
A Static Aspect Language for Modelica Models

Malte Lochau Henning Günther

Institute for Programming and Reactive Systems, TU Braunschweig, Germany,
{m.lochau,h.guenther}@tu-bs.de

Abstract
With the introduction of the new Modelica major version
3, innovations mainly consist of further model restrictions
for increased model quality. In addition, developers of-
ten want to ensure the compliance to further requirements
early in the development cycle. Mostly emerging as domain
specific conventions that often crosscut model structures,
according checking mechanisms are required that are de-
tached from the core language. In this paper, a declarative
language is presented for specifying and evaluating quan-
tified rules for static model properties. Based on aspect-
oriented programming, the language allows for concise
and expressive model inspections and a variable and typ-
ing concept facilitate subsequent model manipulations. A
nascent implementation framework is proposed, based on
the logic meta programming paradigm, thus leading to ef-
ficient and scalable aspect processing applicable as model
query engine for an AOP Modelica Compiler.

Keywords Early Checking, Aspect Orientation, Modelica
Model Inspection

1. Introduction
The Modelica description standard [2] proposes a mod-
ern multi-discipline language for component-based mathe-
matical modeling and simulation of complex physical sys-
tems (see e.g. [12, 21]). Its equation-based, object-oriented,
and declarative nature allows for hierarchical specification
of system structure and behavior and smooth integration,
evolution and reuse of developed components. The inno-
vations of the version 3 of the Modelica Specification [2]
mainly constitute further restrictions, e.g. the locally bal-
anced model property [17], hence aiming at design rules
for increased model quality.

Moreover, modeling follows established practices ac-
cording to a substantial set of rules and properties. General-
izing, a developer wants to be able to specify, maintain, and
analyze arbitrary structural model properties accompany-
ing all development phases. A multitude of requirements,

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

especially non-behavioral quality properties and proper-
ties not evident in testing cannot be adequately expressed
solely using language constructs of Modelica as they ex-
ceed the expressiveness of object-oriented principles. As
an example, the locations within a model to be considered
for checking design policies such as

"For clarity reasons, inheritance hierarchies deeper
than 4 are to be avoided"

are scattered throughout the code, i.e. the formulation
of such a demand crosses model composition hierarchies.
Also the balanced model concept of Modelica 3 [17] con-
sists of a set of entangled demands, e.g.

"The number of flow variables in a connector must be
identical to the number of non-causal non-flow variables"

which correlates properties of connectors.
Besides, design criteria considering chains of several

models/connectors might be of interest, as well as further
coding conventions such as correct library usage, domain
specific patterns, and simple naming conventions, e.g.

"Flow variables shall be named with a flow postfix"
Therefore, an overall mechanism is desirable for ex-

pressing, modularizing, and finally ensuring compliance
with especially application-domain specific design rules
and patterns. Allowing for arbitrary model inspection with
respect to those requirements, certain kinds of errors can
be avoided from the start. For this purpose, aspect-oriented
programming (AOP) offers a promising approach: Super-
posing the object-oriented paradigm and being oblivious
with respect to the underlying core language, aspects allow
for declarative quantification and modularization of con-
cerns that crosscut the component structure and functional-
ity of models.

As the multitude of properties of Modelica models are
already fixed at definition/compile time – especially al-
most all structural characteristics –static aspectsat source
code level seem to provide a sufficient approach for han-
dling a wide range of aspect-oriented concerns for an early
and efficient checking process inside the development loop.
Therefore, a domain-specific static language is required
for specifying aspect rules that refer to static model enti-
ties constituted by fundamental Modelica language units.
According to the aspect-oriented paradigm, this language
must allow for intuitive and quantified formulation and in-
tegration (weaving) of aspects without explicitly affecting
the underlying "host" language and existing models un-
der consideration. Instead, a smooth description, isolation,

47



composition, and reuse of aspects is made possible for
a collection of (connected) Modelica models, their inner
components and behavioral descriptions, therefore speci-
fying the properties emerging from the demanded require-
ments.

In this paper, syntax and semantics of a rule language
for static aspects is presented in terms of expressions (point
cuts) matching specific locations (join points) in Modelica
models. Reflecting basic entities of such models, the lan-
guage enables model queries at source code level, e.g. in-
spection and correlation of classes, connectors, and equa-
tions. The syntactical structure is based on predefined Mod-
elica language primitives serving as "atoms" and operators
for complex term construction. The design of the language
aims at expressive and declarative encoding of a concise
and succinct set of static design rules. The semantics in-
cludes proposals for the usage of variable bindings and
point cut types for accessing and manipulating model el-
ements. Although this paper focuses on a comprise defini-
tion of the static aspect language rather than an extensive
case study, nevertheless some examples as well as a general
discussion of its application is provided. An implementa-
tion framework for the aspect language is proposed that is
under construction. Herein, logic programming principles
are used for efficient rule processing by an integrated eval-
uation engine.

This paper is organized as follows: In Section 2, a brief
overview on aspect-orientation and further related work is
given. In Section 3, a complete and formalized specifica-
tion of syntax and semantics is presented for a domain spe-
cific static aspect language for Modelica models, and an
extension for a variable concept and type system is men-
tioned. The implementation framework of the language is
proposed in Section 4, and some proposals for sample ap-
plications are depicted in Section 5. Section 6 concludes.

