

NODES 09

NOrdic workshop and doctoral symposium
on DEpendability and Security

Linköping, Sweden, April 27, 2009

Editors
Mikael Asplund, Simin Nadjm-Tehrani, and Luigia Petre

Copyright
The publishers will keep this document online on the Internet – or its possible replacement –
from the date of publication barring exceptional circumstances.
The online availability of the document implies permanent permission for anyone to read, to
download, or to print out single copies for his/her own use and to use it unchanged for non-
commercial research and educational purposes. Subsequent transfers of copyright cannot
revoke this permission. All other uses of the document are conditional upon the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure
authenticity, security and accessibility.

According to intellectual property law, the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.
For additional information about Linköping University Electronic Press and its procedures for
publication and for assurance of document integrity, please refer to its www home page:
http://www.ep.liu.se/.

Linköping Electronic Conference Proceedings, 41
Linköping University Electronic Press
Linköping, Sweden, 2009

http://www.ep.liu.se/ecp/041/
ISSN 1650-3740 (online)
ISSN 1650-3686 (print)

© 2009, The Authors

http://www.ep.liu.se/

Program Committee
Kaisa Sere, Åbo Akademi University, Finland
Simin Nadjm-Tehrani, Linköping University, Sweden
Christian Damsgaard Jensen, Technical University of Denmark
Ketil Stølen, SINTEF Research centre and University of Oslo, Norway
Jüri Vain, Tallinn University of Technology, Estonia

Organizers
Luigia Petre, Åbo Akademi University, Finland
Kaisa Sere, Åbo Akademi University, Finland
Simin Nadjm-Tehrani, Linköping University, Sweden

Table of Contents

Leonidas Tsiopoulos
Towards Dependable Placement of NoC Resources..1

Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis
Reliability Assessment in Event-B Development ..11

Pontus Boström, Marta Pląska, Mikko Huova, Matti Linjama, Mikko Heikkilä,
Kaisa Sere, and Marina Waldén
Contract-based Design in Controller Development and its Evaluation21

Heidi E. I. Dahl, Mass Soldal Lund, and Ketil Stølen
Risk Analysis of Privacy Protection in Social Networking Sites...29

Naveed Ahmed, and Christian Damsgaard Jensen
An Authentication Framework for Nomadic Users ...33

Anna Vapen
Authenticating Mobile Users Using Untrusted Computers - A Smartphone Approach43

Luigia Petre, and Muhammad Mustafa Hassan
Efficiency Issues in a Switched LAN ..45

Mikael Asplund, and Simin Nadjm-Tehrani
Random Walk Gossip: A Manycast Algorithm for Disaster Area Networks65

Linas Laibinis, Elena Troubitsyna, and Sari Leppänen
Modelling Fault Tolerance and Parallelism in Communicating Systems67

Towards Dependable Placement of NoC Resources

Leonidas Tsiopoulos
Department of Information Technologies,

Åbo Akademi University,
Turku, Finland ���������
	���
��
��
���������������
����������� !�

Abstract. In this paper we present an approach on how executable formal
specifications of Network-on-Chip routing schemes can help on deciding
efficient placement of processing resources on 3D-integrated systems. We use
a routing scheme specified with the B Action Systems formalism and we
execute it with the model checking and animating tool ProB in order to obtain
traces of operation executions based on different data flow scenarios.

1 Introduction

Advances in technology allow us to have thousands of computational resources
on a single electronic chip. Recently the Network–on–Chip (NoC)
communication paradigm [6, 8] has been proposed as the alternative to bus–
based Systems–on–Chip (SoC) communication paradigms. Bus–based
communications offer insufficient bandwidth for concurrent on–chip data
transactions whereas regular NoC interconnects can scale incrementally and
data is routed in a distributed and flexible manner.

The number of resources which can be placed on a single chip increases
rapidly with the continuous technology scaling resulting in growing wire delay
and increased power consumption while meeting the constraints on
interconnect latency is an issue. To overcome these challenges, 3D–integrated
systems [7, 10] have been proposed during the last years with the main
advantage of reduced length of the global interconnect which in turn reduces
power consumption considerably. These complex systems are being used in
many important applications, such as in automotive and advanced control
systems, hence, it is important that they are reliable. Appropriate methods are
needed in order to specify reliable 3D–integrated systems, as well as to model
the communication and verify their design.

Formal methods of concurrent programming with adequate tool support are
important for the development of complex 3D–integrated systems in order to
avoid costly errors in the later design phases and contribute to the dependability
of such systems. The B Action Systems [4, 13] is a state–based formalism

1

which was created in order to be able to reason about parallel and distributed
systems, like Action Systems [3], within the B Method [1]. We use a
hierarchical formal specification of an asynchronous NoC routing scheme [12]
in order to show how executable traces of this formal model can help on
deciding an efficient placement of communicating resources on a chip for
reduced power consumption which in turn aids the reliability of the system.

The organization of this paper is as follows. In Section 2, we present a short
introduction to the B Action Systems. In Section 3 we discuss the model of the
NoC routing scheme considered for this paper. Section 4 discusses the trace
generation procedure within ProB [9] which is a model checking and animating
tool for B specifications. Section 5 discusses the related work. Finally, Section 6
concludes this paper.

2 B Action Systems

B Action Systems [4, 13] is a state–based formalism based on Action Systems
[ref] and the B Method [1] and was created in order to be able to reason about
parallel and distributed systems, like Action Systems, within the B Method.
Note that a model in B Action Systems is a valid model within the B Method;
therefore, tool support for the B Method [5, 9] can be used to analyze models in
B Action Systems.
 The structure of an action system A is shown in Figure 1(a) in which z and x
are respectively the global and local state variables. The action system interacts
with the environment through the global variables. State variables have types
and the set of possible assignments to them constitutes the state space. The
statement x := x0 assigns initial values to the local variables. Each action has the
form gi --> Si, where i = 1..n, in which gi is the guard and Si is a statement on the
state variables. An action is enabled only if its guard evaluates to true. As
regards to the behaviour of an Action System [3], the initialization statement is
executed first, and thereafter as long as there are enabled actions, one of the
enabled actions is selected non–deterministically for execution. When there are
no enabled actions, the system terminates.
 An action system can be translated to a B abstract machine – an abstract
machine is the basic unit of specification in B – as shown in Figure 1(b). This is
an action system within B, and is called a B Action System. The system is
identified by a unique name. The local variables of the system are given in the
VARIABLES-clause. The INVARIANT-clause defines the types of the local
variables and gives their guaranteed behaviour. Initial values are assigned to the
local variables in the INITIALISATION-clause. The operations (or actions) in the
OPERATIONS-clause are of the form op = SELECT g THEN S END, where g is

2

said to be the guard and S the body. The guard g is a predicate on the variables,
and when g holds the action op is said to be enabled. Only enabled actions are
considered for execution and if there are several actions enabled simultaneously
they are selected for execution in a non-deterministic manner, analogous to the
behaviour of an action system. B Action Systems can be composed to model
parallel systems.

 (a) (b)
Fig. 1. Structure of a B Action System.

Structuring mechanisms such as SEES, INCLUDES and PROMOTES can be

used to express B Action Systems as a composition of subsystems [1]. The
SEES-mechanism allows read access to the seeing system. The INCLUDES-
mechanism allows write access to the variables of the included system. Actions
of the included system can also be made available by promoting them into the
including system within a PROMOTES-clause. The structuring mechanisms
provide an efficient way to model system hierarchy.

Communication can occur between two B Action Systems in two ways: by
use of global variables, or by global procedures; the example of this paper uses
global procedures for communication purposes. Operations do not take any
parameter and they execute autonomously; procedures may or may not have
parameters, and they are to be invoked in a certain context. Consider the
operation opp = SELECT gp THEN Sp || Proc END; this operation is enabled only if
the procedure Proc is also enabled. The action and the procedure in its body are
executed as an atomic entity.

3 The Executed Formal Specification

Tsiopoulos and Waldén [12] have specified a formal routing scheme relying on
the request and acknowledge phases of the asynchronous communication.
Within this asynchronous NoC routing scheme, data packets are received at the

MACHINE A
INCLUDES Global_z
VARIABLES x
INVARIANT inv(x,z)
INITIALISATION x := x0
OPERATIONS
op1 = SELECT g1 THEN S1 END;
op2 = SELECT g2 THEN S2 END;

. . .
opn = SELECT gn THEN Sn END
END

A = |[var x;
 inv(x,z);
 x := x0 ;
 do
 || g1 −−> S1
 || g2 −−> S2
 ...
 || gn −−> Sn
 od
]| : z

3

input channels of the routers and they are distributed to their output channels for
subsequent propagation to the neighboring routers. The routers acknowledge
their input channels so that new data packets can be received. Controlling
components of routers propagate the data packets to routers that have not
received them yet, and prohibit the cycling of data packets to occur. This is
because cycling of data packets back to routers which have received them
already, reduces on-chip interconnect efficiency and increases power
consumption. A hierarchical and compositional development method was used
[12] for this purpose. Figure 2 outlines part of the hierarchical structure of the
specification of the NoC routing scheme and presents one of the
communications between the subsystems using global procedures.

Starting with the simplest subsystem of the routing framework, an
asynchronous channel component called PushChannel (data propagation upon
request) was specified as a B action system. The channel’s inputs and outputs
were modeled as global variables. Of these global variables, the necessary input
and output asynchronous control handshakes were modeled with boolean
variables named cstart and cend respectively, and the input and output data were
captured with variables named dstart and dend of the generic type DATA. These
variables together with simple procedures to update their state were defined in a
separate machine named ChannelData which was included in PushChannel. The
latter had two operations: one to propagate data and the request from its input to
its output and the other to acknowledge its input after the output data was taken,
so that new data and request could be received. The interface of PushChannel
consists of two global procedures, ProcChangeCstartAndDstart and
ProcChangeCendFalse; the first to update its input with a new request and data
and the second to acknowledge its output after the transfer of the output data.
 A B action system named Router including eight instances of PushChannel
was then created. We note that twelve instances of PushChannel are needed to
model propagation of data along the third dimension too. Four actions were
specified for controlling the channels and propagating the data along them. For
example, action TransferData_N copies the request value of the communication
and the data from the output of the input northern channel inN to the inputs of the
output channels, outE, outS, and outW so that the data can be propagated further
towards the neighboring routers. Simultaneously it sends acknowledgment to the
output of channel inN to indicate that Router is ready to receive new data via this
channel. Note that six actions are needed to model distribution of data along the
third dimension.

Finally, some instances of this router (000.Router, 010.Router, 020.Router,
030.Router, …; the digits correspond to the xyz coordinates on the network) were
composed into a controlling system named NoC_Region1 (given a new name for

4

the purposes of this paper) which controlled the data distribution between the
routers in a region of the NoC. In order to do so, some of the global interface
procedures of PushChannel were promoted within Router to form its interface.

Fig. 2. Machine hierarchy in the NoC specification.

Refer to action TransferData_000_010 of machine NoC_Region1 in Figure 2.

This action transfers data from the southern output channel of the router with

INCLUDES inN.PushChannel INCLUDES outS.PushChannel

INCLUDES 000.Router INCLUDES 010.Router

MACHINE NoC_Region1
INCLUDES 000.Router, 010.Router, 020.Router, 030.Router, …
PROMOTES … INVARIANT ...
OPERATIONS
TransferData_000_010 = SELECT … THEN
 010.iN.ProcChangeCstartAndDstart(000.outS.dend) ||

000.outS.ProcChangeCendFalse END; …

MACHINE Router
INCLUDES
inN.PushChannel, inS.PushChannel
outN.PushChannel, outS.PushChannel, ...
PROMOTES outS.ProcChangeCendFalse, …
INVARIANT … OPERATIONS
TransferData_N = ...; TransferData_S = ...
END

MACHINE Router
INCLUDES
inN.PushChannel, inS.PushChannel
outN.PushChannel, outS.PushChannel, ...
PROMOTES inN.ProcChangeCstartAndDstart,
... INVARIANT … OPERATIONS
TransferData_N = ...; TransferData_S = ...
END

MACHINE PushChannel
INCLUDES ChannelData
INVARIANT … OPERATIONS
TransferData = …; AckTransfer = …;
ProcChangeCendFalse = ChangeCend(FALSE);
ProcChangeCstartAndDstart(dd) = …
END

MACHINE PushChannel
INCLUDES ChannelData
INVARIANT … OPERATIONS
TransferData = …; AckTransfer = …;
ProcChangeCendFalse =…;
ProcChangeCstartAndDstart(dd) = …
END

MACHINE ChannelData
…
OPERATIONS
ChangeCend(bb) = ...;
…
END

MACHINE ChannelData
…
OPERATIONS
ChangeCstartAndDstart(bb, bb) = ...;
…
END

…

5

coordinates 000 to the northern input channel of router with coordinates 010. The
guard checks whether channel 000.outS is ready to transmit and channel 010.inN
is ready to receive. If so, the data value of channel 010.inN gets the data value of
channel 000.outS. And the flags of both the channels are modified to indicate that
the transmission has taken place. The global procedures
ProcChangeCstartAndDstart and ProcChangeCendFalse defined in machine
PushChannel do this modification. See in the figure, how these global procedures
have been promoted to the interface of the router.

4 Trace Generation Procedure

ProB is a model checking and animation tool for B machines [9]. ProB includes a
fully automatic animator written in SICStus prolog. ProB takes an instantiated
model in B, in which any generic set has been instantiated with some concrete
values to avoid state explosion and generates a finite coverage graph. Within this
finite coverage graph, several traces of sequenced operation executions can be
obtained. In other words, several different scenarios of operation execution paths
for data propagation between resources on a chip can be created by the user.

Figure 3 shows part of one of the planes of a 3D–integrated system with a
mesh topology corresponding to the formal routing specification presented in the
previous section. Let us assume that a processing element at position 000 wants to
send data to another element at position 750. One possible path for this
communication is shown in Figure 3.
 Each trace of operation executions in ProB originates from some initial state.
Table 1 shows the trace of operation executions within the hierarchical B action
systems specification corresponding to the communication path shown in Figure
3, including a scenario for possible delays. These delays occur because at the
same points the needed operations for the data propagation are being executed for
another trace of data communication intersecting the trace shown in Table 1.
When these operations are enabled again, the execution of the operations in the
path continuous until the data arrives at the destination.
 Modelling such data propagation scenarios of formal NoC routing
specifications can aid the process of finding a suitable placement of frequently
communicating resources on a chip already at an early design level.

6

Fig. 3. A possible data propagation path from source 000 to destination 750.
 "�"�"�#%$ &('*)�$�+�,�# -�./)�,103254�.76�)98:)�;<"�"�"�#=-�./)�,(0*2>4�.76�)98?)

@
$ &�'A)�$�;"�"�"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;�-�./)�,90*2>4�.76�)98?)

@
"�"�"

@�E
"�"�;

E
"�"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�; G<H�IKJML�N ; E

"�"�# -�./)�,(03254�.76K)98O)
@
FP;

E
"�"�#
&�BC87Q�# -�./)�,903254�.76�)98O)�; G<HKI�J
L�N ;K-�./)�,�0R2S4�.76T)U8?) @�E

"�"
@�E�V

"�;
E�V

"�#%+�,�WX#=-�./)�,(032S4�.76T)U8?)�; GXH�IKJML�N ; E�V
"�# -�./)�,�03254�.76K)98O)

@
W<;

E�V
"�#
&�BC87Q�# -�./)�,903254�.76�)98O)�;�-�./)�,90A2Y4�.76�)98O)

@KE�V
"
@�E�E

"�;
E�E

"�#%+�,�WZ# -�./)�,(0*254�.76T)U8:)�;
E�E

"�#=-�./)�,10A2Y4�.76�)98O)
@
WX;[#>#5# H�I�JML�N ;

E�E
"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;�-�./)�,90*2>4�.76�)98?)

@KE�E
"
@�\�E

"�;
\�E

"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�;
\�E

"�#=-�./)�,90A2Y4�.]6�)18:)
@
F^;

\�E
"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;�-�./)�,90*2>4�.76�)98?)

@T\�E
"
@�_�E

"�;
_�E

"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�;
_�E

"�#=-�./)�,90A2Y4�.76�)98?)
@
F^;

_�E
"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;[#>#># H�IKJML�N ;�-�./)�,90A2Y4�.76�)98O) @�_�E

"
@�`�E

"�;
`�E

"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�;
`�E

"�#=-�./)�,90A2Y4�.]6�)18:)
@
F^;

`�E
"�#
&�BC87Q�# -�./)�,903254�.76�)98O)�;�-�./)�,90A2Y4�.76�)98O)

@T`�E
"
@�`�\

"�;
`�\

"�#%+�,�WX#=-�./)�,(032S4�.76T)U8?)�;
`�\

"�#=-�./)�,10A2Y4�.76�)98O)
@
WX;

`�\
"�#
&�BC87Q�# -�./)�,903254�.76�)98O)�;�-�./)�,90A2Y4�.76�)98O)

@T`�\
"
@�`9_

"�;
`9_

"�#%+�,�WZ# -�./)�,(032S4�.76T)U8:)�;
`(_

"�#=-�./)�,10A2Y4�.76�)98O)
@
WX;[#>#5# H�I�JML�N ;

`9_
"�#
&�BC87Q�# -�./)�,903254�.76�)98O)�;�-�./)�,90A2Y4�.76�)98O)

@T`9_
"
@�`�`

"�;
`�`

"�#%+�,�WX#=-�./)�,(032S4�.76T)U8?)�;
`�`

"�#=-�./)�,10A2Y4�.76�)98O)
@
WX;[#>#5# H�I�JML�N ;

`�`
"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;�-�./)�,90*2>4�.76�)98?)

@T`�`
"
@�a�`

"�;
a�`

"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�;
a�`

"�#=-�./)�,90A2Y4�.]6�)18:)
@
F^;

a�`
"�#
&�BC8�D�#=-�./)�,90*2>4�.76�)98?)�;�-�./)�,90*2>4�.76�)98?)

@�a�`
"
@�b�`

"�;
b�`

"�#%+�,1F�# -�./)�,90*2>4�.76�)98?)�;
b�`

"�#%$ &�'*)�$ &�BU8*# -�./)�,(03254�.76K)98O)

Table 1. A trace of B operation invocations for data propagation.

000

210

220 320

200

420 520

530

540

550 650 750

7

5 Related Work

Several works have been presented during the last years on the mapping and
placement of resources on 2D and 3D NoC designs. For example, Addo-Quaye
[2] presented an approach for thermal and communication–aware mapping and
placement for 3D NoC architectures. Genetic algorithms were used in order to
model solutions to mapping problems. The approach was shown to reduce
communication and peak temperature when compared to purely random
placements.
 Murali et al. [11] presented a method to determine a power efficient
topology of a 3D System–on–Chip for a given application and for finding paths
for the traffic flows that meet Through Silicon Vias constraints. The method
accounts for power and delay of both switches and links. The assignment of
resources to different 3D layers and the floorplan of the resources in each layer
are taken as inputs to the synthesis process, while the output of the process is
the optimal positions of NoC switches in each layer and between the layers.
 To the best of our knowledge there has not been presented another approach
to execute formal specifications of NoC routing schemes in order to aid the
process of finding efficient placements of resources on a chip. We believe that
our approach can enhance the design of complex 3D–integrated systems and
work hand in hand with mapping and placement approaches such as the ones
presented in this section.

6 Conclusion

Formal methods with adequate tool support are important for the design of
complex NoC systems in order to correct errors in the early design phases and
reduce the involved costs of NoC system design and development.

We proposed an approach for finding an efficient placement of resources on
a NoC after data flow executions at the formal specification level within ProB.
To the best of our knowledge it is the first approach on executing several
different data flow scenarios within a formal NoC framework in order to aid the
process of finding an efficient placement of resources on a chip. This
development step is important in order to design reliable and dependable
multidimensional integrated systems.

