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Abstract

The coupling between a body (in an extended sense
that encompasses both neural and non-neural dynam-
ics) and its environment is here conceived as a criti-
cal substrate for cognition. We propose and discuss
the plan for a neurocomputational cognitive architec-
ture for robotic agents, so far implemented in its mini-
mal form for supporting the behavior of a simple simu-
lated robotic agent. A non-neural internal bodily mech-
anism (crucially characterized by a time scale much
slower than the normal sensory-motor interactions of
the robot with its environment) extends the cognitive
potential of a system composed of purely reactive parts
with a dynamic action selection mechanism and the ca-
pacity to integrate information over time. The same
non-neural mechanism is the foundation for a novel,
minimalist anticipatory architecture, implementing our
bodily-anticipation hypothesis and capable of swift re-
adaptation to related yet novel tasks.'

Keywords: cognitive robotics; embodied cognition;
dynamic systems; neuromodulation; anticipation; mul-
tiple time scales; bio-regulation.
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1 Towards a cognitive robotic ren-
dition of emotions

A systemic approach to the study of cognition per-
meates the seminal work of early cybernetics (Ashby,
1952; Wiener, 1965). In its modern form, the idea
that the whole is more than (and qualitatively different
from) the sum of its parts received a sound mathemati-
cal formalization through the science of non-linear dy-
namic systems (e.g., Bergé et al., 1984; Haken, 2004)
and pragmatic validation through physics. It constitutes
one of the core theoretical milestones of contemporary
science and influenced cognitive science with a whole
new scientific paradigm, namely the Dynamic Systems
approach to the study of biological cognition (e.g., see
Van Gelder, 2000; Kelso, 1995; Thelen & Smith, 1996).

The critical revision of the roles of body and environ-
ment in the cognitive process (e.g., Froese & Ziemke,
2009) constitutes the fundamental idea behind our pa-
per. The systemic view conceives body and environ-
ment of the cognitive agent as constitutive of a largely
distributed cognitive process, backing the brain in its
operation by constantly offering cognitive support and
tools (Clark, 2008). Thus, the cognitive process is
the result of the activity of the brain-body-environment
triad, whose components, coupled in a global dynamic,
are equally necessary to the creation of the mental pro-
cess (Kelso, 1995; Clark, 1997). The body can be inter-
preted as an enduring pre/post-processor of neural in-
formation (Chiel & Beer, 1997), and its interaction with
the environment stores a wealth of knowledge about the
“how to” of a cognitive activity (Pfeifer & Bongard,
2007). Research in embodied and situated cognition in-
vestigates in theoretical and experimental terms the role
of the body and of the environment in the cognitive pro-
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cess (Varela et al., 1992; Ziemke et al., 2007; Clancey,
1997). In this light cognitive robotics, i.e., the use of
robots as models of embodied and situated cognition, is
the perfect candidate for generating an experimentally
grounded synthesis, as it forces us researchers to take
very seriously the interplay among coupled bodies, con-
trol systems and environments (Parisi, 2004; Ziemke &
Lowe, 2009).

Alongside the role of the body projected towards its
environment, there is a less obvious, less visible and
consequently often neglected internal dynamic compo-
nent of the body. We are referring to the plethora of
background bio-regulatory mechanisms, aimed at the
maintenance of a viable metabolic balance necessary
for the organism’s survival. An increasing number of
researchers investigate the potential cognitive role of
this hidden dynamic. Antonio Damasio illustrates a
view of cognition deeply rooted in a hierarchy of bod-
ily processes and consistent with state-of-the-art neu-
rological findings (Damasio, 2000, 2003). According
to Damasio, emotions emerge from the complex hier-
archy that constitutes the levels of automated homeo-
static regulation - the basic evolutionarily determined
organization for the maintenance of the living organ-
ism (ref. Figure 1). Metabolic regulation (e.g., en-
docrine/hormonal secretion, muscle contraction facili-
tating digestion), basic reflexes (e.g., basic tropism or
taxes) and the immune system constitute the lower level
of the machine. At a higher hierarchical level come be-
haviors related to pleasure/reward or pain/punishment
(e.g. feeling pain triggers a specific pattern of protective
behaviors), drives and motivations (e.g., hunger, thirst,
curiosity, play and sex). One step further in the hierar-
chy we find emotion proper (e.g., joy, sorrow, fear) as
a subset of the homeostatic reactions that is triggered
by emotionally competent stimuli (ECS), either actual
or imagined. ECS are such in virtue of the evolutionary
history or of the ontogenesis of the organism. Finally,
at the top of the hierarchy, from the current body state
mapped in cortical body maps emerge (either conscious
or unconscious) feelings. Feelings are perceptions of a
certain state of the body, together with the perception
of a certain mode of thinking and of attuned thoughts
with certain themes. Similar approaches constitute the
core motivations of somatic theories of emotions (Prinz,
2004; Panksepp, 2005).

