998. Greedy strikes back: Im-
proved facility location algorithms. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 649–657.

GUHA, S., RASTOGI, R., AND SHIM, K. 1998. CURE: An ef-
ficient clustering algorithm for large databases. In Proceedings
of ACM SIGMOD International Conference on Management of
Data, 73–84.

GUHA, S., MISHRA, N., MOTWANI, R., AND O’CALLAGHAN,
L. 2000. Clustering data streams. In IEEE Symposium on Foun-
dations of Computer Science, 359–366.

GUHA, S., MEYERSON, A., MISHRA, N., MOTWANI, R., AND
O’CALLAGHAN, L. 2003. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data Engineer-
ing 15, 3, 515–528.

ISENBURG, M., AND GUMHOLD, S. 2003. Out-of-core compres-
sion for gigantic polygon meshes. In SIGGRAPH’03 Conference
Proceedings, 935–942.

ISENBURG, M., AND LINDSTROM, P. 2005. Streaming meshes.
In Proceedings of Visualization’05, 231–238.

ISENBURG, M., LINDSTROM, P., AND SNOEYINK, J. 2005.
Streaming compression of triangle meshes. In Proceedings of the
3rd Eurographics symposium on Geometry processing (SGP),
111.

ISENBURG, M., LINDSTROM, P., GUMHOLD, S., AND
SHEWCHUK, J. 2006. Streaming compression of tetrahedral
volume meshes. In Graphics Interface, 115–121.

ISENBURG, M., LIU, Y., SHEWCHUK, J., AND SNOEYINK, J.
2006. Streaming computation of delaunay triangulations. ACM
Trans. Graph. 25, 3, 1049–1056.

JAIN, K., AND VAZIRANI, V. V. 1999. Primal-dual approximation
algorithms for metric facility location and k-median problems.
In IEEE Symposium on Foundations of Computer Science, 2–13.

JAIN, A. K., MURTY, M. N., AND FLYNN, P. J. 1999. Data
clustering: A review. ACM Computing Surveys 31, 3, 264–323.

KAUFMAN, L., AND ROUSSEEUW, P. J. 1990. Finding groups
in data: An introduction to cluster analysis. John Wiley, New
York.

KORUPOLU, M. R., PLAXTON, C. G., AND RAJARAMAN, R.
1998. Analysis of a local search heuristic for facility location
problems. In 9th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 1–10.

LINDSTROM, P. 2000. Out-of-core simplification of large polyg-
onal models. In Siggraph 20000, Computer Graphics Proceed-
ings, 259–262.

MAHDIAN, M., MARKAKIS, E., SABERI, A., AND VAZIRANI,
V. V. 2001. A greedy facility location algorithm analyzed using

22

Table 2: Experiments on the number of iterations.
block size
[points]

time for m log m
[h:m:s]

time for 0.1m
[h:m:s]

percent of time
used for 0.1m

min.
error

avg.
error

max.
error

1250 1:01:24 0:02:41 4.4% 0 1.5% 14.8%
2500 1:58:00 0:04:29 3.8% 0.2% 1.6% 5.0%
5000 3:51:01 0:07:45 3.4% 0.5% 1.7% 4.9%
7500 5:43:21 0:11:09 3.3% 0.5% 1.7% 3.5%
10000 7:36:36 0:14:32 3.2% 0.8% 1.6% 3.2%

dual fitting. In 4th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems (APPROX),
127–137.

MEYERSON, A. 2001. Online facility location. In Proceedings of
the 42nd IEEE symposium on Foundations of Computer Science
(FOCS), 426.

MUTHUKRISHNAN, S. 2003. Data streams: Algorithms and appli-
cations. In Proceedings of the 14th annual ACM-SIAM sympo-
sium on discrete algorithms.

NG, R. T., AND HAN, J. 1994. Efficient and effective clustering
methods for spatial data mining. In 20th Intl. Conference on Very
Large Data Bases, 144–155.

O’CALLAGHAN, L., MISHRA, N., MEYERSON, A., GUHA, S.,
AND MOTWANI, R. 2002. Streaming-data algorithms for high-
quality clustering. In 18th International Conference on Data
Engineering (ICDE), 685.

PAJAROLA, R. 2005. Stream-processing points. In Proceedings
IEEE Visualization, 239–246.

ROSSIGNAC, J. R., AND BORREL, P. 1993. Multi-resolution
3D approximations for rendering complex scenes. In Geomet-
ric Modeling in Comp. Graphics, 455–465.

SHARIFZADEH, M., AND SHAHABI, C. 2004. Approximate
voronoi cell computation on geometric data streams. Tech. Rep.
04-835, University of Southern California, Computer Science
Department.

SHMOYS, D. B. 2000. Approximation algorithms for facility lo-
cation problems. In Proceedings of International Workshop on
Approximation Algorithms for Combinatorial Optimization (AP-
PROX), 27–33.

STANFORD, 2007. Stanford 3D scanning repository.
http://graphics.stanford.edu/data/3Dscanrep/.

ZHANG, T., RAMAKRISHNAN, R., AND LIVNY, M. 1996.
BIRCH: An efficient data clustering method for very large
databases. In ACM SIGMOD International Conference on Man-
agement of Data, 103–114.

23

Improving Introductory Programming Courses by Using a Simple Accelerated
Graphics Library

Thomas Larsson and Daniel Flemström
Department of Computer Science and Electronics

Mälardalen University
Sweden

Abstract

We present a platform independent and hardware accelerated graph-
ics library, which has been found to be a suitable educational tool
for novice programmers. The purpose of the library is to change
the nature of the assignments and projects used in introductory pro-
gramming courses to something that fascinate and stimulate the stu-
dents, e.g., game creation. We describe our experiences from using
the presented graphics library in four different course instances of
our introductory C++ course. The course surveys show that most
students found the approach interesting and fun. As faculty, we
could clearly see how many students became highly engaged in
their projects and some of them accomplished solutions way be-
yond our expectations. In particular, compared to the programming
courses we have given in the past, in which a standard framework
for creating window applications was used, we have noticed a sig-
nificant improvement in terms of the quality of the students’ project
solutions.

CR Categories: K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer Science Education

Keywords: programming, teaching, motivation, graphics, games

1 Introduction

The motivation that drives the students is of vital importance for
what they accomplish during their education. This is especially true
in programming courses, where students have to spend a lot of time
practicing, i.e. writing and debugging code [Jenkins 2001]. But
what makes students in introductory programming courses inter-
ested and enthusiastic? Despite that there are no simple answers to
this question, we have noticed that there are some types of projects
that can make a difference. Graphics, multimedia, and game appli-
cations seem to fascinate a broad category of students [Guzdial and
Soloway 2002]. In particular, many of our students seem to enjoy
programming video games.

Therefore, we have experimented with this idea of using a graphics
library in four different instances of an introductory course on C++
programming. Students entering the course were assumed to have
previous programming experience equivalent to five weeks of train-
ing in imperative programming. As a final project in the course,
we let the student implement a sprite based video game in 2D. We
wanted the complexity of theses games to resemble the complexity
of classical games like e.g. Pacman, Asteroids, Space Invaders, or
Tetris, including graphics, interactivity, and sound. To make this
a reachable goal, we implemented the Simple Accelerated Graph-
ics Library (SAGLib). The main contribution of the library lies
in the unique simplicity in the way it provides access to hardware
accelerated computer graphics for novice C or C++ programmers.
Other existing tools are either designed to be used with other pro-
gramming languages, have unnecessarily complex APIs for novice
students, do not support the creation of fully interactive graphics
applications, or do not exploit hardware accelerated graphics.

The results of using our library were mainly satisfactory. In course
surveys, as well as in class-room conversations, the students ex-
pressed that by using the simple graphics library, the programming
experience became visually rewarding, which served as an extra
motivation factor for them to produce better and more interesting
project solutions. It also turned out that the library in itself intro-
duced no, or very little, extra complexity, compared to program-
ming text-based applications. Thus, the students were able to focus
on the design and programming of the application, without worry-
ing about low-level graphics details.

The remainder of this paper is organized as follows. In the next
section, relevant prior work is reviewed. Section 3 briefly presents
the design of the library and some minimal example applications
are given. How the library has been integrated in our introduc-
tory C++ course is described in Section 4, and some examples of
student projects are also given. Then, in Section 5, the evaluation
results as well as the experiences gathered from using the library
in our courses are discussed. Finally, our conclusions are given in
Section 6.

2 Related Work

Increasing the motivation by using graphics in introductory pro-
gramming courses is not a new idea. Roberts reports on using a
C-based Graphics Library for the first programming course with
good results [Roberts 1995]. Another suggested approach supports
the creation of simple graphics applications, while keeping the sim-
plicity of text-based programming by letting the compiler automat-
ically create a graphical user interface for programs that otherwise
would appear to be text-based. For example, this makes it possible
for students to create simple games like tic-tac-toe, checkers, or bat-
tleship. More sophisticated graphics programs, however, including
e.g. animations, are not possible in this case [Carlisle 1999].

A more powerful approach is to provide a simple graphics library
that hides as much of the code complexity as possible that arise
when using advanced graphics and windowing systems, but still
enables the possibility to create powerful graphics programs. Astra-
chan and Rodger report that the key benefit of using their library is
that interactive graphics generate student interest and enthusiasm,
which often lead to increased learning and mastery of the course
material. In addition, in many cases, the visual feedback from
the programming assignments immediately reveals the existence of
bugs, which provides guidance in the debugging process [Astrachan
and Rodger 1998].

Childers et al. present EzWindows, which is a simple and portable
graphics library for teaching object-oriented programming using
C++. The main purposes of their library are to help students grasp
the object-oriented paradigm as well as make it possible for stu-
dents to create programs that resembles the look of other programs
in modern desktop computers [Childers et al. 1998].

Rasala argues for the use of toolkits in general in any modern first
year computer science curriculum. For example, graphics toolk-
its are needed because graphics is not a built-in feature in many

24

Operating System

OpenGL

GLUT

SAGLib

Figure 1: SAGlib provides a complete layer that hides the operat-
ing system, GLUT, and OpenGL for the application programmer.

languages. Graphics is necessary for many important computing
activities, helps in the debugging process by revealing errors, and
students are attracted to the discipline by computer-generated im-
ages [Rasala 2000].

The integration of a multimedia project in basic programming
courses that emphasizes alternative learning styles through collab-
orative team work has also been proposed [Wolz et al. 1997]. In the
media computation approach, suggested by Guzdial as a response
to the widespread use of traditional, overly-technical, and abstract
course content, all programs written manipulates sound, images,
and movies to increase student motivation and hopefully enabling
a deeper learning [Guzdial 2003; Guzdial and Soloway 2002]. The
leading stars behind the approach were relevance (concrete domain
examples), creativity (open-ended assignments), and social (collab-
oration and sharing of experiences) [Tew et al. 2005].

Meyer presents a new course design for novice programmers using
the language Eiffel together with a graphics library called TRAF-
FIC, which includes some basic elements of a Geographical In-
formation System [Meyer 2003]. The immediate usage of well-
designed interfaces, APIs, hiding simple to use, but internally so-
phisticated, functionality is captured by the name Outside-In, or the
Inverted Curriculum, rather than traditional bottom-up or top-down
approaches. Data gathered from two course instances indicate stu-
dent appreciation and higher grades compared to previous course
versions [Pedroni and Meyer 2006]

Furthermore, we note that graphics and games are not the only way
of letting students work on for them more meaningful and concrete
projects. Another good example is to use programming of robots
to concretize the projects and stimulate student interest [Lawhead
et al. 2003].

Of course, there are many other factors besides the usage of ap-
propriate toolkits and libraries that instructors need to take into ac-
count to be successful in teaching introductory programming, for
example the choice of programming languages, programming en-
vironments, classroom techniques, and type of examination. These
factors, however, will not be discussed in this article. An interest-
ing taxonomy of the first two factors, however, has been given by
Kelleher and Pausch [2005].

3 Library Design

Roberts [1995] proposed the following four important interface de-
sign criteria for their graphics library:

i It must be simple.

ii It must correspond to student intuition.

iii It must be powerful enough for students to write programs
they think are fun.

iv It must be widely implementable.

Furthermore, we can add that the usage of a library in a course
should be motivated by it giving a direct or indirect benefit with
respect to the course objectives.

When designing SAGLib, these were the design criteria we had
in mind. Therefore, we decided to provide only a limited num-
ber of simple functions. The API hides the inner complexity of
OpenGL and GLUT. This makes it possible for the students to fo-
cus on data structures and programming rather than graphics pro-
gramming. This is illustrated in Figure 1. Note that the application
programmer only needs to know anything about SAGlib to create
simple accelerated graphics applications. Both the C and C++ API
provide functionality for

• setting up and displaying a window,

• controlling pens, colors and transparency,

• drawing bitmaps and shapes, with or without simple geometry
transformation, and

• simple event handling for mouse, keyboard, resize, and redis-
play

For simplicity, our graphics interface is mainly restricted to 2D
graphics applications. It supports the drawing of basic 2D shapes,
bitmaps, and text. An event-based execution model is used, to-
gether with basic timer functionality to support animation. The li-
brary also provides basic mouse and keyboard input handling. In
our simple setting, this functionality makes the creation of simple
video games, or the creation of other types of media rich applica-
tions, a reachable goal, even for novice programmers. We note,
however, that it has also been demonstrated, through the ALICE
system, that novice programmers can develop interactive 3D graph-
ics and animation as part of their initial learning of programming
concepts [Cooper et al. 2000].

To make the library useful for courses using the imperative as well
the object-oriented programming paradigm, we use a two layer API,
one in C and one in C++. Also, since our library is implemented on
top of standard OpenGL, it becomes very powerful considering the
huge improvements over the last few years in commodity graphics
hardware. This also means that the library can make use of special
3D graphics functionality internally, for example texture mapping
and alpha blending, as appropriate. This approach also make the li-
brary portable. Furthermore, we use GLUT for basic window han-
dling [Kilgard 1996], which also is supported on many platforms.
Both OpenGL and GLUT, however, are invisible for users of our
library1. The latest version of our library is freely available on the
web [Larsson and Flemström 2006]

Hardware acceleration is automatically enabled since SAGLib is
based on OpenGL. We use an orthographic projection with a one-
to-one mapping between world positions and pixel coordinates. No
z-values need to be specified; they are assumed to be zero. Thus,
the 2D graphics image will be specified in the x-y plane.

OpenGL was chosen for several reasons. First of all, we wanted
access to the high performance available in commodity graphics
hardware in a simple way. Many of the accelerated functions sup-
ported in 3D graphics hardware is very useful also in 2D graphics
applications, for example double buffering, geometry transforma-
tion, primitive rasterization, texture mapping and alpha blending.