References

8

[1] Abrial J.–R. (1996). The B–Book, Cambridge University Press.
[2] Addo–Quaye, C. (2005). Thermal-aware mapping and placement for 3-D NoC

designs. In Proc. IEEE Int. Syst.-on-Chip Conf., pp. 25–28.
[3] Back, R.J.R., Kurki–Suonio, R. (1983). Decentralization of Process Nets with

Centralized Control, Proc. of the 2nd Symposium on Principles on Distributed
Computing, pp. 131–142.

[4] Butler, M., Waldén, M. (1996). Distributed System Development in B, Proc. of
the 1st conference on the B Method, Nantes, France, pp. 155–168.

[5] ClearSy, Atelier B, http://www.atelierb.societe.com/
[6] Dally, W. J. and Towles, B. (2001). Route packets, not wires: On–chip

interconnection networks. In Proc. of the DAC’01, pp. 681–689.
[7] Gutmann, R. J., Lu, J. Q., Kwon, Y., McDonald, J. F., Cale, T. S. (2001). Three-

dimensional (3D) ICs: a technology platform for integrated systems and
opportunities for new polymeric adhesives. In Proc. Conf. Polymers Adhesives
Microelectron. Photon. Pp. 173–180.

[8] Hemani, A., Jantch, A., Kumar, S., Postula, A., Öberg, J., Millberg, M., and
Lindqvist, D. (2000). Network on a Chip: An architecture for billion transistor
era. In Proc. of the IEEE NorChip Conference.

[9] Leuschel, M., Butler M. (2005). ProB: A Model Checker for B, Proc. FME’03,
LNCS Volume 2805, Springer, pp. 855–874.

[10] Li, F., Nicopoulos, C., Richardson, T., Xie, Y., Narayanan, V., Kandemir, M.
(2006). Design and Management of 3D Chip Multiprocessors Using Network-in-
Memory. ACM SIGARCH Computer Architecture News.
Volume 34 , Issue 2. pp. 130 – 141.

[11] Murali, S., Seiculescu, C., Benini, L., De Micheli, G. (2009). Synthesis of
Networks on Chips for 3D Systems on Chips. Proceedings of the 2009
Conference on Asia and South Pacific Design Automation. pp. 242-247.

[12] Tsiopoulos, L., Waldén, M. (2006). Formal Development of NoC Systems in B,
Nordic Journal of Computing, Vol. 13 (2006). pp. 127–145.

[13] Waldén, M., Sere, K. (1998). Reasoning about Action Systems using the B
Method, Formal methods in System Design, Vol. 13(1), pp. 5–35.

9

Reliability Assessment in Event-B Development

Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis

Åbo Akademi University, Finland
{anton.tarasyuk, elena.troubitsyna, linas.laibinis}@abo.fi

Abstract. Formal methods are indispensable for ensuring dependability of com-
plex software-intensive systems. In particular, the B Method and its recent exten-
sion Event B have been successfully used in the development of several complex
safety-critical systems. However, they are currently not supporting quantitative
assessment of dependability attributes that is often required for certifying safety-
critical systems.. In this paper we demonstrate by example how to integrate reli-
ability assessment into Event B development. This work shows how to conduct
probabilistic assessment of system reliability at the development stage rather than
at the implementation level.
Keywords: Event-based modeling, reliability assessment, formal verification,
Markov processes

Introduction

To demonstrate dependability of a system it is often required to prove statis-
tically that the probability of a catastrophic failure is acceptably low. Usually
such an assessment is done after the development is finished, i.e., at the imple-
mentation level. However, in some cases the obtain design does not achieve the
targeted level of reliability. Obviously, the cost of redesign might be very high.

In this paper we address the problem of reliability assessment at the devel-
opment stage. We show how to integrate probabilistic assessment of system reli-
ability with its formal modeling and verification in Event B. We demonstrate by
example that in some cases we can obtain an algebraic solution connecting the
overall system reliability with reliabilities of its components. In the other cases,
we can employ probabilistic model checking to obtain a numeric solution.

Our ideas are exemplified via a small case study modeling and assessment
of reliability of a data transmission. We believe that integrating probabilistic
reasoning into the formal modeling significantly enhances the benefits of the
later one. Indeed in this case our formal model would give us not only logical
but also statistical evidences of system dependability.

1 Modelling and Refinement in Event B

Event B [1] is an extension of the B Method [2] to model parallel, distributed
and reactive systems. The Rodin platform [3] provides automated tool support
for modelling and verification in Event B.

Event B uses the Abstract Machine Notation for constructing and verifying
models. An abstract machine encapsulates a state (the variables) of the model
and provides operations on its state. A simple abstract machine has the following
general form:

11

SYSTEM AM
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS
E1

. . .
EN

The machine is uniquely identified by its name AM. The state variables of the
machine, v, are declared in the VARIABLES clause and initialised in INIT as de-
fined in the INITIALISATION clause. The variables are strongly typed by con-
straining predicates of the machine invariant I given in the INVARIANT clause.
The invariant is usually defined as a conjunction of the constraining predicates
and the predicates defining the properties of the system that should be preserved
during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the EVENTS clause. An event is defined as follows:

E = WHEN g THEN S END

where the guard g is conjunction of predicates over the state variables v, and the
action S is an assignment to the state variables.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. The action can be either a deterministic assignment
to the state variables or a non-deterministic assignment from a given set or an as-
signment according to a given postcondition. These assignments are denoted as
:=, :∈ and :| correspondingly. If several events are enabled then any of them can
be chosen for execution non-deterministically. If none of the events is enabled
then the system deadlocks.

The Event B models are formally defined using the weakest precondition se-
mantics [4]. The weakest precondition semantics provides us with a foundation
for establishing correctness of specifications and verifying refinements between
them. For instance, we verify correctness of a specification by proving that its
initialization and all events establish the invariant.

The basic idea underlying formal stepwise development by refinement is to
design the system implementation gradually, by a number of correctness pre-
serving steps, called refinements. The refinement process starts from creating
an abstract, albeit unimplementable, specification and finishes with generating
executable code. The intermediate stages yield the specifications containing a
mixture of abstract mathematical constructs and executable programming arti-
facts.

Assume that the refinement machine AM ′ is a result of refinement of the
abstract machine AM:

12

SYSTEM AM ′

VARIABLES v′

INVARIANT I ′

INITIALISATION INIT′

EVENTS
E1

. . .
EN

The machine AM ′ might contain new variables as well as replace the abstract
data structures of AM with the concrete ones. The invariant of AM ′ – I ′ – de-
fines not only the invariant properties of the refined model, but also the con-
nection between the state spaces of AM and AM ′. For a refinement step to
be valid, every possible execution of the refined machine must correspond (via
I ′) to some execution of the abstract machine. To demonstrate this, we should
prove that INIT ′ is a valid refinement of INIT, each event of AM ′ is a valid
refinement of its counterpart in AM and that the refined specification does not
introduce additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,
I ∧ I ′ ∧ g′

i ⇒ gi ∧ wp(S′,¬wp(S,¬InvC)), and
I ∧ I ′ ∧ gi ⇒

WN
i g′

i

2 Example of refinement in Event B

To illustrate modelling and refinement in Event B let us consider a small case
study – modelling a simple data channel. The structure of the system is shown in
Figure 1. The system comprises two nodes: a sender (A) and a receiver (B), and
at each stepA can send a request toB. After sending a messageA stops sending
and listens to the channel to get confirmation from receiver. The communication
channel (C) can fail at each step, the failure is repairable and both failure and
repair rates are assumed to be known from some reliability report. If a request
(confirm) is sent while the channel remains unavailable, the message got lost
and the system is shutting down. If the message is confirmed, A can transmit
the next request.

BA

request

confirm

Faulty
Channel

init

Fig. 1. Case study: overall system structure

13

In our initial abstract specification we merely model the possibility of suc-
cessful or failed transmission. The variable res is introduced to represent this.
The variable is non-deterministically assigned the values TRUE or FALSE.
When res obtains the value FALSE then the failure has occurred and the sys-
tem deadlocks.

MACHINE Channel0
VARIABLES

res
INVARIANTS

inv1 : res ∈ BOOL
EVENTS
Initialisation

begin
act1 : res := TRUE

end
Event evt1 =̂

when
grd1 : res = TRUE

then
act1 : res :∈ BOOL

end
END

Our initial specification is deliberately simple to facilitate probabilistic mod-
elling that we will discuss in the next section. Next we will show how to refine
this specification to capture the entire set of requirements given above.

We introduce the variable msg to model the status of message being trans-
mitted, the variable ch to model the status of the transmitting channel and the
variable flag to model the desired sequence of events. This is a rather simple
refinement step. The specification of it is given below.

14

MACHINE Channel2
REFINES Channel1
SEES Context0
VARIABLES

res
msg
flag
ch

INVARIANTS
inv1 : flag ∈ 0 . . 1
inv2 : ch ∈ BOOL

EVENTS
Initialisation

extended
begin

act1 : res := TRUE
act2 : msg := A
act3 : flag := 0
act4 : ch := TRUE

end
Event evt1 =̂
refines evt1

when
grd1 : res = TRUE
grd2 : msg = ok
grd3 : flag = 1

then
act1 : msg := A
act2 : flag := 0

end
Event evt2 =̂
refines evt2

when
grd1 : res = TRUE
grd2 : msg = lost
grd3 : flag = 1

then
act1 : res := FALSE

end
Event evt3 1 =̂
refines evt3

when
grd1 : res = TRUE
grd2 : msg = A
grd3 : flag = 1
grd4 : ch = TRUE

then
act1 : msg :∈ {A,B}
act2 : flag := 0

end

Event evt3 2 =̂
refines evt3

when
grd1 : res = TRUE
grd2 : msg = A
grd3 : flag = 1
grd4 : ch = FALSE

then
act1 : msg :∈ {A, lost}
act2 : flag := 0

end
Event evt4 1 =̂
refines evt4

when
grd1 : res = TRUE
grd2 : msg = B
grd3 : flag = 1
grd4 : ch = TRUE

then
act1 : msg :∈ {B , ok}
act2 : flag := 0

end
Event evt4 2 =̂
refines evt4

when
grd1 : res = TRUE
grd2 : msg = B
grd3 : flag = 1
grd4 : ch = FALSE

then
act1 : msg :∈ {B , lost}
act2 : flag := 0

end
Event evt5 =̂

when
grd1 : flag = 0

then
act1 : ch :∈ BOOL

end
END

Next we will show how to integrate probabilistic reasoning into Event B
modelling.

3 Probabilistic modelling in Event B

Automatic tool support is essential for ensuring scalability of formal modelling.
Hence availability of the tool support is essential when choosing the probabilis-
tic basis underlying integration of probabilities into Event B. Maturity and good
usability of probabilistic model checking using PRISM tool [5] encouraged us to
choose discrete-time Markov chains (DTMCs) and Markov decision processes
(MDPs) as the underlying semantics for our probabilistic enhancement of Event
B modelling. In mathematics, a Markov chain is a stochastic process having the
Markov property, it means that the description of the present state of the pro-
cess fully captures all the information that could influence the future evolution
of the process. Future states will be reached through a probabilistic process in-
stead of a deterministic one, i.e. according to a certain probability distribution.
Any Markov chain is completely defined by its matrix of transition probabilities
and initial distribution. Markov decision processes are an extension of Markov
chains, the difference is the addition of actions and rewards structures, in some
cases MDP could be reduced to a Markov chain. More formal definitions of
these of Markov processes can be found in many books on probability theory,
e.g. [6–8].

Probabilistic model checking is an automatic formal verification technique
for analysing quantitative properties of systems which exhibit stochastic be-
haviour. PRISM is a probabilistic model checker, a tool for formal modelling
and analysis of systems which exhibit random or probabilistic behaviour. It sup-
ports three types of probabilistic models: discrete-time Markov chains, continuous-
time Markov chains and Markov decision processes, plus extensions of these
models with costs and rewards [5]. A system specification in PRISM is con-
structed as a parallel composition of modules, which can interact with each
other. In general, a module in PRISM looks as follows:

module Module name

var : Type init . . . ;

[] grd1→ p1 : action1 + · · ·+ pn : actionn;
[] grd2→ q1 : action′1 + · · ·+ qm : action′m;
. . .

endmodule

As it is easy to see, Event B models can be easily augmented with the required
probabilistic information and analysed using PRISM model checker. In the next
section we will show how assess reliability of a system modeled in Event B
using PRISM model checker as well as using mathematical theory of Markov
processes.

16

4 Reliability Assessment in Event B Modelling

In engineering, reliability [9, 10] is generally measured by the probability that
an entity E can perform a required function under given conditions for the time
interval [0, t]:

R(t) = P [E not failed over time [0, t]].

Let T be the random variable measuring the uptime of the entity:

R(t) = P [T > t] = 1− P [T ≤ t] = 1− F (t).

There is a strong correlation between Event-B specifications and discrete
time Markov processes. Lets consider some Event-B model where only local
nondeterminism is possible, i.e. at every moment of time one and only one
event might be enabled. In this case at every moment of time actions of the
(single) enabled event define a number of possible future states of the system.
As was mentioned before, only two types of actions are presented in Event-
B: deterministic and non-deterministic assignments. Deterministic assignment
defines the future system state unambiguously, in other words, it defines state
transition with probability 1. Non-deterministic assignment defines a set of pos-
sible states, but the choice between them has daemonic nature. Replacing this
non-deterministic choice with some probability distribution we obtain a set of
possible probabilistic transitions similar to the onex in a discrete Markov chain.
The replacement of such type is always valid because for any programs prog
and prog′: prog u prog′ v progp ⊕ prog′, ∀ p ∈ [0, 1] [12]. If the global non-
determinism is also possible in a Event-B model then it can be represented by
Markov decision process in a similar way.

Now let us return to our case study – modelling simple data channel. Let us
assume that the transfer rate of A and the service rate of B are known.

The concrete specification consists of two group of events, the first group
models the channel’s availability and the second one models the message trans-
ferring process. These group of events can be represented by two Markov chains,
but while the transferring process depends on the channel’s availability, the cor-
responding Markov chain are not independent and reliability analysis of such
system can be complex

The probabilistic model checking PRISM can be used to assess reliability
of our channel. The results of the analysis using PRISM are given below.

However, model checking does not give an analytical representation of reli-
ability function. This might be disadvantageous, e.g., it does not give a guidance
on how to choose components that allow to achieve the desired system reliabil-
ity.

Lets consider another approach based on mathematical theory of Markov
chains. One of the possible approaches to work with two or more non-independent
Markov chains is to try to define the correlation between them. For instance, the
concrete specification of our case study can be represented by Markov chain
(see Figure 2.) with transition probabilities depending on channel’s availability.
The considered example is very simple and this is not a problem to derive an

17

BA α∗PA

1-PA

1-PB

init

OkLost

1 1

α∗PB
(1-α)∗PA (1-α)∗PB

Fig. 2. State transition diagram for the time non-homogeneous chain

analytical view for availability function α, namely α(k) = PR+PF ·(1−PR−PF)k

PR+PF
.

But still, as can be seen, α depends on time k and obtained Markov chain is time
non-homogeneous, and analysis of such type of chains is not a good idea.

Another way to work with a number of non-independent Markov chains is to
try to build their superposition [6]. This is a relatively easy task when all chains
are regular, but in our case study the chain describing the message transferring
process is absorbing. It is clear, that to describe two processes as a superposition
we need to define a state space of an output process and find its transition matrix
P . For our example the superposition can be build by decomposing of two states
A and B into four states A1, A2, B1 and B2, where A1 represents a system state
when the message is in A and the channel is available, A2 – the message is in
A and the channel is unavailable and so on. The corresponding state transition
diagram is shown in Figure 3.

B1A1

init

Ok

Lost

1

A2 B2

1(1-PA)(1-PR)

(1-PA)(1-PF) PA(1-PF)

PAPF

(1-PA)PF (1-PA)PR

PA(1-PR)

PAPR

(1-PB)(1-PF)

PBPF
(1-PB)PF

PB(1-PF)

(1-PB)(1-PR)

PBPR

(1-PB)PR

Fig. 3. State transition diagram for the time homogeneous chain

Now, when we know the transition matrix P , we can calculate the funda-
mental matrix N = (I − Q)−1, where I is an identity matrix and Q repre-
sents the transitions between transient states. We can calculate also the matrix
B = {bij} = N ·R, whereR represents the transitions from transient to ergodic
states and bij is the probability that the process starting in transient state si ends
up in absorbing state sj [7]. Let β be the probability of absorption in ”Ok” state

18

and from matrix B we can find that

β =
(PA + PR − PA · PF − PA · PR) · (PB + PR − PB · PF − PB · PR)

(PA + PF + PR − PA · PF − PA · PR) · (PB + PF + PR − PB · PF − PB · PR)

In our example the reliability function can be represented in terms of the
total uptime of the system or in terms of a number of successful request-confirm
transfers within given time interval. The last one is better in respect to relia-
bility engineering since it gives more concrete information about the system
functioning and omits the standby periods when failures are impossible. On
the other hand, both representations are connected in a trivial way: as long as
{A1, A2} and {B1, B2} comprise two non-communicable classes of transient
states (process cannot goes back from B to A), the mean number of times the
process remains in non-absorbing states equals to the sum of the time periods
the process spends in these two classes, namely 1

PA+PB
. Let X be the random

variable measuring the number of successful transfers, obviously it has a geo-
metric distribution, and the mean of X and the reliability function of the system
are E(X) = β

1−β and R(t) = βt+1 respectively.
It is interesting to compare results obtained with probabilistic model check-

ing to those obtained analytically. Let us consider the input vector of probabilis-
tic characteristics (PA, PB, PF , PR) = (0.5, 0.8, 0.01, 0.5), then β = 0.9758
and E(X) = 40.3485. The results of the analysis using PRISM are illustrated
in Figure 4 and they are closely related to the analytical ones: the graph shows
system unreliability in terms of the total uptime and the ”Property details” win-
dow demonstrates the total expected number of sent requests, i.e. E(X) + 1.

Fig. 4. Formal verification with PRISM

19

Conclusion

In this paper we have shown an example of integrating formal development
by refinement with probabilistic assessment of system reliability. We demon-
strated that for rather small specifications we can obtain an algebraic solution
expressing overall system reliability as a function of reliabilities of its compo-
nents. However, we have also demonstrated that for complex systems we can
obtain a numerical estimate of reliability using PRISM model checker. Our ap-
proach supports reliability assessment already at the development phase and can
give guidance on optimizing the design from dependability point of view. More-
over, it can help us to early diagnose the problems of the chosen design, so that
the desired level of dependability would be nevertheless achieved. The similar
topic in the context of refinement calculus has been explored previously [11,
12]. However, we see a great benefit in integrating probabilistic reasoning into
the framework that has a mature tool support [3]. As our future work it would
be interesting to further explore the connection between Event B modeling and
dependability assessment. In particular the topic of probabilistic data refinement
seems to be promising.

References

1. J.-R. Abrial. Extending B without changing it (for developing distributed systems). In H.
Habiras editor, First Conference on the B method, pages 169-190. IRIN Institut de recherche
en informatique de Nantes, 1996.

2. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

3. RODIN Event-B Platform http://www.event-b.org/
4. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
5. PRISM probabilistic model checker http://www.prismmodelchecker.org/
6. W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons,

1967.
7. J. G. Kemeny, J. L. Snell. Finite Markov Chains. D. Van Nostrand Company, 1960.
8. D. J. White. Markov Decision Processes. John Wiley & Sons, 1993.
9. A. Villemeur. Reliability, Availability, Maintainability and Safety Assessment. John Wiley &

Sons, 1991.
10. P. O’Connor. Practical Reliability Engineering. John Wiley & Sons, 1995.
11. A. K. McIver, C. C. Morgan, and E. Troubitsyna The probabilistic steam boiler: a case study

in probabilistic data refinement. In J. Grundy, M. Schwenke, and T. Vickers, editors, Proc.
International Refinement Workshop, ANU, Canberra, Discrete Mathematics and Computer
Science, pages 250-265. Springer-Verlag, 1998.