Indeed, grounding emotions in physical (rather than
mental) terms constitutes a possible entry point for
their appealing robotic rendition. In a recent paper,
Domenico Parisi points to the necessity of a deep inves-
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pain and pleasure
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Figure 1: Damasio’s representation of the levels of au-
tomated homeostatic regulation. Adapted from (Dama-
sio, 2003).

tigation of the relation between the control system and
what happens inside of the body (Parisi, 2004). The em-
phasis on bodily parameters affecting bodily processes
can be traced back further to the cyberneticist W. Ross
Ashby, who focused on the behavioral consequences of
a set of essential variables, critical to the organism’s
survival (e.g. sugar concentration in the blood and body
temperature). According to Ashby, the organism’s need
to restrict their range within viable limits determines the
onset of a random creation of new adaptive behaviors
(Ashby, 1952). Focusing on the cognitive implications
of bio-regulatory processes might be a promising di-
rection for scientific explorations in order to implement
robots endowed with genuine autonomy, agency, inten-
tionality and meaningful interaction with their environ-
ment (Ziemke & Lowe, 2009; Ziemke, 2008; Lowe et
al., 2008). Indeed, internal robotics in the here and now
is not sufficient for modeling emotions. It requires the
presence of emotionally competent stimuli that derive
from the coupling of body and environment in an adap-
tive history of interactions. This interpretation of inter-
nal robotics informs the particular approach described
in this paper.

As a matter of fact, all the above is in contrast to
the traditional perspective on Al and cognitive science,
i.e., the presumption that the description of the world
in terms of related symbol structures and logical pro-
cessing on such structures is the necessary and suf-
ficient condition for general intelligent action by ap-
propriate instances of physical systems (Newell, 1980).
A concept mapped in cognitive robotics onto the lin-
ear sense-plan-execute scheme, and conceptually akin
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to the functional approach of traditional computational
neuroscience, focused on specific and decontextualized
subdomains.

2 From bodily neuromodulation to
bodily anticipation

In recent minimalist cognitive robotics experiments we
tested two different experimental scenarios (for detail,
see Montebelli et al., 2008, 2007, 2009). In both ex-
periments a simulated Khepera robot was free to move
in a square arena, where two identical light sources,
centrally located in the environment, cast a stationary
light gradient. An invisible recharging area was cen-
tered under one of the two lights, randomly selected for
each replication. The robot received sensory informa-
tion through its light and distance sensors and moved
according to the activation of two wheels controlled by
a simple sensory-motor map, i.e., a single-layer, feed-
forward artificial neural network (ANN). It also sensed
its simulated energy level (e.g., the level of a battery
charge), subject to linear decay, from a maximum value
down to zero. In both scenarios, the fitness function re-
warded at each time step the maintenance of positive
levels of energy. Each individual was tested on runs of
constant duration, for several replications. At the end
of each generation, the best individuals were selected
for reproduction according to a standard evolutionary
algorithm.

2.1 Experiment 1

The entering of the recharging area area provided an
instantaneous full energy recharge. The evolutionary
algorithm evolved weights and biases of the ANN.
Obviously, the evolved agents performed well on
such an elementary task. The interesting part of our
work came when, setting aside the evolutionary task,
we selected the best individual and used its energy level
as control parameter of the agent-environment system.
We clamped the energy level to a fixed value for the
whole duration of each replication, and systematically
explored values from empty to full in the different repli-
cations. Consequently, we were able to map the be-
havioral repertoire of the evolved agent as a function
of its energy level. We observed three main classes of
behavioral attractors (ref. Figure 2, left): exploratory
behaviors (i.e., the agent engages in large loops from

one light source to the other - attractor class *A’), local
behaviors (the agent’s loops are closely bound to a sin-
gle light source - class *C’) and hybrid behaviors (com-
bining the characteristics of both exploratory and local
attractors - class *B’). The expression of these three be-
havioral attractors was neatly distributed as a function
of the energy level (ref. Figure 2, right). Exploratory
behaviors dominated the lowest range of energy levels,
whereas local behaviors the highest ones. For interme-
diate levels of energy we found the prevalence of hybrid
behaviors.

