
A control chart of the Weibull percentiles 
via Bayesian - bootstrap approach 

Pasquale  Erto 

ertopa@unina.it 
University of Naples “Federico II”  

Naples, Italy 

Giuliana  Pallotta 
g.pallotta@unina.it 

University of Naples “Federico II” 
Naples, Italy 

 

 
 

 

ABSTRACT 

Purpose: This work proposes an innovative control chart of the Weibull percentiles using 
Bayesian estimators supported by bootstrap methods. 

Approach: The chart offers two main advantages. 
On one side, the estimation procedure is able to effectively integrate both the experimental and 

the technological information exploiting some specific Bayesian estimators. 
On the other side, the bootstrap techniques allow to capitalize the experimental information 

provided by few samples. 
Findings: The performance of the control chart has been investigated by means of a large Monte 

Carlo study. 
Value of the paper: The paper presents a control chart for Weibull percentiles, where few 

alternative charts can be found. 
 

 
Keywords: Statistical Process Control, non-Normal control charts, Bayesian inference, Weibull 
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INTRODUCTION 

The common Shewhart-type control charts are widely employed to monitor quality of products 
and services in order to detect shifts (step changes or gradual drifts) in the mean and/or variance of 
a quality characteristic of interest. However, these charts work satisfactorily if the underlying 
distribution of the observed data is Normal or near-Normal and the sample size is large enough. 
This assumption allows one to exploit  the “normalizing effect” and to theoretically derive the 
sampling distribution of the parameter estimator. 

Anyway, this assumption is not valid in several technological contexts where the quality is 
measured in terms of reliability. Nearly always, the distributions of the reliability parameters are 
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skewed and the “normalizing effect” of Shewhart control charts is not effective or impossible due to 
the extremely small size of the available samples. Unfortunately, few papers dealing with non-
Normal populations and reliability control can be found in literature (Padgett and Spurrier, 1990), 
(Kanji and Arif, 2001), (Xie et al., 2002), (Shore, 2004), (Zhang and Chen, 2004), (Nichols and 
Padgett, 2005). 

Moreover, in these alternative charts, reliability control is performed via a pure classical 
statistical approach, ignoring all the available technological knowledge. Anyway, in facing very 
small samples, these classical estimation procedures can be misleading as shown in (Canavos and 
Tsokos, 1972, 1973), (Smith and Naylor, 1987) and (Erto, 2005). 

To overcome all these difficulties we can use reliability estimators based on the application of 
the Bayes theorem, that has got the peculiarity of allowing one to integrate both the experimental 
and the technological information. 

Moreover, within a Bayesian framework bootstrap techniques can be used to support the 
estimation procedure, in order to capitalize the experimental information provided by few samples. 

The control chart proposed in this work exploits some specific Bayesian reliability estimators 
known as “Practical Bayes Estimators” (PBE) in order to monitor a specified percentile of the 
underlying Weibull distribution of the characteristic of interest. These estimators were first 
introduced in (Erto, 1982) and then applied in several technological contexts during past years (Erto 
and Rapone, 1984), (Erto and Lanzotti, 1990), (Erto and Giorgio, 1996), (Erto, 2005), (Erto and 
Pallotta, 2006), (Erto and Pallotta, 2007) and (Erto et al., 2008). 

In the first sections  the main steps are presented which led to estimate the sampling distribution 
of the Bayesian estimator for the Weibull percentile by means of the “parametric bootstrap 
sampling”. Then this empirical sampling distribution is exploited to draw a Shewhart-type control 
chart for Weibull percentiles. The performance of the chart is investigated by means of a large 
Monte Carlo study and a comparative analysis of its responsiveness is reported. 
 
 
Acronyms & Notation 
 

{}  survival function Sf ⋅

{ }  probability density function pdf ⋅
R reliability level 
K constant equal to ( )1 R  ln

Rx  1 R− {-th  percentile of the Weibull distribution such as that }Sf xR R=

{
 

}RE x  anticipated (mean) value given by prior knowledge for Rx  
n sample size 

 n-dimensional sample array x
k  number of available samples 
M  number of bootstrap training samples 
B  number of pseudo-random samples from estimated Weibull distribution 
α tail areas of a pdf corresponding to a given false alarm risk 
δ, β scale and shape parameters of the Weibull distribution 
a, b scale and shape parameters of the Inverse Weibull prior distribution of Rx  
β1, β2 prior numerical interval for β 
∧

 implies an estimate. 
PBE Practical Bayes Estimators (or Estimates) 
L Likelihood Function 
MLE Maximum Likelihood Estimators (or Estimates) 
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1 THE RELEVANCE OF THE WEIBULL PERCENTILES IN RELIABILITY CONTROL 

In reliability problems, the control of the Weibull percentile Rx  is strategic. The choice of Rx  is 
justified by the wide use of this parameter in: 

 
 defining warranty conditions; 
 developing contractual specifications; 
 characterizing norm requirements; 
 expressing key-indicators in engineering catalogues. 