2. Aspect-Orientation and Related Work
Aspect-oriented programming (AOP) [10, 15] is motivated
by the observation, that nowadays abstraction perceptions
for logical system structuring and design mainly refer to the
notions of hierarchy and (de-) composition. Accordingly,
current programming and modeling language paradigms
such as the object-oriented principles of Modelica are de-
signed from this perspective. Nevertheless, in many cases
there are concerns that crosscut a composition structure, so-
calledaspects, which are therefore contradicting the means
of expression of such languages.

Concepts of aspect-oriented programming aim at cap-
turing such crosscutting concerns by appropriate modu-
larization constructs calledpoint cuts. Point cuts are ex-
pressions matching well-defined combinations of corre-
lated points within programs/models of the underlying
component-based language, so-calledjoin points. In the
advicepart of an aspect definition, actions/manipulations
can be defined to be applied to the matching join points.
Depending on the point in time at which aspects are con-
sidered, henceweavedto the host program/model, two cat-
egories can be distinguished: static and dynamic aspects,

thus either at definition/compile time or run time. For in-
stance, an implementation of dynamic aspects for Java is
provided by AspectJ [14], whereas the JTL approach [7]
allows for the specification of static aspects for Java using
query by example.

The static aspect language for Modelica proposed in
this paper is mainly inspired by the PDL described in [16]
which is based on principles of description logics [3, 4].
The adoption of the approach to the Modelica language
refers to the syntactical and semantic structure of Model-
ica version 3 [2]. As a major enhancement, a concept for
variable bindings is proposed.

Previous efforts for checking properties of Modelica
models have been made: In [22], mainly the technical is-
sues are discussed for analyzing Modelica model proper-
ties such as naming conventions and inheritance complex-
ity. However, no integrated approach for expressing such
properties is mentioned. Furthermore, analysis techniques
for specific facets of Modelica models can be found, e.g.
in [5] and [6], where the determination of under and over
constrained systems of equations is presented.

The implementation structure presented in this paper is
based on the logic meta programming approach described
in [23], where the intimate correlation between aspect ori-
entation and logic programming is outlined. As already
proposed by the OpenModelica Project [11] and the Meta-
Modelica Language [20], an ANTLR parser is used to cre-
ate an Abstract Syntax Tree (AST) for examining Modelica
models under consideration. Thereupon, the RML/Meta-
Modelica approach [19] can also be seen as a kind of
strongly typed logic programming language for investigat-
ing Modelica models, but it is not linked to aspect oriented
principles. Finally, a first attempt of an AOP Compiler fo-
cusing on merging AspectJ-likeinter-type declarationsinto
the AST of Modelica models can be found in [1].

3. Static Aspect Language for Modelica
In this Section, a domain-specific static aspect language is
defined by giving a complete formalized syntax and related
semantics for obtaining join points in Modelica models
via quantified point cut expressions. Furthermore, variable
capabilities are proposed for adequate binding of (typed)
join points according to related Modelica language entities.

3.1 Applying Static Aspects to Modelica

First, the requirements for a static aspect language for
Modelica is given to motivate the language design deci-
sions. As an object-oriented language, Modelica benefits
from component-based and inheritance principles fitting
well with real structures from the problem domain thus
being seamlessly transferable to the solution domain. The
equation-based specifications of components’ inertia allow
for declarative and encapsulated behavioral descriptions
detached from the system context. As a consequence, Mod-
elica breaks a system down into smaller units of structure
and behavior which is supported by according language
constructs.

48



When aiming at a language for investigating static as-
pects of Modelica models, one starts with these units stat-
ing the primitives (atoms, terminals, etc.) as well-known
starting points. A distinction betweenunary and binary
primitives of Modelica models can be made, where the
first category comprises high level units such as packages,
classes, connectors, etc., therefore stating single, isolated
entities. Instead, binary primitives are relations that group
two kinds of units by a certain (semantic) criterion, e.g.
all components of a model or all unknowns of an equa-
tion. On this basis, the aspect language must allow for ex-
pressing and modularization of combined, unit-spanning
primitives by appropriate operators. Hereby, arbitrary com-
plex relations (the static aspects) can be iteratively derived
from simpler ones, always starting with the aforementioned
primitives. Remind again the balanced model properties of
Modelica 3: To ensure these properties, the inner structure
of models and their connectors are to be considered on each
hierarchy level.

To demonstrate the application of the syntactical con-
structs of the static aspect language introduced in the fol-
lowing, a simple Modelica model is provided as a running
example consisting of a simplePin for an electrical circuit
as

connector Pin
Voltage v;
flow Current i;

end Pin;

For electrical components with two pins, a corresponding
port "interface" model given as

partial model OnePort
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end OnePort;

defines the fundamental relations between quantities of
electrical circuits. Beingpartial, the port model is to
be derived by a concrete electrical component, e.g. an ideal
resistor such as

model Resistor
extends OnePort;
parameter Real R(unit="Ohm");

equation
R*i = v;

end Resistor;

characterized by a resistance parameterR and behavior
according to Ohm’s law. A simpleCircuit model

model Circuit
Resistor R1(R=100), R2(R=200);

equation
R1.n = R2.p;

end Circuit;

consists of two resistors connected in series.

3.2 Syntax

The following language is specifically tailored to extend
Modelica by static aspects and consists of two sublan-
guages for modularizing aspect definitions:

• A language for specifying a set ofjoin points, hence
static elements of interest within the model under con-
sideration. The set of join points to be obtained is de-
fined by apoint cut expression that can be composed
out of Modelica primitives (fundamental types of lan-
guage units) and appropriate operators for combination.