In sum, we showed how: 1) Minimalist non-neural
bodily states (e.g., the energy level in our experiment)
can modulate the sensory-motor map implemented by
an ANN, and thus the behavior of the simulated robotic
agent coupled with its environment. 2) This modulation
can be exploited as a dynamic action selection mecha-
nism. During the evolutionary task different classes of
behavioral attractors were locally available to the agent,
depending on its energy level. For example, an energy
level of 0.7 (ref. Figure 2, right), led to the expression
of attractor C3 (in 70% of the replications), C1 (20%)
or B1 (10%). The actual selection of the specific at-
tractor depended on the basin of attraction in which the
combination of the starting position and the integrated
effects of noise induced the system dynamics. 3) The
cooperation between dynamics at different time scales
can boost the cognitive potential of the system. In the
case of our experiment (where the energy level mecha-
nism was one order of magnitude slower than the nor-
mal sensory-motor interactions), a collection of purely
reactive components was endowed with the capacity to
integrate information over time (see Discussion).

2.2 Experiment 2

As before, a stationary gradient of environmental lu-
minance (continuous sensory regime), correlated with
a rewarding area centered on a randomly selected light
source. However, during each replication this regime al-
ternated with an intermittent sensory regime, where the
light sources were obscured every third time step. Un-
der this new condition, the randomly chosen area deter-
mined a punishment in the form of an energy leak. As
a biological metaphor, this alternation between regimes
models the case of a succulent berry whose external pig-
mentation is different when unripe (and toxic) or ripe
(and energizing). Again, the goal consisted in main-
taining a positive energy level.

We compared the simple architecture described in the
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Figure 2: left- Sample spatial trajectories for the three classes of behaviors observed in clamped conditions after
transient exhaustion. Exploratory behaviors (panel A), local behaviors (panel C) and hybrid forms (panel B).
The position of the light sources are indicated by red stars. right- The intensity of the pixels for each column
(corresponding to attractors belonging to classes A-C, as specified by their labels on the top row) represents the
relative frequency of the behavioral attractor as a function of the energy level. For energy levels in the interval
[0.0, 0.4] we can observe a clear dominance of attractors in class A. Attractors in class C dominante in the energy
interval [0.7, 1.0]. Data from 500 replications (10 for each energy level). Adapted from (Montebelli et al., 2008).

previous experiment with a novel minimalist anticipa-
tory architecture. In the former case, the evolution-
ary algorithm adapted the ANN’s weights and biases
on the new task, starting either from the final popula-
tion evolved in the previous experiment or from a ran-
domly generated population. In the case of the new ar-
chitecture, shown in Figure 3, the original ANN (i.e.,
the simple ANN, whose weights and biases were ex-
tracted adopting the final population evolved during the
previous experiment) was backed by a pre-adapted mix-
ture of recurrent experts (Tani & Nolfi, 1999) that pro-
cessed the sensory flow. During its adaptation, each ex-
pert competed with the others in order to generate the
best prediction of the sensory state at the next time step.
By doing so, two different experts became specialized
by tuning to the specific dynamic flow of the two dif-
ferent regimes. Crucially, in the new architecture the
activation of the expert tuned to the intermittent sensory
regime triggered a new energy mechanism that overrode
the original one. The decay rate of the overriding en-
ergy mechanism, rather than hardwired as before, is the
one single parameter adapted by an evolutionary algo-
rithm on the new task.

In short, we found that: 1) The systems provided
with the anticipatory architecture developed an effective
dynamic relation with its environment. They demon-
strated a straightforward engagement with the reward-
ing light source during the continuous sensory regime,
and a swift disengagement from the penalizing one dur-
ing intermittent regime (ref. Figure 4, bottom). On the
other hand, systems provided with the original ANN ar-
chitectures tended to cope with the new task by relying
on stereotypical behavioral attractors (Figure 4, top).
During the continuous sensory regime they engaged in
loops containing both light sources, approaching them
close enough to enter their potential rewarding areas.
During the intermittent regime they simply relaxed their
trajectories with respect to the light sources, keeping at
a slightly larger distance from them and consequently
clear from the critical area, thus avoiding the punish-
ment. This behavior ignores the effect of the recharging
area on the energy level, merely relying on light sen-
sor information and geometrical constraints. 2) In the
case of the anticipatory architecture, the adaptive pro-
cess for the new task proved easy, as even a random
search could immediately generate agents with satisfac-
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Figure 3: Minimalist anticipatory architecture. The sen-
sory information (infra-red, light and energy sensors)
drives the left and right motors (LM and RM) through
a feedforward ANN with no hidden layers. The sen-
sory flow is also processed by a mixture of recurrent
experts, pre-adapted so that each expert is tuned to a
specific sensory regime. The information on the current
best expert (corresponding to one of the two regimes)
is given by the gating signal, that selects the current en-
ergy mechanism of the agent. Adapted from (Monte-
belli et al., 2009).