12. A. K. McIver, C. C. Morgan. Abstraction, Refinement and Proof for Probabilistic Systems.
Springer, 2005.

20

Contract-based design in controller development and its evaluation

Pontus Boström
1
, Marta Pląska

1
, Mikko Huova

2
, Matti Linjama

2
, Mikko Heikkilä

2
, Kaisa Sere

1
, Marina Waldén

1

1
Department of Information Technology

Åbo Akademi University

Joukahaisenkatu 3-5

FIN-20520 Turku

Fax: +358 2 215 4732

{pontus.bostrom, marta.plaska, kaisa.sere, marina.walden}@abo.fi

2 Department of Intelligent Hydraulics and Automation (IHA)

P.O. Box 589

FIN-33101 Tampere

Fax: +358 3 3115 2240

{mikko.huova, matti.linjama, mikko.heikkila}@tut.fi

1. Introduction
Software is present in many application areas and is becoming an integral part of mechanical appliances.

Therefore cost-effective development of reliable control software has become more critical than ever. In this

paper we describe a lightweight formal approach for control systems development and an application of the

method to the development of a part of a controller for a digital hydraulic system. We simultaneously evaluate

the impact of the used methodology on the development and on the final system. Digital hydraulics involve

advanced controllers to achieve high performance and to realize sophisticated characteristics, such as energy

saving. This affects the software of the hydraulics controllers, which is therefore highly complex when compared

to more traditional controllers. Therefore adequate software development techniques have to be used in order to

manage the complexity and to ensure the reliability and functional correctness of the developed system.

Model-based design has become a popular method for development of embedded control software. In

this design method, a simulation model of the controlled system is also constructed. This enables fast and cheap

analysis of the performance and correctness of the controller. Simulink is one of the most popular tools for

model-based design at the moment. This is due to its user-friendly graphical modelling language, simulation

tools and its large library of ready-made components. However, Simulink lacks tools and concepts for stepwise

design and modular techniques to analyse system correctness. These features would be desirable to better reason

about the correctness of the constructed system in a more manageable way and thereby increase the reliability of

the system.

To enable stepwise design and modular analysis of correctness, we have introduced contract-based

design in Simulink [1] [2]. Contracts here refer to pre- and post-conditions for programs that describe the

assumptions the program makes about its environment and the results it can compute. Contract-based design is a

well-known technique for object-oriented software development [3]. Our aim has been to transfer those

principles to Simulink. To validate that Simulink models satisfy their contracts, we have developed formal

analysis techniques based on action systems [1] [4] [2]. Formal reasoning about Simulink models has also been

investigated in several notations before. There is a translation to Lustre [5] that can handle a large subset of

Simulink. Another formalisation is a translation to Circus [6]. This translation can also handle a relatively large

subset of Simulink. The focus is there on analysis of models and refinement of models into possibly parallel

code. Neither of those works considers contracts as an integrated part of the formalisation. However, contracts

could be introduced there also.

This paper describes a practical application of contracts on the development of a part of a digital

hydraulics controller using Simulink. Contracts are used as an aid for structuring the system and for analysis of

the system in the form of testing and design reviews. The case study demonstrates positive impact of using

contracts on the quality of the resulting control software. Only an overview of the development method and

application of it to a case study is presented here. A complete paper that gives a more thorough presentation of

the topic has been submitted to a journal [7].

To ensure the quality of the constructed system, quality measurements should be performed. Quality

measurements should be, and often already are, a part of the development cycle [8]. Since control systems are

becoming more software intensive nowadays, we study and evaluate the impact of lightweight formal

methodology in perspective of quality of final product and its development process. We also research the

system’s complexity characteristic, as it influences the schedule, costs and risks of the development, as well as

21

system’s understandability [9]. Additionally, complexity has an impact on reliability and cost management of the

software process [10].

The paper first shortly describes the application area of the case study, i.e. digital hydraulics. Then a

presentation of Simulink and contracts is given. The development steps carried out to create the software for the

system in the case study are then presented. Subsequently, evaluation of the development process and the

software quality, with a special focus on the complexity of the system is given. Finally, we conclude and give

directions for our future work.

2. Application Domain and Case Study Description
The evaluation of applicability of our development method was done using a case study from the area of digital

hydraulics. Digital hydraulics is a rather new area of fluid power, which aims at reducing the complexity of the

mechanical parts by improving control algorithms. One of the objectives of digital hydraulics is the cost-

effectiveness and ease of manufacturing of these parts. However, a sophisticated controller is needed to obtain

good performance of the system. Therefore, the need for high quality control software in digital hydraulic

systems arose.

Hydraulic systems are widely used in industrial and mobile applications which require high forces or

high power to weight ratio. One typical application of digital hydraulics is hydraulic cylinder control, which

traditionally have been achieved using complex analogue proportional and servo valves. Digital hydraulics

makes use of simple on/off-valves connected in parallel to achieve similar or better performance [11]. Figure 1

illustrates a digital hydraulic system. The figure (b) shows a Digital Flow Control Unit (DFCU) with five on/off-

valves connected in parallel. The figure (a) shows digital hydraulic valve system with four DFCUs for

controlling a hydraulic cylinder. Digital hydraulic valve systems can produce different control modes and

thereby save energy, which is an important benefit as the efficiency of traditional hydraulic systems is usually

considered to be low [12]. The digital hydraulic system also has high fault tolerance when compared to

traditional systems, which use only one valve to control each cylinder [13]. To achieve fault tolerance, suitable

control algorithm has to be used together with some method to detect faulty valves.

 (a) (b)

Figure 1. Cylinder drive with a 4- DFCU digital hydraulic valve system (a), as well as a hydraulic diagram of a

DFCU consisting of 5 on/off-valves (b).

A relatively complex model-based control algorithm is used in order to be able to utilize all features of

the digital hydraulic system. The objective of the controller is to find the optimal configuration of opened and

closed valves. The controller uses a steady-state model of the valves and cylinder to be able to estimate the

behaviour that would eventually result from the different valve control combinations. There are usually a large

number of possible combinations that should be analyzed to find the optimal control solution. For example, a

valve system with twenty valves has over one million different control combinations. Several techniques are

used to obtain an optimal control configuration using only relatively light-weight calculations that do not require

high performance computing hardware.

The correct operation of the controller is critical because hydraulic systems are usually heavily loaded

and hazardous if malfunctioning. The control algorithms have previously been developed in Simulink without

using a structured development method. However, there were problems with software quality and

maintainability.

22

3. Overview of Simulink and contract-based design
Simulink is a part of the MATLAB environment developed by Mathworks Inc. It is a graphical language, where

behaviour is described with dataflow diagrams. A diagram contains functional blocks that describe how data is

manipulated. These blocks are also often parameterised to make them more flexible. Blocks can also contain

memory, which means that the output of these blocks depends also on this internal state. The blocks are

connected by signals that describe how data flows between them. The connection points for signals in the blocks

are called ports. A diagram can be hierarchical, where the functional blocks are organised into subsystem blocks.

A subsystem block can contain any number of ports for input and output of data to and from the subsystem. An

example of a Simulink diagram is given in Figure 2 (b). This diagram contains two subsystem blocks: Calculate

and Check. The blocks with rounded corners correspond to the ports of the subsystem they are in. They enable

communication over the subsystem boundary.

The subsystem block in Figure 2 (a) contains a subsystem to calculate the length of the hypotenuse in a

triangle according to Pythagoras theorem, . In Figure 2 (b), the subsystem Calculate calculates the

result c, while the subsystem Check checks if the calculated solution is accurate enough. If the solution is good

enough then ok is set to true otherwise ok is set to false. The content of subsystems Calculate and Check is

shown in Figure 3 (a) and (b), respectively.

 The idea of contracts from object-oriented systems can be applied to Simulink diagrams. The unit that is

described by contracts is here the subsystem block. The idea with contracts is that they give a more high-level

description of the subsystem block behaviour than the subsystem diagram. This enables reasoning about

diagrams in a more modular fashion. The correctness of a diagram can be analysed in terms of the contracts of

the subsystem blocks that it contains. The detailed content of the subsystems does not have to be known. The

contracts also document the division of responsibility between subsystems.

 (a) (b)

Figure 2. Subsystem that uses the Pythagoras theorem to compute the length of the hypotenuse (a), as well as the

content of that subsystem (b)

 Each subsystem can be described by a pre-condition that states what it assumes of the values on its in-

ports and a post-condition that states which values can be produced on its out-ports. Assume we have a

subsystem Ms with a list of in-ports pi, list of out-ports po, as well as block parameters c. The pre-condition is a

predicate of the form Q
pre

(pi,c). The post-condition is of the form Q
post

(po,pi,c). Often a subsystem or a diagram

will not function correctly with arbitrary block parameters. To describe the valid values of block parameters c, a

predicate Q
param

(c) is used.

(a) (b)

Figure 3. The content of subsystem Calculate (a) and subsystem Check (b) in Figure 2

Pythagoras

a

b

c

ok ok

2

c

1

Check

a

b

c

ok

Calculate

a

 b

c

b

2

a

1

c

1sqrt

u
2

u
2

 b

2

a

1

ok

1

u
2

u
2

u
2

<= EPS|u|

c

3

b

2

a

1

23

Table 1. Contracts of the subsystems presented in Figure 2 and Figure 3

 Subsystem pre-condition post-condition

 Pythagoras 0 0a b 2 2 2
| |ok a b c EPS

Calculate true true

Check true 2 2 2
| |ok a b c EPS

Consider the subsystem for calculating the length of the hypotenuse in a triangle from Figures 2 and 3.

The contracts for the different subsystems are given in Table 1. The subsystem Pythagoras also has one block

parameter EPS that gives the desired precision of the computation. The contract for this block parameter is that

EPS should be greater than zero, . The complete contract of the subsystem Pythagoras states

that the inputs a and b should be greater than zero. If this condition is satisfied the subsystem will ensure that the

result has been calculated with desired precision if ok is set to true. The post-condition subsystem Calculate

states that it will compute any value, since the precision of the calculation is not known, which is only modelled

coarsely here. The subsystem Check then checks that the solution is accurate enough and sets the port ok

accordingly. Note that here it is assumed that all ports have the type double. The contracts encode design

decisions about division of responsibility in a clear way. The contract clearly states what inputs can be given to a

subsystem and what outputs the subsystem will produce in response to those inputs.

To fully benefit from contracts it should be possible to prove that a subsystem always satisfies its

contract. Furthermore, it should be possible to analyse complete Simulink models, i.e. subsystems that do not

have any in-ports. In this case, we need to show that all of the subsystems in the model are connected in such a

way that every pre-condition and post-condition are satisfied. To achieve these goals, we have analysed [2] [4]

the Simulink diagrams using refinement calculus and action systems [14] [15] [16]. In the case study discussed

in this paper, the validation has been carried out using testing. However, the testing was based on the rules of

correctness given by the theory.

4. Development process
In this section we present an outline of the development process for a part of a controller for a digital hydraulics

system. The developed subsystem is an important part of the controller and is used to evaluate the application of

contract-based design in the MATLAB/Simulink environment [17]. The developed subsystem is complex

enough to generate realistic data about the development method. The subsystem presented here is a re-

engineered version of an old subsystem with the same basic functionality, but it is also extended with several

new features.

The design process started from gathering the requirements of the subsystem. First, the subsystem has to be

able to choose the correct control solution according to several criteria that different applications of the valve

system has, e.g., find balance between accuracy of velocity and pressure tracking, reduce unnecessary switching

of the valves and to minimise the energy consumption. The re-engineering was also aiming at making the

subsystem suitable for a broad range of applications by increasing the configurability, as well as making the user

interface easy to use. Since the functionality of the controller was extended, the system became more complex.

After gathering the requirements, a first high-level specification of the subsystem was created. It consisted

of parameters, inputs and outputs together with contracts that described their properties. Requirements for the

parameters and inputs were defined using parameter- and pre-conditions. The functionality of the application

was guaranteed using post-conditions for the outputs.

After the high-level specification of the subsystem was completed, it was then refined into a subsystem

diagram where the functionality was decomposed into five subsystems. Each of these subsystems was also

described by contracts, which were written following the same pattern as in the high-level specification. The

contracts were used as a basis for allocating functionality to each subsystem and to describe the assumptions

made for each of them. Here contracts were used to analyse that the diagram indeed satisfies the contract of the

high-level specification via design reviews.

During the design process the design reviews were performed multiple times by a team of developers. At

this point contracts gave a good basis for discussing and analysing the design at an early development stage.

Moreover, they helped to gain confidence that the specification was correct and complete, as it was done

accurately using contracts. This in turn influenced the quality of the final control algorithm, as shown in Section

5 in more detail.

24

After the refinement phase, each of the five subsystems was implemented according to the specification

documents as Simulink diagrams. Afterwards, unit testing was performed for each subsystem, thus enabling

testing activity before finalising the implementation phase. The unit tests checked that the subsystems conformed

to their contracts. The pre-conditions described valid test-data and the post-conditions described the valid outputs

of the subsystem. The outputs from a subsystem were checked after the execution of each test and the defects

could be detected by checking if the post-conditions were violated. Simulation of the complete controller with a

model of a mobile boom test system allowed evaluation of its performance. Testing and simulation were

considered as sufficient for confirming the correctness of the subsystem. Proofs of correctness were omitted, as

being too time and effort consuming considering the extra confidence in the system that would have been gained.

5. Evaluation of development
Quality measurements were done for the development process and for the constructed subsystem. The study of

the quality of final subsystem was done with respect to defect-related metrics, size of the system and its structure,

which all influence reliability. We also consider system’s complexity, since it impacts its maintainability.

Complexity is also a major factor when talking about testing coverage. The evaluation of the development

process included the analysis of its distribution over time, as well as the examination of activities regarding the

defect handling (defect removal). The aim is to investigate the impact and suitability of the applied methodology

on system development. The data collection for our examination was done in parallel with the development, thus

enabling thorough quality evaluation.

The number of defects in the system is considered as one of the most important aspects of quality. We

have measured the number of defects and their distribution over the development phases with respect to their

origin and removal phase, excluding the severity level classification. Here by defect (fault) we understand an

anomaly in a product. In the developed subsystem eight defects in total were detected. The small defect density,

equal to 0.55 defects per thousand of generated lines of code (kGLOC), was not only a result of methodology

used, but additionally experienced developers, design reviews, code generation and relatively small system size

(14428 GLOC in the C language, 846 corresponding Simulink blocks). For comparison, in an earlier

development, where contract based design was only introduced as a new development approach, the defect

density was equal to 1.38. A critical system, e.g. the air traffic control system investigated in [18], that uses

formal methods and C language, has 1.25 defects per thousand of non-commented source code lines

(NCkSLOC) after delivery.

The information about defect distribution is particularly interesting, as it shows the impact of the

methodology on the development process and on the cost of handling defects. In our study the defects originated

from the specification and refinement (3) phase and programming phase (5). The defect discovery was as

follows, programming phase: 3, unit testing: 4, system testing: 1. It is worth noticing that only one defect was

found at the last stage of the development. It is generally thought that the earlier a defect is found the cheaper it

is to fix it [19]. Therefore the final result is very good, as there were no defects found after the system was

deployed. However, the system has not been used extensively yet, therefore some defects might still be latent.

The coverage of the tests was also not measured and therefore the effectiveness of the test cases in finding

defects cannot be guaranteed.

The same part of the controller has been developed earlier using an unstructured development methods.

The system developed in this paper has been compared to that system. We computed the total complexity as a

sum of structural and data complexity for the developed subsystem [20]. We observed relatively high structural

complexity (dependent on quantity of subsystems and connections between them). This was caused by

structuring the system into numerous subsystems, thereby decomposing functionality, and simultaneously

increasing the connections between subsystems.

There was also a minor increase in data complexity (dependent on number of input/output data and

connections between the subsystems). This was caused by the fact that more functionality needed to be

accomplished by the system. Moreover, there were more user selectable and fine-tuning related parameters, in

order to make the system configurable, more usable and flexible. Additionally, there were many computational

requirements due to relatively complex control algorithms.

More sophisticated control algorithm, additional parameters, structuring the system, increase of the

system’s size (54% in number of blocks compared to the previous version) and other system enhancements

reflected in rather minor increase in total complexity of the subsystem. The developers’ perception confirms the

outcome of complexity analysis and attributes it to the use of contract-based design. In fact, although to some

extent more complex, the system is more readable and understandable. It should also be stated that the

developers were constantly extending their comprehension of the system. Therefore, the quality of the software

should be considered as being influenced by increasing experience of the developers. The system is now more

maintainable and reusable, as the lower layers can be modified without the necessity of altering the entire system

and higher layers can be reused later on.

25

The contract-based design approach influences not only the quality of the final product but also the

development process and its distribution over time. Figure 4 presents the distribution of development phases

over the development cycle. We distinguish five development phases, i.e. specification, refinement(s),

programming, unit and system testing. System design (specification and refinement phases) in the test

application took majority of the development time (approximately 60% of the total development time of 94 man-

hours). Since the focus was shifted to the proper design of the system, coding and testing phases were relatively

short (35% in total). For comparison in COCOMO II effort model the average time provided for these phases is

58% [21]. Concentrating on the design enables early defect detection and at the same time prevents defect

propagation to the later stages of the development.

Figure 4. Distribution of time over the development cycle

Design reviews performed by development team were a part of the system design phase (about 10% of

the time) and contributed to the high quality of the product. Concentrating on system design and thorough

specification of the system benefited in better comprehension of the constructed system. Furthermore, system

was well documented, thus facilitating later maintenance.

6. Conclusions and future work directions
Contracts support the decomposition of functionality into subsystems and allow modular analysis of the

Simulink models. The analysis can be carried out with different levels of formality. In the case study in this

paper the analysis was performed using design reviews and testing. Our experience with using contracts has been

encouraging. This positive experience was supported by the evaluation of the impact of used methodology on

development process, as well as quality of final product. The contracts facilitate the design process of the

system. By documenting the decomposition of the system into subsystems in a legible way, they give

explanation for the design decisions. Comprehensible and carefully prepared specification also benefits unit

testing and shortens its time. The structure of the system improved when using contracts, as the functionality of

the system is well decomposed. Moreover, understandability of the system increased, since the developers

focused on the objectives of the created software. This in turn improved its reliability. Given that the subsystems

have clear specifications of their functionality, as well as the assumptions they make about the environment

where they are used, the system is also more maintainable and reusable. This will benefit in case of the future

system adjustments or developments of similar type.

Further research on influence of lightweight formal methods on quality of the created system should be

conducted. Measurements can be used for the evaluation and improvement of dependability attributes, as well as

give feedback on methods applied in the development process. The complexity of the system is one of the

characteristics that have a major impact on its development, usability, maintainability, risk analysis, as well as

cost. We have worked on establishing complexity model, which would suit the specific MATLAB/Simulink

environment. Our model enables the analysis of the structure and the data flow in the system. We have examined

the complexity model for the higher level subsystems. The complexity was computed for each level of

subsystems separately. We need to extend this model to cover lower level subsystems. This can be achieved by

considering computational layers and ready made Simulink specific subsystems. Afterwards it would be possible

46%

19%

13%

19%

3%

Man-hours

Specification

Refinement(s)

Programming

Unit Testing

System Testing

26

to create the complete complexity metric for the whole system. We would also like to compare our model with

other complexity metrics. The aimed relative metric is McCabe complexity [22], adjusted to the Simulink

development environment. This would enable the evaluation of the validity of our model.

 Correctness of the developed system is important from a dependability point of view. More research on

validation of Simulink diagrams with respect to contracts is needed. The contracts can be used as a basis for

formal verification of Simulink models. More research is necessary to develop tools and techniques that would

enable this to be carried out in an economical way. Validation by testing should also be investigated. When

testing, there is a need to determine the appropriateness of test cases. Different types of coverage metrics for

both Simulink diagrams and contracts should be investigated.