• An action language for definingadvices, therefore stat-
ing what to be done with the join points previously cal-
culated as result of the point cut. The actual content of
an advice might vary from the simple output of an error
message in case of using the language for checking de-
sign rules, to arbitrary complex modifications of the join
points. The latter entails static aspect weaving capabili-
ties affecting the inspected model, e.g. by refactorings.

Accordingly, the language allows for specifying a series of
rules of the form:

<Point cut> => <Advice>;

constitutingpoint cut – advice-pairs with well-defined syn-
tactical structure as will be given in this Section, thereby
focusing on the first part.

Point cutsdescribe specific classes of elements in Mod-
elica models referring to the language’s basic constructs
such as class definitions (types), components (members of
classes), and equations. According to static aspects, point
cuts constitute definite points within the model code to be
considered in the aspect advice. Thejoin pointsthat match
to a point cut are those complying with the predicates the
point cut is composed of by combinations of logical and
quantified expressions. Through this declarative approach
of describing "requirements" for model elements under in-
vestigation, these point cut expressions are decoupled from
a specific model and allow for a quantified model inspec-
tion that can be applied to arbitrary Modelica models with-
out knowing inner details.

Due to the obvious relation of the concept to the logic
paradigm, a point cut expression can be construed as a
set of predicate definitions to be evaluated on a Modelica
source of interest (set of model definitions). The therein
contained set of model-specific join points is adjusted step-
wise by iteratively processing the point cut subterms, and
finally resulting in a set of join points fulfilling the over-
all point cut claims. The complete syntax for the point cut
language is depicted in Figure 1. The syntactical structure
is inspired by the PDL in [16], but modified in some parts,
especially concerning parameterized point cuts which will
be introduced in detail below. Meaning and application of
the different constituents will be described in the following
Sections.

49



p ::= u

| b(p)

| p and p

| p or p

| not p

| p equalsp

| p lessp

| p subsetp

| existsb : p

| forall b : p

| relop n b

| [v := p]relop b b

u ::= id

| ′pattern′

b ::= id

| b +

| b + n

| p product p

| p product-d p

p : Point Cut

u : Unary Point Cut

b : Binary Relation

id : Identifier

n : Natural Number

relop : Relational Operator

pattern : Name Pattern

Figure 1. Syntax of the Point Cut Language

3.2.1 Primitives

Starting the inspection of a Modelica input source by con-
sidering the set of all join points present, the point cut lan-
guage provides some fundamentalsprimitives for a first
limitation of the join point set. These predefined primitive
terms constitute subsets of the overall join point set to those
of a certain kind and/or within a certain context with re-
spect to elementary structuring constructs of Modelica.

As mentioned in [16], primitives might either be clas-
sified asunary or binary which depends on the number
of join points to be considered for a match. Binary prim-
itives express some property of join points. The choice
of appropriate unary primitives focuses on major entities
in which models are organized: packages and class types.
Such individuals represent first class members, hence key
paradigm concepts of Modelica. Tables 1 and 2 list sets of
unary primitives which are simply accessed by their names.
The most general primitiveclass includes all special-
ized class type definitions, namelymodel, connector,
package, block, type, record andfunction [2].
All of whom are Modelica primitives on their part, there-

Primitive Matches
class all class types defined in the source
model model types defined in the source
connector connector types defined in the source
package package types defined in the source
block block types defined in the source
type data types defined in the source
record record types defined in the source
function function types defined in the source

Table 1. Unary Modelica Primitives for basic Class Types

fore partitioning the set of class types into disjoint sub-
sets. Applied to theCircuit example,class matches
to Pin, OnePort, Resistor, andCircuit, whereas
connector only selects thePin. The (sub-) set of par-

Primitive Matches
partialType partial types defined in the source
finalType final types defined in the source
localType local types defined within a type

Table 2. Unary Modelica Primitives for specialized Types

tial class type definitions can be obtained by the primi-
tive partialType, and the final types correspondingly.
Hence,partialType matches toOnePort, whereas
the predicatefinalType is matched nowhere in the sam-
ple model. ThelocalType primitive matches local class
instances nested within a model, e.g. consider an additional
local model declaration

replaceable model Res = Resistor;

within Circuit for parameterized typing of circuit ele-
ments. PrimitivelocalType matches to the type ofRes
which actually refers to the global typeResistor in this
example.

Binary primitives match pairs of join points, therefore
expressing binary relations. They can be used for incremen-
tally deriving interrelations, therefore inspecting further
properties of model elements, e.g. relating a member vari-
able or nested component and its surrounding class type. As
unary Modelica primitives were defined on the high-level
type structure, now binary primitives allow for a detailed
inspection of the internal properties of a class, namely the
parts for structure (variables/component members, inher-
itance, accessibility etc.) and behavior (equations). Again,
binary primitives are given by a name followed by a param-
eterp stating the kind of join point, it is related to. Tables 3
to 7 contain structural, and Table 8 behavioral unary primi-
tives for Modelica models. The primitives in Table 3 allow
for structural insights of a given typep by accessing its
members. These might either beprimitiveMember or
components, thus class-typed variables. For the circuit ex-
ample,primitiveMember(model) results in the re-
sistance variableR from modelResistor1. Further par-
titioning of members is done by their dimension (vectors,

1 Note: The variables v and i from Pin and OnePort are typed by an accord-
ing (non-primitive) Type declaration, thus stating component members.