tory performance. The evolutionary search was much
more problematic for the original ANN, evolved from
both starting conditions.

2.3 An initial synthesis:
anticipation hypothesis

the bodily-

We will try to formalize the previous results in a gen-
eral scheme. We have just seen how non-neural inter-
nal dynamics can modulate the current modality of the
agent-environment interaction (i.e., its current behav-
ioral attractor). On the other hand, the current behav-
ior determines the current non-neural internal dynamics
(e.g., an effective behavior that satisfies the experimen-
tal task maintains a high energy level). This bidirec-
tional relation is expressed by the arrows connecting
the blocks labeled SENSORY-MOTOR FLOW and NON-
NEURAL INTERNAL DYNAMICS in Figure 5. The for-
mer block represents the dynamic of the degrees of free-
dom relevant to the current sensory-motor engagement
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Figure 4: Prototypical spatial trajectories developed
by the different architectures during evolutionary adap-
tation. top - Agents provided with simple feedfor-
ward ANNSs tended to deploy a stereotypical strategy,
i.e., their trajectories systematically engaged in ex-
ploratory loops between the two light sources, enter-
ing the recharging area (leftmost circle) during the con-
tinuous regime (continuous line) and avoiding it dur-
ing the intermittent regime (dashed line). bottom - On
the other hand, our anticipatory architecture showed dy-
namical engagement and disengagement with the re-
warding/punishing area according to the different sen-
sory regime (again, continuous/dashed lines represent
the trajectories during continuous/intermittent sensory
regimes). Adapted from (Montebelli et al., 2009).

between the agent and its environment. Similarly, the
latter embeds the relevant non-neural internal dynam-
ics. In parallel, current sensory motor flow and internal



dynamic drive a neural emulator block (labeled ANTIC-
IPATION) that is capable, in virtue of its evolutionary
history and/or ontogenetic adaptation, of dynamic an-
ticipation. We suggested elsewhere (Montebelli et al.,
2009) that a cognitive system settled on its behavioral
attractor constitutes an important instance of an implic-
itly anticipatory system. In fact, the engagement with
the attractor binds the system to a stable and qualita-
tively determined dynamic flow. An autonomous and
viable dynamic is inherently endowed with anticipatory
power. The main practical function of this emulator is to
tune to the current sensory-motor dynamic and dynam-
ically perturb the bodily dynamics with the anticipated
consequences of the current dynamic interaction.

For example, consider a specimen agent, a caveman
engaged in a relaxing and innocuous activity, e.g., pick-
ing berries in a forest. Out of the blue, an emotional
stimulus, e.g., an apparently hungry, massive dinosaur,
loudly enters the scene. The enormous time gap that
separates the extinction of dinosaurs and the appear-
ance of the first hominids is part of our example. We
want to make sure that our specimen is experiencing
a novel situation (therefore, a positivist caveman, who
only brings solid scientific arguments to prove the di-
nosaur’s anachronism, would be the perfect candidate
for premature exhaustion of his own pedagogical role).
The caveman’s anticipatory system has no difficulty in
predicting the most likely future scenario. The sensory-
motor flow correspondent to the ongoing activity (pick-
ing berries) must be inhibited and redirected to a more
conservative attitude. How will the next viable behavior
(e.g., an impulsive fleeing) be selected? With this ques-
tion in mind, our experiment explored the feasibility of
a body-mediated pathway (arrow a-b in Figure5). We
tested the hypothesis that the anticipatory block (mini-
mally implemented as the mixture of recurrent experts)
might directly influence the non-neural bodily dynam-
ics. In our prehistoric example, that means that once he
perceived the emotional stimulus, our caveman would
physically experience his own body torn by the fangs
and nails of the dinosaur. It is likely that the cave-
man’s evolutionary history and his ontogenesis had al-
ready created viable correlations between his dramatic
visceral reaction and his fleeing for life, although the
specific situation had never been experienced before.
This constitutes the essence of our bodily-anticipation
hypothesis: the selection of the next viable action is off-
loaded onto the bio-regulatory dynamics of the body.
Destabilized by the anticipated effect of the current
interaction, the body reacts as if actually engaged in

such sensory-motor experience. The bodily perturba-
tion elicits reactions, already stored in the potential of
bodily and neural interactions, that tend to pull the sys-
tem back into viable regions.