Bibliography
1. Boström P., Linjama M., Morel L., Siivonen L., Waldén M., Design and Validation of Digital Controllers for Hydraulics

Systems, The 10th Scandinavian International Conference on Fluid Power. Tampere University of Technology, Tampere,

Finland (2007)

2. Boström P., Formal design and verification of systems using domain-specific languages. Ph D thesis. Turku Centre for

Computer Science, Turku, Finland (2008).

3. Meyer B., Object-Oriented Software Construction. 2 ed., Prentice-Hall (1997).

4. Boström Pontus, Waldén Marina, Morel Lionel, Stepwise development of Simulink models using the refinement calculus

framework, 4th International Colloquium on Theoretical Aspects of Computing (ICTAC2007). Springer, Macao, China

(2007)

5. Tripakis S., Sofronis C., Caspi P., Curic A., Translating discrete-time Simulink to Lustre, ACM Transactions on Embedded

Computing Systems (TECS), 4 (2005), pp.779-818.

6. Cavalcanti A., Clayton P., O'Halloran C., Control Law Diagrams in Circus, Proceedings of FM 2005. Springer-Verlag

(2005)

7. Pontus Boström, Mikko Huova, Marta Pląska, Matti Linjama, Mikko Heikkilä, Kaisa Sere, Marina Waldén, development

of controllers using Simulink and contract-based design, International Journal of Critical Computer-Based Systems

(IJCCBS), (2009) (Submitted February 2009).

8. Fenton N., Neil M., Software metrics: roadmap, Conference on the Future of Software Engineering. , Limerick, Ireland

(2000)

9. Software Technology Roadmap. Carnegie Mellon Software Engineering Institute, Pittsburgh (2008)

10. Center Software, Guidelines for Successful Acquisition and Management of Software Intensive Systems: Weapon Systems,

Command and Control Systems, Management Information Systems. (2003)

11. Linjama M., Koskinen K.T., Vilenius M., Accurate tracking control of water hydraulic cylinder with non-ideal on/off

valves, International Journal of Fluid Power, 4 (2003), pp.7-16.

12. Linjama M., Huova M., Boström P., Laamanen A., Siivonen L., Morel L., Waldén M., Vilenius M., Design and

Implementation of Energy saving Digital Hydraulic Control System, The 10th Scandinavian International Conference on

Fluid Power. Tampere University of Technology, Tampere, Finland (2007)

13. Siivonen L., Linjama M., Vilenius M., Analysis of Fault Tolerance of Digital Hydraulic Valve System, Bath Workshop on

Power Transimission and Motion Control (PTMC’05). , Bath, UK (2005)

14. Back R.-J., Kurki-Suonio R., Decentralization of Process Nets with Centralized Control, Proceedings of the 2nd ACM

SIGACT-SIGOPS Symposium of Principles of Distributed Computing. ACM (1983)

15. Back R.-J., Sere K., Stepwise Refinement of Action Systems, Structured Programming, 12 (1991), pp.17-30.

16. Back R.-J., von Wright J., Trace Refinement of Action Systems, Proc. of the 5th International Conference on Concurrency

Theory, CONCUR'94. Springer-Verlag, Uppsala, Sweden (1994)

17. Mathworks Inc., MATLAB/Simulink, http://www.mathworks.com

18. Hatton L., What is a formal method, (and what is an informal method), COMPASS ‘97 - Are we making progress

towards computer assurance?. IEEE, Gaithersburg, Maryland, USA (1997)

19. Cem K., Bach Kaner,, Pettichord B., Lessons Learned in Software Testing: A Context-Driven Approach. Wiley (2001).

20. Pląska M., Waldén M., Quality Comparison and Evaluation of Digital Hydraulic Control Systems. Turku Center for

Computer Science (TUCS), Turku (2007)

21. Yang Y., He M., Li M., Wang Q., Boehm B., Phase Distribution of Software Development Effort, ESEM’08. ACM,

Kaiserslautern (2008)

22. McCabe T.J., Butler C.W., Design Complexity Measurement and Testing, Communications of the ACM, 32 (1989), pp.1415-

1425.

27

Risk Analysis of Privacy Protection in Social
Networking Sites

Heidi E. I. Dahl Mass Soldal Lund Ketil Stølen
SINTEF ICT SINTEF ICT SINTEF ICT
Heidi.Dahl@sintef.no Mass.S.Lund@sintef.no Ketil.Stolen@sintef.no
Norway Norway Norway

Extended Abstract
The interest in social networking sites such as Facebook and MySpace have
exploded in recent years, and it is a common conception that such networking sites
will be central to public participation in the future. Though the main use at the
moment is social interaction between individuals, it is clear that communication
through social networking could be beneficial in other context. The presence of
government agencies and politicians on Facebook is an example of this.

Another emerging use of elements from online social networks is collecting
information for research. When doing large scale surveys, enabling social
networking features such as user generated content and discussion among the
participants allows researchers to collect other kinds of inputs than those accessible
through more traditional information collection techniques. These kinds of
interaction data are traditionally only available through face to face interaction
between researchers and groups of participants.

However, allowing for interaction between participants in a survey entails new
challenges in terms of how researchers handle sensitive information, and how the
participants are asked to provide details. How to obtain privacy protection in social
networking sites is still an open question, but it is evident that security risk analysis
must be a key component when the privacy of participants is considered [1][2][3].

We present risks in relation to privacy issues, based on an analysis of the Design
Feedback Tool (DFT), an application (in development) for conducting large scale
surveys. The DFT combines features from traditional questionnaires with elements
from social networking sites. The analysis was performed according to the CORAS
method for security risk analysis [4][5][6]. We show how the CORAS method was
applied for analysing privacy in the DFT; how this analysis influenced the solution,
and how privacy issues of the system are addressed.

Security Risk Analysis of the Design Feedback Tool
The scope of the analysis was the handling of privacy issues in the DFT focusing
on privacy and data protection issues connected to the use of DFT, both by
researchers and survey participants.

29

The direct assets focusing the analysis were therefore sensitive personal
information and identifying information [7], as two types if information regulated
by Norwegian law in terms of privacy. In the following we will use the term
sensitive information to mean information of either type. We chose to distinguish
between two sources of information, the researcher’s data set and user created
content.

The risks associated with the researcher’s data set are essentially the same as for
any sensitive data stored in electronic form, no matter how it was collected.
Improper storage and handling of the data before it has been anonymized may lead
to sensitive information going astray. Examples of this kind of risk are

- Unencrypted memory stick with data is forgotten in taxi, and accessed by
a later passenger.

- Researcher accidentally emails data set to wrong person.
- Researcher not involved in the project associated with the data set gains

access because the data set is stored on a common server.

When the survey is conducted online, the researcher needs to keep track of where
data is stored and make sure it is secure and not kept when it should be deleted.
The DFT is run by the researchers on an external server, so the contract regulating
maintenance and backup of the server should take into account possible privacy
issues. An example risk related to this is

- Sensitive information from the survey is backed up on the server, and not
deleted when the survey has ended.

Using an online community tool such as the DFT to conduct surveys introduces
new risk elements compared to more traditional methods where only the researcher
sees each participant’s responses. There are of course parts of DFT surveys that
will remain private (e.g. demographic questions such as gender and age), but even
when the information asked for is not necessarily sensitive, participants may
include sensitive information by accident. Unless each contribution is moderated,
with the time lag this involves, the interaction between the participants may
involve disclosure of sensitive data. An example of this kind of risk is

- A woman mentions how she uses an application in relation with her
daughter’s illness.

Another factor is the use of user generated rich media such as pictures and movies.
A rich media file may by itself identify the participant and the surroundings and
things that happen in the background may disclose either type of sensitive
information about the participant and people close by. An example risk related to
this is

- A participant contributes a movie taken at what is clearly a union meeting,
showing the people participating in the background.

The above examples were the main risks uncovered in the security risk analysis.

Acknowledgements
The security risk analysis and this extended abstract were completed with funding
from the SINTEF-internal project Rik og Sikker.

30

References
[1] Dwyer, C., Hiltz, S. R., & Passerini, K. (2007). Trust and privacy concern

within social networking sites: A comparison of Facebook and MySpace.
Proceedings of AMCIS 2007. Retrieved 12 March, 2009, from
http://csis.pace.edu/~dwyer/research/DwyerAMCIS2007.pdf

[2] Olsen, T., Mahler, T., Seddon, C., Cooper, V., Williams, S., Valdes, M., et al.
(2005). Privacy in Relation to Networked Organisations and Identity
Management: Legal-IST

[3] Woo, J. (2006). The right not to be identified: privacy and anonymity in the
interactive media environment. New Media and Society, 8(6), 649-967.

[4] Folker den Braber, Ida Hogganvik, Mass Soldal Lund, Ketil Stølen, and
Fredrik Vraalsen. Model-based security analysis in seven steps – a guided tour
to the CORAS method. BT Technology Journal, 25(1):101-117, 2007.

[5] Heidi E. I. Dahl, Ida Hogganvik, and Ketil Stølen. Structured semantics for the
CORAS security risk modelling language. Technical Report A970, SINTEF
ICT, 2007.

[6] The CORAS tool. Retrieved 12 March, 2009, from
http://coras.sourceforge.net/

[7] Personvernombudet for forskning, Ord og Begreper. Retrieved 12 March,
2009, from http://www.nsd.uib.no/personvern/forsk_stud/begreper.html

31

An Authentication Framework for Nomadic Users
Naveed Ahmed and Christian Damsgaard Jensen

Department of Informatics and Mathematical Modeling (IMM)
Technical University of Denmark, Denmark
nahm@kth.se, christian.jensen@imm.dtu.dk

Abstract
 Security and usability are often horn locked and system administrators tend to configure systems so that
they favor security over usability. In many cases, however, the increased security results in usability that is so
poor that users feel the need to circumvent the security mechanisms. This is probably best explained by
considering password based authentication, where a user is actively involved in the process. If the time
required to log in to an account is considered too high, users tend to leave their terminals logged in
throughout the day and share their account with other users. This is particularly true for nomadic users who
move around in ubiquitous computing environments and avail from different IT services from many different
locations. In many ubiquitous computing environments, where information processing is not considered the
main priority, management often accepts this practise in order to increase productivity, e.g., in a hectic
hospital environment, medical staff has to login and logout of various machines several times in an hour, but
the repeated interactions consume a considerable amount of time, causing organizational inefficiency, job
frustration and a tendency towards defeating the obstacle by leaving terminals logged in or choosing short
and easy to type passwords. Therefore, a password based authentication mechanism, which is quite simple
and secure in personal computing, has become too cumbersome for nomadic users, which means that other
means of authentication must be developed for nomadic users.

 In this paper, we focus on usability of authentication for nomadic users in a ubiquitous computing
environment. We identify requirements for authentication of nomadic users and propose an authentication
framework for this class of users. A prototype of the proposed authentication framework has been developed,
which supports persistent and multi­factor authentication without the active intervention of a user.

 We evaluate the usability of the developed mechanism by considering the time required to authenticate
when logging in to a workstation and compare this to classic password based authentication. The evaluation
shows that the proposed mechanism saves a significant amount of time for the nomadic users, which reduces
the incentive to circumvent the authentication mechanism. Thus, the mechanism will both provide users with
better job satisfaction and increased organizational efficiency, while at the same time increase the effective
level of security of the system.

Keywords: Security, Usability, Ubiquitous Computing, Nomadic Users, Authentication.

1. Introduction
 In the last four decades, human­computer interaction has gone through an evolution. This evolution reflects
three different paradigms of computing, which are identified by Allan Kay, Tomei[24], and Weiser[28]. We refer
to these paradigms as centralized or mainframe computing, decentralized or personal computing and
ubiquitous computing. In the early days of computing, centralized computing was the predominant paradigm,
where a single mainframe computer was shared by multiple users on a time or resource basis. Even today,
centralized computing plays an important role in the world’s largest corporations, including many Fortune­
1000 companies[25][27]. From the late 80s, personal computing started to dominate, marked by the number of
PC users crossing fifty million[40]. The personal computing paradigm requires a computer to each user and it
includes both fixed and mobile computing. More recently, ubiquitous computing paradigm has become more
pronounced. In ubiquitous computing, users avails many different machines that are embedded into the
environment. Computers used in ubiquitous computing environment are often characterized by being small,
inexpensive, robust, shared, networked, and distributed all over the places where they might be required[29].

 This evolution of computing paradigms is also reflected in the way computers are used. Depending on how
33

a person fulfills his computing needs, we identify three phases of user evolution. In the first phase, a user has
to access computers that are placed in a single physical location whenever he has a problem that requires
computational resources. Thus the freedom of mobility for a user is severely constrained by physical or
virtual access to the computing resource. In the second evolution phase, which is mobile computing, users
are enabled to move freely, because they can carry their computation resources with them. More recently, a
third phase of evolution has emerged, as we start embedding computing devices into artifacts of the
surrounding environment. We have termed this as nomadic use of computing, because it is characterized by
the fact that there is no inherent need to carry a computing device nor is there any requirement to access a
single computer in a central location, because computers have become part of the environment, thus a
nomadic user can freely move and compute where ever and when ever required.

 Unfortunately, development of suitable security mechanisms lag behind the user's evolution towards
nomadic use of computing. The most obvious example of this, is password based authentication, which is
used in most operating systems like UNIX, Linux and Windows etc. This mechanism does not impose any
serious usability limitation for stationary or mobile users, but for nomadic users, who have to frequently
login, logout and share terminals, usability factor plays an important role to determine its effective level of
security. Most common security observations are use of small and easy to remember password, sharing
password with colleagues and with in a group, omitting to logout etc. From a pure usability point of view, an
ample amount of time is being consumed in authentication process, so it is often considered an obstacle to
“real work” by users who do not appreciate the underlying need for security.

 Common usability problems associated with password based authentication are already highlighted in the
literature. A pilot study in health care[34] highlights typical nomadic use cases which cause security
vulnerabilities. Jeyaraman and Topkara[3] have recognized usability problems of passwords very well and
have proposed some complementary enhancements. A survey for phrase­based passwords shows many
vulnerabilities in their practical use[6]. On the other hand, to achieve usability, some graphical password
schemes have been proposed[38][4]. Hopper and Blum[5] proposes an alternative to passwords authentication but
the result still imposes usability constraints for nomadic use. A security analysis of passwords based
authentication by Gorman[19] overlooks this important factor of usability which is significant for nomadic
users. The majority of proposed solutions focused on stationary and mobile users and thus lacks in
addressing nomadic use of computing where usability requirements are more stringent.

 Corner and Noble[7][12] have put forward an authentication mechanism which does not require user
interaction at all. Bardram et al.[11] have proposed a secure user authentication mechanism which is proximity
based. But their main focus is to avoid vulnerabilities that are part of personal computing paradigm such as
theft. The idea of proximity based login has also been used in many other products in ubiquitous computing
research like Active Badges[13][21], AT&T's ActiveBat[15] which also uses session migration, Microsoft
EasyLiving[14] , IBM's BlueBoard[16], AwareHome[20] and Personal Interaction Points[12] which uses RFID
tokens for authentication and XyLoc System[17] etc. However these mechanisms are designed for particular
work environments which might be consider as subset of a general nomadic environment. Nevertheless their
designer has not analyzed nomadic use cases extensively, to come up with generic requirements which might
be applicable to any authentication mechanism used in a nomadic environment.

 Similarly the use of multi­factor authentication has extensively been investigated in literature for
biometrics[1][2]. Jonnson's 'Jury' framework[8] appears very useful to merge any number of authentication
mechanisms together. However, primary focus of research in the area of multi­factor authentication is
exploration towards a higher level of confidence in authentication mechanism and thus mostly deficit from
usability aspects.

 In this paper we have investigated usability aspects of classic password based authentication mechanisms.
As a result we have came across some intriguing facts, which must be considered in order to make
authentication mechanisms more usable and to raise effective level of security. In fact, our findings points to
a simple criteria that any usability feature, which is linked to system security, must be conceded as an integral
part of security architecture. Thus, we have designed a authentication framework and have implemented a
scaled down version of it in form of a prototype, which consists of a Debian Linux system and RFID reader.
The evaluation of system shows a considerable improvement in terms of usability and thereby security.

 The rest of the paper is organized as follows; In next section we have presented a brief about password
34

based authentication in nomadic context to highlight several usability constraints and security vulnerabilities.
We have also recounted some relevant security notions. The third section contains details of our designed
authentication framework and its prototype implementation. In the fourth section we have presented results of
our usability and security analysis, and in last section we have concluded our discussion.

2. Authentication and Nomadic users
 To envisage the role of authentication in system security, let's recall some security notions. A security
mechanism enforces a security policy. This security policy defines the intended level of security for a
security mechanism[39] and we refer to this as 'Designed Security'. However, the actual security achieved in
practice is often less than or at most equal to this intended level, we call this the 'Effective Security' level.
Moreover, effective security tends to decrease with time, mainly due to the discovery of more vulnerabilities
in security mechanisms, advances in technology, improved techniques of cryptanalysis etc. In an
authentication mechanism for nomadic users, there is another aspect of this difference which is due to
usability caused by repeated and lengthy interactions. Generally, human tends to become more casual with
the passage of time. This is illustrated in the Figure 1, which depicts a gradual decline in the effective
security over time. It is important to note, however, that the curve shown in Figure 1 is for illustrative
purposes only; the actual shape of the curve depends on the type of the system, the configuration and
operation of the system and parameters of the computational environment in which the system is deployed.

 Password based authentication is a prerequisite for most access control mechanisms implemented in modern
operating system like Linux, Unix and Windows etc. Thus passwords are our first and most fundamental
security check to ensure computer security. An authentication mechanism is primarily designed to verify the
claim made by a subject about their identity[19]. All mechanisms, which authenticate a human, can be divided
in two classes. First class is called human­centric authentication and involves recognizing intrinsic or pseudo­
intrinsic property of a human. Although Dhamija and Perrig[37] split this class in knowledge based and
biometric authentication but we consider knowledge as human pseudo­intrinsic property. Second class is
called device­centric authentication, where user is not directly authenticated. In fact, authentication
mechanism authenticate a device on behalf of user.

 A password based authentication is essentially a human­centric authentication. Generally a human­centric
authentication needs active involvement of user and thus can't be done frequently due to usability constraints.
For example it is difficult to do persistent authentication after each 500ms for pass phrase or voice
recognition. However in device­centric approach, for instance repeated scan of RFID tag after each 500ms is
quite common.

Figure 1: Difference of Effective and Designed Security levels

35

 Security vulnerabilities using password based authentication have already been identified, especially in the
context of health care[35][36]. For instance, modern hospitals have quite ubiquitous infrastructure in form of
well connected network with centralized access to electronic patient's record (EPR). Doctor's work place have
a couple of terminals to facilitate the check­up of patient or to carry out some research work. Conference
halls and meeting rooms have their own terminals. Nurses use terminals at their work place to keep track of
patients. Drug stores have a few terminals of their own which are connected to central data base to get
information about prescriptions. Emergency rooms and operation theaters also have associated terminals. In a
ward, there could be a terminal behind each patient's bed displaying important information regarding the care
of the patient to authorized staff. It might be desirable that when a doctor visits a patient in a ward, all
relevant data is available in a particular context. Some hospitals also provide terminals in ambulances which
are then connected to the hospital information infrastructure. For example this may be used for triage in large
emergencies or in­advance preparation in emergency treatment for heart patients.

 It's interesting to look at how nomadic users work in the hectic environment of hospitals. For example a
doctor has to see dozens of patients, he has to respond to emergency calls and he has to carry out surgery.
After a few days, each doctor will have a complete different set of patient and possibly work at many different
locations in the ward. As hospitals have to operate 24 hour a day, so typically they work in three or more
shifts. One can imagine how computing devices are being shared with in single shift and across shifts.
Moreover most of these nomadic users are handling sensitive health data of patients.