 
In practical situations the control of a specific Weibull percentile becomes crucial when the quality 
characteristic of interest is the breaking strength of brittle materials (such as carbon, boron), the 
compressive strength of specimens made with quasi-brittle materials (such as concrete, rock, ice, 
ceramic and composite materials concrete) and the tensile adhesive strength (Park, 1996). In these 
contexts, a minimum strength value is required for engineering design and monitoring the mean and 
variance of the strength distribution (by means of classical control charts) could be seriously less 
effective than monitoring lower percentiles since a small variation in mean and/or variance can 
produce a significant shift in the small percentile of interest as shown in (Padgett and Spurrier, 
1990) and (Nichols and Padgett, 2005). 
Moreover, we must outline that, if the reliability level of the tested items is very high, we are able to 
collect very few data which prevent us to use classical control charts. In these cases, the proposed 
Bayesian approach may result an appropriate one. 

The Weibull survival function is: 

{ } ( )Sf ; , exp ; 0; , 0x x xβδ β δ δ β⎡ ⎤= − ≥ >⎢ ⎥⎣ ⎦
 (1) 

that can be immediately reparameterized in terms of the percentile Rx  and shape parameter, β, in 
which the Engineers’ knowledge can be more easily converted: 

{ } ( )

( )

Sf ; , exp ; 0; , 0

ln 1

R R Rx x K x x x x

K R

ββ β⎡ ⎤= − ≥ >⎢ ⎥⎣ ⎦
=

 (2) 

x  and β both being unknown. R
In the above engineering context, very good knowledge exists about the mechanism of failure 

under consideration, which can be converted into quantitative form about .β  In particular, the 
engineers working in these well known contexts usually know more than the simple order of 
magnitude of the reliability performance which the produced item has, e.g., he has a quite precise 
knowledge about an .Rx  Then, with both these pieces of information, he can formulate a numerical 
interval ( )1 2,β  for β  and an anticipated value for .β Rx  The PBE allow combining this prior 
knowledge about β  and Rx  with a few experimental data to give very good Weibull parameter 
estimates. 
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2 THE BAYES APPROACH IN RELIABILITY PROBLEMS 

2.1 Technological knowledge and prior distributions 

In order to evaluate the PBE of the Weibull parameters, the following main elementary steps 
must be performed. For a comprehensive discussion of the assumptions on which the resulting 
estimates are based see (Erto, 1982) and (Erto, 2005). 

The prior knowledge for β  is converted into the values 1β  and 2,β  using the well known 
relationship between the mechanism of failure and the value of 1;β  (e.g., early failures imply β <  
chance failures imply 1; 1=  wear out failures imply β β >

)1 2, .

) .  
These two parameters can be effectively and easily anticipated since the Engineers’ information, 

about the mechanism of failure, can be always expressed in terms of an interval (β β

1

 This 
interval must be chosen wide enough in order to plausibly contain the unknown (true) value of the 
Weibull shape parameter. 

The only restriction, which the anticipated values β  and 2β  must be subjected to, is the 
following one: 

1 2 2>  (3)  β + β

since their sum will be used to set up the argument of the Gamma function in (6). 
For a selected percentile Rx  (corresponding to the R  value of interest) the prior probability 

density function is assumed to be the Inverse Weibull (Johnson et al., 1994): 
( 1)pdf{ } ( ) exp ( ) ; 0; , 0b b

R R R Rx a b a x a x x a b− + −⎡ ⎤ = − ≥ >⎣ ⎦

a b

 (4) 

where  and  are scale and shape parameters respectively. The prior information for Rx  is 
converted into the mean value of the probability density function (4): 
 

 { } (1 1 )
R

bE x
a

Γ −
=

a

 (5) 

 
Then, an effective value for the prior parameter  is automatically obtained by means of the (5): 

( )
{ }

 1 2
1 1

; ( ) 2m
m

R
a

E x
β

β β β
Γ −

= = +

,mb

 (6) 

since it is reasonable to assume β=  as discussed in (Erto, 1982). 
 