1It is still possible for skilled students to access OpenGL functionality
directly if so wanted.

25

Function names
sgDrawPoint sgDrawLine
sgDrawRect sgDrawFilledRect
sgDrawCircle sgDrawFilledCircle
sgDrawTriangle sgDrawFilledTriangle
sgDrawQuad sgDrawFilledQuad
sgDrawText

Figure 2: The drawing functions supported in SAGLib.

The tremendous performance of today’s graphics accelerators, also
means that everything can be redrawn at each display update with-
out much performance penalty. Furthermore, the graphics render-
ing is double buffered for flicker-free animation. All this simplifies
for the student who can concentrate on the main programming tasks
instead of, for example, optimizing the graphics drawing strategy.

The geometrical drawing functions that are supported are listed in
Figure 2. These basic shapes are drawn with the current pen and
color. An alpha value is also associated with each chosen color. It
can be specified as a value between 0 − 255; that is, from fully
opaque to fully transparent. The pen, transparency and color selec-
tions will be used until changed by new API calls. This reduces
the number of arguments to the functions and the complexity of the
API.

Since each color drawn may be transparent, and alpha blending is
always enabled, many exiting effects can be created with little ef-
fort, for example, sprite animation and clouds. Transparent bitmaps
are often unnecessary complex to achieve in other programming
environments. In SAGLib, we have simplified internal representa-
tion of graphic formats by only using the true color format with 32
bits (RGBA) per pixel. Each pixel may have its own transparency.
Thus, a bitmap may have arbitrary many transparent colors.

Also, since font handling usually is quite complex, text output has
been reduced to one fixed font. Some students, however, have cre-
ated their own text styles by drawing custom designed bitmaps. To
reduce complexity even further, only one window is allowed per
application and we have pre-defined the major application settings,
just leaving the window size, position and caption to the user. All
event handling has been hidden within the library. The user cre-
ates a display drawing function, which the library use as a call-
back routine. In this function, the API functions for pens, colors,
transparency, bitmaps, and shapes may be used. Also, the system
calls the display function automatically when for example the user
moves or resizes the window.

Since threading is a very complex issue, we have reduced the num-
ber of timers to one, which means that the application will run in
one thread. In the callback routine of the timer, the code to calculate
and update the positions of e.g. moving shapes or sprites should be
placed. Together with the support for drawing transparent bitmaps,
the timer functionality makes it very simple for the students to in-
clude sprite animations in their applications.

3.1 Creating Applications

To make the library more widely usable, it includes support for both
C and C++ programming. The C API encapsulates and hides the
operating system, GLUT and OpenGL from the application pro-
grammer. An event-based execution model is used, which means
that the application programmer can subscribe on events by regis-
tering callback functions. There are support for keyboard, mouse,
redraw, resize, and timer events. An example of a minimal graphics
application in C that draws a rectangle in the application’s window

void myDisplay(void) {
sgClearDisplay();
sgDrawFilledRect(500, 20, 200, 230);
sgFinishDisplay();

}

void main() {
sgInitGraphics(400, 400,"MyApp", myDisplay);
sgMainLoop();

}

Figure 3: A minimal C program using SAGLib.

class MyApp:public Application {
public:

int cx;
Bitmap bitmap;

MyApp(void) : cx(0) {
bitmap.initFromBMP("player.bmp");
bitmap.addTransparentColor(255,255,255);

}

void onDraw(Graphics& g) {
g.setColor(200, 50, 0);
g.drawFilledRect(50, 50, 50, 50);
bitmap.draw(g, cx, 100);

}

void onKey(unsigned char key,int x,int y) {
if(key == ’l’) cx = cx + 3;
if(key == ’k’) cx = cx - 3;
updateDisplay();

}
};

void main(void) {
MyApp app;
app.init("MyApp");
app.showModal();

}

Figure 4: A simple C++ program using SAGLib.

is shown in Figure 3.

The C++ level completely encapsulates the C-level API which
means that the students can use object-oriented programming
throughout their entire applications. The C++ API consists of three
classes. Application, Graphics and Bitmap. Each user application
inherits from the Application class. The Application class sets up
the window and handles the window events, such as mouse, key-
board, drawing events, timers and so on. Subscriptions for avail-
able events are automatically set up in the Application class by the
usage of virtual member functions. You may also check the state
of a specific key with the function Application::isKeyDown which
allows games where several keys might be pressed at the same time.

The OnTimer method in the Application class should be overrid-
den to handle position updates, calculations etcetera. Last in this
method, a call to Application::updateDisplay will raise the OnDraw
event. The Graphics class handles double buffering automatically
and gives access to the accelerated graphics primitives in an object
oriented way. All primitive graphics functions from the C-level API
can be found as class methods on the Graphics object.

The example application in Figure 4 creates a window on the

26

screen, loads a bitmap from file and allows the user to control it
with the keyboard. The bitmap acts as a simple sprite, where the
color white is specified as completely transparent. It can be noted
that the rectangle drawn before the user-controlled bitmap appear
to be behind it at all times.

4 Course Design

Here we will present some details of how we have used SAGLib in
our C++ course. The purpose of the course is to teach the funda-
mentals of the C++ language. In the course syllabus the following
topics are included:

- Control structures: selection, iteration, recursion

- Functions

- Arrays, pointers, and strings

- Classes and objects

- Operator overloading

- Inheritance

- Dynamic binding

- Templates

- Data structures and algorithms in the Standard Template Li-
brary.

- IO streams and file processing

The course objectives state that students, upon completion of the
course, will be able to

- Understand the differences between imperative vs. object-
oriented programming.

- Writing object-oriented programs in C++ on their own that
demonstrate mastery of object-oriented concepts such as ab-
stract data types, encapsulation and information hiding, func-
tion and operator overloading, inheritance, and polymor-
phism.

- Understand the execution model of event-based programs
with graphical user interfaces.

Some examples of topics that we usually only touch upon briefly in
the course are exception handling, name spaces, and object-oriented
analysis and design. Note, however, that these are not programming
skills that were removed from the course because of the inclusion
of our graphics library. The only thing that we have removed from
earlier incarnations of the course is the usage of another more ad-
vanced class library for the creation of graphical user interfaces.

The course included lectures, laboratory work, take-home exer-
cises, a project task, and a final written exam. The graphics library
was introduced right from the start of the course. An overview of
the library and some initial examples were presented already on the
first lecture. Also, some initial exercises based on SAGLib were
carried out in the first laboratory session.

For example, a concrete and visually rewarding way to practice it-
eration together with two dimensional arrays is simple image or
bitmap manipulation. Some examples of operations that are suit-
able to be implemented by novice programmers are image color
inversion, vertical and horizontal flip, and color to gray scale con-
version. An example of the first operation is given in Figure 5. In

Figure 5: Results of a simple image color inversion operation.

Figure 6: The Pythagoras Tree — a simple example of a recursively
generated image.

this case, the inverted RGB color, I , for each pixel is simply given
as

Ired = 255 − Sred

Igreen = 255 − Sgreen

Iblue = 255 − Sblue

where S is the RGB color of the corresponding pixel in the source
image. Other slightly more advanced exercises would be to imple-
ment linear filtering such as blur, sharpen and edge detection. These
operations involves calculating a new pixel color as a weighted av-
erage of a neighborhood of pixels in the source image.

When teaching recursion, which is a concept that many computer
science students perceive as difficult, naturally visual examples may
contribute to the students’ learning and appreciation of this concept.
Some concrete examples are various forms of simple fractal images
such as the Pythagoras tree, the Koch snowflake, and the Sierpinski
triangle (or gasket). In Figure 6, an image of the Pythagoras tree
is shown which has been produced by a simple SAGLib program
that we use as a code example when teaching recursion. Another
interesting recursion example that we have used is a simple version
of the flood fill algorithm for painting the interior of arbitrary shapes
in a pixel-based image.

27

Year 2003
Q N R 1 2 3 4 5 Average Median
Q1 29 18 1 0 1 12 4 4.00 4
Q2 29 15 0 0 6 3 6 4.00 4

Year 2004
Q N R 1 2 3 4 5 Average Median
Q1 21 12 0 0 3 1 8 4.42 5
Q2 21 12 0 1 6 0 3 3.50 3

Year 2005
Q N R 1 2 3 4 5 Average Median
Q1 51 31 0 0 6 14 11 4.16 4
Q2 51 26 1 2 11 5 7 3.58 3

Year 2006
Q N R 1 2 3 4 5 Average Median
Q1 22 14 0 1 2 7 4 4.00 4
Q2 22 14 1 1 4 3 5 3.71 4

Table 1: Results from course surveys during 2003-2006. Note that
N is the number of enrolled students and R is the number of re-
sponses we received.

Later on, somewhere in the middle of the course, take-home as-
signments are given out in which the students create a very simple
example game step by step in order to learn to understand timer
events, drawing simple shapes and keyboard handling. In another
preparatory assignment, the state pattern is used to implement a
rudimentary animated submarine game. The submarine has dif-
ferent animations depending on how it moves on the screen. The
purpose of this is to learn handling interactive graphics and game
character states.

4.1 Student Projects

As the major programming task or project, the students are given
the opportunity to create a simple action game that includes sprite
animation, several game levels, saving and loading options, and op-
tionally a high score list and sound effects. The students are also
allowed to design a game idea more freely of their own, if they
so wish. In this way, they get the opportunity to choose a task
that really interest them, potentially increasing their motivation and
creativity further. They are required, however, to get their design
approved by the course leader to make sure that the level of diffi-
culty of the implementation seems reasonable with respect to the
goals of the course. Screen shots from some student projects are
shown in Figure 7. Other examples of projects the students have
accomplished are remakes of early home computer games such as
Manic Miner and Jet-Pack, helicopter and aeroplane games, and
sports games.

5 Evaluation and Discussion

The proposed approach has been employed in four course instances
during 2003–2006. Evaluation was carried out by course surveys at
the end of each course. The following survey questions were used:

Q1 How would you rate the overall quality of this course (1-5)?

Q2 How would you rate the usage of SAGLib in the course (1-5)?

Q3 In what ways did you benefit from the project task?

Q4 What were the strongest features of this course?

Q5 What were the weakest features of this course?

Q6 How would you like to see this course changed in the future?

There were also some additional questions on the survey where the
students could give comments on the lectures, assignments, and
exercises, and also, they were encouraged to give advices to the
teachers. The survey results from the first two questions are given
in Table 1.

Regarding the usage of SAGLib, some characteristic positive com-
ments given as answers to the other questions (Q3–Q6) are:

- SAGLib was fun. Even something as simple as incrementing a
variable becomes fun if something is happening on the screen.

- SAGLib has been working very well. Good structure and
childishly simple to use.

- It’s fun with graphics because of the visible results one gets.

- SAGLib is user friendly.

- I think SAGLib is the best I ever have seen.

- It was nice to get graphical results from one’s hard work, in-
stead of the usual command prompt.

- SAGLib made it easier so that one could focus on the impor-
tant things.

- It was a pleasure to work with a rather simple graphical user
interface.

- The project was good, making games instead of making pro-
grams.

Many of these comments were repeated with some variations by
other students. From all the given comments, it was clear that a
strong majority of the students expressed that the usage of SAGLib
benefitted the course and their own learning experience in one way
or another. To exemplify how fond of the library some of the stu-
dents have become, we can mention that several students have come
visiting us after the course asking if they are allowed to use the li-
brary for making their own games at home.

Over these years, only a handful of students have expressed some
negative things or feelings about SAGLib. As the following com-
ments show, some of the more skilled students wanted to use more
advanced graphics APIs with more features. Unfortunately, some
students also ran into problems in their project because of some
bugs that appeared in the graphics library, which we could feel
made them dislike the library. Here are some characteristic criti-
cisms which were expressed in the surveys:

- SAGLib doesn’t feel perfect. Some features are missing.

- I don’t understand why we must use SAGLib when there are
better well-documented alternatives.

- The graphics becomes slow if one uses many and relatively
large images with SAGLib.

- SAGLib was buggy.

The course evaluations, together with our own experiences from
interacting with the students during these courses, have made it ev-
ident for us that the usage of SAGLib has improved our introduc-
tory C++ course. In particular, we could see that the combination
of take-home assignments and usage of SAGLib that we used was
highly appreciated. It was a strong correlation between the stu-
dents that finished their take-home assignments and the students
that finished their projects on time. Also, at the end of the courses,
a final written exam was given, which showed that most students

28

Figure 7: Screen shots from four different student projects.

were able to use their acquired skills, from the take-home assign-
ments and their projects, to solve relevant programming problems
satisfactorily.

Over the years we have tried to use OWL (Borland’s Graphics Li-
brary), MFC and straight WIN32 programming for the final project
in our introductory C++ course. All of these libraries required that
the student more or less got a finished application to modify. This
was perceived to be rather difficult and there was a lot to learn about
all classes in respective library. Much time was consumed by trying
to use the wrong class in the wrong context. For example, to use
transparent bitmaps, students were forced to write or cut and paste
code they did not fully understand. The supposed to be fun event
driven graphics programming and C++ design were obscured by
these frameworks. With SAGLib, on the other hand, there are few
functions and classes to master, which means that the students were
able to concentrate on solving the intended problem. Since they
could concentrate on design and C++ issues, we could see how the
quality of their solutions was increased significantly compared to
previous years.

We would also like to point out that today’s students are well aware
of the advanced graphical user interfaces that most applications
have in modern windowing systems. If they want to learn pro-
gramming, but are only allowed to create programs using simple
textual input and output they might get discouraged. Furthermore,
the usage of graphics in programming might help the instructor in
creating a feeling among the students that programming is fun. This
can raise the students interest and enthusiasm and make them work
harder and learn more. Another benefit of using a graphics system
in learning programming is the direct visual feedback you can get
as a result of your programming, which may be very helpful when
debugging. Another possibility is to use graphics to visualize how
algorithms work. Special code for algorithm animation can be pro-
vided by the instructor or the students themselves can produce an
algorithm animation as a programming exercise.

A possible drawback of using a graphics library in introductory pro-
gramming courses would be that learning to use the library could
consume too much time, and so forcing the instructor to remove

other important concepts or exercises from the course. It is there-
fore important that the graphics system is simple to use and that it
provides a fruitful base for learning the programming abilities the
course is meant to teach. It is the task of the library to make the pro-
gramming work easier, and a more joyful experience, not to lay an
additional burden upon the students. We have found that SAGLib
fulfills these goals extremely well.