 The typical behavior of such nomadic users is summarized in following points[36];They tends to use short
and easy passwords[41][34], in their desire to login quickly. If the system enforces mechanisms to ensure the
quality of passwords, people tend to write their password down, in order to avoid forgetting it. Sometimes
they do not even logout. This might be on purpose to save time on their return or due to age related
forgetfulness[22]. Passwords may be sniffed due to continual need to be typed in during nomadic use. Users
tend to give away their password to their colleague for delegation purpose and sometime share it in a group.

 Beside the wastefulness of ample amount of time, there are also very obvious security vulnerabilities. Short
and easy passwords are always subject to numerous attacks as indicated in some security analysis[19][9][10], and
this is more certain for nomadic use. The common problem with classic knowledge based authentication is
that people tend to forget it[37][41], causing denial of service. Writing a complex password on a piece of paper is
violation of very basis of human centric authentication and vulnerable to stealing. We agree with Bardram[11]

and consider logout as an integral part of the authentication process. Failure to do so, is in fact a failure of the
authentication mechanism. Password sniffing is very difficult to avoid in nomadic use. Giving away one's
password is like making a copy of an authentication token and giving it to someone­else, and moreover
allowing to make further copies of that. This is the worst form of delegation. In group based password
scheme, no one is accountable although every one is authorized. Revocation is difficult to achieve in
password based authentication. Accenture Terminated Employee Survey[41]shows that about 10% of ex­
employee access the databases of their former employer. This is because employer were not able to properly
revoke their permissions. Moreover revocation takes effect when user tries to re­authenticate and thus in
some cases attacker get a chance of stealing a session. Active user involvement in authentication process
consumes lot of time when we add small chunks of time of all nomadic users. Apparently this is a matter of
efficiency but may cause partial denial of service attack. An attack on system security is always expected
from weakest point[31] and thus these vulnerabilities are points of attack and must be addressed.

 After analyzing password based authentication mechanisms in the context of nomadic users, we have
reached on some conclusions. First of all, there should be no conscious interaction between a user and the
authentication mechanism. As we have seen previously, that a small amount of active interaction ends
wasting a substantial amount of time when we add authentication events over a period of time. Moreover,
frequent interruptions and delays provide strong motivation for a busy nomadic user to circumvent the
authentication mechanism.

 Further we believe that the underlying architecture of an authentication mechanism should support
persistence and preferably context based authentication. This avoids a major usability constraint by shifting
responsibility of logout from users to the authentication mechanism in a way that preserves accountability.
We also conclude that the mechanism should support a user­friendly delegation preferably at authentication
level. This reflects the fact that in practice, delegation is normally accomplished by giving away one's
password or using a group password. And at last, authentication mechanism should be multi­factor. This is

36

because human centric authentication is formidable to perform periodically for sake of persistence and in
most of the cases a conscious user engagement is required. On other hand device centric authentication has
problems of it's own in form of stolen tokens and lack of trust on single authentication device etc.

 Some of these conclusions, although in a different context, are already in the state of art in form of Corner
and Nobel's work on persistent authentication[12], Bardram's proximity based login[11] and Jonsson's co­
authentication framework[8]. Importantly, our conclusions are implementation independent and also not aimed
to increase the level of designed security. In fact, their expressed purpose is to avoid usability constraints but
indirectly they avoid the decrement in effective level of security in nomadic environments.

3. Authentication Framework for Nomadic Users
 We have designed an authentication framework based on our analysis presented in the previous section. Our
framework is intended for a networked nomadic environment and uses persistent and multi­factor
authentication techniques without conscious engagement of users. We have termed it as 'Authentication
Framework for Nomadics', and abbreviated as AFN. Following is the design detail and rationale for AFN.

 The basic architecture of AFN is shown in the Figure 2. It is a distributed network framework and it consists
of three main parts. On each client terminal, we have a 'AFN­Client' application who interact with local
authentication sources (e.g. RFID reader, Bluetooth etc). This application sends authentication data to 'AFN­
Fusion', which is part of the main session server. 'AFN­Fusion' is a fusion engine for all type of
authentication data in the system, including context data. It output authentication decision to 'AFN­Server'
application which is responsible for activating, suspending, locking and unlocking of a user session. All user
session reside on session server and can be remotely accessed from any terminal. We can configure it to
implement a specific authentication policy. For example, an authentication policy can specify that
authentication should be granted only if user's RFID badge and his bluetooth mobile are both present and
validated. Underlying detail on multi­factor technology can be found in Jonnson's co­authentication
framework[8]. Similarly the detail about context data (i.e. user's location) and corresponding authentication

Figure 2: Top­level Architecture of AFN Authentication Framework

37

techniques can be found in 'PAISE' scheme and related experiment by Kirschmeyer, Hansens and Jensen[33].

 'AFN­Server' is responsible for starting, stopping, locking, unlocking of a user session which can be
remotely accessed from a terminal. The decision of AFN­Server depends on authentication decisions being
received from AFN­Fusion module. For example, if a user is sufficiently authenticated on a terminal, his
relevant session is automatically invoked at that terminal. When user departs, the terminal is locked and
session is suspended back to session server.

 On client side, the most natural and efficient way of authentication for nomadic user is proximity­based
login technique, which allows users to be authenticated on a device simply by approaching it physically[11].
However specific techniques for proximity based login are not in the scope of this paper, but it appears
obvious that the choice of proximity based login mechanism will have a strong impact on the overall security
of the system. However, in this paper we are more interested in usability and security improvements that can
be obtained through the usability of the security mechanisms. It was indicated earlier that most human­
centric authentication techniques are not suitable for persistence and seamless active authentication.
Although, there are plenty of device centric approaches, these again come with a risk of device being stolen
or tampered with. The best solution could be to combine the benefit of each technique, which leads to a
hybrid solution where multiple authentication techniques are merged to form a unified authentication
mechanism, which is also known as multi­factor authentication.

 For nomadic users we may use the Jury framework[8] for achieving multi­factor authentication in our
proposed framework. It enables an easy integration of arbitrary many authentication techniques, including
biometrics, knowledge based and device centric techniques. Moreover it's easy to integrate with wide range
access control systems which work on either probabilistic or binary authentication result. For instance, we
can combine RFID, Bluetooth and password based authentication along with machine learning algorithms
with help of this framework. A typical authentication policy for this framework could be as follows:

1. When user enter in the nomadic environment first time, he should enter his password.

2. System automatically associate RFID chips present in his clothes, watch, shoes and badge, with user
identity. Similarly an active Bluetooth from user mobile is an additional binding parameter. We can
specify that whenever RFID badge along with one of additional binding parameter is present, system
should consider it as an authenticated user.

3. Machine learning may be used to not automatically login on a system, when user just pass nearby.
Also a mechanism should not automatically try to authenticate a user on a system, which a user
normally does not use.

 In our framework, authentication data used in fusion process and authentication data used by 'AFN­Server'
to invoke corresponding sessions is independent. The mapping between these two types depends on security
certificate of users. A user's security certificate binds a user to multiple authentication devices. This
architecture also enables us for a user level delegation.

 To demonstrate our authentication framework, we have implemented a scaled down version. This prototype
consists of a Intel based desktop computer, running UBUNTU Linux(which is most popular distribution of
Debian Linux[18]) with GNOME desktop. Both server and client part of authentication are present on single
machine and communicate with each other using network sockets. For authentication purpose we have
augmented classic login based mechanism with RFID based authentication mechanism, which represents a
branch in multi­factor authentication.

 Multiple user sessions are simultaneously present on computer. When a person wearing a RFID tag
approaches the machine, his relevant session becomes active and displayed. Also this mechanism provides
persistent authentication which means that user is authenticated as long as he is present on machine. If he
depart from the scene authentication is automatically revoked in the system and relevant session is suspended
which might be reactivated in future.

4. Analysis and Result
 First of all, let's consider security vulnerabilities caused by usability and were described in previous

38

section. In our mechanism, user has to enter password once so there is no motivation for using short and easy
passwords. Moreover, disclosure of password is not a complete system failure but in fact, it can be detected
by our multi­factor authentication. We have used persistence authentication and thus user logout as soon as
he departs from scene. As user does not have to enter password in normal flow of work so password sniffing
by observation is also not possible. We support a nice user level delegation which is secure way of giving
one's password to other person and also there is no need to have a group password. Our mechanism is
persistent with very short term authentication memory which makes attack due to stealing of pre­
authenticated session not possible. As authentication process is automated, it saves a user from wasting
valuable time in authentication process. These facts suggest that our mechanism is able to address a large set
of security vulnerabilities and thus contributes to increase the effective level of system security.

 We have also analyzed implementation of our security mechanism by dividing it in three steps and then
performing detailed security analysis at each step. Some underlying assumptions for our prototype, which are
part of access control mechanism provided by Debian Linux, are as follows; Firstly, there is only one super
user in server system. Secondly, 'AFN Fusion' and 'AFN Server' runs with privileges of this super user.
Thirdly, their is a certain trust level on physical integrity of sensors, for instance RFID reader is not
tampered. Fourthly, each terminal is running a trusted copy client application 'AFN Client' and Fifthly,
interprocess communication using network socket is secure. These assumptions are quite reasonable for a
Linux based network.

 In the first step 'AFN fusion' receives all authentication information from individual sensors. For our
prototype this means a list of identifications for all tag present in the field of RFID reader. Since we have
assumed that hardware is not tampered with, thus this data present a valid input. One may argue that a tag
might be cloned, but this can be avoided by using tamper­resistant tags e.g. Zero knowledge RFID as
described by Engberg, Harning and Jensen[32]. Implicitly we are also assuming some basic conditions which
are part of every device centric authentication, like RFID. This implies that tag presented for authentication
is currently possessed by owner. Moreover a inherent deficit of confidence on any device centric mechanism
is well represented during fusion where each authentication sensor has certain level of trust.

 In the second step 'AFN fusion' is able to combine all authentication data it received. The only security
vulnerability which is possible in this case is denial of service. For example tag is not scanned in previous
interrogation. It is also possible, for example,if their are large number of tags present in field. To avoid this,
'AFN Server' samples authentication data at relatively high rate and operate on principle of moving average.
Third step is correctly mapping authentication data to user session. This involves scanning the user's security
certificates to find out the user for which output of 'AFN fusion' is valid. All these certificates are signed so
they can't be tampered with and also user's don't have write access to them. 'AFN Server' will not activate a
session on a particular terminal, if a valid 'AFN client' is not running their.

 To estimate usability performance let's define a benchmark to represents a typical nomadic environment.
We assume a user login 12 time in an hour and their are 8 working hours per day. The physical infrastructure
for our experiment is shown in the Figure 3.

Figure 3: Experimental setup

39

 Test results are shown in the Table­1, by averaging one hundred individual authentications for each case.
Most notable is total authentication time in a whole day, which turns out to be just 1.8 minutes for our
prototype. This is quite significant as compared to almost 20 minute time consumed by password based
authentication. This is because an average user takes around 8 second to type a good complex password. We
have experimented with passwords of length ten, and they all include alphabets, numeric and special
character. This quality of password is roughly equivalent to 64­bit random identification stored in RFID tags
we have used in the experiment. In other words, by using the prototype, one can have an extra person for
every 24 persons which might be very attractive especially for those environments where price for a working
hour is high, for instance in hospitals.

S/N Feature AFN prototype Password based system

1 Session Lock Automatic Manual

2 Session Unlock Automatic and takes less than
1 second

Manual, On average take about 8 seconds for
good passwords.

3 Switching User Automatic and takes less than
1 second

Manual, On average take about 25 seconds, if
system does not support simultaneous multiple
sessions. In other case it takes 10 seconds.

4 Run­time System
Resources

~500MHz of Celeron D
processor

Zero

5 New Session
Creation Time

10 seconds 20 seconds

6 Daily time consumed
in Authentication

1.8 minutes 20 minutes

Table 1: Performance Comparision

Conclusion
 Unfortunately, the evolution towards nomadic use of computing is not accompanied by use of appropriate
security mechanism. A password based authentication mechanism, when used by nomadic users, leads to
many security vulnerabilities, causing a considerable drop in level of effective security. It turn out that most
of these security vulnerabilities are due to usability constraints present in classic authentication mechanisms
As nomadic users are very conscious about usability issues, so they try to circumvent security checks. Thus
usability should be considered as an integral part of overall design of an authentication mechanism.

 We have developed an authentication framework and have evaluated its prototype, from both usability and
security perspectives. We have improved the quality of interaction between human and computer by
minimizing usability constraints. This contributes to saving time which may result in more job satisfaction
along with economic advantages for an organization. We have increased the level of effective security by
addressing usability constraints related to authentication mechanisms. As we have shown in our security
analysis we have removed most of those security vulnerabilities which are normally present in a system
where user is actively involved in authentication process.

 At last, we also confess that a true analysis of nomadic users require cross­disciplinary approach including
anthropology and psychology along with a couple of clinical and field trials, in order to truly discover the
best usability options that can be incorporated in any security mechanism.

40

References
[1] Lin Hong, Anil K. Jain, and Sharath Pankanti, “ Can multibiometrics improve performance”, Technical
Report MSU­CSE­99­39, Department of Computer Science, Michigan State University, 1999.

[2] Imran Naseem and Ajmal Mian, “User Verification by Combining Speech and Face Biometrics in
Video”, Advances in Visual Computing, ISBN 978­3­540­89645­6, Pg. 482­492, 2008.

[3] Sundararaman Jeyaraman and Umut Topkara , “Have the cake and eat it too – Infusing usability into text­
password based authentication systems”, Proceedings of the 21st ACSAC, Pg. 473 –482, 2005.

[4] D. Davis, F. Monrose and M. K. Reiter, “On User Choice in Graphical Password Schemes,” In
Proceedings of the 13th UNIX Security Symposium, August 2004.

[5] Nicholas J. Hopper and Manuel Blum, “A secure human computer authentication schemes”, CMU­CS­
00­139, School of Computer Science, Carneige Mellon University, May 2000.

[6] Cynthia Kuo, Sasha Romanosky and Lorrie Faith Cranor, “Human Selection of Mnemonic Phrase­based
Passwords”, ACM International Conference Proceeding Series Vol. 149, Pg. 67–78, 2006.

[7] Mark D. Corner and Brian D. Noble, “Zero­interaction authentication”, Proceedings of the 8th annual
international conference on Mobile computing and networking Atlanta, Georgia, Pg. 1–11, 2002.

[8] Einar Jonsson, “Co­Authentication ­ A Probabilistic Approach to Authentication”, Master's thesis, IMM­
Thesis­2007­83, Informatics and Mathematical Modeling, Technical University of Denmark, DTU, 2007.

[9] Bruce L. Riddle, Murray S. Miron, and Judith A. Semo, “Passwords in use in a university timesharing
environment”, Computers and Security Vol 8 (7), Pg. 569 – 578, November 1989.

[10] Daniel V. Klein, “Foiling the cracker: A survey of, and improvements to, password security”,
Proceedings of the second USENIX Workshop on Security, Pg. 5­14, July 1990.

[11] Jakob E. Bardram, Rasmus E. Kjær, and Michael Ø. Pedersen, “Context­Aware User Authentication:
Supporting Proximity­Based Login in Pervasive”, UbiComp 2003: Ubiquitous Computing, Pg. 107­123,
2003.

[12] Mark D. Corner, Brian D. Noble, “Protecting applications with transient authentication”, Proceedings of
the 1st international conference on Mobile systems, San Francisco, California, Pg. 57 – 70, 2003.

[13] F. Bennett, T. Richardson, and A. Harter, “Teleporting­ Making Applications Mobile”, Proceedings of
the IEEE Workshop on Mobile Computer Systems and Applications, Pg. 82–84, 1994.

[14] B. Brumitt, B. Meyers, J. Krumm, A. Kern and S. Shafer, “EasyLiving: Technologies for Intelligent
Environments”, Handheld and Ubiquitous Computing, Pg. 97­119, 2000.

[15] A. Ward, A. Jones, and A. Hopper, “A new location technique for the active office”, IEEE Personal
Communications, Vol. 4(5), Pg. 42­47, October 1997.

[16] Daniel M. Russell and Rich Gossweiler, “On the Design of Personal & Communal Large Information
Scale Appliances”, Ubicomp 2001: Ubiquitous Computing, Pg. 354­361, January 01, 2001.

[17] Xyloc family of products, Ensure Technologies (Ypsilanti, Michigan) , <http://www.ensuretech.com>,
Last visited March 24th, 2009.

[18] Ladislav Bodnar, “Top Ten Linux Distributions”, <http://distrowatch.com/>, Last visited April 1st, 2009.

[19] Lawrence O’Gorman, “Comparing Passwords, Tokens, and Biometrics for User Authentication”,
Proceedings of the IEEE, Vol 91(12), Pg 2019­2040, 2003.

[20] K. Nagel, C. D. Kidd, O'Connell, T. O’Connell, A. Dey and G. D. Abowd, “The Family Intercom:
Developing a Context­Aware Audio Communication System”, Proceedings of UBICOMP, Pg. 176­183, 2001.

[21] R. Want, A. Hopper, V. Falco, and J. Gibbons, “The Active Badge Location System,” ACM Transaction
41

on Information Systems, Vol 10(1), Pg. 91­102, January1992.

[22] Science News University of California, San Francisco. "Age­related Memory Loss Tied To Slip In
Filtering Information Quickly." ScienceDaily dated 5 September 2008.
<http://www.sciencedaily.com/releases/2008/09/080902143234.htm>, Last visited April 1st, 2009.

[23] Department of Defense, Trusted Computer System Evaluation Criteria dated 1985, <http://csrc.nist.gov/
publications/history/dod85.pdf>, Last visited March 30th, 2009.

[24] Lawrence A. Tomei , “Encyclopedia of Information Technology Curriculum Integration”, Information
Science Reference; illustrated edition , ISBN­13: 978­1599048819, February 5, 2008.

[25] Mike Ebbers, Wayne O’Brien and Bill Ogden, “Introduction to the New Mainframe: z/OS Basics” dated
July 2006, <http://publibz.boulder.ibm.com/zoslib/pdf/zosbasic.pdf>, last visited March 26th, 2009.

[27] Pam Snaith and Rob Steiskal, “Mainframes are still mainstream”, White paper by CA Inc, June 2007.
<www.ca.com>, Last visited March 30th, 2009.

[28] Mark Weasor, “Nomadic Issues in Ubiquitous Computing”, Xerox PARC (Palo Alto Research Center),
<http://www.ubiq.com/hypertext/weiser/NomadicInteractive> , last visited March 26th, 2009.

[29] Marcia Riley, "Ubiquitous Computing: An Interesting New Paradigm",
<http://www.cc.gatech.edu/classes/cs6751_97_fall/projects/say­cheese/marcia/mfinal.html>,Last visited
March 26th, 2009.

[30] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege and
D. Spence, “Network Working Group: RFC 2904”, August 2000.

[31] Charles P. Pfleeger and Shari Lawrence Pfleeger, “Security in Computing”, Prentice Hall Professional
Technical Reference, 2002.

[32] Stephan J. Engberg, Morten B. Harning and Christian Damsgaard Jensen, “Zero­knowledge Device
Authentication:Privacy & Security Enhanced RFID preserving Business Value and Consumer Convenience”,
Proceedings of the 2nd Annual Conference on Privacy, Security and Trust (PST’04), 2004

[33] Martin Kirschmeyer, Mads S. Hansen and Christian D. Jensen, “Persistent Authentication in Smart
Environments”, 2nd International Workshop on Combining Context with Trust, Security and Privacy.
Trondheim, Norway, 2008.

[34] J. Bardram, T. Kjær and C. Nielsen, “Mobility in Healthcare ­ Reporting on our initial Observations and
Pilot Study”,Technical report of a clinical study, CfPC 2003­PB­52, Center for Pervasive Computing, 2003.

[35] Jens Bæk Jørgensen and Claus Bossen, “Executable Use Cases for Pervasive Healthcare”, IEEE
Software Volume 21 , Issue 2, Pg. 34 – 41, ISSN:0740­7459, March 2004.