SENSORY-MOTOR FLOW

ANTICIPATION

sm-a

g-ws
a-b

b-sm

NON-NEURAL
INTERNAL DYNAMICS

Figure 5: Illustration of the bodily-anticipation hypoth-
esis. During its daily roaming, our agent gets engaged
with a potentially noxious interaction. Neural sensory-
motor anticipatory dynamics, here conveniently iso-
lated within the global coupled system (box labeled
ANTICIPATION), predict the risk by physically per-
turbing the current non-neural bodily dynamics (NON-
NEURAL INTERNAL DYNAMICS) through path a-b and
from there, indirectly through a further path b-sm,
the actual sensory-motor dynamics (SENSORY-MOTOR
FLOW). Following a quick reorganization of its behav-
ioral attractor, our agent is attuned to face the novel dan-
ger thanks to the mediation of its body, without any di-
rect influence of anticipation on the selection of the new
behavior. Adapted from (Montebelli et al., 2009).

3 Discussion

3.1 On the internal/external dichotomy

We hope to have clarified enough the importance of
conceptualizing the phenomenon of cognition as emer-
gent from the coupling of body (with its external mor-
phology and the richness of its internal bio-regulatory
mechanisms), nervous system and environment. Within
this systemic view, the boundary separating each sub-
system is nothing but a useful artifice, functional to the
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analysis of a complex system dominated by circular re-
lations. Each component participates in the global cog-
nitive process with equal weight. In this sense, even
defending the traditional labels of cognitive robotics,
where the nervous system would be assimilated the
control system, would be problematic. What is con-
trolled? What is doing the controlling? From our ex-
ample it seems clear enough that different parts of the
system mutually influence and are influenced by oth-
ers (e.g., the energy level can modulate the behavior of
the sensory-motor map, that in return affects the energy
level).

This tight coupling casts a light an interesting point.
What is internal? What is external? Of course we
have no difficulty at drawing a line from our distal, an-
thropomorphic perspective. Nevertheless we can eas-
ily argue that a simple agent, even substantially more
complex than our elementary model, might find defin-
ing such a boundary difficult. We prefer to avoid such
dichotomy, as we consider more useful focusing on
the global system composed of dynamically interact-
ing parts. At any given time its dynamic balance will
be perturbed by stimuli coming from different sources
(e.g. the external environment, the agent’s regulatory
mechanisms, its nervous system). Each perturbation
would produce a consonant reaction of the system’s
trajectory in its phase space. Each time, according to
the needs of the analysis, we will have to properly re-
draw the boundary between input and output, cause and
its effect. Parisi suggested objective criteria for parti-
tioning the inside and outside of the body in natural
agents, on the grounds of the physical-chemical pro-
cesses that tend to dominate the two interfaces (Parisi,
2004). Local and specific interactions with fast dynam-
ics, archetypal of physical processes, tend to character-
ize the interface with the external world. Global and
diffused variations with slower time scales, characteris-
tic of chemical processes, tend to take place inside the
organisms. Although this is just a generalization, the fo-
cus on the different time scales prepares us for the next
fundamental observation.

3.2 On the role of multiple time-scales

An obvious objection can be raised against our model.
What is it that determines the distinction between neural
and non-neural? Could the non-neural internal dynamic
be translated into purely neural mechanisms? After all,
the work of other groups (e.g., Tani & Ito, 2003; Ito et
al., 2006; Tani & Nolfi, 1999) seems oriented in that
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direction.