Some faculty may also argue that it is better to focus on using func-
tions and classes that are supported in international standards than
on using a non-standardized graphics API in introductory courses.
Many programming principles and solutions, however, may very
well be illustrated by considering the design of the graphics library
itself. Also, programmers in industry use different frameworks,
toolkits and libraries on a daily basis [Rasala 2000].

Regarding survey question Q6 about future changes for the course,
a student wrote: “Don’t force everyone to make games”. It is true
that the library mainly has been used for simple game programming
in our courses, but nothing really hinders the library to be used
outside this context to be more appealing for a broader category of
students. Therefore, we are planning to emphasize the open-ended
nature of the programming project more in the future to make it
clear that students really have the opportunity to be creative also
outside the game programming context.

The good project results we have observed can partly be explained
by the fact that the presented course was not the students very first
programming course. They were novice C++ programmers, but
they had taken a first course in an imperative programming lan-
guage previously. Therefore, it would also be interesting to try
using SAGlib in a course where the students have no earlier pro-
gramming experience at all. Maybe a somewhat simpler project
would be required in such a case.

Interestingly, we have been told that SAGLib already has been used
in some programming projects in upper secondary school in co-
operation with our university. Also in this case, simple games with
2D graphics, e.g. Tetris, were implemented successfully, and the
pupils were reported to be satisfied with the library [Nolte 2006].

29

Before the pupils entered the project, however, they have already
been briefly introduced to rudimentary programming of text-based
applications at their school.

6 Summary and Conclusions

It is true that there are many difficulties students encounter while
learning basic programming skills [Jenkins 2002]. We believe,
however, that if students find the programming assignments inspir-
ing, it can motivate them to overcome many of the arising problems.

To be successful, instructors need to consider the motivating factors
that drive the students. In fact, many students in computer science
find computer graphics to be one of the most interesting subjects in
the curriculum [Carlisle 1999]. Also, applications in modern op-
erating systems are expected to have sophisticated graphical user
interfaces. Thus, it makes sense to allow the students to learn pro-
gramming by using a simple graphics API.

When we used our simple accelerated graphics library in our intro-
ductory programming courses, we experienced very encouraging
results. By providing a simple way to create graphics applications
many students show more interest and enthusiasm in the program-
ming exercises. In particular, we have found that the possibility to
create arcade-style video games, with fast, flicker-free sprite anima-
tion, through hardware accelerated graphics attracts many students.

Of course, incorporating a graphics library into basic programming
courses must be done in a careful and proper way to ensure that
usage of graphics enrich the learning experience. It is important
to note that the usage of the library must not introduce extra code
complexity that risks to take the students focus away from the basic
programming skills they try to learn. Because of the simplicity of
our library, however, we have not noticed any such negative effects.

References

ASTRACHAN, O., AND RODGER, S. H. 1998. Animation, visu-
alization, and interaction in CS 1 assignments. In SIGCSE ’98:
Proceedings of the twenty-ninth SIGCSE technical symposium
on Computer science education, ACM Press, New York, NY,
USA, 317–321.

CARLISLE, M. C. 1999. Graphics for free. ACM SIGCSE Bulletin
31, 2, 65–68.

CHILDERS, B., COHOON, J., DAVIDSON, J., AND VALLE, P.,
1998. The design of EzWindows: A graphics API for an in-
troductory programming course.

COOPER, S., DANN, W., AND PAUSCH, R. 2000. Alice: a 3-
D tool for introductory programming concepts. In CCSC ’00:
Proceedings of the fifth annual CCSC northeastern conference
on The journal of computing in small colleges, Consortium for
Computing Sciences in Colleges, USA, 107–116.

GUZDIAL, M., AND SOLOWAY, E. 2002. Teaching the Nintendo
generation to program. Commun. ACM 45, 4, 17–21.

GUZDIAL, M. 2003. A media computation course for non-majors.
In ITiCSE ’03: Proceedings of the 8th annual conference on In-
novation and technology in computer science education, ACM
Press, New York, NY, USA, 104–108.

JENKINS, T. 2001. The motivation of students of programming.
In ITiCSE ’01: Proceedings of the 6th annual conference on In-
novation and technology in computer science education, ACM
Press, New York, NY, USA, 53–56.

JENKINS, T. 2002. On the difficulty of learning to program. In
Proceedings of the 3rd annual LTSN-ICS Conference, 53–58.

KELLEHER, C., AND PAUSCH, R. 2005. Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM Comput. Surv. 37, 2,
83–137.

KILGARD, M. J., 1996. The OpenGL Utility Toolkit (GLUT) pro-
gramming interface, API version 3, November.

LARSSON, T., AND FLEMSTRÖM, D., 2006. SAGLib: Simple
Accelerated Graphics Library. http://www.idt.mdh.se/SAGLib.

LAWHEAD, P. B., DUNCAN, M. E., BLAND, C. G., GOLDWE-
BER, M., SCHEP, M., BARNES, D. J., AND HOLLINGSWORTH,
R. G. 2003. A road map for teaching introductory programming
using LEGO mindstorms robots. SIGCSE Bull. 35, 2, 191–201.

MEYER, B. 2003. The outside-in method of teaching introductory
programming. In Ershov Memorial Conference, volume 2890 of
Lecture Notes in Computer Science, M. Broy and A. V. Zamulin,
Eds. Springer-Verlag, 66–78.

NOLTE, T., 2006. Personal communication.

PEDRONI, M., AND MEYER, B. 2006. The inverted curriculum in
practice. In SIGCSE ’06: Proceedings of the 37th SIGCSE tech-
nical symposium on Computer science education, ACM Press,
481–485.

RASALA, R. 2000. Toolkits in first year computer science: a ped-
agogical imperative. In SIGCSE ’00: Proceedings of the thirty-
first SIGCSE technical symposium on Computer science educa-
tion, ACM Press, New York, NY, USA, 185–191.

ROBERTS, E. S. 1995. A C-based graphics library for CS1. In
SIGCSE ’95: Proceedings of the twenty-sixth SIGCSE technical
symposium on Computer science education, ACM Press, New
York, NY, USA, 163–167.

TEW, A. E., FOWLER, C., AND GUZDIAL, M. 2005. Tracking an
innovation in introductory CS education from a research univer-
sity to a two-year college. In SIGCSE ’05: Proceedings of the
36th SIGCSE technical symposium on Computer science educa-
tion, ACM Press, New York, NY, USA, 416–420.

WOLZ, U., DOMEN, D., AND MCAULIFFE, M. 1997. Multi-
media integrated into CS 2: an interactive children’s story as a
unifying class project. In ITiCSE ’97: Proceedings of the 2nd
conference on Integrating technology into computer science ed-
ucation, ACM Press, New York, NY, USA, 103–110.

30

Visualisation of human characteristics in vehicle and
health care product development

Mikael Blomé
Lund University

mikael.blome@design.lth.se

Maria Jönsson
Arjo R&D Center

maria.jonsson@arjo.se

Lars Hanson
Lund University

lars.hanson@design.lth.se

Daniel Lundström
CARAN AB

dalus@wmdata.se

Dan Högberg
University of Skövde
dan.hogberg@his.se

Dan Lämkull

Volvo Car Corporation
dlamkull@volvocars.com

Abstract

The purpose of the research project described in this paper is to
improve the efficiency of product development processes by
exchanging knowledge and experiences about user centred design
methods and technologies between the two branches: vehicle and
health care industries. The health care industry can benefit from
visualisation and simulation tools that include computer manikins,
a physical representation of the human, and the vehicle industry
can benefit from manikins having personal characteristics, which
has proven to be successful in the health care industry.

Keywords: visualisation, simulation, human characteristics, user
representation, product development

1 Introduction

Visualisation in industry is often referred to as the process and
result of illustrating information. This can be done with different
techniques, such as CAE (Computer Aided Engineering) and
simulation software. A key advantage of visualisation is that it
enables an illustrative presentation of phenomena, such as the
overview and relationships of processes and products. It has also
been established that visualisation can work as a common
language between persons with different backgrounds and
specialities, thereby supporting communication and exchange of
knowledge in a multidisciplinary and collaborative working
manner [Blomé, 2004].

The vehicle industry can be seen as a representative example in
this context, where multidisciplinary organisations develop
complex products with a clear human-product interface, and
where there is a need among specialists to agree on an appropriate
balance of a range of product requirements for the final vehicle
design and its production system. Not surprisingly, the vehicle
industry is a pioneer when it comes to using visualisation
techniques. Their vision is to develop and evaluate the product
and production systems in virtual environments more or less

throughout the entire development process [Lämkull, 2006].
Visualisation and simulation techniques are employed when
possible to evaluate conceptual and detailed solutions without the
need for physical prototypes. This makes it possible to increase
the number of evaluations in the design process compared with
the traditional approach based on expensive and time consuming
physical prototypes and evaluations. The objective is to save time
and money, but also to result in better vehicles (products) and
more efficient and ergonomic production [Chaffin, 2001]. The
virtual approach is considered more efficient and effective,
provided that the simulations are performed correctly and based
on relevant and correct data [Ziolek and Nebel, 2003].

Technical vehicle performance and manufacturability has
traditionally been the focus in the vehicle development process.
Most companies acting on the market today, however, meet these
basic demands. Customer appreciation of additional product
properties, such as aesthetics and attractiveness, has had an
increased impact on products’ (vehicles’), commercial success
[Jordan, 2000]. Furthermore, vehicle assemblers’ health and job
satisfaction have been highlighted in the production system design
process [Falck, 2007]. Since the targeted customer group and
assembly personnel often are complex when it comes to personal
requirements and expectations, it is hard to estimate and describe
the diversity of the groups, and hence to simulate the interaction
between the product and humans. This complicates the design
process, and the difficulty is significant with respect to the range
of personal and emotional characteristics among the users.

The health care branch has increased the visual and virtual
approach in product and production development, but this is
mostly related to the interaction between the user and the product.
It is based on descriptions and visual illustrations of archetypical
users, without utilising computer based simulation technology.
Still, the users’ characteristics are emphasised since the main
function of the products is to support everyday life for a wide
range of individuals with disabilities or impairments, which often
call for different design solutions. The health care industry
approach is in line with the vehicle industry’s because it too aims
to employ computer based visualisation and simulation
technology to enhance the product development process
efficiency and product quality.

31

2 Current user representation principle

The present methods for visualising human characteristics in the
product development process are described in the following
sections, in the health care and vehicle industry respectively. The
descriptions are based on interviews with key persons as well as
experiences of the research group.

2.1 Health care industry

Arjo, the health care company linked to this project, has been
involved in the development of equipment and working
techniques in elderly care for over 50 years. Their development
activities are based on mobility issues. They have a tradition of
working in close cooperation with staff and planners of elderly
care facilities, focusing on both the caregiver and resident. Some
years ago Arjo developed the Resident Gallery, a communication
tool based on five levels of functional mobility: from totally
mobile and independent residents to those who are entirely
bedridden. This system was initially developed to support the
product development process and the communication between
professionals with different competencies in the development
process. Today, the Resident Gallery is also used as a sales tool to
help customers accommodate their facilities with the right
equipment. Figure 1 illustrates the five typical user characters
used by the company.

Figure 1: User characters in Arjo product development, classified
according to their degree of mobility. (Courtesy of Arjo)

One can identify the most mobile to the most dependent resident
by their alphabetical names: Albert, Barbara, Carl, Doris and
Emma. A detailed description of characteristics and background is
linked to each character, which includes information about age,
weight, mobility and individual traits. Using this system and all its
benefits led Arjo to the next step, the development of the Mobility
Gallery. That gallery includes additional characters to
accommodate other settings, such as hospitals, special care and
home care. These characters are used initially in the design
process, but currently have no natural place in the subsequent
development process. Therefore, Arjo requested a method in
which these characters can be applied in the design, modification,
visualisation and analyses of health care equipment. The use of
the characters (also known as personas) has been successful and
the method supports the designers since the characters’ situations
are easier to visualise and to discuss. Similar effects are reported

in Pruitt and Grudin [2003]. The characteristics of the different
types of customers have spread from the design department and
are now also being used by sales people and buyers. For example,
purchasers from health care institutions express their needs of
products by describing their patients as four Alberts, six Barbaras,
two Carls, one Doris and one Emma.

2.2 Vehicle industry

The Swedish vehicle industry has a well established tradition of
using computer manikins – a replica of the human – to design the
vehicle-driver interface to suit potential users [Hanson, 2004], but
also of adapting production equipment and working tasks to the
conditions of the production personnel.

Figure 2: Manikin for ergonomic vehicle interior design.
(Courtesy of Saab Automobile)

Figure 2 illustrates a female computer manikin testing the interior
of a Saab 9-3. The female manikin can then “tell” the designer
how comfortable the driving position is, if it is possible to reach
all instruments and what she sees in the mirror, etc. Figure 3
illustrates a male computer manikin testing the assembly of an
antenna on a Volvo C30. The male manikin can “tell” the
designer about the physical workload on his back and shoulders
and if the visual requirements are met for the assembly.

Figure 3: Manikin for evaluating vehicle assembly ergonomics.
(Courtesy of Volvo Car Corporation)

32

The manikins can show this type of information with numbers,
but the simulation engineers usually choose to view the results as
pictures and colour coded areas. This can, for example, be the
view as seen from the eyes of the manikin, or a red coloured
shoulder indicating heavy workload, or a coloured area indicating
the maximum reach of the manikin.

Visualising information and simulation is a successful approach
since it supports communication within and between different
disciplines in the vehicle development process. If problems are
mutually understood by ergonomists, designers, production
engineers and managers, modifications of the product or the
workplace are more easily agreed upon. Visualisation is therefore
an important approach towards fulfilling drivers’ requirements of
comfort and control in the vehicle, or healthy and effective
assembly on the production line. [Hanson, 2004; Lämkull, 2006]

The manikins utilised to evaluate vehicle interiors or assembly
activities aim to represent potential customers of the vehicle or
assembly personnel. This is a difficulty for the simulation
engineers since each individual is unique in several ways. The
current approach used by simulation engineers is to let the
manikin represent the bodily (physically) side of the human only.
Hence, the manikin is described in anthropometrical terms,
typically determined according to corresponding stature. The
software defines the remaining body dimensions in order to build
up a “normal” person, using existing correlation data. Sometimes
a slightly more sophisticated method is utilised where stature,
corpulence and proportion are entered to define the manikin’s
anthropometry. In the literature and at vehicle companies there are
strategies for how a reduced number of manikins can represent the
anthropometric diversity that exists among vehicle customers and
production personnel [Högberg, 2005; Wirsching and Premkumar,
2007]. However, movability is not taken into consideration even
though it is possible to alter the movability in the different joints
of the manikin. As a result, it is always healthy manikins without
any impairments that test the vehicles or the assembly tasks at the
virtual (computer simulated) stages of the design process.