[36] Jakob Bardram, “The trouble with login: on usability and computer security in ubiquitous computing”,
Personal and Ubiquitous Computing Vol9(6), Pg. 357–367, ISSN:1617­4909, November 2005

[37] Rachna Dhamija and Adrian Perrig, “Deja Vu: A user study using images for authentication”, In the
Proceedings of the 9th USENIX Security Symposium, Denver, Colorado, August 2000.

[38] I. Jermyn, A. Mayer, F. Monrose, M. Reiter and A. Rubin. “The Design and Analysis of Graphical
Passwords”, Proceedings of the 8th UNIX Security Symposium, August 1999.

[39] Matt Bishop, “Computer Security: Art and Science” , book published by Addison­Wesley Professional,
ISBN­13: 978­0201440997, 2002.

[40] Computer Industry Almanac, “25­Year PC Anniversary Statistics”, Press release August­2006,
<http://www.c­i­a.com/pr0806.htm>, Last visited April 1st, 2009.

[41] Password Research, “Authentication Statistic Index” maintained by Bruce K. Marshall,
<http://passwordresearch.com/stats/statindex.html>, Last visited April 1st, 2009.

42

Authenticating Mobile Users Using Untrusted Computers -
A Smartphone Approach

Anna Vapen

Department of computer and information science
Linköpings universitet, SE-58183 Linköping, Sweden

e-mail: annva@ida.liu.se

Users of web applications are mobile in the sense that they use different computers, for
example at work, at home or at an Internet café. These computers can be considered untrusted
since they can contain keyloggers and malware. When a user logs in to use a web application
there is a need for an authentication method that is secure even if the computer cannot be trusted,
and that can be used on any computer anywhere.

Normally usernames and passwords are used in simple authentication solutions. The problem

is that users need to remember a large variety of different usernames and passwords. For a
password to be secure it needs to be relatively complex which makes it difficult to remember. To
use complex passwords there is a need for secure storage of the passwords, or an alternative
method such as using one-time passwords and challenge-response where the user is presented
with a challenge that only this user can give the correct response to.

Both for storage of passwords and for running a cryptographic application that calculates a

response we need a trusted environment that can be reached by the mobile user. Many security-
conscious organizations, specifically in the areas of e-commerce and online banking, use
hardware security tokens for authentication. The token can be for example a smartcard, a USB-
stick or other hardware specific for the application. In recent years mobile phones have been used
in authentication solutions and identity management. Because of their prevalence, mobile phones
are an excellent platform for something the user wants to have available at all times.

Using a smartphone, an enhanced mobile phone similar to a PDA, we get access to a rich set

of input channels (e.g. camera, voice, keypad, touch screen, accelerometers, GPS etc) and
communication channels (long distance as GSM/WCDMA, WiFi etc and short distance as
Bluetooth, NFC etc). They also contain trusted hardware in the form of a SIM or USIM card.

An interesting challenge with using a smartphone as a hardware security token is to explore its

interactive features to be able to create a highly usable and fast authentication solution that can
provide a high level of security in security critical settings as well as for simpler services like
social networks, e-mail and blogs. One solution that we are investigating is the possibility of
using optical input as part of an authentication process where the user has a smartphone as a
hardware token.

43

Efficiency Issues in a Switched LAN

Luigia Petre
lpetre@abo.fi

Muhammad Mustafa Hassan
mhassan@abo.fi

Department of Information Technologies, Åbo Akademi University

Abstract—Ethernet—a switched local area network—is the market leader for LAN Technologies today. From businesses to
government organizations, home to shopping centers, and NGOs to universities, Ethernet is the sole shareholder of the local area
networks. Due to such a wide-range, Ethernet has become an intensively addressed research area, with concerns ranging from the
high level network design problems to the mid-level theoretical protocols architectures to the low level physical hardware details.
As a result, new standards, increased speeds and better technology for Ethernet are very often reported.

Due to the fast and intensive development, the diameter of the LAN deployment has been increased to a bigger scale. Local area
networks have grown from a couple of hundreds of clients to several thousands of clients advancing the concept of a Campus Area
Network. The huge enhancements in network size—and constant growth—led to various concerns in the switched network design,
some very crucial. First, the fault tolerance and the availability of the network should be ensured for virtually 100% of the time.
Second, the aggregation of the switched traffic flow to the network core and the Internet is a major aspect, as the proper size of
upstream links keeps the network from being congested. Third, the proper design of the switched network has quality, speed and
efficiency aspects to consider.

The above mentioned issues do not only arise when a network is being deployed. They can also arise after the establishment of a
network, due to several reasons like arbitrary growth, careless planning, design mistakes, replacement of devices/links upon
failures or for extending, etc. All these concerns lead to one common theme: that of the efficiency of the LAN.

This thesis provides a case study of a university LAN: we set out to uncover just how efficient the Åbo Akademi University's
Ethernet is. The results we present are obviously characteristic to this particular network. We found that the network design of
the Åbo Akademi LAN was influenced over the years by the limited budget as well as the lack of stringent security and efficiency
needs. While there is no reason to generalize our findings, we can still draw several lessons from our study. We have observed
various efficiency problems and proposed solutions to them. By simulation we have also visually illustrated the differences and
improvements our solutions would bring.

Index Terms—Ethernet, hierarchal design, LAN, Switched LAN, Switching, ÅA Network

I. INTRODUCTION
omputing and communication have had an essential role in people’s lives from the early ages. Starting from abacus and
tally marks to the room-sized ENIAC, and then to the PC and dust computing devices, a drastic revolution took place in

the field of computing. The field of data communication also transformed radically—from lighted beacons, smoke signals
and homing pigeons to telegraph and radio, and then to the computer networks and the Internet. During the early stages, the
means for storage, processing and communication of data were distant. Humans used to store data in their minds, and later
on papers. For computing they needed some abacus type of machines, while for communications they needed drums or
smoke signals and later the telegraph. With the advent of the computers and the stored program concept, the means of
storage and processing merged. Still, communication was isolated. The forms of data to be stored and to be communicated
were different. With the invention of ALOHA and ARPA in early 1970s [HYPERLINK \l "Bre99" 1], these fields started to
integrate. The same machines were now able to store, process and send data—with the involvement of some Data
Communication Equipment (DCE). Today, we see an almost complete integration. A normal computer can store the data of
any type—voice, video, images, programs, games, etc.—, process it, and send it to another computer. Storing, processing
and transmitting use data in compatible formats and take place over computers2], [HYPERLINK \l "Tan96" 3].

Because of this integration, during the last two decades, the use of networks has grown drastically both at the individual
and organizational level. Today networks have become an integrated part of human life. Their use ranges from military
applications to space science and business applications to home and leisure activities. The tremendous increase in the use of
networks everywhere has transformed them into a basic necessity and a very crucial theme for researchers. While we
increasingly need networks, we also have increasing problems associated with them. So, we need more research into
different concerns relating to the networks—like stability, scalability, delays, bandwidth and congestion etc. Different type
of networks exhibit different problems, thus having different themes of research. Ethernet, a switched Local Area Network
(LAN) is one of the most used networks. In the following, we introduce Ethernet and present some problems associated with
it in the case of Åbo Akademi (ÅA) university Network. We then propose some possible solutions justified via simulations.

C

45

II. SWITCHED ETHERNET
In the late 1960s, Norman Abramson along with his colleagues at University of Hawaii introduced the concept of

contention based networks 1], [HYPERLINK \l "Tan96" 3]. Their network ran on a shared wireless medium with a medium
access scheme named ALOHA. The resulting network was called ALOHAnet—a broadcasting network because of the
shared wireless medium. In 1972, shortly after the introduction of ALOHA, Bob Metcalfe and David Boggs at PARC,
XEROX Corporation further came up with enhancing the original ALOHA concept to a 2.94 Mbps data rate network1], [
HYPERLINK \l "Int08" 4]. The major enhancements were the use of a cable instead of the wireless medium, the
introduction of carrier sensing, and the speed. This newly introduced medium access mechanism was called Carrier Sense
Multiple Access with Collision Detection (CSMA/CD). The resulting network was named Ethernet1], [HYPERLINK \l
"Wil97" 2], 5].

From 1972 to 1990, Ethernet received a number of modifications and enhancement but the core concept of the technology
remained the same. With the advent of the Ethernet switch at Kalpana [HYPERLINK \l "Bre99" 1],6] in 1990, the shape of
the underlying technology and devices changed. The network started to use Ethernet switches instead of hubs. The basic
technique in an Ethernet switch was similar to a telephone switch in which the two ports of the communicating parties were
connected for the time of the communication only. This relatively new invention for the Ethernet changed the way the
medium was being used. With the use of a switch the network was no longer a broadcasting network. Three years after the
introduction of switches, Kalpana delivered another big invention in 1993 namely the full-duplex transmission mode. The
full-duplex transmission allowed the clients to send/receive simultaneously. Before the invention of Ethernet switches, the
full-duplex transmission was not possible because the network ran on a shared medium. Later on, in 1997, IEEE ratified its
standard 802.3x for full-duplex/flow control Ethernet [HYPERLINK \l "Bre99" 1], 7].

These inventions unleashed the realms of Ethernet. Soon after, in 1995, the 100 Mbps version arrived as IEEE802.3u [
HYPERLINK \l "IEE08" 7], then in 1999, 802.3ab which provides a speed of 1000 Mbps. Then in 2002, IEEE802.3ae was
published which further enhanced the Ethernet to 10 Gbps. And now IEEE 802.3ba group is working for the ratification of
40 Gbps and 100 Gbps Ethernet standards 8]. All this rapid development became possible because of the invention of
switching technology for Ethernet.

III. SWITCHED NETWORK DESIGN
Several protocols rely on directed broadcasts for their correct functioning. These protocols include, for example, Address

Resolution Protocol (ARP) and Routing Information Protocol (RIP) [HYPERLINK \l "Wil98" 9], 10]. As the networks
grew bigger, the problems associated with one large enterprise-wide single broadcast domain became apparent in terms of
congestion, latency, waste of bandwidth and the increased load on the processors of connected nodes [HYPERLINK \l
"Boy01" 10] 11]. A traditional solution to resolve the problem was to divide the whole network into several small broadcast
domains with the use of a router. Hence, routers are CPU-based devices which calculate forwarding and routing decision on
a per-packet base, the involvement of a processor and memory for the forwarding/routing of each and every packet and its
decapsulation/encapsulation introduces a considerable amount of delay that becomes a bottleneck in high-speed switching
LANs [HYPERLINK \l "Boy01" 10]. With the advent of Virtual LANs, higher layer switching and multi layer switches, the
routers that were being used to separate the broadcast domain are replaced with multi layer switches 12]. But the huge sizes
of networks and the large variety of devices and functionalities available has made the network design much more complex [
HYPERLINK \l "Int083" 12]. Building flat networks without a proper design strategy is not any more in practice now.
Today, designers use what we recognize as the hierarchal network design13], [HYPERLINK \l "Boy01" 10], 14].

A. Hierarchal Network Design

The hierarchal network design is based on the traffic flows in enterprise’s Campus Area Network (CAN). A CAN is
normally a complex network, hence for the simplicity it is decomposed into three layers. First, we have the traffic which may
be destined for services which are campus-wide or external in their scope. Second, there is the traffic which is between
similar broadcast domains on the same CAN. The third and the basic one is destined for a local broadcast domain [
HYPERLINK \l "Boy01" 10].

To clarify this structure we take an example of Åbo Akademi that is composed of several faculties with each faculty
having several departments. Figure 3.1 illustrates the concept of every department having its own network segment. The
traffic generated from a client on the segment of the Department of Information Technologies and destined for the same
segment is local traffic. If the source is at the Department of Information Technologies and the destination is at the
Department of Chemical Engineering (same faculty) then the traffic is remote. And finally, if the traffic is generated for a
destination which is neither in same segment, nor in the same faculty—may be outside the campus network, or a resource on
the campus network—then this traffic is campus-wide or enterprise-wide in its scope.

46

Figure 3.1: An example of different traffic flows

Based on these traffic flows, a hierarchal network design consists of three layers. The access layer 10], [HYPERLINK \l
"Int083" 12], 15], [HYPERLINK \l "Way03" 16] provides the connectivity to the end devices. The medium used by these
devices can be in any form, ranging from wired rings, shared or switched mediums to the wireless medium. The devices
which form this layer are normally functioning at the data link layer. Logically, the access layer devices need not have any
routing or similar network layer functionality. This is because their role is to provide medium access to the end user. The
only other functionality they need to perform is the separation of broadcast domain into several smaller broadcast domains.
This job can be accomplished very well with the definition of VLANs.

The distribution layer 10], [HYPERLINK \l "Int083" 12], 15], [HYPERLINK \l "Way03" 16] aggregates the traffic
coming from the access layer devices, performs inter-VLAN routing and enforces enterprise policies. If the traffic generated
by the end systems is destined to the same broadcast domain, then it needs not to be sent to the distribution layer. If the
traffic flows need to go out of the generating broadcast domain, the access layer device hands over the traffic to the
distribution device. Distribution device checks for all policies, access control mechanisms, and routing information and then
acts as defined for that particular type of traffic.

The core layer 10], [HYPERLINK \l "Int083" 12], 15], [HYPERLINK \l "Way03" 16] is the heart of a network. It is the
place where the aggregation of the entire traffic over a network takes place. Due to the very high volume of traffic present,
the devices at the core layer should be extremely efficient. This efficiency requirement is achieved with a combination of
two aspects. First, very efficient devices need to be used with the greatest throughput both at network layer and data link
layer. Second, this layer is given the responsibility to switch frames on data link layer. Normally, no inter-VLAN routing,
packet processing, enforcement of policies or similar functions can be given to this layer—although it can perform all these
functions.

IV. ÅBO AKADEMI SWITCHED ETHERNET
Åbo Akademi University is a traditional seat of learning situated in Turku, Finland. The university owns a reasonably

large network which is spanned over the buildings scattered across the city. The network is built upon Ethernet technology
using all the switching devices. Only the wireless LAN devices are on a shared broadcasting medium network due to the
natural constraints on wireless medium. The network has a hierarchal structure which is apparently built upon three layers.
One layer is providing connectivity to end devices. The middle layer is aggregating the traffic from end switches. And the
third layer is working as the core of the network. However, these three layers do not fit in the defined three layer architecture
that we discussed in the previous section. This is because the logical functions a distribution layer performs—inter-VLAN
routing, policy enforcement etc—are not being performed in the middle layer in Åbo Akademi network. This middle layer is
merely aggregating the traffic from end devices and passing it to the network backbone. For these aforementioned reasons,
we classify Åbo Akademi (ÅA) network as a three layer network having core, aggregation and edge layer—and not the
core, distribution and access layer.

A. ÅA Network: The Core Layer

The core layer in ÅA network is the backbone network that provides means for connectivity between distant buildings
located throughout the city and to rest of the world. In Figure 4.1, we illustrate the architecture of Åbo Akademi backbone
network and its devices.

It is apparent from the figure that Åbo Akademi network comprises a firewall, four routing-switches and links between
them. Three routing-switches are providing connectivity to the aggregation layer and firewall, while fourth routing switch is
used to communicate with rest of the world. The description of the objects in Figure 4.1 is as following:

47

4

Network Clouds: there are four network clouds. TuY/TKKK cloud represents the university of Turku network. The second
cloud is Funet that provides ÅA network the gateway to Internet. The outside world traffic of ÅA network passes through
this pathway. The third cloud represents the Syduast network. These three clouds are connected over 1000BASE-LX
links. Finally, we have the Demilitarized zone (DMZ).

Figure 4.1: ÅA network backbone

Routing-switches: the backbone has four routing switches. The snoopy-ext-rtr is the end routing-switch which is
providing connectivity to rest of the world. The other three routing switches form a ring in between them. This ring provides
connections to all the aggregation layer devices in ÅA network.

Firewall: snoopy-fw is a heavy duty server computer that runs checkpoint firewall software to implement
organizational policies and to protect Åbo Akademi network from malicious network attacks. All the traffic going out to
Internet or coming in from Internet passes through this firewall

B. ÅA Network: The Aggregation and Edge Layers

Every building of Åbo Akademi has a separate aggregation switch with some exceptions when several buildings located in
close proximity use a shared aggregation switch. For example, DataCity and Korpoström buildings do not have their
own aggregation switches. These buildings share BioCity aggregation switch. All the aggregation switches finally
terminate in one of the three ring forming core layer devices named city-rtr1, asa-rtr1 and axel-rtr1. On the
other side, these aggregation switches provide connections to the edge layer switches. Several edge layer switches together
cover an area/building of Åbo Akademi. For simplicity, we do not present the full details of the network here. We refer to
the original work for the complete details.

V. PROBLEMS, SOLUTIONS AND SIMULATIONS
Due to the large number of devices and continuous expanding size of the network, ÅA network has accumulated

complexity in the structure. We have sought to find out the structural and design problems in the network especially related
to efficiency. Upon analyzing the ÅA network we have uncovered four main areas of potential problems: the naming
convention, the extended hierarchy, the uplink bottlenecks and the (lack of) fault tolerance. Here we describe our findings,
suggest some solutions, and present the simulated results of current and suggested scenarios via OPNET IT Guru Academic
Edition. The simulations are presented for all but the first problematic area, as it was not applicable to this.

A. Naming convention

Network device names can either be user-friendly or not. When we talk about user-friendliness, we refer to the ease of
utilization. The major service offered by a name is the identification of an object, hence the user-friendliness in names
essentially means how easy the identification of an object is, whose name is being addressed. This identification may be in
several aspects, for example, identification of hardware, tasks, geographical location, location in network plane etc.

Mainly, network device names can either be arbitrary or containing precise information in clear form or some kind of
encoded form. For the aggregation switch at biocity building of ÅA network is named bkf-esw2. This name does not
seem to be conveying much information about the type, job and place in hierarchy of Åbo Akademi network.

If we want to be precise in conveying information through names, we have to assign it a name, for example, like
eswbiofloor1-bkf-esw3-city-rtr1.abo.fi. Now this name tells us that this is an edge switch <esw> at
Biocity <bio> first floor <floor1> connected to aggregation layer switch bkf-esw3 which belongs to city-rtr1
hierarchy. But there is a problem with this kind of unstructured and non-planned naming scheme. The information relays to

48

5

everyone. Network personnel would not like that everyone just knowing the name of a device gets to know about all of its
information. The simple solution is to encode this information in a way that only concerned personnel can decode. For this
purpose we have to develop a naming convention. An example naming convention may be like the following:

<type><building><wiring closet><device number>-<aggregation tree>-<core tree>.<domain>

The elaboration of variables in this naming convention is given in Table 5.1
The name of above mentioned device now becomes eswty6204103-bct-ct.abo.fi. Because we have fixed the

length and type of variables, the absence of any delimiter in first portion does not create an ambiguity. We can still tell that
first three characters tell this is an edge layer (esw) switch at Biocity (ty6). The next four digits tell us the wiring closet
along with the device number shown from next two digits. After that we used some delimiters. Using delimiters or not using
them is just a matter of choice. One may use them throughout the name, and other may design a convention without them.

TABLE 5.1

DESCRIPTION OF NAMING VARIABLES
Name Length and Type Description
type Three characters It is the type of device, a device can

be for example
esw: edge switch
asw: aggregation switch
cor: core switch
rou: router

building Three
alphanumeric

It is the name of the building in
which the device is geographically
located. A table can be created for
building codes using either name
initials like bc for Biocity or with
some other information, for
example, the address of
Biocity(Tykistökatu 6): the
code can then be ty6.

wiring closet Four digits It is the number of the wiring closet
in which this device is physically
located.

device
number

Two digits A wiring closet may have multiple
devices. So these devices can be
numbered to keep the names
unique.

core tree Two alphabets ct: tree rooted at city-rtr1
as: tree rooted at asa-rtr1
ax: tree rooted at axel-rtr1

aggregation
tree

Three alphabets Every tree rooted at one of the core
layer devices can be sub‐divided into
small aggregation level trees. These
trees can be coded as
bct: tree rooted at aggregation
layer switch at Biocity.
ict: tree rooted at aggregation
layer switch at ICT-huset
gad: tree rooted at aggregation
layer switch located at Gadolinia
building

domain Variable This is of course abo.fi in our case

Another advantage is that, by fixing the type and length of variables in the name, automated scripts using wild cards can

be run very efficiently throughout the network. For example, a script meant to do a task on all the aggregation layer switches
in Åbo Akademi network can use asw* as a parameter. Now it will address all the aggregation layer switches (leaving all
other devices). Currently, the aggregation switch at Arken is arken-bdk-1-1-esw1, at Gadolinia it is gado-esw1
and at Biocity it is bkf-esw3. With current names there is no mechanism of using wild cards, but instead one has to
write down all the names separately.