50



Primitive Matches
member(p) all members of a type

that matches p
primitiveMember(p) primitive members of

a type that matches p
componentMember(p) components of a type

that matches p
vectorMember(p) vector members of a

type that matches p
matrixMember(p) matrix members of a

type that matches p
publicMember(p) public members of a

type that matches p
protectedMember(p) protected members of a

type that matches p
replMember(p) polymorphic members of

a type that matches p
replType(p) local class member of

a type that matches p
constrType(p) upper bound type of a

replaceable type that
matches p

Table 3. Binary Modelica Primitives for Type Members

matrices), and visibility. Note that members not explicitly
stated as public or protected in a model are assumed to
be public, e.g.public(connector) results inv,i. A
Modelica specific concept is that ofreplaceablemembers,
explicit polymorphic members, and replaceable local types
for type parameterization. ThereplMember(model)
primitive for example would match components such as:

replaceable OnePort op;

within Circuit. This component can for instance be re-
placed byResistor via a modifier on instantiation. For
replType consider again the replaceable resistor model
example and the aforementionedlocalType primitive:
In contrast,replType(model) matches the member
variableRes itself instead of its referenced type whichis
actually the type of components withinResistor typed
asRes. Finally, constrType(model) matches types
constraining replaceable types, i.e. for

replaceable model Res
= Resistor extends OnePort;

the point cut expression

constrType(replType(model))

results inOnePort. TheprimModifier(p) primitive
in Table 4 matches modifier values for parameter members
p applied when its surrounding class is instantiated, e.g.

primModifier(primitiveMember(model))

matches100,200 as Resistor is instantiated twice
within Circuit with corresponding modifier values for
the parameterR. The primitive compModifier(p)
matches types used for redeclaration of replaceable com-
ponentsp when its surrounding class type is being instan-
tiated, e.g. in

Primitive Matches
primModifier(p) modifier of a primitive

parameter member that
matches p

compModifier(p) modifier of a replaceable
component that matches p

typeModifier(p) redeclaration type of a
replaceable type

Table 4. Binary Modelica Primitives for Modification and
Redeclaration

Circuit circuit(
redeclare OnePort Resistor);

the modifierResistor for the replaceableOnePort
matches this predicate. In case of redeclaration of local
class typesp such as

Circuit circuit(
redeclare Model Res =
Capacitor);

the new type parameter assigned toRes can be obtained
by

typeModifier(replType(model))

thus resulting inCapacitor. Table 5 lists primitives

Primitive Matches
derivedType(p) types that are derived from

a type that matches p
baseType(p) types that are derived by a

type that matches p
subType(p) types that are subtypes of a

type that matches p
varDerivedType(p) types that are variably

derived from a local
type that matches p

Table 5. Binary Modelica Primitives for Inheritance Hier-
archies

for obtaining inheritance relations between types. The re-
sult ofderivedType(partial) isResistor (direct
subclass relation), andbaseType(model) inversely
matchesOnePort as the direct super class ofResistor.
In Modelica, a distinction is made between explicit sub-
classes and implicit subtypes within the type hierarchy of a
system model. The primitivesubType matches all types
with public interfaces being compatible with that of typep.
Note that this primitive is quite powerful as it is not directly
extractable from a model source, but rather requires addi-
tional computational efforts. A further advanced construct
of Modelica is variable inheritance. Consider the modified
OnePort model:

model OnePort
replaceable model Res = Resistor;
...

protected
extends Res;

51



...
end OnePort;

Here, the local class typeRes can be used to redeclare
the base class ofOnePort which is initially stated as
Resistor. Thus, the result of the expression

varDerivedType(localType)

wherelocalType matchesResistor, is OnePort.
The primitives depicted in Table 6 allow for inspection of

Primitive Matches
flow(p) flow members of a type that

matches p
input(p) input members of a type that

matches p
output(p) output members of a type that

matches p
constant(p) constant members of a type that

matches p
parameter(p) parameter members of a type

that matches p
inner(p) inner members of a type that

matches p
outer(p) outer members of a type that

matches p
final(p) final members of a type that

matches p
discrete(p) discrete members of a type that

matches p

Table 6. Binary Modelica Primitives for Member Proper-
ties

further member properties. Being mostly self-explanatory,
a detailed description shall be omitted at this point.

Primitive Matches
startValue(p) start value of a member

that matches p
fixedStartValue(p) fixed value of a member

that matches p

Table 7. Binary Modelica Primitives for Member Initial-
ization

Modelica allows for the propagation of start values and
initialization values for primitive member variables. The
primitives in Table 7 can be used to obtain such values.
The primitives listed in Table 8 can be used to delve into
model bodies and explore the behavioral specifications in
equations2. Asequation(p) matches all kinds of equa-
tions defined for typep, e.g.R*i = v; for Resistor,
further primitives for partitioning the set of equations are
given, i.e. initial equations, equations for connecting two
connector components, equations containingif or when
clauses (potentially causing events), andfor loops. After
having selected a certain equation, theunknown primitive
can be used to get the set of variables appearing in an equa-
tion, hence

2 Note: Algorithm parts can also constitute model behavior, but are no
further considered at this point.

Primitive Matches
equation(p) equations defined in a

type that matches p
initEquation(p) initial equations in a type

that matches p
connectEquation(p) connect equations in a

type that matches p
ifEquation(p) equations containingif

in a type that matches p
whenEquation(p) eq. containingwhen

in a type that matches p
forEquation(p) equations containingfor

in a type that matches p
unknown(p) unknown variables in an

equation p
derivated(p) unknown variables

derivated in an equation p

Table 8. Binary Modelica Primitives for Model Behavior

unknown(equation(p))

for pmatching theResistor results inR,i,v. Variables
being derivated within an equation match the primitive
derivated. On this basis, even more arbitrary complex
primitives concerning equation details might be useful, e.g.
inspecting operators, but shall be omitted at this point.