The vehicle industry uses descriptions of representatives of the
market segments they target in terms of customers’ buying power,
driving style or hobbies, for example. These characteristics are not
reflected in the manikins used and visualised during the
development work. However, researcher such as Högberg and
Case [2006] as well as Alexander and Conradi [2007] have
promoted the introduction of personal characteristics on manikins.

3 Rationale and projected outcome

Based on the descriptions of the situations in the vehicle and
health care industries, mutual benefits can be gained from sharing
and integrating knowledge and experiences from the two in the
consideration and visualisation of user aspects in product
development. Introducing efficient visualisation and simulation
tools that include computer manikins from the vehicle industry
into the health care industry is one such benefit. In the opposite
direction, the vehicle industry can benefit from manikins having
personal characteristics, which has proven to be successful in the
health care industry (but without the use of computer manikins).
In essence, the purpose of the research project is to improve the
efficiency of product development processes by exchanging
knowledge and experiences about user centred design methods
and technologies between the two branches: vehicle and health
care industries.

3.1 Vehicle industry

After this project the vehicle industry is projected to have a more
human centred design process. Although the vehicle industry uses
computer manikins in the design process for visualisation, the
staff involved frequently treat manikins as anonymous physical
objects only. The manikin has the same status as a battery. Both
require space in the vehicle to fit either in the cockpit or under the
hood. By giving the manikins personal characteristics, based on
the experiences from the health care industry, the vehicle
development engineer’s attitude to them can change. In future
discussions, supported by the visualisation of manikins with
mapped characteristics, the manikins are more likely to be treated
as representing humans. Such a shift may affect the design of the
products and product systems positively for the drivers,
passengers and assembly personnel. For example, a larger number
of users may be accommodated by a more careful and adaptive
product or production system design, thanks to the user centred
methods and tools employed. Furthermore, there may be a higher
degree of customer satisfaction due to the user centred approach
in the product design process. Pictures or animations of manikins
with personal characteristics using the product or working on the
assembly line are expected to encourage and enrich
understanding, empathy and communication of user diversity
between professionals in different competence groups involved in
the development process (e.g. marketing, industrial design,
product development, manufacturing engineering and production
staff).

3.2 Health care industry

After this project the health care industry will have a formalised
evaluation procedure where the results are visualised using
computer manikins with personal characteristics. The computer
support is expected to result in shorter product development lead
time, fewer major iterations and enhanced product quality. The
number of physical prototypes will decrease when visualisation
and simulation tools are used as a complement to verifying
physical prototypes. The personal characters, now sporadically
used in early design stages, will be used throughout the entire
design process. Such a user centred design process, supported by
manikin visualisations can lead to products that to a higher degree
meet the demands of the users. Using a set of manikins in the
design process for evaluating health care products can lead to
products that consider and cater for user diversity in a richer way.
A visualisation of a manikin with personal characteristics using
health care products is projected to provide enhanced
communication between different stakeholders in the health care
development process.

Acknowledgements

The project will be carried out at the Virtual Ergonomics Centre
(www.vec.se) and financially supported by the Knowledge
Foundation (KK-stiftelsen) of Sweden as well as the participating
organisations. This support is gratefully acknowledged.

References

ALEXANDER, T. AND CONRADI, J. (2007). Modeling
Personality Traits for Digital Humans, SAE Technical Paper
2007-01-2507. Warrendale, USA: Society of Automotive
Engineers.

33

BLOMÉ, M. (2004). Visualization of Guidelines on Computer
Networks to Support Processes of Design and Quality Control.
Doctoral thesis. Lund, Sweden: Lund University.

CHAFFIN, D. (2001). Introducion. In: Digital Human Modeling
for Vehicle and Workplace Design, D. Chaffin (Ed.). Warrendale,
USA: Society of Automotive Engineers, pp. 1-14.

FALCK, A-C. (2007). Virtual and Physical Methods for Efficient
Ergonomics Risk Assessments – A development process for
application in car manufacturing. Licentiate thesis. Göteborg,
Sweden: Chalmers University of Technology.

HANSON, L. (2004). Human Vehicle Interaction. Drivers’ Body
and Visual Behaviour and Tools and Process for Analysis.
Doctoral thesis. Lund, Sweden: Lund University.

HÖGBERG, D. (2005). Ergonomics Integration and User
Diversity in Product Design. Doctoral thesis. Leicestershire, UK:
Department of Mechanical and Manufacturing Engineering,
Loughborough University.

HÖGBERG, D. AND CASE, K. (2006). Manikin Characters:
User Characters in Human Computer Modelling. In:
Contemporary Ergonomics, P.D. Bust, (Ed.). UK: Taylor &
Francis, pp. 499-503.

JORDAN, P.W. (2000). Designing Pleasurable Products: An
introduction to the new human factors. London: Taylor & Francis.

LÄMKULL, D. (2006). Computer Manikins in Evaluation of
Manual Assembly Tasks. Licentiate thesis. Göteborg, Sweden:
Chalmers University of Technology.

PRUITT, J. AND GRUDIN, J. (2003). Personas: practice and
theory. Conference on Designing for User Experiences, San
Francisco. New York: ACM Press, pp. 1-15.

WIRSCHING, H-J. AND PREMKUMAR, S. (2007). Statistical
Representations of Human Populations in Ergonomic Design,
SAE Technical Paper 2007-01-2451. Warrendale, USA: Society
of Automotive Engineers.

ZIOLEK, S. AND NEBEL, K. (2003). Human modeling:
Controlling misuse and misinterpretation, SAE Technical Paper
2003-01-2178. Warrendale, USA: Society of Automotive
Engineers.

34

Some remarks about geometry in medicine

Krzysztof T. Tytkowski

Geometry and Engineering Graphics Centre
Silesian University of Technology, Poland

Krzysztof.Tytkowski@polsl.pl

Summary
Geometry has been present in medicine in various aspects for
many years. Information on geometrical form of particular
anatomic structures should not be underestimated since it is both
basic and key information in many clinical cases, beginning from
fractures to radiotherapy. Technical apparatuses and devices used
in doctors’ practice also require comprehension of technical
documentation in necessary range. The knowledge of some
geometrical issues can help in doctors’ work although it is
necessary to a certain group of doctors.

Keywords: geometry, engineer graphic, medicine

1 Historical background
Medicine has always developed basing on new technological and
technical solutions. This medical knowledge, gained sometimes
with difficulty, had to be recorded and the easiest way of

recording was description in a form of a text and a drawing.

In nature it is very rare to come across exactly the same animals
or plants and thus it can be even stated that they do not exist. This
remark refers to humans too. Therefore, the oral description can

refer to the description of symptoms and the way of clinical
conduct. It is difficult to imagine the description of e.g. spinal
bones and so, since the very beginning of medicine as science,
picture is used for presenting typical shape of organs (bones,
circulatory system etc.). In many regions of the world and in
many historical epochs this method of reaching knowledge was
opposed by authority, in many cases caused by religious motives
as well. Many scientists and artists gained knowledge on inner
organs exposing themselves to danger. The share of painters and
sculptors in the development of that method should be stressed.
As it can be seen in Leonardo Da Vinci sketches (Fig.1), such a
precision could have been made only based on autopsy.

Fig. 1 Leonardo Da Vinci sketches

Fig. 2 15th century Egyptian anatomy of horse

35

Sketches with such precision could not have been made without
with genius of the author, especially when autopsy could be done
only at night. Graphical record of gathered information does not
refer solely to European culture but also to other cultures e.g.
Arabic anatomy of a horse (Fig.2) and Acupuncture chart from

Hua Shou (fl. 1340s, Ming Dynasty) (Fig.3). Anatomy atlases
have always been made with greatest precision. Since organs are
located in some 3D space, the way inner organs were presented
varies. The atlas must have been prepared in such a way that a
person without special preparation could use it. It was true
specially when doctors and doctors-to-be were not prepared as far
as geometry was concerned. One of the ways of presenting which
was used in many atlases was to show consecutive layers with
organs as well as picturing from different sides e.g. front and rear
(Fig.4) or models in scale or natural size were made.

2 Processed picture as a base for doctor’s
conduct in real time

In case of classical operation of inner organs a doctor must first
have access to the place which is to be operated on, so that it can
be seen and tools can be used freely. Due to these actions big
wounds appear. A doctor can directly see operating area and
thanks to that he can see some incorrectness or damages which
were not included in the process of procedure. Currently a doctor
can carry operation without such wounds but a drawback of such
solution is the fact that he bases his decisions on a picture
obtained by intermediary devices (e.g. camera- screen) and not on
what he actually sees. The picture can be distorted owing to
optical intermediary devices and therefore knowing about that one
can evaluate the situation correctly and carry the operation.
Consequently, such practices require training connected with the
skills of operating a device which is controlled by man and is not
directly in his hand. Similarly, the same situation happens when
distant operations are carried and problems appear connected with
constant uninterrupted communication between a doctor,
operating theatre and a patient.

3 Picture and diagnostics
Another issue worth discussing is interpretation of obtained
graphical information from X-rays via ultrasonography and
Computed Tomography (CT) and finally magnetic resonance

imaging (MRI) (Fig.5). Each of these methods despite engineers’
efforts requires interpretation of picture. This interpretation is
made by reading geometrical form of a given anatomic structure
based on medical knowledge. Computer with its software
facilitate the task of creating 3D model of a treated organ greatly.
However, each method can be error burdened or have some
inaccuracies, which may result from the way information is

Fig. 3 Acupuncture chart from Hua Shou (Ming Dynasty)

Fig. 4 The Johns Hopkins Atlas of Human Anatomy

Fig. 5 Skull - 3D model

36

collected or algorithms generating 3D model as well as the way of
model representation. The engineers’ task is to prepare the
process in such a way that a model is as close to natural organ as
possible. In preplanned processes there is time and possibilities
for engineers to check and correct the model so that it is useful for
a doctor. Nevertheless, in emergency cases there can be no time
for checking and verification. This is the main reason why a
doctor who knows at least the outline of model creation and
information collection about organ’s geometry, can in case of
errors (resulting from information collection or model generation
algorithm) manage himself.
Creation of 3D model can lead to diagnosis of future
complications or susceptibility to injuries e.g. fractures. Such a
model can be used for research on e.g. strength [Rychlik et. al.
2004] and verification of different theories.
For the sake of cognitive research the whole library of human
body sections have been created with 1mm precision, which can
be used for 3D model creation in didactics.

4 3D space in doctors’ practice
In some situations operations have been made based on
documentations prepared on the basis of 3D model, which truly

represented a patient. Simulation of the way tool is used is
necessary especially in case of operations which require great
precision e.g. scull operations when tiny error or inaccuracy can
lead to damages of brain which are difficult to predict. Preparation
of such operation requires first preparation of data for precise
creation of 3D model (Fig. 5). Next problem which engineers
have to face is preparation of such software which will allow a
doctor to get to know operation area. Operation theatre has its
own rules and thus everything should be prepared and foreseen.

Firstly, a doctor or his assistant must have a possibility to change
the location of the observed model and tools in a possibly simple
way. Static picture does not guarantee the full control of tool’s
location. Before operation patient must be precisely positioned as
regards tools. It is also necessary to secure patient against
relocation or rotation before operation so that coordinates of a
patient and tool do not differ.
Another area where the knowledge of geometry is very important
are techniques connected with radiation [Wagner et al. 2002]. In
this case engineers can help in the possible correctness of results.
Also in this situation a patient must be placed in precisely
determined place so that a beam of radiation gets to the planned
area. In order to reduce side effects of radiation of neighboring
tissues the source of radiation must be in motion and it must be
adjusted in a way that proper effect is achieved. In this case we
talk about geometry and time in 3D space. Similar situation is
with teeth X-rays [Stachel 1998] panoramic views.

5 Doctor - picture - patient
In many patient- doctor contacts it is necessary to explain to a

patient what his procedure will be like. Naturally, already existing
illustrations concerning similar cases can be used. However, in

case of e.g. fractions each case is different and thus the way of
joining is different. Detailed information for patients is also
important during rehabilitation. When a patient knows what e.g.
stiff spine is (Fig.6,7) he can undergo proper rehabilitation easier.
Based on 3D models didactic movies for patients and people
under rehabilitation can be made.

Fig. 5 3D models

Fig. 6 X-ray vertebral column

Fig. 7 Sitting position - vertebral column

37

6 Simulators
The development of technology enables the usage of different
simulators, which based on computer systems generate pictures
that can be adapted for one viewer (e.g. such a system with
goggles as an element). Then generated picture can be exactly the
same as in reality. Different situation appears when there are a
few people and one picture for them. It is impossible to have it
shown correctly for all viewers and therefore being aware of the
distortions it is easier to take part in simulation. This remark
refers also to presentations with 3D techniques when being aware
of possible distortions observer can understand the picture better.
Another aspect is the fact that such distorted picture can lead to
faster tiredness of viewer, and in consequence incorrect decisions.
The error is then not the effect of lack of knowledge but the result
of used simulator.

7 What to teach the students of medicine
The important information at Polish medical universities does not
teach the students of geometry, computer graphic.
Topics should differ from regular geometry course which is
offered at the technical universities, definitely it should include:

- reading of technical documentation
- axonometry (3D models)
- central projection (also from cameras)
- methods of generation of 3D models
- generation of digital picture

8 Conclusions
There are a number of prerequisites to introduce geometry to
doctors’ education and training.
The following issues should be considered:

- the range of topics depending on the specialization
- the way of realization

9 Acknowledgement
I would like to express my gratitude to MD, PhD Wiesław
Rycerski from Upper Silesian Rehabilitation Center "Repty" in
Tarnowskie Góry, Łukasz Talarek from Municipal Hospital no 1
in Gliwice and Stanisław Sulwiński, PhD for all the inspiring
discussions and MSc Barbara Skarka for help in preparing English
version of the paper.