Having such long encoded names may seem like a questionable choice. However, this approach encodes the device names
and achieves the double benefit of hiding obvious information from hackers/crackers as well as displaying necessary
information for network personnel. The level of encryption here is a matter of choice. The more difficult the codes are, the
tighter the security level is, hence the difficulty in decoding the device information. Therefore, a moderate choice in
difficulty seems suitable. For an overview of naming conventions deployed in different university campuses, see 17], [
HYPERLINK \l "Rut08" 18], 19].

49

6

B. Extended Hierarchy

There are several paths in Åbo Akademi network where the structuring goes beyond the conventional three layer
architecture: this really increases the complexity of the network structure. Namely, some edge layer switches extend the
hierarchy. This introduces a fourth level in the network, connected to edge layer and residing beneath it. On some paths the
depths of hierarchy goes to even fifth level. The network segment under gripen-esw1 switch is one such example. In
Figure 5.1, we show the depth of hierarchal structure under gripen-esw1.

Figure 5.1: Extended hierarchy under gripen-esw1

Extending the hierarchy in this way is a bad network design practice. A good network design should not go beyond a third
level [HYPERLINK \l "Joh01" 20]. The more processors, queues, memories and processing one gets involved in the path,
the more increasing the delays. If an extension is needed, i.e. a new switch has to be added to the network, it should be given
connection from an aggregation layer switch, instead of an edge layer switch.

The aggregation layer switches under which this kind of structure has been build in the Åbo Akademi network are
gripen-esw1, gado-esw1, bib-esw1, humanisticum-esw1, domus-esw1, axel-esw1, bkf-esw3 and
ict-bd002-esw1. This comprises a major part of Åbo Akademi network’s aggregation layer.

Suggested Solution, Simulations and Results

In Figure 5.1, we have shown a part of the Åbo Akademi network where he hierarchy goes to a depth of fifth level. We
have simulated this model in OPNET IT Guru with two scenarios, one showing the original hierarchy, and the other built on
a proposed strict three level hierarchy. The second scenario which is built for a strict three level hierarchy places switches of
4th and 5th level directly under gripen-esw1. The purpose of this simulation is to verify that increasing the depths of
hierarchy induces unnecessary delays in network traffic. Figure 5.2 shows the models built for this purpose.

Figure 5.2: Extended hierarchy: simulated scenarios

In the left part of Figure 5.2, the original hierarchy is shown. On the right hand, the proposed hierarchy is modeled, namely
a 3tier hierarchy.

On the top, two routing switches named asa-rtr1 and axel-rtr1 are installed to build up a core layer. These are
BlackDiamond 6808 and Alpine 3808 respectively. The device models chosen are the same as installed in the real Åbo
Akademi network. Then we have an aggregation layer switches named gripen-esw1 which is an HP ProCurve 4000M.

50

7

Then there are edge layer LAN segments comprising three switches and 20 client computers connected to each switch. There
is a server which is connected to asa-rtr1. This server computer is receiving requests from the clients on LAN and
sending the replies back. All the links in this simulation are 1Gbps, except the links between workstation and the switches.
Links are configured without any background link utilization to find out the maximum effect of extending hierarchy. If there
we find the delays in this scenario where links are totally free—there is no background utilization—then there would be
more delays when links would be in heavy usage.

The objects Applications, Profiles and Ping_Config are used to define the type, flow, timing and amount of
traffic. The object Applications actually defines the applications which are in use on this simulated network. It can be
used to define a number of applications. For this, and the others simulation in next sections, we have chosen a few
applications randomly. The object Profiles defines the way an application is used to generate traffic by this particular
scenario. And the object Ping_Config is used to define ping packets generation and the behavior of the ping program,
i.e., the interval between packets and repetitions etc. There is also a direct link between fa-esw4 segment and the
server. It is not a physical link. It is instead a logical link dedicated to defining the flow of the ping traffic as specified by
the object Ping_Config.

After running these scenarios for 30 simulation minutes, we gathered the statistics for three different values namely
Ethernet delay, ping response time and Database entry response time. These statistics are gathered for an end system
node_1 on fa-esw4 segment. They show the difference in above mentioned statistics for when fa-esw4 is directly
connected to aggregation layer, and when it is connected to fa-esw5, which connects to aggregation layer via fa-esw1.

Ethernet Delay

The difference in Ethernet delay in both cases is significant. The delay figures are given in milliseconds that are not
insignificant because engineers are researching ways to reduce nanosecond delays21].

In Figure 5.3, we show the difference between a 3tier and a 5tier topology.

Figure 5.3: Extended hierarchy: Ethernet delay

The delay in Ethernet traffic in the case of a 3tier topology is measured around 0.15 milliseconds on average and it keeps
around 0.19 milliseconds in the case of a 5tier topology. One thing to notice here is that the traffic load and the received
traffic for both topologies is configured to be the same. We illustrate this similarity in Figure 5.4.

51

8

Figure 5.4: Extended hierarchy: Ethernet traffic and load

Ping response
The induced delays due to building an extended topology are also exhibited in the ping response time. The average delay

for the 3tier topology is around 0.29 milliseconds, while the average delay in the ping response for 5tier topology is almost
0.39 milliseconds. We show the collected statistics in Figure 5.5.

Figure 5.5: Extended hierarchy: ping response time

The ping traffic generated by the two scenarios is same. In Figure 5.6, we show the counts of ping request and ping reply
packets exchanged between the server and the client.

52

9

Figure 5.6: Extended hierarchy: ping traffic

Database Entry Response
The extended hierarchal structure also affects the performance of database entry packets. In Figure 5.7, we show the

differences in the proposed and the current structure. The response time for a 5tier structure is 160 to 170 milliseconds. On
the other hand, if fa-esw4 is directly connected to aggregation layer, this response time drops to around 140 milliseconds.
The difference of 20 milliseconds is a very big figure in terms of network response time.

The traffic sent and received for both scenarios is almost similar which keeps around 0.03 to 0.04 packets per second. We
show this traffic patterns in Figure 5.8. The minor difference between the two traffic flows is not significant as it is less than
one packet per second. The difference comes due to the generation of traffic based on the pseudo-random generators.
Otherwise the configuration of the traffic for both scenarios is the same.

Figure 5.7: Extended hierarchy: DB entry response

Figure 5.8: Extended hierarchy: DB entry traffic

It is very clear from the figures generated by the simulations that extending the hierarchy to a higher level induces
unnecessary delays in network traffic. Therefore, the unnecessary extension of hierarchy should be avoided.

C. Uplink Bottlenecks

The concept of network traffic aggregation refers to the act of collecting several small links to a bigger link. Ideally, if one
has to aggregate x network links of y Mbps capacity each, then the aggregating link should be capable of carrying ݔ ൈ
 Mbps data. However, not all the links are fully busy all the time and consequently, a general rule of aggregating theݕ
network traffic is to use the ratio of 3:1 [HYPERLINK \l "Joh98" 13] (e.g. 30 links of 100 Mbps each are aggregated into
one link of 1000 Mbps, instead of one link of 3000 Mbps). Technological and economical limitations do not allow us to
provide uplinks that aggregate the full capacity of a network segment. What the designers do is provide the best solution
which falls in between cost effectiveness and quality effectiveness.

Åbo Akademi network at some places does not aggregate the links at all. The links being aggregated and the link which is
aggregating are almost of same capacity. This situation simply creates a bottleneck. Consider a network segment of Åbo
Akademi that we present in Figure 5.9. All the edge switches in ICT-huset are connected with aggregation layer switch

53

10

ict-bd002-esw1 over a link of 1Gbps. This aggregation layer switch is further connected to city-rtr1 over a link of
bandwidth 1Gbps. The traffic from 22 switches is being aggregated at ict-bd002-esw1 over 1Gbps links. Roughly this
becomes 22Gbps capacity which is being aggregated and then transferred to city-rtr1 over a link of 1Gbps. This
presents a very high potential for bottlenecks.

Figure 5.9: ÅA Network: city-rtr1 hierarchy

The solution to the problem is providing enough capacity in the aggregation links. If the clients are connected to edge
switches over 100 Mbps, then the edge switch should be connected to aggregation layer over a link of at least 1000 Mbps,
and so on. The backbone should be running at least ten times the speed of end stations20]. We now present what we have
simulated as the suggested and the current scenarios for a segment of ÅA network.

Figure 5.10: Uplink bottlenecks: scenarios

Suggested Solution, Simulations and Results
To show that an uplink of the same capacity as the links to the individual nodes creates a bottleneck and reduces overall

network efficiency, we simulated a segment with two scenarios. The first scenario simulates all the links with the same
capacity. The second scenario simulates uplinks with a bigger capacity as we have shown in Figure 5.10. On the left part, the
scenario is similar to the current structure of Åbo Akademi network. All the links either connecting end stations or providing
uplinks are of 1Gbps capacity. On the right part in the Figure 5.10, the proposed architecture is simulated. In this proposed
architecture, the end stations are connected to switches over a link of 1Gbps capacity and the switches are connected to
upstream switches over links of 10Gbps capacity. The objects Applications and Profiles are used to configure
applications for end stations. In this simulation we configured database query traffic and http traffic. Both end stations
generate email, ftp and http requests destined for the server.

After running this simulation for 30 simulation minutes, we have collected statistics for queuing delay, ftp traffic and the
email traffic.

Queuing Delay on Links

54

11

The term Queuing delay refers to the time a chunk of data waits in a queue for its turn for transmission [HYPERLINK \l
"Dav00" 22]. In Figure 5.11, we show the differences in Queuing Delay of two simulated scenarios. It is measured on the
uplink between devices switch and city-rtr1. The difference in queuing delay of both scenarios is apparent in Figure
5.11. The proposed scenario has a queuing delay which is less than one microsecond, while the current scenario exhibits a
queuing delay which keeps around 7 microseconds.

Figure 5.11: Uplink bottlenecks: queuing delay

Email Response Time
Because of the same Profiles and Applications objects used in both scenarios, the email traffic sent and received

in both cases is the same. We have illustrated this in Figure 5.12. However, there are still differences in the response times of
both scenarios, due to the reason that in first scenario the uplinks create a bottleneck. In Figure 5.13 and 5.14, we show the
results collected from the simulation. The email upload response in the scenario with bigger uplinks is around 1.025
milliseconds, while it is around 1.125 milliseconds in the scenario with same uplinks. Similarly, the email download
response time is around 1.025 milliseconds for the scenario with bigger uplinks, while it keeps around 1.1 milliseconds for
the scenario with same uplinks.

Figure 5.12: Uplink bottlenecks: email traffic

55

12

Figure 5.13: Uplink bottlenecks: email upload response time

Figure 5.14: Uplink bottlenecks: email download response time

Ftp Response Time
The differences in both the upload and the download response time in ftp traffic are very significant. We show the

difference in download response time in Figure 5.15. The response time of the two scenarios almost keeps 5 to 10
milliseconds of difference all the time. This difference is very noticeable and should be eliminated. Similarly, Figure 5.16
shows the difference of response time in ftp upload. The same behavior is exhibited here: the difference keeps between 5 to
10 milliseconds. The traffic for both scenarios is generated by the same Profiles and Applications objects, hence it
is the same. We have illustrated this in Figure 5.17.

Figure 5.15: Uplink bottlenecks: ftp download response time

56

13

Figure 5.16: Uplink bottlenecks: ftp upload response time

Figure 5.17: Uplink bottlenecks: ftp traffic

D. Fault tolerance and Redundancy

Essentially, fault tolerance refers to the ability of a network to resist against the various kinds of problems ranging from
hardware failures to virus attacks and hacking attempts23]. It is one of the most crucial considerations of a communication
networks [HYPERLINK \l "Sea01" 24]. To introduce fault tolerance in a network, the first thing to do is identifying single
points of failure in the network. A single point of failure is a point in a network whose failure can bring the whole network
down. These single points of failure are eliminated mostly through redundancy to keep the network from going down in case
of any fault occurrence at this single point of failure25]. This makes the network very much transparent namely to the users,
if a fault occurred at a single point of failure where no redundancy was deployed, it will bring the whole network down,
disconnecting all the users from their communications. While, if redundancy was deployed at that point, the communication
will automatically shift to the redundant resources, leaving user’s communications intact and unaware of any failures.

57

14

Figure 5.18: Simulation scenarios: fault tolerance

In practice, it is not sufficient to eliminate the single points of failure for the entire network. In addition, other points of
failure also need to be eliminated for keeping a major part of the network from going down. Consider the failure of city-
rtr1 in Figure 5.9: this would not let the whole Åbo Akademi network down, but still it would disturb a major portion of
the network and its users. Hence, it would be useful to eliminate this point of failure as well as other points of failure like this
in the network.

Åbo Akademi network has only one place in the entire network where redundancy is deployed. This redundancy is in links
that connect city-rtr1 and axel-rtr1 to asa-rtr1. There is no redundancy at devices at all; there is no redundancy
at links elsewhere at all. Practically, there is no fault tolerance in the network. The de facto solution to this fault tolerance
problem is creating a partial mesh [HYPERLINK \l "Joh01" 20].

Suggested Solution, Simulations and Results

In Figure 5.18, we illustrate out suggested solution for the problem of fault tolerance with redundant devices and a partial
mesh of links between them. The two upper scenarios in Figure 5.20 are based on the current situation of the network. In the
left part, the scenario simulates the situation in which there is no failure in the network. In the right part, the scenario is
showing the state when there is a fault occurrence at ext-rtr-1 device. In the lower two scenarios, the suggested solution
is implemented with no fault occurrence at left, and with simultaneous fault occurrence at two devices and one link on the
right side.

All of the four scenarios contain similar devices and links between them. The configuration of Applications,
Profiles and thus the traffic is the same. The simulation was run for a total duration of 30 minutes. We now show the
result of these simulations.

Effect of Failure on Devices

The first two scenarios that model the current network show the effect of the failure of a device. The last two scenarios
show the effect of the failure of two devices and one link. In Figure 5.19, we show the counts of IP traffic sent and received
through the edge router in all four scenarios.

58

15

Figure 5.19: Fault tolerance: IP traffic

In the case of current scenario without a fault the traffic sent and received is around 225 packets per second. But when a
fault occurred in the current scenario, the traffic sent and received goes to zero packets per second. It shows that the entire
network is no more able to communicate with the Internet. One the other hand, in suggested scenarios, when there is no
fault, the traffic sent and received is just the same as in the case of current network without a fault occurrence. But as soon as
a fault occurs in the suggested scenario, the traffic drops to around 150 packets per second. This is due to the reason that in
the case of a fault occurrence, the devices have to converge once again and calculate new paths. During this time, the
communication hangs. But still this process is transparent to the edge devices.
Effect of Failure on Links

The effect of the failure on links in the current network is fatal. If a device goes down the main links become idle. In
Figure 5.20 and 5.21, we show the effects of the failure of ext-rtr-1 on the link between ext-rtr-1 and the
ip_cloud which is representing the Internet. The figures illustrate that in the case of a fault in current the scenario, the
utilization and the throughput of the link becomes zero, as there is no path for the traffic. On the other hand, if the fault
occurs in the suggested scenario, the utilization and throughput goes slightly down, because of the aforementioned fact that
the network needs to converge again. During this time—which is a matter of fraction of time—the communication is
disrupted. So the overall average utilization and throughput of the links goes down.

Figure 5.20: Fault tolerance: throughput of link

59

16

Figure 5.21: Fault tolerance: utilization of link

Effect of Failure on Overall Network Performance
We have recorded the statistics for email applications in the scenarios. In Figure 5.22 and 5.23, we illustrate that there are

no statistics for the current scenario with the occurrence of a fault. This is due to the reason that the current scenario has no
tolerance against fault.

On the other hand, if a fault occurs in the suggested scenario, the response time becomes almost equal to the current
scenario. The response time of current scenario with no fault and the suggested scenario with fault occurred is the same
because both scenarios are now running on a single link and a single connecting device to the Internet. While, in the case of
the suggested scenario with no fault occurrence, the response time is less because there are two connecting links and devices
to the Internet. Due to this fact, the performance of the application is better.

Figure 5.22: Fault tolerance: email download response time

60

17

Figure 5.23: Fault tolerance: email upload response time

VI. PROPOSED NETWORK DESIGN
We have presented in the previous sections that Åbo Akademi network has several problems including the naming

convention, the extended hierarchy, the uplink bottlenecks and the (lack of) fault tolerance. Here we propose a backbone
architecture that can solve these problems.

The first aspect is the solution of bottlenecks. The proposed solution’s entire backbone is built on a 10GbE technology.
The second aspect is addition of fault tolerance. This architecture proposes a partial mesh topology to eliminate the points
which can bring the whole network down in case of their own failure. A new firewall structure is proposed to eliminate the
bottlenecks and single point of failure created by the current firewall setup. A new external router is added to eliminate the
chances that the failure of a single external router would cut off the network from the rest of the world. We illustrate this
design in Figure 6.1.

Figure 6.1: proposed backbone architecture

Fault tolerance is not the only aspect that is to be acquired through redundancy. Redundancy is also used to enhance the
performance. Current network standards and protocols allow us to use redundant device to balance network traffic load. For
example, the network load can be equally shared between both of the firewalls, and if one firewall is down, the other can
alone handle all the network traffic coming in and going out.

As we have noted before, current Åbo Akademi network at several places violates the conventional layered network
architecture by extending the hierarchy to fourth or fifth level. This is totally unacceptable according to a designer
perspective. The second major problem at aggregation layer in the current network is the lack of fault tolerance. In Figure
6.2, we present the proposed aggregation and edge layer architecture that can solve these problems.

Figure 6.2: proposed aggregation and edge layers

In the proposed design, the failure of a single link or switch at aggregation layer can be of no harm to the network. It
would be even unnoticeable by users. It is because if one link fails, there is always another link to keep communication
uninterrupted. And if a switch at aggregation layer fails, there is always another connection to another switch. The only
points of failure left in the network are at edge the layer now. These points are not eliminated through redundancy because

61

18

there scope is very limited. A failure of an edge switch can affect only a number of computers which are connected to it. It
can not affect a considerable part of the network, as in the case of a failure at core layer or aggregation layer.

VII. CONCLUSIONS AND FUTURE WORK
The Åbo Akademi network is a switched network built on Ethernet technology. It was established many years ago and had

considerably grown during the past years. Our analysis in this work shows that the network has accumulated some
complexity. We can speculate about the reasons contributing to this complexity, such as arbitrary growth, limited resources,
lack of stringent security needs, and of course, the fact that its main skeleton was designed many years ago. The network’s
problems revolve around the issues like switched network architecture, aggregation of bandwidth, the extension of hierarchy,
bottlenecks, lack of fault tolerance, naming conventions and the old technology backbone. All of these constitute obstacles
for having an efficient network.

Our suggested solution and the results of the simulations justify that the backbone should be upgraded to meet the
requirements of the new resource hungry applications. Second, further depths in the hierarchical structure currently exist.
Simulations and theory show that these further depths in the hierarchal structure exhibit efficiency problems in switching
networks. So, the suggested solution is to remove these extensions and connect the hierarchy extending switches directly to
the aggregation layer.