2.2 Reliability tests and Practical Bayes Estimators 

Usually, in reliability tests, a sample array x , of n  experimental data, is available. If the selected 
reliability parameters of the items are characterized by the model (2), the following joint posterior 
probability density is obtained: 

 { }
2

1

1 ( 1) 1 1

11
( 1)

1

11

exp

pdf ,

!

n n
n n

R Ri i
ii

R nn n
n

i i
ii

a x x x a K x

x x

n a x a K x d

β β β β β β

β β β β β
β

β

β

β β

+ − − + − − − −

==
− +

− − −

==

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

∑∏

∑∏∫
 (7) 
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We can say that this density function describes the residual uncertainty which exists about the two 
parameters. So we could estimate the parameters Rx  and β  adopting their modal or median or 
mean values. The PBE choose the last ones, that is, the expectations of Rx :β and  

{ } { }3 2E ; EI

1 1
R

Ix x x 
I I

( )2

1

( 1)
1

11
1

1, 2, 3

j
j

n kn nm
j ji i

ii
I a x a K x n k d

j

β β β β β
β

β= =  (8) 

where: 

 β β
− + +

− − −

==

⎛ ⎞
= + Γ + −⎜ ⎟⎜ ⎟

⎝ ⎠
=

∑∏∫  (9) 

with the following values for the parameters jm : and jk  

 1 3 2 1 2 3; 1; 0; 1 .m m n m n k k k  (10) β≡ = = + ≡ = =

3 BOOTSTRAP TECHNIQUES APPLIED TO CONTROL CHARTING 

During past years, bootstrap methods have gained an increasing acceptance in Statistical Process 
Control charting, being mainly used to find more appropriate control limits when the distribution of 
the observed process is unknown or non-Normal (Nichols and Padgett, 2005). In control charting 
the main effect of non-Normality is the difficulty to theoretically derive the sampling distribution of 
the selected parameter estimator. The problem is quite crucial since an appropriate knowledge about 
the sampling distribution influences the correct setting of control limits, according to the desired 
false alarm risk α  (Wood et al., 1999). Bajgier (1992) proposed a non-parametric bootstrap control 
chart to monitor process mean in case of non-Normal populations. He does not assume a 
distribution model  but only a stable and in control process when the control limits are computed. 

In (Seppala et al., 1995) a bootstrap technique based on subgroups is proposed, removing the 
assumptions made in (Bajgier, 1992) and computing control limits using bootstrapped residuals. 
The available alternatives show the convenience in exploiting bootstrap methods to set up more 
realistic Shewhart-type control charts, able to correctly detect process shifts when the underlying 
distribution of the quality characteristic of interest is non-Normal. 

Within this framework, a stream of research has been developed to effectively combine Bayesian 
estimation procedures and bootstrap techniques starting from (Laird and Luis, 1987) and (Carlin 
and Gelfand, 1991). The bootstrap is applied to introduce the uncertainty related to prior 
distributions which are estimated from data. 

This approach is known as “parametric bootstrap sampling” and the control chart proposed in 
this paper can fit in it. 

3.1 A PBE-bootstrap control chart of the Weibull percentiles 
In order to construct the PBE-bootstrap control chart, obtained by integrating the PBE with the 

“parametric bootstrap sampling” approach, the following operative steps are presented: 
 

Phase 1 - The training resampling procedure 

1. From an in-control process, we collect k  samples with sample size n . We assume 
that samples come from a Weibull distribution (2) with unknown parameters Rx  and 
β . Some specific Weibull probability plots and goodness-of-fit tests (Shapiro, 1990) 
can be employed to check this assumption. We can decide which samples are to be 
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used to estimate the control limits and, as suggested in (Wood et al., 1999), we could 
remove those judged as not typical of the process (on the basis of an earlier trial run 
of resampling procedure). However, in this work, we use all the k  samples. 

2. We pool all the observations into a single “combined sample” and, thanks to the 
bootstrap approach, we use it as a surrogate for the Weibull population. We assume 
that the “combined sample” provides an adequate picture of observations from the 
process and that the process is stable. 

3. We resample from the “combined sample” M  times obtaining M  “resamples” of 
size n. It is generally sufficient 1000M = . 

4. For each resample, we obtain an Rx  estimate ,ˆR jx  and a β  estimate ˆ
jβ  

)1,...,( j M , using some classical estimators for Weibull parameters (such as MLE). 
Alternatively, the first and second estimators 

=

(8) can be used to calculate ,ˆR jx  and 
ˆ

jβ , (e.g., in place of the MLE), if a real prior technological knowledge exists and, so, 

a prior interval ( )1 2,β β  for β  and an anticipated value { }RE x  for Rx  can be 
formulated. 

5. Then, we can calculate the averaged robust estimates ,0ˆRx  and 0β̂  over the all M  
“resamples”. 

 

Phase 2 - The empirical sampling distribution 

1. We replace the unknown Weibull parameters with the estimates  ,0ˆRx  and 0β̂ . At the 

same time, these values are used to update the prior interval  ( )1 2,β β  for β  and the 

anticipated value { }RE x for Rx  needed to calculate parameter estimates from the 
future small samples to be collected. 