10 About Author
Krzysztof T. Tytkowski, PhD, Eng. is a adjunct (teaching and
research) in Geometry and Engineering Graphics Centre Silesian
University of Technology. His research interests are computer
aided design, descriptive and projective geometry, visualisation,
space modelling, 3D reconstruction, visualisation.
Member of: Polish Society of Mechanical Engineers and
Technicians (since 1987), Polish Society for Geometry and
Engineering Graphics (founder, since 1994), International Society
for Geometry and Graphics (since 1997), Polish Association for
Promoting Computer Engineering Systems ProCAx (founder,
since 2000).
He can be reached by e-mail: Krzysztof.Tytkowski@polsl.pl, by
fax: +48 32 2372658 or through postal address: Ośrodek
Geometrii i Grafiki Inżynierskiej – RJM-4/ Politechnika Śląka/ ul.
Krzywoustego 7/ 44-100 Gliwice/ Poland

11 References
RYCHLIK, M., MORZYŃSKI, M., NOWAK, M., STANKIEWICZ, W.,

ŁODYGOWSKI, T., OGURKOWSKA M. B., 2004, Acquisition
and transformation of biomedical objects to CAD systems,
Strojnicky Casopis, No. 3/04 :121-135. Bratysława

STACHEL, H. 1998 New Applications of Geometry, Journal for
Geometry and Graphics, Vol. 2, No. 2, pp. 151 - 159

WAGNER, D., WEGENKITTL, R., GRÖLLER, M.E., 2002,
EndoView: A Phantom Study of a Tracked Virtual
Bronchoscopy, Journal of WSCG, 10(2):493-498

38

Fragments from the Swedish history of computer graphics with SIGRAD

Lars Kjelldahl, CSC, KTH,

lassekj@csc.kth.se

Abstract

This overview is to some extent fragmental, but may hopefully
give some patterns of the development of the computer graphics
area in Sweden, from the horizon of SIGRAD, the Swedish
Computer Graphics Society. It gives some facts of 30 years of
computer graphics from a Swedish perspective. Things discussed
include early software, applications, people involved,
international visitors, computer graphics societies in other
countries, conferences, bulletins/newsletters, courses and
seminars.

CR Categories:

Keywords: history, evolution, computer graphics

Foundation of SIGRAD

The first pictures drawn with a computer in Sweden was
performed on the BESK computer around 1953 on an
oscilloscope. Not very much happened after that, but during 70ies
the interest in the possibilities to draw pictures with computers
grew at several places. Some expensive displays (vector
technology) were bought, different plotters were used including
plots done at ordinary line printers.
 The time was mature to collect people around the possibility of
drawing pictures and the call for an association gave responses
from around 100 persons, which was a surprise for some people.
At a meeting with 55 participants at KTH in December 1976 the
Swedish Computer Graphics Association was founded, later given
the name SIGRAD.
 The people that showed interest in the new association came
from different disciplines with different backgrounds having
interest in areas such as basic software, CAD/CAM, GIS,
computer art, statistics, and industrial supervision. This turned out
to characterize and to be a strength for SIGRAD. Due to the
variety in interest it was also decided to keep the new society
independent to other organizations. Things as standardization and
terminology were pointed out as being of special interest for the
society. It was also expected to be a forum for discussions and
dissemination of information. Financial support from various
sources in the beginning made it possible to work without member
fee during the first five years when building the infra structure.
 The first interim executive committee had members from KTH,
SCB, Lunds Datacentral, Stockholms Datacentral,
Elektronmusikstudion/EMS, SAAB-Scania, Statens Vägverk, K-
konsult and HSB. After six months a list of 140 names with
interested people had been collected. The application areas
represented varied very much, which contributed to the society
becoming a very dynamic forum.
 The first years focused on two topics: to show the variety of
applications and to discuss the variety of software with a need for
standardization.

 A seminar conference in April 1977 included presentation of
7 different software packages and 100 participants came to this
event.
 A similar seminar but on graphics displays was held in
November, 1977. This year the first bye-laws were presented by
Axel Andersson, who also suggested the name SIGRAD for the
new society.

Kind of activities

The activities of SIGRAD have included annual
conferences/events, courses, education workshops, study visits,
international cooperation with societies and experts from various
countries mainly in Europe, publication of a bulletin/newsletter,
maintaining a web page (when the use of www had become
established) and keeping a list of individual members with annual
fees.

Application areas

The applications that have been presented during SIGRAD events,
study visits and conferences varies. Some applications have after
some years been an established part of day to day work and
therefore became of less interest for a society like SIGRAD. One
example of such an area is business graphics. Applications include
CAD, architecture, GIS, HCI, mathematics, statistics,
environmental visualization, games, chemistry, medicine, virtual
reality, business graphics etc
Below are included examples of
early applications such as
presented in a few images from
a special bulletin issue from
1979.

Figure 1: Illustrations of
pollution distribution and
alcohol consumption

39

Figure 2: nomogram drawing and traffic analysis

Figure 3: printed circuit card and CAD/CAM picture

Software

In the middle of the 70-ties a numerous variety of software
packages existed. These packages were often adapted to different
hardware concepts and to different applications. Due to this
variation the packages used basic graphics concepts that were
incompatible and often very hard to convert. It was also hard for
programmers and users who had to relearn when switching from
one package to another. The international efforts also had seen
these problem and they were discussed at the Seillac workshop in
1976 [1], which later gave the result when an international
standard called GKS was accepted by ISO. The standard was used
during a few years but was later in practice abandoned for
software adjusted to the latest technology.
 The SIGRAD events during the 70-ties often had a focus on
basic computer graphics software, After that, when de facto
standards driven by technology dominated, SIGRAD spent much
less efforts in basic software problems.

Hardware

The hardware development were important in the 70-ties and 80-
ties. The interest were focused on three sub areas, i.e. displays,
plotters and interaction devices.

Conferences

The annual conference was established in 1981, but also before
that there were some one day events with a flavor of a conference.
In the appendix of this paper a list of notes about the
conferences/events can be found.

 One can see some trends in these notes. In the beginning
software and to some extent hardware was in focus together with
applications. Later when the standards were established the
interest shifted towards fundamental techniques and concepts such
as interaction, colour, text and image etc Later when web
appeared web graphics together with visualization captured the
interest of the events. From the beginning of 2000-ties there was a
shift from an event with invited speakers towards a more scientific
event with submissions and a review process. The proceedings
then also become a publication that was printed and made
available through web (links are given at the end of the paper).
Finally it should be said that applications have always been an
important part of the activities.

Courses

In 1979 a two day course in computer graphics with a focus on
software for colour printers was given in cooperation between
Lund data center and SIGRAD. The software used was later
developed to the UNIRAS software. The interest for the course
forced the organizers to give the course twice.
 As part of the annual conference some basic courses were also
occasionally given. International experts have sometimes been
used, such as José Encarnaçâo (a course on standards for
computer graphics) and Daniel Thalman (a course on animation).

Study visits

As part of the annual conference or as part of the annual assembly
there have often been study visits at different companies.
Examples of companies and institutions that SIGRAD visited are
IBM, Silicon Graphics, SUN, Sjöland&Thyselius, FOA, KTH,
Boliden, Chalmers, SVT (public television), HSB, PCG, ABB
These visits have usually had 10-30 attendees with many
discussions and contacts being established.

Education workshops

At regular basis SIGRAD arranged education meetings with
discussions on course curriculums, lab assignments, text books
etc. The meetings were usually held biannually with 10-15
participants and at different universities in Sweden.

Bulletin and newsletter

An important forum for the SIGRAD was the ”SIGRAD
Bulletin”, who was published 2-3 times/year. These bulletins
provide an interesting reading about the society from 1976-1997.
After 1997 a newsletter replaced the bulletin. It was sent out by
email and was made available through the web site of SIGRAD
[2].
 An interesting bulletin is for instance, the one published in
January 1979 with collections of pictures from different
applications (mentioned earlier).

Cooperation with other societies, international
visitors

Early, during 70-ties, a contact was established with our sister
organization in Norway, Norsigd being started approximately at
the same time as SIGRAD (actually two years before SIGRAD).

40

Norsigd had/have a somewhat different character than SIGRAD
using company members instead of individual members, and also
getting incomes from a software product (GPGS-F). En early
contact with Norway also resulted in a two week Nordic Research
course on computer graphics in Trondheim, 1978, organized
mutually between people from Sweden and Norway.
 Contacts between Eurographics and SIGGRAPH have existed
for many years. An affiliation agreement with Eurographics was
signed in the 90-ties. In 2007 this agreement was replaced by
SIGRAD becoming a Eurographics Chapter.
 The contacts with SIGGRAPH have resulted in some
agreements on discounts etc.
 SIGRAD has during the years tried to get international speakers
for conferences and courses. Some examples of people that have
visited Sweden usually invited by SIGRAD are Daniel Thalman,
José Encanação, Jos Stam, David Duce, Judy Brown, Dale
Sutcliffe, Ian Hurrington, Roger Hubbold, Martin Göbel and
Andries van Dam.

People involved

Many different kind of people have been involved in SIGRAD,
some for just a year and some for decades. We list some of the
key persons below and start with the chair persons:
 Lars Kjelldahl, 1976-1980, Sten Hultman, 1980-1981, Mikael
Jern, 1981-1985 , Anna Holst, 1985-1990, Lars Kjelldahl, 1990-
1993, Olov Fahlander, 1993-1995, Mikael Jern, 1995-2001,
Anders Ynnerman, 2001-2004, Anders Backman, 2004-2007,
Kai-Mikael Jää-Aro, 2007-
 A selection of other persons: Sten Kallin, Jan Lidén, Ulf Rozén,
Brita Larson, Michael Pääbo, Pierre Lingheim, Kersin Malmqvist,
Gunnar Petersson, Sven-Ove Westberg, Larsgunnar Nilsson,
Magnus Bondesson.

Concluding remarks

In addition to issues discussed in the previous paragraphs, it is
interesting to observe the shift from Swedish as main language for
the activities (with lists of Swedish terms in computer graphics)
towards more English orientation with the annual conference also
becoming more international from that point of view.
 A project to describe the Swedish IT history is currently taking
place (http://ithistoria.se/). This paper could be seen as a small
contribution to that work.

SIGRAD conferences, list of short notes

Miniconference, April, 1977, KTH: software presented was
GINO-F, GPGS-F, GCS, GD3, DISSPLA, COLOR, PLAM
Miniconference, April, 1978, KTH: GIS, with speakers from
Lunds Tekniska högskola, KTH/fotogrammertri, Statens
lantmäteriverk, Jacobson&Widmark, K-konsult, VIAK and
Centralnämnden för fastighetsdata
Miniconference, March, 1980, Skellefteå: CAD-systems, local
activity

SIGRAD81: December, Esso Motor Hotel, Järva Krog: Survey of
computer graphics with a focus on software and the experience of
the use of software.
SIGRAD82: December, Stockholm, Interaction, Colour and
Ergonomy

SIGRAD83: Trygg-Hansa, Stockholm, Picture/image output,
transfer, and storage. Among speakers: Mikael Jern, Yngve
Sundblad, Program committee: Mikael Jern, Lars Kjelldahl, Brita
Larson, Anna Holst
Course, March, 1984, Andries van Dam, together with Paralog,
two day course
Course, 1984, José Encarnação, GKS, survey of computer
graphics
SIGRAD84: December, Stockholm Convention Center, Program
committee: Sten Kallin, Lars Kjelldahl, Anna Holst. Theme: text
and image, Among speakers: David Duce, Pete Harrison, Jan
Winblad, Jan Johansson, Jerker Lundequist, Astrid Sampe, Veine
Johansson, Staffan Romberger, Sten Carlqvist
SIGRAD85: December, Stockholm Convention Center, two one
day courses and a two day conference on computer graphics with
state of the art and trends, Among speakers: Dale Sutcliffe, Two
courses were given (tutorial on computer graphics; standard
introduction)
SIGRAD86: Inhouse publishing, Silja Line, conference on the
boat with a trip between Stockhom and Helsinki (and back)
SIGRAD87: Computer Graphics with a message – image and text,
Silja Line, conference on the boat with a trip between Stockhom
and Åbo (and back)
SIGRAD88: Kiruna, Interaction and GIS
SIGRAD89: Electrum, Kista, Object oriented methods,
architectural applications, interaction
SIGRAD90: IBM Forum, VR – computer graphics is changing
SIGRAD91: SUN, Kista, Graphical User Interfaces
SIGRAD92: KTH, Computer graphics and planning of resources
SIGRAD93: Linköping, animation course, interest groups (VR,
education, art, animation, etc)
SIGRAD94: Nacka Forum, Living pictures, visualization, with
among others Judy Brown and Paul Rea
SIGRAD95: Nacka Forum, Visualization, animation and
interaction in Windows, invited speakers were Martin Göbel and
Ian Currington
SIGRAD96: Nacka Forum, web graphics, including talks on
Spotfire and AVS/UNIRAS
SIGRAD97: Graphics on web, Nacka Forum, Stockholm
SIGRAD98: 3D Visualization
SIGRAD99: Stockholm, KTH, 3D Graphics on the Net Facing
2000, talks on CAVE,
SIGRAD2000: Norrköping,
SIGRAD2001: Stockholm, KTH, Real-Time Graphics
SIGRAD2002: Norrköping, Special Effects and Rendering [4]
SIGRAD2003: Umeå, Real-Time Simulations [5]
SIGRAD2004: Gävle, Environmental Visualization [6]
SIGRAD2005: Lund, Mobile graphics [7]
SIGRAD2006: Skövde, Computer Games [8]
SIGRAD2007: Uppsala, Computer graphics in healthcare

References

[1] Guedj, Tucker, Methodoly in computer graphics, North-Holland, 1979
[2] www.sigrad.org, www.sigrad.se
[3] conference documentations (paper, 1981-2001)
[4] www.ep.liu.se/ecp/007, 2002
[5] www.ep.liu.se/ecp/010, 2003
[6] www.ep.liu.se/ecp/013, 2004
[7] www.ep.liu.se/ecp/016, 2005
[8] www.ep.liu.se/ecp/019, 2006

41

Graphical Literacy Development using Learning Management System

Abstract

In the given article the example* of† learning management system
is presented. The learning management system was used for study
of compulsory subject of Descriptive Geometry and Engineering
Graphics for students of extramural department of the Riga
Technical University (RTU). In addition the Blackboard Learning
System (BB) was used for accommodation of a teaching material.
The general structure of materials placed in environment of the
BB system includes: theoretical material, performance of training
exercises, and performance of the tests. Results of the research
presented in this paper give possibility to make conclusions on
efficiency of use of the above-mentioned systems in mastering of
a subject of Descriptive Geometry and Engineering Graphics. The
article is a continuation of the research [Veide and Strozheva
2007], presented at Vth Conference Geometry and graphics, and
covers the period from September 2006 till June 2007.

Keywords: engineering graphics, е-learning, Blackboard
Learning System

1 Introduction

The use of modern information technologies in training (network
distance training; network distance courseware; virtual
universities; etc.) opens new opportunities for development of the
system of education [Boyle et al. 2005]. However, the effective
introduction of information technologies in training is connected
to adaptation of the participants of educational process to
information technologies. In addition opportunities of computer
engineering and program systems must be adapted to the
purposes, tasks and at last to participants of educational process.
Recently, a variety of schemes of distance learning has arisen.
These schemes use electronic ways of linking between the learner
and the source of instruction with increased interaction between
them.