Rather than taking a defensive stance, we will sim-
ply redirect the problem and dissolve it in its abstract
formalization. The interplay of the different time scales
that characterize the energy mechanism and the other
sensory-motor interactions with the environment is cru-
cial to our model. In the experiment reported in Sec-
tion 2.1, during the artificial evolution of the system,
the slower dynamic of the energy level organized the
continuous sensory-motor flow in dynamically related
events. This endowed the system, composed of purely
reactive elements, with the capacity to integrate infor-
mation over time. Elsewhere (Montebelli et al., 2009),
we conjectured that: “...The access to a collection of
attuned dynamic sub-systems characterized by intrinsic
dynamics at different time scales and the exploitation of
such differences, constitutes a powerful mechanism of
embodied cognition, widely operating at the different
levels of organization of biological cognition. A mech-
anism providing the cognitive system with the capacity
to structure information on events which are relevant to
its survival, with no need for explicit representations,
memory or consciousness.” With this in mind we can
look at the plethora of bio-regulatory phenomena with
new eyes. The characteristic time scales of non-neural
bodily processes, so different from the normal dynam-
ics of the sensory-motor interactions between an agent
and its environment, might provide exactly that dynam-
ical richness that we are advocating. The role of mul-
tiple time scales is currently attracting the attention of
the scientific community, both in computational neuro-
science (e.g., Kiebel et al., 2008; Fusi et al., 2007) and
cognitive robotics (e.g. Yamashita & Tani, 2008; Ito et
al., 2006; Paine & Tani, 2005; Tani & Nolfi, 1999).

3.3 Experimental evidence for the bodily-
anticipation hypothesis

The paths in the general scheme sketched in Figure 5
are actually less arbitrary than they might look at first
glance. In the present subsection, we report some exper-
imental evidence that supports our bodily-anticipation
hypothesis, from natural and artificial systems. Our
own and related work in cognitive robotics (Montebelli
et al., 2008, 2007; Tani & Ito, 2003; Ito et al., 2006),
motivates the arrows representing the relation between
the non-neural internal dynamics and the sensory-motor
flow blocks (paths sm-b and b-sm). The claim that in or-
ganisms the internal dynamics of the body (e.g., a sud-



den injection of adrenaline) affect the behavior and that
behavior affects the body (e.g., eating or declining the
fifth slice of your birthday cake) shouldn’t strike us as
bizarre. The capacity of the brain to anticipate sensory-
motor correlates (path sm-a) is currently the object of
intensive research in neuroscience (e.g., see Hesslow,
2002). Examples in cognitive robotics are in (Tani &
Nolfi, 1999; Ito et al., 2006). Interestingly, Ziemke et
al. show how a viable anticipation does not have to be
identical to the anticipated phenomenon (Ziemke et al.,
2005). An example of how a neural event taking place
in the nervous system, might affect the body is given in
(Damasio, 2000): the case of a professional musician
is reported, who could systematically control her emo-
tional machinery in experimental conditions. Also the
seemingly arbitrary switch between the natural energy
dynamic and the overriding energy mechanism taking
over during the intermittent sensory regime is inspired
by neurophysiological analogs. False bodily informa-
tion can sometimes substitute for the actual state, for ex-
ample, in the case of endogenously altered nociceptive
signals. There is an obvious advantage for a wounded
organism to ignoring the pain when it is fleeing from
the danger that produced it (Damasio, 2003).

3.4 The body for search-space compres-
sion

Obviously, our bodily-anticipation hypothesis does not
rule out the possibility of a co-existence with a neural
pathway between anticipation and sensory-motor flow
(the missing path a-sm in Figure 5). Nevertheless, we
point to the fact that our minimalist anticipatory archi-
tecture drastically simplifies the problem of readapting
to a new task. Our proposal focuses on the knowledge
that is already embedded in the body after the long his-
tory of biological evolution and ontogenesis, and might
be exploited during readaptation. The search space dur-
ing readaptation, characterized by the potentially enor-
mous number of degrees of freedom of an ANN, is
reduced by our bodily-anticipation hypothesis to the
much smaller dimensionality of the bodily neuromodu-
lators (the energy level in our minimalist example). We
believe that the bodily-anticipation hypothesis could be
of help at least in virtue of such drastic compression of
the adaptive search space, particulary in circumstances
that require, for example, fast, non-deliberated decision
making. Rather than searching the massive space of
the system’s degree of freedom for the proper associa-

tions supporting the a-sm pathway, the system can limit
its exploration to the subspace of the bodily parame-
ters. Pragmatically, even a random search of the ap-
propriate decay rate of the overriding energy dynamic
in our anticipatory architecture can swiftly readapt the
system to the new problem, whereas such readaptation
proves slow with the original architecture. This is ob-
viously related to Ashby’s work on ultrastable agents.
A random change in the behavioral coupling between
the agent and its environment is induced whenever a
variation of an essential variable threatens its survival
(Ashby, 1952; Di Paolo, 2003).