2. We generate a sufficiently large time B (i.e., 10000) of “parametric bootstrap 
samples” *x  of size n  from the estimated Weibull distribution. Using the first 

estimator (8), we obtain B estimates *
,ˆR ix  ( )1,..., .   i B=

0
ˆ

3. The frequency distribution of these estimates represents an empirical sampling 
distribution of the Weibull percentile estimator (8). 
We must note that this distribution is conditioned to the above value β  assumed for 

0
ˆ 1000Mβ . We used this robust β  estimate (based on =  resamples) since the value 

of the shape parameter can be considered constant, being closely linked to the 
unchanged mechanism of failure. Technological knowledge and engineers’ experience 
proved this assumption (Steiner and MacKay, 2001), ( Zhang and Chen, 2004). 

 

Phase 3 - The estimation of statistical control limits 
The Lower Control Limit (LCL) is the value corresponding to the smallest ordered 

*
,ˆR ix  such that ( ) B2α ×  values are below it, where α  is the fixed false alarm risk. 

The Upper Control Limit (UCL) is the value corresponding to the smallest ordered 
*

,ˆR ix  such that ( ) B2α ×
*

,ˆ

 values are above it. 

The Center Line (CL) is the value corresponding to the median of the ordered R ix . 
In the special case we want to set a Shewhart-type control chart, we can set 

0.0027α =  and we obtain the corresponding needed control limits. 
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Once the control limits are obtained, the chart can be operatively used to implement the control of 
the Weibull percentile Rx , using the first estimator (8) at each sampling stage. 

4 PERFORMANCE ANALYSIS  

In this Section we report a Monte Carlo study carried out to investigate the performance of the 
proposed chart. As suggested in (Nichols and Padgett, 2005), the in-control Average Run Length 
(ARL) was calculated by generating   samples of size 20k = 5n =  from a Weibull distribution with 
shape parameter 0β  and percentile ,0Rx . In order to comparatively evaluate the performance, we 
set a Shewhart-type control chart based on a theoretical false alarm risk 0.0027α = . The control 
limits are calculated following the all operative steps of the procedure described in Section 3.1. 
Once the chart is ready to be employed, further samples are simulated from the same Weibull 
distribution and the percentile Rx  is estimated until a point falls outside of the control limits. The 
in-control run length can be measured as the number of samples extracted up to and including the 
first out-of control signal. We repeat the whole simulation obtaining 500 replications of the run 
length. The in-control ARL can be computed averaging over the all 500 replicated run lengths. 

In Table I we report the results of this simulation study. We considered two different lower 
percentiles 0.90x  and 0.99x  corresponding to the high reliability levels  and 0.90R = 0.99R = , 
respectively. 

The chart works reliably: when the process is in-control the ARL value is close to the theoretical 
value 370 corresponding to 0.0027α = . 
 

Table I In-control ARL measures ( )0.0027,  5nα = =  

 
In-control 
Weibull 

parameters 

Percentile of 
interest 

0β  ,0Rx  0.90x  0.99x  
2 0.10 383.2 360.5 
3 0.21 388.2 379.7 

 
Similarly we computed the out-of-control ARLs by simulating some specific percentile shifts to 

be detected as critical out-of-control conditions, using the same values studied in (Nichols and 
Padgett, 2005). In Table II we report the results of this simulation study. 

As we can see the responsiveness of the chart is good and the out-of-control ARL values are 
competitive with those presented in (Nichols and Padgett, 2005), being the advantage increasing as 
sample size of the available samples decreases. 

Table II Out-of-control ARL measures ( )0.0027,  5nα = =  

In-control 
Weibull 

parameters 

Out-of-control 
Weibull 

parameters 

Percentile of 
interest 

0β  ,0Rx  x1β ,1R 0.90x 0.99x
1.5 0.046 1 0.01 27.6 25.7 
3 0.21 2 0.10 31.2 26.8 
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5 CONCLUDING REMARKS 

This work has shown how to effectively combine the Bayesian approach and the bootstrap 
techniques in order to set up a reliable control chart for Weibull percentiles.  

Thanks to the bootstrap methods used, the proposed procedure enables one to estimate robust 
control limits and to easily implement a Shewhart-type control chart when the underlying 
distribution is not-Normal and the sample size is small. In the examined cases, the chart is 
competitive to the available alternative charts. Moreover, thanks to the Bayesian nature of the 
employed estimators the chart turns out to be particularly effective in critical situations when very 
small samples (also individuals) have to be processed 

On the basis of some preliminary simulation studies the chart seems to work satisfactorily. 
Obviously, further and deeper research about its statistical properties is needed. 
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