 * zv@neolain.lv
 † vs@pit.lv

Distance learning (DL) is a strategy developed to harness the
power of learning, information, and communication technologies
to modernize education and training [Manning 2000]. The DL
initiative is intended to implement the "anytime-anywhere"
learning concept to provide access to the highest quality education
and training that can be tailored to individual needs and delivered
cost-effectively, whenever and wherever it is required.

The DL is structured learning process without the physical
presence of the instructor. The DL is enhanced with the
technology. It may draw upon resources which are physically
distant from the location where learning is taking place [Jonsson
2005].

Now standards of learning technology use the learning
management systems which include new functionalities and
capabilities such as back-end connections to other information
systems, complex tracking and reporting, centralized registration,
on-line collaboration and adaptive content delivery. The
Blackboard Learning System was used for improvement of
quality of educational process in the Riga Technical University.

The BB environment delivers a course management system,
customizable institution-wide portals, online communities, and an
advanced architecture that allows for Web-based integration with
administrative systems. The BB system is a kind of software
applications specially designed to enhance teaching and learning.
Intuitive and easy-to-use for instructors, the Blackboard Learning
System is built on a scalable enterprise technology foundation that
facilitates growth and performance. Institutions around the world
use the Blackboard Learning System to:

• Create powerful learning content using a variety of Web-
based tools;

• Develop custom learning paths for individual students or
groups;

• Facilitate student participation, communication, and
collaboration;

• Evaluate students’ work using a rich set of assessment
capabilities;

• Bring top publisher content into e-Learning.

Only a browser is necessary for students who are using the BB
system. Most students in Latvia have personal computers with fast
internet connectivity. Those who do not have computers can
access them in libraries or in computer classroom of the RTU.
Hence instructors may assume that everybody is able to practice
using the e-materials offered. Students can access systems like the
BB system using their hand-held devices, e.g. the new Nokia E61
cellular telephone [Caprotti et al. 2002]. This mobile phone has a

Zoja Veide
Department of Computer Aided Engineering

Graphics
Riga Technical University

Veronika Strozheva
Department of Computer Aided Engineering

Graphics
Riga Technical University

42

mailto:zv@neolain.lv
mailto:vs@pit.lv

full keyboard and the conventional browser software that runs on
it and this gadget can be connected to the internet. Browsing such
hand-held devices, which can be expected to be very common in
the near future, will also make real the use of automatically
graded quizzes and examinations in any class room.

2 Course in ВВ environment

The duration of a bachelor program at Civil engineering
Department in the RTU is 7 semesters and each of them consists
of 16 weeks and additional 4 weeks of exam session. The
compulsory subject of Descriptive Geometry and Engineering
Graphics is limited to 3 ECPS and students must learn it in the
first semester. In this course the students have to complete all the
individual home assignments and final exam.

The learning material of the course of Descriptive Geometry and
Engineering Graphics has been placed in the ВВ environment as
an experimental prototype to help students in their mastering of
topics of the learning subject. The given subject traditionally is
difficult for study and mastering, in particular for students of
extramural department. The use of the ВВ system was not
obligatory for the students. In addition the students have had
possibilities to use the ВВ environment with an additional
opportunity to study theoretical material, as well to get
consultations with an instructor and perform their exercises in
order to master the learning subject of Descriptive Geometry and
Engineering Graphics.

The material of the course of Descriptive Geometry and
Engineering Graphics in the ВВ environment includes [Stanchev
2001]:

• A brief description of the course and a table of contents;
• Announcements and important information for participants;
• Instructor's e-mail address, numbers of telephone and fax,

and regular mailing address including office hours;
• The themes of theoretical material of the course including

goals and objectives;
• A list of all exercises, assignments and other tasks of the

course;
• Explicit information on how students will be graded on

assignments, tests, participation; each assignment should be
linked to relevant course documents;

• A list of supplementary books, and other learning resources;
• A possibility of interactions with the instructor by means of

e-mail communication;
• An opportunity of discussions between participants of

educational process.

The students become more competent in formulation of their
questions when they use e-mail for dialogue with the instructor.
Hence, to ask the question, the student must understand the topic.
Necessity to ask questions and to discuss them induces the
students for preliminary independent work with a material of the
learning subject.

Participants of the ВВ system carry out exercises and tests placed
in the BB environment before a final exam. Exercises, which are
placed after corresponding themes of the course, are offered to be
performed by the students for their becoming more self-prepared

for the tests. Using the BB system the students perform their
exercises without limitation of the time and it gives them
possibilities to repeat their attempts to solve the tasks. In result the
information on the earned points and the right answers are
accessible to the students. Thus, the students can independently
estimate their level of self-readiness for performance of the tests.
The tests in the ВВ environment are limited with the time and
there is only one opportunity for the students to perform the tests
correctly. Only final points are accessible to the students. During
the distance course of education, the ВВ system assesses the
students formally. It indicates a level of mastering of the course
by the students and the standard attained. The formal assessment
is intended to verify how well students are able to meet the
session objectives on the one hand, and a depth of knowledge
learned, on the other hand.

3 Feedback from students

The students, who perform their exercises and tests placed in the
BB environment, develop their skills in solving the tasks of the
subject learned and accordingly pass their final exam more
successfully than those students, who did not use the system of
BB (Fig. 1). The results of final exams show that the most of
students, who learned the subject in the ВВ environment, got 7-8
points. The students, who not learn it in the BB system, got 5-6
points.

traditionally
studied

students
students used

BB system

0%

25%

50%

75%

100%

nu
m

be
r o

f s
tu

de
nt

s

10 points
9 points
8 points
7 points
6 points
5 points
4 points

Figure 1: Results of final exams of the course of Descriptive
Geometry and Engineering Graphics.

Comparison of results of the final exams of the students, who
learned the subject in the ВВ environment, and those, who did not
learn it in the BB system, gives the opportunity to make
conclusions on an efficiency of programs similar to the BB
programs, which are used for improvement of quality of training
[Moreno et al. 2006]. It also is interesting to note that a frequency
of visits of consultations, which arise in educational process, has
become decreased, but in spite of that the quantity of the
questions remained the same the questions itself have become
more concrete.

The students demonstrated the best results under the tests placed
in the BB environment in following themes: Fundamental views -
Point, Orthographic projection and Drawing procedure. Less
successful results of the tests were got by the students on such
themes as Line, Plane, Sections and Intersections. These results of
the tests give possibility to make a conclusion that lectures and

43

graphic works, which the students must carry out independently,
are necessary for mastering of the themes of the descriptive
geometry, connected with methods of construction.

The use of the ВВ system is a free choice of the students. So it
makes an opportunity to observe a degree of interest of the
students to use this method of training, to reveal main problem of
topics learned and to master necessary skills. The term of
registration for persons interested to use the ВВ system has been
limited with one month. Thus, a group of participants, which
consists of 73 people, has been generated during the limited time
of registration.

The students chose intensity of studying of the learning materials
independently. Dependence of the intensity of the work in the ВВ
environment during the semester is shown on Fig. 2. The students
have shown their greatest activity immediately after registration in
the ВВ system. It makes an opportunity to display the difference
between a level of students’ interest to a new method of training
in a period of time immediately after registration in the ВВ system
and, traditionally, the same their interest at the end of the term of
the training. Frequency of use by students of areas of the main
content in the learning course of Descriptive Geometry and
Engineering Graphics in the BB environment is shown on Fig. 3.
The results of final exams show that higher estimates were
received by the students who used the BB system more actively.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
educational period, weeks

to
ta

l n
um

be
r o

f a
cc

es
se

s,
 %

Figure 2: Correlation between activity of the students in the ВВ
environment and duration of educational period

0

10

20

30

40

50

60

1 2 3 4 5 6 7

main content areas

to
ta

l n
um

be
r o

f a
cc

es
se

s
pe

r a
re

a,

%

Figure 3: Overall summary of usage by students the areas of the

main content in the BB course of Descriptive Geometry and
Engineering Graphics. 1 – announcements and important

information for participants; 2 – the brief description of the
course; 3 – the staff information; 4 – the themes of theoretical

material of the learning course including goals and objectives; 5 –

tests; 6 – a list of supplementary books, and other learning
resources; 7 – communication area.

An anonymous evaluation was carried out at the Riga Technical
University in the end of the learning course of Descriptive
Geometry and Engineering Graphics. The students’ answers to a
question "Why results of the BB tests are insufficiently good?"
are shown on Fig. 4. This question was addressed to the students
who have received an average estimation below 6 as result of the
tests. Training exercises have been placed in the BB environment
for improvement of preparation of the students to the tests.

a difficult
subject

insufficiently
prepared

carelessnesslack of time
0

10

20

30

40

50

60

nu
m

be
r o

f s
tu

de
nt

s,
 %

Figure 4: Students' answers to a question "Why results of the BB

tests are insufficiently good?"

All the students whose responses are in this survey told that they
would recommend the learning course to their fellow students.
Since the assessment was conducted anonymously, the responses
reflect students’ perceptions of the learning course. The students’
feedback was very positive, and it is clear that the learning course
of Descriptive Geometry and Engineering Graphics in the ВВ
environment will emerge as a real option at the university level.

4 Conclusions

Our experiences in using the BB system in actual teaching process
have confirmed the potential of the BB environment as a
beneficial and useful system for teaching. The system enables the
user to produce electronic materials for the learning course simply
as a by-product of teaching.

The results of the final tests of the learning course of Descriptive
Geometry and Engineering Graphics, which are presented in this
article, demonstrate that higher average estimate (7,4 points) were
received by the students who used the BB system. The students,
who not learn it in the BB system, got average estimate 6,2 points.
To explain this fact it is possible to suppose that the students, who
use the ВВ system, have an opportunity to carry out more
exercises and tests in the learning course. Therefore, the quality of
the training course, that is necessary for development of graphic
literacy of engineers, improves.

The main challenges in educational system are how to keep
students focused in the subject matter, how to motivate them to
work independently, and how to fight the high rate of the
students’ dropping out. These challenges are accentuated in the
on-line setting in which the direct contacts between the students

44

and the instructor are limited. It is easier for the students not to
focus when the instructor does not see them. And it is easier for
them to drop out because, in the on-line setting, they interact with
a computer and not with a person [Caprotti et al. 2002].

Like the development of good textbooks, the development of
good educational software is a long-term process of trial and error
that will need continuously to draw on the experience of the best
tutors, those who are responding to the needs of individual
learners. Since education is the main pillar of our society’s future,
all efforts in that direction are well spent.

References
Boyle, T., Bradley, C., Chalk, P., Fisher K., Pickard, P., 2005.

Introducing a virtual learning environment and learning objects
into higher education courses. International Journal of
Learning Technology, Vol. 1, No.4, 383 – 398.

Caprotti, O., Seppala, M., Xambo, S., 2002. Novel Aspects of the
Use of ICT in Mathematics Education.
http://webalt.math.helsinki.fi/content/e16/e301/e818/finalCISS

E2006--pdffile_eng.pdf

Jonsson A., 2005. A case study of successful e-learning: A web-
based distance course in medical physics held for school
teachers of the upper secondary level Journal “Medical
Engineering & Physics“, 27, 571–581.

Manning, L., 2000, Advanced Distributed Learning. DISAM
Journal, Summer.
http://findarticles.com/p/articles/mi_m0IAJ/is_4_22/ai_673184
33

Moreno, L., Gonzalez, C., Castilla, I., Gonzalez, E., Sigut, J.
Applying a constructivist and collaborative methodological
approach in engineering education. Journal “Computers &
Education”, article in press, available online 14 February 2006.

Stanchev, P., 2001. Distance education courses. International
Journal „Information Theories and Applications”, Vol.8, No.1,
41 – 46.

Veide, Z., Strozheva, V. 2007 Application and efficiency
assessment of e-learning software. In Proccedings of Vth

Conference Geometry and Graphics, Ustron 2007, article in
press.

45

http://webalt.math.helsinki.fi/content/e16/e301/e818/finalCISS
http://findarticles.com/p/articles/mi_m0IAJ/is_4_22/ai_673184

Realistic Vir tual Characters in Treatments for Psychological Disorders
An Extensive Agent Architecture

Anja Johansson∗

Dept. of Science and Technology
Linköping University

60174 Norrk̈oping, Sweden

Pierangelo Dell’Acqua†

Dept. of Science and Technology
Linköping University

60174 Norrk̈oping, Sweden

Abstract

Interactive virtual reality applications have lately been used as a
complementary tool in the treatment of people with different kinds
of psychological disorders. A number of these projects would ben-
efit from a more realistic behavior of virtual characters. In this pa-
per we describe our ongoing work on an advanced emotional agent
architecture for virtual characters and propose new potential appli-
cations within the area of health care.

Keywords: Virtual reality, artificial intelligence, agent architec-
tures.

1 Background

Computer animation is concerned with producing sequences of im-
ages that when displayed at high speed give the illusion that certain
components of the image move. The aim is to produce animations
that look realistic. Computer animation has typically focused on
low-level locomotion problems, i.e., low-level control.

In the mid-1980s, researchers began incorporating physical princi-
ples to develop physical models for animating passive objects, such
as falling and colliding objects. The idea behind this kind of model
was to explicitly represent physical concepts. In the last decades,
researchers started to focus on the requirement that characters in
animations should behave realistically. That is, characters should
be able to perform sequences of movements. This is commonly
referred to as high-level control problem. Research in behavioral
modelling progressed toward self-animating characters that react
appropriately to stimuli perceived from the environment. The sem-
inal work in this area was that of Reynolds [Reynolds 1987]. Tu
[Tu 1999] and Terzopoulos [Terzopoulos 1999; Tu and Terzopou-
los 1994] extended then that approach to dealing with some com-
plex behaviors. One of the early attempts at virtual autonomous
characters was the Improv [Perlin and Goldberg 1996] system. Im-
prov allows for the creation of real-time behavior based animated
actors using an animation engine and behavior engine to allow au-
thors to create sophisticated rules governing how actors communi-
cate, change, and make decisions. At the top of the modelling pyra-
mid, cognitive modelling has emerged as the use of artificial intel-
ligence techniques, including knowledge representation, reasoning,

∗e-mail: anjjo@itn.liu.se
†e-mail: pier@itn.liu.se

and planning, to produce virtual characters with some level of de-
liberative intelligence, see for example [Funge 1998; Funge 1999;
Funge et al. 1999]. Addressing human cognitive functionality is a
challenging research area in artificial intelligence (AI). Funge pio-
neered the use of hardcore artificial intelligence techniques in com-
puter games and animation. His aim was to devise a system suitable
for rapid prototyping and producing off-line animations. To do so,
he used logical reasoning to shift most of the work for generating
behavior from the animator to the animated characters. With the in-
tention that the devised system should be easy to build, reconfigure
and extend. In [Funge 1998] Funge addressed the problem of devis-
ing characters that display elaborate behavior in unpredictable and
complex environments. In order to generate high-level behavior, he
used the situation calculus [Reiter 1991] to model the virtual world
from the animated character’s point of view. The basic idea was
that a character viewed its world as a sequence of snapshots known
as situations. An understanding of how the world could change
from one situation to another could then be given to the charac-
ter by describing the effect of performing each given action. Since
the world was dynamic, characters were equipped with knowledge-
producing actions (like sensing). Funge’s work contributed to ad-
vanced computer animation research in several ways: (i) he was the
first to tackle the problem of modelling cognitive capabilities of vir-
tual characters enabling them to represent, reason and act in their
virtual world, and to perform sensing actions; (ii) to develop and
implement an architecture suitable to specify the high-level control
combining the advantages of a reactive and a reasoning system. The
devised architecture was such that cognitive models were built on
top of biomechanical, physical and kinematic models (that control
for example locomotion, collisions, etc.). The interaction among
the various levels in the hierarchy is achieved by communicating
the actions to be performed to the lower levels where they are exe-
cuted by the appropriate routines. In contrast, the function of sens-
ing actions is to prompt the lower levels to return information about
the state of the world to the cognitive level.