3.3 Operators

For the definition of extensive aspects, thus concerns that
crosscut the entities of models, operators for complex term
construction are provided for correlating Modelica primi-
tives of initially separated model units. Being closed under
the set of join points of the overall model, such operators
allow for iterative combinations of point cut expressions
permitting rules of any complexity. Some criteria to take
into account when choosing appropriate operators:

• The resulting language’s expressiveness must be suffi-
cient for capturing a wide range of possibly occurring
requirements.

• The operators must allow for an "atomic" conversion
and efficient evaluation.

• The operators usage must be concise and intuitive.

As the operators are applied tosetsof join points, they are
mainly of set oriented nature inspired by logic program-
ming and query languages. For operator precedences, the
usage of appropriate parentheses is recommended as usual.

3.3.1 Logical Operators

For simple interrelations of join point sets, logical connec-
tors are provided. For instance, classes, that are both sub-
classes derived from other classesand subtype of another
type, can be searched via

derivedType(class) and subType(class)

As another example, the expression

input(class) or output(class)

52



matches all directed member variables. As one of the most
powerful operators, the logical negation allows for expres-
sions matching all join pointsnot being contained in a
given set of join points3. For instance

partial and not baseType(class)

matches all partial class types not being derived by any
other class type. Moreover, the equality of two sets of join
points can be stated, e.g.

class equals (model or connector)

requires systems only consisting of models and connectors.
Two more operators for more intuitive descriptions of step-
wise refinements for intermediate point cuts are provided:

model less partial

matches all model typesbut partial ones, whereas

partial subset model

matchesonly thosemodel types that are also partial, which
can actually also be expressed by theand operator.

3.3.2 Pattern

In order to examine join points that refer to named model
elements, a pattern operator is provided. Using arbitrary
pattern expressions, the set of join points can be reduced
to the ones whose names match the given pattern. By

model and ’Resistor’

the resistor model can be obtained. Moreover, patterns can
be used to check naming conventions, e.g. the demand
"Flow variables shall be named with a flow postfix"can
be expressed by

(flow(class) less ’*_flow’)

matching those flow members whose names do not have the
required postfix. Besides wild cards* matching arbitrary
sequences of symbols, further operators inspired e.g. by
regular expressionscan be used such as ranges[a,b,c]
demanding one of the listed symbols. As there are primi-
tives referring to unnamed join point types, e.g. equations,
the pattern operator is only allowed at innermost position
of expressions and no explicit comparison operator is pro-
vided.

3.3.3 Quantification

Point cut quantification can be used to check some condi-
tion on arangeof values in a binary relation of join points.
Therefore, point cut expressions can be constructed whose
matching join points are based on properties of related join
points. The expression

forall primitiveMember : output(block)

matches block types, whose primitive members areall out-
put variables, i.e. sources. In this example, the property
output (of a block) is postulated for all primitive mem-
bers of that block (stated as a binary primitive relation). In
contrast, the expression

3 Depending on the type system applied, this complemented set could be
further limited to only those join points of the same type as the given ones.

exists primitiveMember : output(block)

matches blocks withat leastone output variable.

3.3.4 Cardinality

Operators dealing with the cardinality of join point sets
allow for evaluation of model metrics. Style conventions
for structuring Modelica libraries such as"The number of
models defined in an own package must be at least 5"can
be expressed by

package and (> 5 componentMember)

resulting in "malformed" packages containing less than 5
type declarations. A cardinality expression can be parame-
terized by an optional point cut[v:=p], hence a set of join
points. Note that this concept will be generalized in Section
3.5 for application to all point cut expressions. In this way,
comparisons of cardinalities concerning further properties
between join points can be enforced. The complex balanced
model demand"The number of flow variables in a connec-
tor must be identical to the number of non-causal non-flow
variables"[17] can be stated as

[v:=connector](= flow(v)
(primitiveMember(v)
less (flow(v) or input(v) or output(v)
or parameter(v) or constant(v)))

constituting an iterative "foreach" loop over the set of con-
nectors.

3.3.5 Composition

New binary relationsb can be created by composing two
point cuts by building the Cartesian product, hence combin-
ing all join points matching these point cuts. For instance,
the expression

[v:=class](derivedType(v) product
derivedType(v))

relates types having the same (direct) super class. Here,
again the parameterization syntax is used to relate both
subclasses to the same super class. Note that theproduct
operator also relates identical join points, thus creating
reflexive relations. For avoiding such self-references, the
product-d (disjoint) operator can be used. As a further
example, the expression

[v:=connectEquation(model)]
(unknown(v) product-d unknown(v))

relates components being connected within models.