An argument in favor of a mental path seems to be
brought forth by Damasio, as he introduces the as-
if body loops (Damasio, 2000). The emotional ma-
chine, grounded in the homeostatic process as intro-
duced in Section 1, is in Damasio’s theory central
even to highly logical functions, e.g. decision making
(Damasio, 2000). Its support can be elicited directly,
but after repeated exposure the brain can build consis-
tent causal associations and thus totally bypass the body
in the decision process. Nevertheless, Bechara refers to
preliminary results suggesting how in the process of de-
cision making the role of the as-if body loop might be
restricted to the most predictable situations (choice un-
der certainty). As the decision scenario drifts towards
risk or ambiguity (full uncertainty), a mode of opera-
tion where the bodily mechanisms are directly engaged
becomes prominent (Bechara, 2004). We find this ob-
servation perfectly tuned with the intuition inspiring our
model.

3.5 Future work

We consider our minimal anticipatory architecture as
a promising and complete illustration of our bodily-
anticipation hypothesis, although still at its initial stage
of development. Nevertheless, together with a few an-
swers, it suggests plenty of supplementary questions.
Accordingly, we admit that it needs and deserves fur-
ther investigation and validation.

Our model might be accused of being an ad hoc ar-
rangement, built on the basis of the previous experi-
ment. In other words, it might be suspected that we
embed built-in solutions in our minimalist anticipatory
architecture: First, for the arbitrary decision to override
the original non-neural internal mechanism (although
we have demonstrated in the previous subsection how
the same strategy can be found in natural agents); Sec-
ond, for selecting the decay rate of the overriding en-
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ergy mechanism as critical parameter to be adapted by
the evolutionary algorithm. This is a reasonable crit-
icism. Nevertheless, given the extreme simplicity of
our current setup, such design choices were necessary.
In our model, simplicity constitutes a deliberate pref-
erence. For the sake of a detailed analysis, we try to
implement the minimal model capable of producing the
phenomenon under study.

However, we welcome such objection, confident that
it can be more easily confuted given a slightly more
complex model, both in terms of task and architecture.
In particular, future work will specifically address the
implementation of more realistic internal dynamics, in-
spired by natural metabolic systems as well as by the
work on prototypical robotic agents endowed with mi-
crobial fuel cells (Melhuish et al., 2006).

4 Conclusions

This paper takes on and extends the tradition of a more
systemic view of Al research (e.g., Montebelli et al.,
2008; Froese & Ziemke, 2009; Ziemke & Lowe, 2009).
Cognition is conceived and analyzed in terms of cou-
pled systems: the body (encompassing both its exter-
nal morphology and its internal bio-regulatory mecha-
nisms), the nervous system and the environment con-
stitute a cognitive aggregate. Such interpretation dis-
solves the internal-external dichotomy into a formaliza-
tion in terms of coordinated multiple time-scales. The
cognitive role of the body is taken in account with spe-
cial and novel emphasis on what happens inside of the
body. Biological cognition, more than simply inspiring
problems and solutions, is seen as the living implemen-
tation of the basic organizational principles of intelli-
gence, still mostly to be unraveled.

In a first experiment (ref. Section 2.1) we showed
how non-neural internal dynamics, following a slow
time scale, can modulate the activity of an ANN and
consequently the behavior of an agent coupled with its
environment. A traditional evolutionary algorithm self-
organized this modulation, implementing a dynamic ac-
tion selection mechanism. The analysis showed how
the coordination of multiple time-scales might support
the emergence of more sophisticated cognitive capaci-
ties. In a second experiment (Section 2.2) we extended
the previous system to a novel anticipatory architecture,
providing a minimalist implementation of the bodily-
anticipation hypothesis presented in this paper. The
novel architecture provided flexible and dynamic en-
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gagement of the agent with its environment, as a swift
re-adaptation to a brand new task was accomplished.
Crucially, the search for novel behaviors was drastically
simplified, as it operated on the limited subspace of the
non-neural internal parameters, rather than on the high
dimensional space of the ANN. We believe that this
work illustrates promising results in terms of basic or-
ganizational principles of cognition that can be usefully
explored by minimally cognitive architectures.
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