2 Research Vision and Objectives

We consider virtual, autonomous characters situated in dynamic,
unpredictable, virtual worlds. To render these characters self-
animated (i.e., alive) in real time performances, we need to make
them able to perceive, reason and act in the world where they are
situated. This goal can be achieved by ascribing characters cog-
nitive capabilities together with reactive functionalities that imple-
ment primitive behaviors (such as avoiding collisions). Our aim is
to be able to deploy autonomous characters in interactive systems
and virtual reality applications. Despite several attempts to make
the animated characters more autonomous and intelligent there is
still a broad scope of research into the problems involved in the de-
sign and modelling of virtual characters. The growing popularity
of logic-based agent architectures gives new opportunities to ap-
ply recent advances in AI to this problem. Hence, the focus of our
project is to deploy state-of-the-art artificial intelligence methods
into character simulation and extract and address new research is-
sues in computer graphics and artificial intelligence in the context

46

of thedeveloped applications.

3 Current Agent Architecture

At present time the architecture (depicted in Fig. 1) includes the
handling of emotions, an appraisal module, a simple decision mod-
ule, a knowledge base and a trust module. The original design and
implementation of the architecture was carried out by two diploma
works [Esbj̈ornsson 2007; Johansson 2007]. Our system architec-
ture needs to be modular to simplify the task of adding and editing
components. The system is rather extensive and management of
such a system is easily done in a modular architecture.

The system works in the following way. At each update time
(preferably at not every frame as this will slow down the perfor-
mance of the entire system), the simulation engine (e.g., a game
engine) sends information to the XML interface. Such informa-
tion may be about the whereabouts of objects, weather conditions
etc. In the XML interface the information is converted to XML
and sent to the knowledge base (although some specific types of in-
formation are sent directly to the Affective Appraisal module). In
the knowledge base the information is added to the agent’s mem-
ory (we use XSB Prolog system to store the data). The Affective
Appraisal module triggers emotions and expectations depending on
what happens around the agent. Emotions and trust also influence
which emotion and expectation to trigger. The decision module se-
lects which action to execute depending on the current knowledge,
emotional state and trust. The selected action is sent back to the
XML interface to be executed by the simulation engine.

In the following sections we will describe the different modules of
our system in more detail.

3.1 XML for Inter-Modules Communication

To keep our agent architecture independent of simulation and ren-
dering engines, we have developed an XML interface between the
chosen simulation engine and the agent architecture. Information
from the game state, no matter how it is stored there, is converted
into an XML representation that the agent can process. This allows
us to decouple the chosen simulation engine from the agent archi-
tecture in the way that changes in the representational language of
the simulation engine are not reflected into the modules.

Communication between the different modules in the agent system
is also largely done in XML. This makes modifications of the mod-
ules easier. XML is also used as a configuration language to define
the settings of the different modules.

To ensure fast XML parsing we use a small DOM-based XML li-
brary named TinyXML. Because it maintains the entire XML doc-
ument in memory there is no need for writing information to file.
TinyXML provides ways to quickly traverse XML node trees and
even with the extended checks we added to ensure well-formed doc-
uments, the system is fast.

3.2 Emotion Module

The original emotion module was developed in a prior diploma
work [Esbj̈ornsson 2007]. The emotions in our system are repre-
sented as signals1. The set of all signals of the same type forms
the corresponding emotional state. Each signal has the form of a

1Thesignalscorrespond to what in neuroscience is the concentration of
certain chemical substances in human brain. The signal we use is a simpli-
fied representation of the concentration levels.

sigmoid curve and consists of the following phases: delay, attack,
sustain and decay. The sigmoid curve is defined as:

sigmoid(t) =
g

1 + e−(t+h)/s
+ v

wheret is the time,g is the gain,h is the horizontal shift,s is
the slope steepness andv is the vertical shift. Being the signals
parameterized, it is possible to create fairly diverse types of emotion
signals.

Emotions can influence each other through a sophisticated filter-
ing system (see Fig. 2). There are currently three types of filters:
sigmoid, linear and gamma filters. They have the following mathe-
matical definitions:

sigmoid(x, g, s, h, v) =
g

1 + e−(x+h)/s
+ v

linear(x, s, v) = x ∗ s + v

gamma(x, g, s, v) = g ∗ xs + v

wherex is the input value to the filter,g is gain,h is the horizontal
shift, s is the slope steepness andv is the vertical shift. Note that
these functions have dynamic parameters that will change over time
as the emotional states change. This provides a powerful mecha-
nism for letting the emotional states interact with each other. The
emotional states can influence all aspects of incoming signals, in-
cluding intensity and phase lengths. The filtering system is com-
pletely customizable through a configuration file written in XML.

The filtering system consists of modifiers each affecting one param-
eter of an incoming signal of a particular emotional state. A mod-
ifier is a dynamic filter object consisting of one of the previously
mentioned filter functions. Each modifier also consists of several
arbiters, each affecting one parameter of the filter function of the
modifier. To each arbiter, any number of emotional state can be
connected with different influence values.

3.3 Knowledge Base

The knowledge base represents the memory of the agent. Here all
information on events, expectations, etc. is maintained. The logic
language (XSB, or Tabled Prolog [XSB-Prolog 2007]) we use for
the knowledge base also allows for expressing reasoning although
this is not yet integrated into the system. XSB allows us to store
complex information in a simplified way and it also allows us to
create simple rules that can be evaluated dynamically. Incoming
information (represented in XML within the agent) from the game
state is automatically translated into XSB statements that are as-
serted into the memory.

Here follows an example of how the XML information is translated
into Prolog statements. Suppose that the agent receives an event
from the simulation engine stating that there is a warrior at position
(1.4, 2.3) holding an axe. This is represented in XML as:

< object id="2" type="warrior" >

< position x="1.4" y="2.3" / >

< holdsitem type="axe" / >

< / object >

The XML element above is coded into three Prolog statements:

object(2,warrior).

position(2,1.4,2.3).

holdsitem(2,axe).

47

Figure1: Agent architecture

Figure2: Emotion filtering system

The way the information is saved is highly similar to common
database structures. Note that the first Prolog statement declares
that there exists a warrior whose id is two. The remaining two state-
ments,positionandholdsitem, use the id of the warrior to save its
position and the item held. This construction can be compared to
the use of primary and foreign keys in databases. To retrieve all
the objects currently holding an axe from the knowledge base the
following Prolog query can be made:

?- object(X,), holdsitem(X,axe).

Theresult of the query is then expressed in XML to be used by the
other agent’s modules:

< object id="2" type="warrior" >

< holdsitem type="axe" / >

< / object >

The knowledge base saves the source of the information along with
the information itself (this extra argument is not shown in the ex-
ample above). The source in our system is an agent, either the agent
itself (the event was perceived by the agent itself) or another agent.
The source of information is important when determining the trust
towards another agent. Should an agent provide false information
it is likely to be trusted less in the future.

The time of the information acquisition is also stored in the knowl-
edge base (not seen in example). This time of acquisition can also
be used to simulate forgetfulness or the reliability of a piece of in-
formation.

3.4 Affective Appraisal Module

The main task of the Affective Appraisal module is to do an emotion
appraisal, that is, an affective estimation of the incoming/perceived
events. Depending on the events, different emotions will then be
triggered. For instance, if an agent sees a wolf running towards it,
the appraisal will trigger the emotion fear. The rules defining which
emotion to trigger are easily customizable via XML rules:

< rule >

< condition >

< less than threshold="80.0" >

< new value from memory variable name="?MinDis" >

< min distance id1="#self" type="wolf"

returnId="?WolfId" returnDis="?MinDis" / >

< / new value from memory >

< / less than >

< / condition >

< do >

< trigger emotion emotion="fear" >

< / trigger emotion >

< / do >

< / rule >

This rule states that if the distance to the nearest wolf is less than
80 length units, then the emotion fear must be triggered.

3.4.1 Triggering Secondary Emotions

When the Affective Appraisal module encounters a rule that re-
quests the triggering of the emotion disappointment, sadness should
be triggered as well. It would also be appropriate to decrease the
value of happiness. Triggering these kinds of secondary emotions is
done automatically in the Affective Appraisal module. To decrease

48

happinessdueto an increase in disappointment, one needs to create
an emotional signal with a negative peak value. When adding this
signal to the already existing happiness signals the overall value for
happiness will decrease. The triggering of secondary emotions is
configured through an XML document and the values can easily be
tweaked for a better behavior.

3.4.2 Expectations

The appraisal module also handles the creation and management of
expectations and (to some extent) trust. The handling of expecta-
tions is automatic and therefore hard-coded. An expectation in our
agent architecture consists of several parts (defined in [Johansson
2007]):

Parameter Explanation

expectation Thedescriptionof the event that
is expected to happen.

time frame The estimatedtime frame in
which the event is predicted to
happen

control-factor The perceived control over the
situation.

benevolence The perceived goodness of the
event seen from the agent’s
point of view.

probability The estimatedprobability that
the event will occur.

The expectations themselves are stored in the knowledge base. The
affective appraisal module also checks for all the unfulfilled expec-
tations and consequently the emotions that should be triggered in
response.

3.5 Trust Module

The trust module2 handles the agent’s trust towards other agents (be
they virtual or human). This module also specifies the trust-relevant
personality traits of the agent. The agent can be trusting, suspicious,
reactive, forgiving, etc. Personality traits can easily be changed
over time to reflect the experience of the agent. For instance, if the
agent has decided to trust other agents several times in the past but
it always ends up badly, then the agent will likely not be so trusting
in the future.

Our trust module builds upon several different trust models, in par-
ticular the ones in [Mayer et al. 1995; Zaheer et al. 1998]. It con-
sists of four parts:ability, reliability, predictability and integrity.
The overall trust is calculated as a sum of these four values. The
values can also be used on their own if necessary. Different events
will possibly trigger changes in these values. For instance, if an
agent refuses to share information on the whereabouts of food, the
other agents will most likely lower the integrity value of that agent.

One interesting aspect of this module is that it takes into consider-
ation the values of emotions when calculating the perceived trust
value for another agent. It has been shown that emotions influence
our trust towards other people [Dunn and Schweitzer 2005]. This is
especially true when we are not consciously aware of the source of
our emotions. The way emotions affect trust is defined as:

2Note that trust is not used here to make decisions (this happens in the
decision module). The level of trust is calculated and maintained here, and
trust values are provided to other modules when needed.

overall trust = T + EI

T = ability + integrity +

reliability + predictability

EI = OPC
5

+ WC
10

+ PC
20

OPC = gratitude− anger

WC = happiness− sadness

PC = pride− shame

whereT is emotionless trust (the trust without any influence from
emotions),EI is emotional influence,OPC is other-person con-
trol, WC is world control,PC is personal control. The defini-
tion of OPC, WC andPC is based on the work of [Dunn and
Schweitzer 2005]. Since our system does not store information
about the source of emotions yet, we do not have to be concerned
about source salience which would otherwise affect the emotional
influence on trust.

3.6 Decision Module

The task of the decision module is to select an action that the agent
needs to perform at every time stamp. Choosing the best action
is a complex task that depends on the history of previous events,
knowledge and the current goals/objectives of the agent. At the
moment, the decision module only consists of a simple set of XML
rules similar to that of the Affective Appraisal module.

All emotions have to be triggered in the Appraisal module. How-
ever, expectations can be triggered in the decision module as they
are often linked to a chosen action. In fact, when the agent chooses
an action, it will most likely expect a certain outcome.

Actions that can be taken are physical actions (such as running, eat-
ing or sending messages to other agents), as well as internal actions
(like triggering expectations). The physical actions available are
determined by the simulation engine that will execute them.

4 Future Developments

Several improvements are needed to create a better agent architec-
ture. We describe the planned extensions in detail below.

4.1 Decision Module

The current decision module uses only simple if-then rules. The
first encountered rule with true body in the decision module de-
termines the action to be executed next. Such a behavior is very
limited, and we really need to extend this module. We are consid-
ering using a behavior network based approach [Maes 1989; Maes
1991] extended with emotions.

4.2 Action Management

A current diploma work [Zakaria (work in progress)] focuses on
action management which deals with the actions once they have
been selected. This includes script enabling and physics-based ani-
mation among other things. This module is placed slightly outside
the agent architecture since it is not entirely a cognitive process but
instead a more physics based process.

49

4.3 Learning

Anotherimportant capability that we want to ascribe to our agents
is the ability to learn both from observation and experience. We are
going to first develop/exploit a suitable learning algorithm and test
it in our agent architecture.

4.4 Perception Module

The perception of the agent is influenced by its current emotional
state, its preferences and its prior knowledge. An example of emo-
tional influence is when an agent is very afraid of a predator and
therefore pays little attention to other things around it. This module
is very complex but it would also give great rewards in form of a
more realistic human behavior system.

4.5 Memory Management

The agent cannot remember everything forever due to memory is-
sues. It is also inhuman to remember information for too long. Hu-
mans remember some information for a very long time, while other
things are forgotten after a short while (that is, human exploits short
and long term memory). Some pieces of information are only re-
membered under certain conditions, such as when something in the
vicinity reminds us of a remembered event (associative memory).
Memories should also fade gradually over time, and become less
and less certain. The aim of Memory Management module is to
deal with all of these issues.