3.3.6 Transitive Closures

The deduction of (anti-symmetric) transitive closures of a
binary relations can be obtained by

derivedType+

for instance, resulting in the subclass relation, hence relat-
ing two classes (indirectly) associated via arbitrary chains
of derivations. The "bounded" transitive closure operator
creates chains limited to at mostn links, e.g.

derivedType+4

53



can be used to check whether inheritance hierarchies
deeper than 4 are present in the model by comparing the re-
sult to that of the unbounded case. The closure operator can
also be used for examining connector traces of Modelica
models.

3.4 Semantics

Partly taken from [16], the point cut evaluation is reduced
to element-wise reasoning of join point sets considering the
stipulated conditions. The evaluation of a point cut expres-
sionp ∈ P from a set of rulesP with respect to a Model-
ica model specificationM (a collection of conjugated class
type definitions) is stated as:

p : JM → P(JM)

resulting in a (sub-) set of join points of the model under
consideration, whereJM is assumed to be

JM = {sets of all types of join points present inM}

The evaluation of a rule expression precedes from inwards
to outwards, therefore calculating temporary join point sets
as intermediate stages that are gradually refined toward the
overall result set. Being composites of unary and binary
expressions, point cuts are calculated through sequences of
mappings

U : Unary Point Cut→ P(JM)

for unary primitivesu, and

B : Binary Relation→ P(JM × JM)

for binary primitivesb(p), respectively. The evaluation of
u in a point cut expression can be simply stated asP [[u]] =
U [[u]], whereu might be either a unary primitive denoted by
id and will therefore be replaced by those join pointsj ∈
JM matchingid, or it is some kind of regular expression,
thus

U [[′pattern′]] = {j | j matches ’pattern’}

is to be applied. For the evaluation of binary primitives
b(p), the given parameterp is to be taken into account:

P [[b(p)]] = {j1 | (j1, j2) ∈ B[[b]], j2 ∈ P [[p]]}

The relation setb between the parameter join pointp and
the binary primitive is constructed by trying out all possible
combinations and keeping those fulfillingb. The result,
again is a set of single join points "fitting" to the parameter
p. Unary and binary primitives can be nested (composed)
at will, e.g.b(b(p)). The operators for logical combinations
of join point sets can be reduced to according set operators:

P [[p1 and p2]] = P [[p1]] ∩ P [[p2]]

P [[p1 or p2]] = P [[p1]] ∪ P [[p2]]

P [[p1 lessp2]] = P [[p1]] \ P [[p2]]

P [[not p1]] = {j | j 6∈ P [[p1]]}

The operators for comparing sets of join points (equality
and subsets) are evaluated as follows:

P [[p1 subsetp2]] = {j | ∀j ∈ p1 : j ∈ p2}

P [[p1 equalsp2]] = (p1 subsetp2) and (p2 subsetp1)

Hence,subset results in the join pointp1, iff p1 ⊆ p2

and in the empty set, otherwise. The equality of two join
point sets can then be ensured viaequals by checking the
result set not being empty. For the quantification operators,
the semantics are given as

P [[forall b : p]] = {j2 | ∀(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}

P [[existsb : p]] = {j2 | ∃(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}

Binary relations constitute relationships between two join
points and can be obtained by according primitivesid:

B[[id]] = <primitive>

Further relations can be constructed as Cartesian products:

P [[p1 product p2]] = {(j1, j2) ∈ P [[p1]] × P [[p2]]}

For theproduct-d operator, the requirementj1 6= j2
must be satisfied. The semantics for transitive closure is
defined to be

P [[b+]] = {(j1, jk) | ∃(j1, j2), . . . , (jk−1, jk) ∈ B[[b]]}

wherek ≤ n must hold in the bounded case forP [[p + n]].

3.5 Variable Binding and Type System

As already used for the cardinality comparison operator,
for further examinations of elements within other subterms,
variable bindings are introduced. They allow for binding of
join points to variables which can be used as parameters
in subsequent terms. This concept shall now be enhanced
to all kinds of point cut expressions. Generally, a point cut
expression can be parameterized by an arbitrary set of point
cut variablesφ that are then visible within the point cut:

[φ]p : Point cutφ, whereφ = {v1 := p1, . . . , vn := pn}

is a set ofn point cut variablesvi, whose content is again
defined by point cut expressionspi. In the modified seman-
tics, these parameters are passed to all subterms ofp, e.g.

P [[p1 and p2]]φ = P [[p1]]φ ∩ P [[p2]]φ

These enhanced evaluation semantics constitutes a (nested)
"for-each" loop over the set of join point combinations de-
picted by the parameter point cut(s) to be likewise adopted
to all point cut subterms.

As proposed in [16], the adoption oftypes for point
cuts allows for sound expressions with respect to the types
expected for the matching join points. Such types reflect
the basic kinds of Modelica constructs the join points refer
to, namely types, members (primitive, components), scalar
values, and equations. The integration of a type system for
point cuts into the aforementioned semantics allows for

54



exact determination of the join point types in the result set.
Therefore, the matching join points are restricted to those,
that are in the static type calculated for the point cut. Due to
lack of space, a formalization of this approach, especially
considering types of parameter variables for point cuts, is
deferred to future work.

3.6 Advices

Theadvicepart of a rule shall only be discussed informally
at this point. Generally, it is considered to be "executable"
and it is applied for each join point matching the point cut
part of a static aspect. For the simplest case, e.g. rule check-
ing, a report string can be put out as an error description:

<point cut> =>
"Error: violated naming convention";

For providing a more expressive report, access to the re-
sulting join point set should be made possible, e.g. by the
following syntax for iterating the result set:

<point cut> =>
"Error: violated naming convention in "
+ ResultSet.nextItem().getName();

returning the name of the join point within the result
set currently iterated. Note that the join points within
ResultSet must be of a type that refers to a named ele-
ment in Modelica. As a next step, arbitrary code as well as
access to additional variables defined in the point cut could
be permitted, e.g. for obtaining the corresponding AST
Nodes for manipulation within a compiler environment.

4. Implementation Framework
A sample implementation framework of the static aspect
language that is currently under construction is proposed
in the following. It is based on the principles oflogic
meta programming[23]. The application of two languages
is proposed for processing static aspects on given Model-
ica models: (1) AUser language for specifying static as-
pects, such as the previously defined point cut language
which serves as an inspection API for Modelica models,
and (2) an efficientImplementationlanguage for process-
ing of the aspects, therefore stating a point cut evaluation
engine. Due to the similarities of aspect principles and the
logic paradigm [23], the first order logic programming lan-
guage Prolog [9] can serve as an evaluation engine. Prolog
allows for seamless conceptual representation and efficient
evaluation of aspect queries on Modelica models in terms
of logical facts and rules. A structural overview of the re-
sulting implementation framework architecture is depicted
in Figure 2. The front end for user input parsing and trans-
formation consists of two interfaces:

1. A Modelica model input interface realized as a conven-
tional ANTLR [11, 18] Modelica Parser that constructs
the Abstract Syntax Tree (AST) representation of the
model under consideration and extracts primitives in
terms of Prolog facts. A similar approach is taken in
MetaModelica [20].

Modelica Source Static Aspects

Modelica 
Parser

Rule 
Parser

Primitive 
Extraction

Rule Mapping 
Scheme

Result Set (typed)

Advice

Prolog Engine

Point CutAST

Facts Rules Join Points

Report, 
AST Nodes

Figure 2. Architecture of the Static Aspects Framework
for Modelica Models

2. An aspect rule input interface accepting syntactically
well-formed static aspects expressions according to the
aforementioned point cut language grammar. The point
cut expression parts are then transformed to suitable
Prolog rules according to a mapping scheme for itera-
tively composing primitives and operators.

The middle end forms the aspect processing engine in
terms of a Prolog interpreter implemented on top of the
Modelica source code parser. Applying the Prolog rules
generated for point cut expressions to the fact basis con-
taining the model primitives, the engine integrates both,
the input models and the related aspect rules for join point
result set processing. The back end interface conducts ad-
vice processing with respect to the resulting join point set,
i.e.

• Error reports for simple design rule evaluation,

• References to the originating AST nodes of the resulting
join points, thus allowing for arbitrary post-processing
of complex aspect advices detached from the frame-
work, e.g. as described in [8].

A simple example for mapping model structures to corre-
sponding Prolog rules shall be given. Consider the afore-
mentionedResistor model inheriting from the partial
OnePort model. First, the "existence" of both models can
be expressed by appropriate Prolog facts:

model(m1,’OnePort’).
model(m2,’Resistor’).

Next, the interrelation of both models with respect to the
implied inheritance hierarchy can be stated as:

derive(m2,m1).

According to these facts, implications can be derived by
appropriate rules, e.g.:

55



derivedType(Sub,Sup)
:- derive(Sub,Sup).

derivedType(Sub,Sup)
:- derive(Sub,X),

derivedType(X,Sup).

for calculation of the transitive closure of the inheritance
hierarchy.

The decoupling of theUser and Implementationlan-
guage aims at a high grade of extensibility and adaptabil-
ity. Being Turing complete, the Prolog engine allows for
integrating point cut language constructs of any complex-
ity, and does not dictate the concrete representation of the
aspect language implementation. The implementation can
either be used as a "stand-alone" rule checker for system-
atic model inspection, or it can be integrated to an ambient
Modelica compiler/development environment accomplish-
ing static aspectweavinge.g. AST transformations.

5. Application
On the basis of the adaptable and scalable framework im-
plementation and the flexibility of the proposed static as-
pect language for Modelica, various possible areas of ap-
plication are conceivable:

1. Rule checking "by negation": Describing point cuts
matching join points that are not desired to appear in
the models as proposed in [16]. In case of non empty
result sets, the rule is violated by the join points calcu-
lated and corresponding error reports can be generated
in the advice part. By expressing new restrictions of the
Modelica 3 specification as static aspects, the compati-
bility of legacy code such as libraries can be examined
automatically.

2. Model inspection: Searching for model elements or pat-
terns matching criteria of interest, either "off-line" (e.g.
metrics calculations), or "on-line" as a model inspec-
tion tool within a Modelica IDE. Further applications
in the realm of the object oriented paradigm might be
that ofconcepts[13], thus checking whether a given set
of types are applicable as parameters for a generic con-
struct (upper bound resolution for constraining types).

3. Join point manipulations within the advice part, e.g.
renaming of certain elements with respect to naming
conventions or model maintenance.

4. Arbitrary model restructuring by join points referencing
nodes of the AST. Therefore, static aspect weaving can
be done by graph transformation, e.g. context aware
refactorings.

6. Conclusion
The formal syntax and semantics definition and sample
implementation framework of a static aspect language for
Modelica was presented. The language design aims at suffi-
cient expressiveness and extensibility, but yet still provides
intuitive usage. Language extensions for variable bindings
of (typed) join points were mentioned for enhanced rule
precision.