5 Virtual Reality Exposure in the Treatment
of Psychiatric/Psychological Disorders

Over the last few years, therapists have started to use virtual real-
ity (VR) exposure in the treatment of psychiatric and psychologi-
cal disorders as a complement to standard therapy treatments, e.g.
cognitive-behavioral therapy (CBT). VR seems to be an effective
alternative to these traditional treatments and seems to bring signifi-
cant advantages by allowing exposure to several different situations
that would be difficult/costly to recreate in real life. In this section,
we outline a number of research approaches that use VR exposure
in the treatment of psychiatric disorders focussing on social disor-
ders and phobias.

5.1 Social Disorders

Several studies have been conducted regarding the use of virtual
reality in the treatment of social disorders, all leading to the con-
clusion that virtual reality seems adequate for such treatments (see
[Grillon et al. 2006] p.105 for a list of supporting references). In
fact, virtual reality can offer relevant scenarios which may not be
easily available in real life. For example, it would be expensive to
repeatedly take a patient on an airplane in order to treat him against
the fear of flight.

A psychiatric disorder that can benefit from virtual reality based
clinical treatment is social phobia. [Klinger et al. 2006] for exam-
ple carried out research studies using VR in the treatment of fear of
public speaking. Their findings show that human subjects are sen-
sitive to virtual environments, and that the efficacy of VR treatment
compares well with traditional CBT.

A number of research groups attempted to use VR-based treatments
for social skills training for people with autistic spectrum disorders
(ASDs). [Tartaro and Cassell 2006] proposed the use of authorable
virtual peers (AVPs) to help children with ASD since they often lack

communication and social interaction skills3. AVPs are animated
characters capable of interacting and responding to children’s input.
In order to do so, AVPs incorporate three interaction modes - inter-
act, control and author - that scaffold three key interaction practices
- rehearse, observe and construct. The authors also embedded into
their approach techniques of collaborative storytelling.

In addressing the use of virtual environments for social skills train-
ing for people with ASD, [Sarah et al. 2006] argue that there is
still a lack of realism of virtual characters in scenes, although vir-
tual environments have progressed quite a lot in terms of how re-
alistic the scenes appear. It seemed clear to users that the virtual
figures did not have any personality but they were instead pre-
programmed. Therefore the authors advocated to make the char-
acters more human-like.

One interesting interactive application is to employ characters in
virtual learning environments (VLEs). Such an application can be
used for example to assist children aged 8-11 years in dealing with
social problems of bullying and mobbing in schools. In fact, VLEs
populated with virtual characters offer children a safe environment
where they can explore and learn via experiential activities. [Hall
et al. 2004] carried out a similar project by using a software pack-
age called FearNot. In their project, FearNot presented the children
with a bullying scenario with few virtual characters. Based on the
children’ choices taken during a simple dialogue with one of the
characters, the narrative of the story could have had different end-
ings. The objectives of this project was to teach children the strat-
egy to use to solve a specific drama. Or if the children had selected
strategies that frequently did not work, the educational message to
them would have been to tell the drama to someone they trust.

5.2 Phobias

Phobias are common forms of anxiety disorders. Phobias are typi-
cally treated by using gradual exposure therapy that consists in ex-
posing patients to anxiety-provoking stimuli in a gradual order with
the aim to attenuate their anxiety. If the anxiety decreases, a more
fearful situation is created. Traditionally, those stimuli are looked
for in actual physical situations (in vivo) or by having the patient
imagine the stimulus (in vitro). VR and virtual environments allow
for an alternative/complementary option of exposure therapy. VR
has been already used in treating specific phobias such as fear of
heights, fear of spiders, fear of flying and claustrophobia, as well as
agoraphobia (see for example [VRPhobias1999;VR Med Center
2007]).

[Takacsand Simon 2007] describe their clinical experience in de-
ploying VR therapy for treating a variety of psychological disor-
ders including depression, age-related conditions, pain distraction,
anger-management as well as common phobias. They address three
major aspects of rehabilitation:

cognitive rehabilitation- where visual stimuli and exercise in vir-
tual environments are carried out to help patients regain their cog-
nitive capabilities (e.g. after a stroke);

psychological rehabilitation- to help patients overcome fear, pho-
bias and side-effects associated with stress;

physical rehabilitation- designed to make patients interact with vir-
tual objects and carry out exercise in virtual space.

The authors state that they have successfully used the system, and
present clinical validity results.

3It is reported that children with ASD show affinity for computers [Hart
2005]

50

To summarize, there is evidence from clinical data that VR can help
to address a number of psychological disorders, and that there is an
increasing number of health-care applications where VR can play
a relevant role. Furthermore, VR-based therapy techniques offer
a number of advantages over traditional ones, for example, they
give the possibility of treating different kinds of phobias, stimuli
in virtual environments can be manipulated, and patients can be
confronted with their fears in environments that are felt safer than
the real one.

6 Discussion

Once the characters’ architecture is fully implemented, we aim at
developing applications that build upon it. In particular, we aim
at conceiving and developing interactive applications to be made
publicly available. Such applications can be developed for dif-
ferent public sectors ranging from entertainment to education and
health. Our primary objective is both to test the agent architecture
and to develop concrete applications that can be of benefit in so-
ciety. We expect that deploying complex forms of reasoning and
learning as well as advanced forms of perception (for example, the
ones that will incorporate techniques to acquire, interpret and select
sensory information) will enhance realistic behavior modelling of
virtual characters. Furthermore, ascribing emotions and personal-
ity traits to virtual characters will allow us to define complex forms
of human-computer interaction.

One interesting test bed for our system would be to apply virtual
characters and storytelling to create improvised dramas in a virtual
school. Our vision is that Hall’s original project (see Section 5.1)
could be expanded in a number of ways, for example, to exploit
better and more advanced types of human-computer interaction as
well as to provide children with more realistic scenarios. This could
be possible by exploiting our results and implemented characters’
architecture. Of course, this must be done along side with cognitive
psychologists, medical doctors, and school teachers.

Another challenging application where we can exploit VR-based
technology is one that addresses the problem of facial expression
recognition. It is well-documented that facial expression perception
is impaired for example in individuals diagnosed with autism or As-
perger’s syndrome (see [Hobson et al. 1988; Phillips 2004]). In fact,
autistic people do not appear to be able to pick up facial signals and
notice other people’s emotions. They can’t read the signals or facial
expressions of emotions in a normal way. Naturally, not being able
to do so affects their social interactions. Recently, an interactive
computer software program called FaceSay4 has been shown to im-
prove the ability of children with autism spectrum disorders (ASD)
to recognize faces, facial expressions and emotions, according to
the results of a study conducted by psychologists at the University
of Alabama at Birmingham (UAB) [ScienceDaily Jun, 2007]. We
believe that by ascribing virtual characters cognitive capabilities,
perception and emotions we can go one step further. In fact, we can
link the virtual character’s facial expressions to its internal emo-
tional state. Furthermore, since the emotional state depends upon
the virtual character’s cognitive and perceptive capabilities, we can
relate the facial expression recognition problem to the problem of
understanding the virtual character’s cognitive/mental state. For ex-
ample, we can associate the gesture of smiling (denoting happiness)
to the fact of having successfully carried out a certain action. In this
way, the understanding of the character’s mental state will help in

4Createdby Symbionica L.L.C., features interactive games that let chil-
dren with ASD practice recognizing the facial expressions of an avatar.
Specifically, the computer game teaches the children where to look for fa-
cial cues such as an eye gaze or a facial expression. FaceSay is available at
www.facesay.com

recognizing its emotional state, and vice versa. We hope that by es-
tablishing this association will help autistic people to enhance their
overall ability in recognizing emotions and ultimately to improve
their social interaction skills.

One major criticism to the use of VR-based technology for treat-
ments is that the cost of this technology may be very high, and
therefore its availability will remain limited (at least for the time be-
ing). Furthermore, some patients may experience simulation sick-
ness. However, we already have VR technology and equipments
available at our institution that we can freely use.

Acknowledgements

The authors would like to thank Monica Tavanti for her comments
on an earlier version of the paper.

References

DUNN, J. R.,AND SCHWEITZER, M. E., 2005. Feeling and Be-
lieving: The Influence of Emotion on Trust. Journal of Person-
ality and Social Psychology, Vol. 88.

ESBJÖRNSSON, J., 2007. EMO - A Computational Emotional State
Module. Master Thesis in Advanced Computer Graphics, Dept.
of Science and technology (ITN), Linköping University. Avail-
able at http://www.ep.liu.se.

FUNGE, J. D., TU, X., AND TERZOPOULOS, D. 1999. Cog-
nitive Modelling: knowledge, reasoning, and planning for in-
telligent characters. InProc. 26th annual conf. on Computer
Graphics and Interactive Techniques (SIGGRAPH’99), ACM
Press/Addison-Wesley Publishing Co., 29–38.

FUNGE, J. D. 1998.Making Them Behave - Cognitive Models for
Computer Animation. PhD thesis, University of Toronto.

FUNGE, J. D. 1999. AI for Games and Animation: A Cognitive
Modelling Approach. A. K. Peters, Wellesley, Mass.

GRILLON , H., RIQUIER, F., HERBELIN, B., AND THALMANN ,
D. 2006. Use of virtual reality as therapeutic tool for behavioural
exposure in the ambit of social anxiety disorder treatment. Procs.
6th Int. Conf. Disability, Virtual Reality and Associated Tech-
nologies (ICDVRAT06), ISBN 07-049-98-653.

HALL , L., WOODS, S., AND DAUTENHAHN , K. 2004. Research
Findings from Synthetic Character Research: Possible Implica-
tions for Interactive Communication with Robots. InProc. of the
2004 IEEE Int. W. on Robot and Human Interactive Communi-
cation, IEEE, 53–58.

HART, M., 2005. Autism/Excel Study. Procs. 7th Int. ACM
SIGACCESS Conf. on Computers and Accessibility, pp.136–
141. ISBN 1-59593-159-7.

HOBSON, R., OUSTON, J.,AND LEE, A. 1988. What’s in a face?
the case of autism.Br J Psychol 79, 441–453.

JOHANSSON, A., 2007. Modelling Expectations and Trust in Vir-
tual Agents. Master Thesis in Media Technology, Dept. of Sci-
ence and technology (ITN), Linköping University. Available at
http://www.ep.liu.se.

KLINGER, E., LEGERON, P., ROY, S., CHEMIN , I. ANDM LAUER,
F., AND NUGUES, P. 2006. Virtual reality exposure in the treat-
ment of social phobia. Cybertherapy - Internet and Virtual Re-
ality as Assessment and Rehabilitation Tools for Clinical Psy-
chology and Neuroscience, G. Riva, C. Botella, P. Lgeron and
G. Optale (Eds.) Amsterdam, IOS Press.

51

MAES, P. 1989. How to do the right thing.Connection Science
Journal, Special Issue on Hybrid Systems 1(3), 291–323.

MAES, P. 1991. A bottom-up mechanism for behavior selec-
tion in an artificial creature. InProceedings of the first Inter-
national Conference on Simulation of Adaptive Behavior, MIT
Press, J. A. Meyer and S. Wilson, Eds.

MAYER, R. C., DAVIS , J. H.,AND SCHOORMAN, F. D., 1995. An
Integrative Model of Organizational Trust. Academy of Manage-
ment Review, Vol. 20, No. 3, pp. 709-734.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: A system for
scripting interactive actors in virtual worlds.Computer Graphics
29, 3.

PHILLIPS, M. L. 2004. Editorial - facial processing deficits and
social dysfunction: how are they related?Brain - a Journal of
Neurology 127, 8, 1691–1692.

REITER, R. 1991. The Frame Problem in the Situation Calcu-
lus: A Simple Solution (Sometimes) and a Completeness result
for Goal Regression. InArtificial Intelligence and Mathematical
Theory of Computation: Papers in Honour of John McCarthy,
Academic Press, V. Lifschitz, Ed., 359–380.

REYNOLDS, C. W. 1987. Flocks, herds, and school: A dis-
tributed behavioral model. InProc. Computer Graphics (SIG-
GRAPH’87), M. C. Stone, Ed., vol. 21, 25–34.

SARAH , P., LEONARD, A., AND M ITCHELL , P. 2006. Virtual en-
vironments for social skills training: comments from two adoles-
cents with autistic spectrum disorder.Computer and Education
47, 2, 186–206.

SCIENCEDAILY . Jun, 2007. Science News - Computer Game
Helps Autistic Children Recognize Emotions. Available at
www.sciencedaily.com.

TAKACS, B., AND SIMON , L. 2007. A clinical virtual reality
rehabilitation system for phobia treatment. InProc. 11th Int.
Conf. Information Visualization (IV’07), IEEE Computer Soci-
ety, 798–806.

TARTARO, A., AND CASSELL, J. 2006. Authorable Virtual Peers
for Autism Spectrum Disorders. W. on Language-Enabled Edu-
cational Technology and Development and Evaluation of Robust
Spoken Dialogue Systems at the 17th European Conf. on Artifi-
cial Intelligence (ECAI06).

TERZOPOULOS, D. 1999. Artificial Life for Computer Graphics.
Communication of the ACM 42, 8.

TU, X., AND TERZOPOULOS, D. 1994. Artificial Fishes: Physics,
locomotion, perception, behavior. InProc. Computer Graphics
(SIGGRAPH’94), ACM SIGGRAPH, ACM Press, A. Glassner,
Ed., 43–50.

TU, X. 1999. Artificial Animals for Computer Animation: Biome-
chanics, Locomotion, Perception, and Behavior. PhD thesis,
ACM Distinguished Ph.D Dissertation Series, LNCS 1635.

VR MED CENTER, 2007. The Virtual Reality Medical Center.
Web site http://vrphobia.com.

VR PHOBIAS, 1999. Virtual Reality and Phobias. Research project
between Delft University of Technology and University of Am-
sterdam, The Netherlands. Web site http://graphics.tudelft.nl.

XSB-PROLOG. 2007. XSB Inc. Available at
http://xsb.sourceforge.net/.

ZAHEER, A., MCEVILY , B., AND PERRONE, V., 1998. Does Trust
Matter? Exploring the Effects of Inter organizational and Inter-
personal trust on Performance. Organization Science, Vol 9, pp.
141–159.

ZAKARIA , R., (work in progress). Physics-Based Animation
and Action Selection in Virtual Characters. Master Thesis (in
progress) in Advanced Computer Graphics, Dept. of Science and
technology (ITN), Link̈oping University. Expected Spring 2008.

52

	ecp07028_B.pdf
	ecp072801
	ecp072802
	ecp072803
	ecp072804
	ecp072805
	ecp072806
	ecp072807pdf
	ecp072808
	ecp072809
	ecp072810
	ecp072811