The framework proposed can serve as a foundation for
a wide range of applications, e.g. simple rule checking up
to source code manipulations. An integration into existing
environments is aimed at, either as a basis for a point cut
evaluation engine for a Modelica AOP Compiler, or as a
programmer’s on-line assistance tool for code inspection
queries, e.g. providing an interactive search engine with
Eclipse IDE integration.

In future work, after having finished the implementa-
tion, the application of the language in various case studies
can indicate, whether the language boundaries defined up
to this point are sufficient. For this purpose, the formula-
tion of balanced model requirements of Modelica version
3 in terms of static aspects is assumed to be a convenient
case study. Hereby, the performance of the implementation
can be investigated concerning the number and complexity
of rules and models under investigation. Optimizations can
lead to increased efficiency, e.g. by dynamical and cached
AST access on demand during rule evaluation. Moreover,
a detailed survey of the advice part is aimed at, especially
in view of conflicts analysis between different aspects. On
this basis, studies of applying dynamic aspect approaches
to Modelica can be promising, although Modelica-like lan-
guage are notproceduralones as demanded e.g. in [15].

Acknowledgments
The authors’ thank goes to Dr. Michaela Huhn and TLK
Thermo for helpful discussions supporting this paper.

References
[1] Johan Akesson.Languages and Tools for Optimization of

Large-Scale Systems. PhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, November
2007.

[2] The Modelica Association. The Modelica Language
Specification 3.0. http://www.modelica.org, September
2007. http://www.modelica.org.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuiness,
Daniele Nardi, and Peter F. Patel-Schneider.The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[4] Alexander Borgida. Description Logics in Data Manage-
ment. InIEEE Transactions on Knowledge and Data Engi-
neering, volume 7, pages 671–682, 1995.

[5] David Broman, Kaj Nyström, and Peter Fritzson. Deter-
mining Over- and Under-Constrained Systems of Equations
using Structural Constraint Delta. InProceedings of the
Fifth International Conference on Generative Programming
and Component Engineering (GPCE’06), pages 151–160,
Portland, Oregon, USA, 2006. ACM Press.

[6] Peter Bunus and Peter Fritzson. Automated Static Analysis
of Equation-Based Components.SIMULATION, 80(7-
8):321–345, July-August 2004.

[7] Tal Cohen, Joseph Gil, and Italy Maman. JTL - The Java
Tools Language. InOOPSLA’06: Companion to the 20th
annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2006.

56



[8] Roger F. Crew. ASTLOG: A Language for Examinging
Abstract Syntax Trees. InProceedings of the USENIX
Conference on Domain-Specific Languages, pages 229–
242, 1997.

[9] P. Deransart, A. Ed-Dbali, and L. Ceravoni.Prolog: The
Standard. Springer-Verlag, NewYork, 1996.

[10] R. Filman and D. Friedman. Aspect-Oriented Programming
is Quantification and Obliviousness, 2000.

[11] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom,
L. Saldamli, D. Broman, and A. Sandholm. OpenModelica
- A Free Open-Source Environment for System Modeling,
Simulation, and Teaching. InIEEE International Sympo-
sium on Computer-Aided Control Systems Design, pages
1588–1595, October 2006.

[12] Peter Fritzson.Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. IEEE Press, 2004.

[13] J. Järvi, J. Willcock, and A. Lumsdaine. Associated Types
and Constrain Propagation for Mainstream Object-Oriented
Generics. InProceedings of the 20th OOPSLA, pages 327–
355. Springer Verlag, June 2001.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An Overview of
AspectJ. Lecture Notes in Computer Science, 2027:327–
355, 2001.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-
Verlag, June 1997.

[16] Clint Morgan, Kris De Volder, and Eric Wohlstadter. A
Static Aspect Language for Checking Design Rules. In
AOSD ’07: Proceedings of the 6th International Conference
on Aspect-Oriented Software Development, pages 63–72,
New York, NY, USA, 2007. ACM.

[17] Hans Olsson, Martin Otter, Sven Erik Mattsson, and
Hilding Elmqvist. Balanced Models in Modelica 3.0 for
Increased Model Quality. In Prof. Dr. B. Bachmann,
editor, Proceedings of the 6th International Modelica
Conference, volume 1, University of Applied Sciences
Germany, Bielefeld, 2008. The Modelica Association.

[18] Terence Parr.The Definitive ANTLR Reference Guide:
Building Domain-specific Languages. Pragmatic Program-
mers, 2007.

[19] Adrian Pop and Peter Fritzson. Debugging Natural
Semantics Specifications. InAADEBUG’05: Proceedings of
the sixth international symposium on Automated analysis-
driven debugging, pages 77–82, New York, NY, USA, 2005.
ACM.

[20] Adrian Pop and Peter Fritzson. MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. InJoint Modular Languages Conference
(JMLC2006), Jesus College, Oxford, England, September
2006.

[21] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

[22] Michael Tiller. Parsing and Semantics Analysis of Modelica
Code for Non-Simulation Applications. In Peter Fritzson,
editor,Proceedings of the 3rd International Modelica Con-

ference, volume 1, pages 411–418, Linköping, November
2003.

[23] Kris De Volder and Theo D’Hondt. Aspect-Oriented
Logic Meta Programming. InReflection ’99: Proceedings
of the Second International Conference on Meta-Level
Architectures and Reflection, pages 250–272, London, UK,
1999. Springer-Verlag.

57