One of the biggest problems in the network is the lack of fault tolerance. We have suggested a partial mesh topology with
the addition of some devices to introduce fault tolerance. Simulations of the suggested scenario show that our proposed
solution does not only introduce fault tolerance but also introduces performance enhancement in the network. Along with
this, the presence of a single firewall at the end of the network is another point to reconsider. This device is a dangerous
single point of failure in the network. It is also creating a bottleneck because all the traffic from inside the network destined
to outside world has to pass through it. We have proposed to install another firewall device. This will facilitate the network
with better performance because of the load sharing between two firewalls and with fault tolerance as well, in the case of a
device failure.

Another problem is the absence of a structured naming convention. This problem is very crucial on the administrative side
of the network. It makes the network more person dependant. We have suggested some naming conventions which can be
deployed in the network. Some examples of such naming conventions are quoted from different universities networks.

On the whole, we conclude that there are several problems in the Åbo Akademi network. Some of these problems are very
crucial in their nature and demand an immediate solution. We have also proposed solutions to the identified problems and
have justified our suggested solutions via simulations.

Future Work Besides the suggested solutions for improving the efficiency of the ÅA network, we see future work on the
topic more on the logical level. We plan to investigate the real traffic patterns being originated from the edge of the network
as well as the traffic circulation in the network. Analyzing this type of information would allow us to gain a more concrete
insight of the bottlenecks and problems in the network.

Along with this, we intend to work on the VLAN architecture deployed in the network. The major issues in this direction
would be the definition points of VLAN as well as the inter-VLAN routing. This study will give us important insight into
bringing the network to a stricter core-distribution-access type of design.

REFERENCES
[1] R. Breyer and S. Riley, Switched, Fast, And Gigabit Ethernet , 3rd ed. , USA : Macmillan Technical Publishing , 1999.
[2] W. Stallings, Data and Computer Communications, International ed. New Jersey, USA: Prentice-Hall, Inc., 1997.
[3] A. S. Tanenbaum, Computer Network, 3rd ed. New Jersey, USA: Prentice-Hall, Inc., 1996.
[4] CISCO Systems, Inc., Internetworking Technology Handbook - Ethernet. [Online].

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/Ethernet.html
[5] F. Halsall, Data Communications, Computer Networks and Open systems , 4th ed. USA: Addison-Wesley Publishing Company ,

1996.
[6] CISCO Systems, Inc., Internetworking Technology Handbook - LAN Switching. [Online].

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/LAN-Switching.html
[7] IEEE, IEEE Standards for Local Area Network. [Online].

http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=1002&arnumber=26520&punumber=2565
[8] (2008, Mar.) IEEE, IEEE P802.3ba Objectives. [Online].

http://grouper.ieee.org/groups/802/3/ba/PAR/P802.3ba_Objectives_0308.pdf
[9] W. Stallings, High Speed Networks: TCP/IP and ATM Design Principles . New Jersey , USA: Prentice-Hall, Inc., 1998.
[10] T. Boyles and D. Hucaby, CCNP Switching Exam Certification Guide. Indianapolis, USA: Cisco Press, 2001.
[11] CISCO Systems, Inc., Internetwork Design Guide - Appendix E: Broadcasts in Switched LAN Internetworks. [Online].

http://www.cisco.com/en/US/docs/internetworking/design/guide/nd20e.html
[12] CISCO Systems, Inc., Internetwork Design Guide - Internetworking Design Basics. [Online].

http://www.cisco.com/en/US/docs/internetworking/design/guide/nd2002.html
[13] J. J. Roese, Switched LANs: Implementation, Operation, Maintenance . USA: McGraw-Hill, 1998.
[14] CISCO Systems, Inc., Internetwork Design Guide - Introduction [Internetworking]. [Online].

http://www.cisco.com/en/US/docs/internetworking/design/guide/nd2001.html
[15] K. D. Stewart III and A. Adams, Designing and Supporting Computer Networks . Indianapolis , USA: Cisco Press , 2008.
[16] W. Lewis, Multilayer Switching Comapnion Guide . Indianapolis, USA: Cisco Press , 2003.
[17] University of Waterloo, Network device naming standard. [Online].

62

19

https://strobe.uwaterloo.ca/~twiki/bin/view/ISTNS/NetworkDeviceNamingStandard
[18] Rutgers: The State University of New Jersey, Rutgers: Telecommunications Division. [Online].

http://www.td.rutgers.edu/documentation/Reference/RUNet_Network_Device_Naming_Convention/index.html
[19] University of Maryland, Baltimore. [Online]. www.umaryland.edu/cits/docs/Campus%20Device%20Naming%20Conventions.doc
[20] J. Swartz and T. Lammle, CCIE : Cisco certified internetwork expert : study guide. San Francisco , USA: Sybex, 2001.
[21] D. Sadot and I. Elhanany, "Optical switching speed requirements for terabit/second packet overWDM networks," Photonics

Technology Letters, IEEE, vol. 12, no. 4, pp. 440-442, Apr. 2000.
[22] J. Davidson, J. Peters, and B. Gracely, Voice over IP fundamentals. Indianapolis, IN, USA: Cisco Press , 2000.
[23] S. Mueller and T. W. Ogletree, Upgrading and Repairing Networks, 4th ed. Indianapolis, IN, USA: Pearson Education , 2003.
[24] S. Odom and H. Nottingham, Cisco switching black book. Scottsdale, AZ, USA: Coriolis Group Books, 2001.
[25] S. M. Ballew, Managing IP networks with Cisco routers. Sebastopol, CA , USA: O'Reilly & Associates, 1997.

63

Random Walk Gossip: A Manycast Algorithm for

Disaster Area Networks

Mikael Asplund, Simin Nadjm-Tehrani
Department of Computer and Information Science, Linköping University

SE-581 83 Linköping, Sweden
{mikas,simin}@ida.liu.se

When the communication infrastructure is needed the most - in the event of a
disaster - it is the most likely that it is not available. We suggest that rescue
personnel working in such conditions can be supported by networking protocols
which are tolerant to disconnectivity and unstructured topologies. Moreover,
since communication devices will probably be battery driven and power is not
easily available, protocols need to very restrictive in communication to save
power. In particular, we are interested in reliable multicast operations in which
a sender wants to send a message that can be relied upon to reach at least a
portion of a certain group of receivers (i.e., manycast).

Epidemic algorithms in mobile networks can be broadly categorised as using
localised gossipping [2] or anti-entropy [4]. Both mechanisms have drawbacks;
while the former approach suffers from a complicated balance between wasting
resources and the risk of messages not being propagated, the latter provides
full coverage but generally results in slow propagation as well as a high band-
width usage. Recently, Khelil et al. [3] proposed to use a combination of these
approaches called hyper-gossipping to achieve best-effort broadcasts in parti-
tioned networks.

We believe that cooperation in post-disaster areas requires a new kind of
protocol which is efficient (short delay, low bandwidth), capable of dealing with
disrupted communication, reliable, and which does not require knowledge about
which nodes are currently operating in the network.

In this abstract we describe the basics of a protocol called Random Walk
Gossip (RWG), described earlier and experimentally evaluated [1]. This pro-
tocol meets the need for energy-efficient reliable communication in an intermit-
tently connected environment. The protocol relies heavily on hashing of node
addresses instead of keeping track of all the nodes in the system. This way we
take the middle way between best-effort algorithms requiring no knowledge at
all and fully reliable protocols requiring full knowledge. RWG terminates when
at least k nodes will be reached by the message.

The protocol has two modes: gossipping and waiting. During the gossipping
phase, the message spread in the network. If a holder of a message (custodian)
detects that the network is partitioned, it puts the message on hold. This will
cause nodes to be silent when no new nodes can be reached, and thus reducing
energy consumption. Eventually, the node will discover that uninformed nodes
are nearby and resume propagation of the message.

1
65

Algorithm 1 outlines the basic behaviour during the gossipping phase of the
algorithm. Each message has a bit vector (informed) whose role it is to keep
track of the nodes that have received the message. The index of each node is
decided by taking the hash of the node ID. For example, the vector [0, 1, 0, 0, 1, 0]
indicates that the nodes with hash 2 and 4 have received the message.

Algorithm 1 Random walk gossip
When a message m is heard by node i from neighbour j:

wake up all messages not seen by j
set m.informed[hash(i)]=1
if forwarder:

Send m to a random neighbour (if possible)

When k nodes have been reached (easily seen in m.informed):
stop forwarding and propagate beSilent(m)

A message is made inactive if there is no neighbour that can forward it,
thereby indicating a possible network partition. The decision to make a message
inactive is specific to that message alone, since other messages might already
have seen the parts of the network which are deemed to be currently unreachable.
As soon as a node discovers a neighbouring node that has not seen the inactive
message, it is reactivated, and the random walk starts anew.

The algorithm has been extensively evaluated in a simulation environment
built on top of ns-3. Current work includes implementing the algorithm on a
range of hand held devices (Linux-based tablets and laptops, as well as Android
telephones).

Acknowledgements

This work was supported by the Swedish Civil Contingencies Agency (MSB)
and the Swedish Research Council (VR).

References

[1] M. Asplund and S. Nadjm-Tehrani. A partition-tolerant manycast algorithm
for disaster area networks. In 28th International Symposium on Reliable
Distributed Systems. IEEE, Sept. 2009.

[2] Z. Haas, J. Halpern, and L. Li. Gossip-based ad hoc routing. IEEE/ACM
Trans. Networking, 14(3):479–491, June 2006.

[3] A. Khelil, P. J. Marrón, C. Becker, and K. Rothermelns. Hypergossiping: A
generalized broadcast strategy for mobile ad hoc networks. Ad Hoc Netw.,
5(5):531–546, 2007.

[4] A. Vahdat and D. Becker. Epidemic routing for partially connected ad hoc
networks. Technical report, Duke University, 2000.

66

Modelling Fault Tolerance and Parallelism in
Communicating Systems

Linas Laibinis1, Elena Troubitsyna1, and Sari Leppänen2

1 Åbo Akademi University, Finland
2 Nokia Research Center, Finland

{Linas.Laibinis, Elena.Troubitsyna}@abo.fi
Sari.Leppanen@nokia.com

Abstract. Telecommunication systems should have a high degree of
availability, i.e., high probability of correct provision of requested ser-
vices. To achieve this, correctness of software for such systems and system
fault tolerance should be ensured. In this paper we show how to formalise
and extend Lyra – a top-down service-oriented method for development
of communicating systems. In particular, we focus on integration of fault
tolerance mechanisms into the entire Lyra development flow.

1 Introduction

Modern telecommunication systems are usually distributed software-intensive
systems providing a large variety of services to their users. Development of soft-
ware for such systems is inherently complex and error prone. However, software
failures might lead to unavailability or incorrect provision of system services,
which in turn could incur significant financial losses. Hence it is important to
guarantee correctness of software for telecommunication systems.

Nokia Research Center has developed the design method Lyra [6] – a UML2-
based service-oriented method specific to the domain of communicating systems
and communication protocols. The design flow of Lyra is based on the concepts
of decomposition and preservation of the externally observable behaviour. The
system behaviour is modularised and organised into hierarchical layers according
to the external communication and related interfaces. It allows the designers to
derive the distributed network architecture from the functional system require-
ments via a number of model transformations.

From the beginning Lyra has been developed in such a way that it would be
possible to bring formal methods (such as program refinement, model checking,
model-based testing etc.) into more extensive industrial use. A formalisation of
the Lyra development would allow us to ensure correctness of system design
via automatic and formally verified construction. The achievement of such a
formalisation would be considered as significant added value for industry.

In our previous work [5, 4] we proposed a set of formal specification and re-
finement patterns reflecting the essential models and transformations of Lyra.
Our approach is based on stepwise refinement of a formal system model in the

67

B Method [1] – a formal refinement-based framework with automatic tool sup-
port. Moreover, to achieve system fault tolerance, we extended Lyra to integrate
modelling of fault tolerance mechanisms into the entire development flow. We
demonstrated how to formally specify error recovery by rollbacks as well as rea-
son about error recovery termination.

In this paper we show how to extend our Lyra formalisation to model par-
allel execution of services. In particular, we demonstrate how such an extension
affects the fault tolerance mechanisms incorporated into our formal models. The
extension makes our formal models more complicated. However, it also gives us
more flexibility in choosing possible recovery actions.

2 Previous Work

In this section we give a brief overview of on our previous results [5, 4] on for-
malising and verifying the Lyra development process. This work form the basis
for new results presented in the next section.

2.1 Formalising Lyra

Lyra [6] is a model-driven and component-based design method for the devel-
opment of communicating systems and communication protocols, developed in
the Nokia Research Center. The method covers all industrial specification and
design phases from pre-standardisation to final implementation.

Lyra has four main phases: Service Specification, Service Decomposition, Ser-
vice Distribution and Service Implementation. The Service Specification phase
focuses on defining services provided by the system and their users. In the Ser-
vice Decomposition phase the abstract model produced at the previous stage
is decomposed in a stepwise and top-down fashion into a set of service compo-
nents and logical interfaces between them. In the Service Distribution phase, the
logical architecture of services is distributed over a given platform architecture.
Finally, in the Service Implementation phase, the structural elements are inte-
grated into the target environment. Examples of Lyra UML models from the
Service Specification phase of a positioning system are shown on Fig.1.

To formalise the Lyra development process, we choose the B Method as our
formal framework. The B Method [1] is an approach for the industrial develop-
ment of highly dependable software. Recently the B method has been extended
by the Event B framework [2, 7], which enables modelling of event-based sys-
tems. Event B is particularly suitable for developing distributed, parallel and
reactive systems. The tool support available for B provides us with the assis-
tance for the entire development process. For instance, Atelier B [3], one of the
tools supporting the B Method, has facilities for automatic verification and code
generation as well as documentation, project management and prototyping.

The B Method adopts the top-down approach to system development. The
basic idea underlying stepwise development in B is to design the system im-
plementation gradually, by a number of correctness preserving steps called re-
finements. The refinement process starts from creating an abstract specification

68

(a) (b) (c)

Idle serving

pc_req

pc_cnf

pc_fail_cnf

<<ServiceSpecification>>

 Positioning

I_ToPositioning I_FromPositioning

I_user

aUser : User

<<usecase>>
PositionCalculation

aPositioning : Positioning

Fig. 1. (a) Domain Model. (b) Class Diagram of Positioning. (c) State Diagram.

and finishes with generating executable code. The intermediate stages yield the
specifications containing a mixture of abstract mathematical constructs and ex-
ecutable programming artefacts.

While formalising Lyra, we single out a generic concept of a communicat-
ing service component and propose B patterns for specifying and refining it. In
the refinement process a service component is decomposed into a set of service
components of smaller granularity specified according to the proposed pattern.
Moreover, we demonstrate that the process of distributing service components
between network elements can also be captured by the notion of refinement.
Below we present an excerpt from an abstract B specification pattern of a com-
municating service component.

The proposed approach to formalising Lyra in B allows us to verify correct-
ness of the Lyra decomposition and distribution phases. In development of real
systems we merely have to establish by proof that the corresponding components
in a specific functional or network architecture are valid instantiations of these
patterns. All together this constitutes a basis for automating industrial design
flow of communicating systems.

MACHINE ACC

...

VARIABLES in data, out data, res

INVARIANT in data ∈ DATA ∧ out data ∈ DATA ∧ res ∈ DATA

INITIALISATION in data, out data, res := NIL, NIL, NIL

69

EVENTS

input =

ANY param

WHERE param ∈ DATA ∧ ¬(param = NIL) ∧ in data = NIL

THEN

in data := param

END;

calculate =

WHEN ¬(in data = NIL) ∧ out data = NIL

THEN

out data :∈ DATA− {NIL}
END;

output =

WHEN ¬(out data = NIL)

THEN

res := out data ‖
in data, out data := NIL, NIL

END

A B specification, called an abstract machine, encapsulates a local state (program
variables) and provides operations on the state. In the Event B framework1, such
operations are called events. The events can be defined as

WHEN g THEN S END

or, in case of a parameterised event, as

ANY vl WHERE g THEN S END

where vl is a list of new local variables (parameters), g is a state predicate, and
S is a B statement describing how the program state is affected by the event.

The events describe system reactions when the given WHEN or WHERE
conditions are satisfied. The INVARIANT clause contains the properties of the
system (expressed as predicates on the program state) that should be preserved
during system execution. The data structures needed for specification of the
system are defined in a separate module called context. For example, the abstract
type DATA and constant NIL used in the above specification are defined in the
context ACC Data, which can be accessed (”seen”) by the abstract machine
ACC.
1 This work has been done using the Atelier B tool, supporting the Event B extension

70

The presented specification pattern is deliberatively made very simple. It
describes a service component in a very abstract way – a service component
simply receives some request data as the input, non-deterministically calculates
non-empty result, which is then returned as the output. Using this specification
as the starting point of our formal development gives us sufficient freedom to
refine it into different kinds of service components. In particular, both the service
components providing single services and the service components responsible for
orchestrating service execution (called service directors) can be developed as re-
finements of the presented specification. Moreover, the defined specification and
refinement patterns can be repeatedly used to gradually unfold the hierachical
structure of service execution.

The proposed approach to formalising Lyra in B allows us to verify correct-
ness of the Lyra decomposition and distribution phases. In development of real
systems we merely have to establish by proof that the corresponding components
in a specific functional or network architecture are valid instantiations of these
patterns. All together this constitutes a basis for automating industrial design
flow of communicating systems.

2.2 Introducing Fault Tolerance in the Lyra Development Flow

Currently the Lyra methodology addresses fault tolerance implicitly, i.e., by
representing not only successful but also failed service provision in the Lyra
UML models. However, it leaves aside modelling of mechanisms for detecting
and recovering from errors – the fault tolerance mechanisms. We argue that,
by integrating explicit representation of the means for fault tolerance into the
entire development process, we establish a basis for constructing systems that
are better resistant to errors, i.e., achieve better system dependability. Next we
will discuss how to extend Lyra to integrate modelling of fault tolerance.

In the first development stage of Lyra we set a scene for reasoning about
fault tolerance by modelling not only successful service provision but also service
failure. In the next development stage – Service Decomposition – we elaborate on
representation of the causes of service failures and the means for fault tolerance.

In the Service Decomposition phase we decompose the service provided by a
service component into a number of stages (subservices). The service component
can execute certain subservices itself as well as request other service components
to do it. According to Lyra, the flow of the service execution is managed by a
special service component called Service Director. Service Director co-ordinates
the execution flow by enquiring the required subservices from the external service
components.

In general, execution of any stage of a service can fail. In its turn, this might
lead to failure of the entire service provision. Therefore, while specifying Ser-
vice Director, we should ensure that it does not only orchestrates the fault-free
execution flow but also handles erroneous situations. Indeed, as a result of re-
questing a particular subservice, Service Director can obtain a normal response

71

SS1 SS2 SS3 SSN-1 SSN

S

(a) Fault free execution flow

SS1 SS2 SS3 SSN-1 SSN

S

Retry

(b) Error recovery by retrying execution
of a failed subservice

SS1 SS2 SS3 SSN-1 SSN

S

Rollback

(c) Error recovery by rollbacks

SS1 SS2 SS3 SSN-1 SSN

S

Unrecoverable error

Success

Service
 failure

(d) Aborting service execution

SS1 SS2 SS3 SSN-1 SSN

S

Success

Service
 failure

Execution_time > Max_SRT

(e) Aborting the service due to timeout

Fig. 2. Service decomposition: faults in the execution flow

containing the requested data or a notification about an error. As a reaction to
the occurred error, Service Director might

– retry the execution of the failed subservice,
– repeat the execution of several previous subservices (i.e., roll back in the

service execution flow) and then retry the failed subservice,
– abort the execution of the entire service.

The reaction of Service Director depends on the criticality of an occurred error:
the more critical is the error, the larger part of the execution flow has to be
involved in the error recovery. Moreover, the most critical (i.e., unrecoverable)
errors lead to aborting the entire service. In Fig.2(a) we illustrate a fault free
execution of the service S composed of subservices S1, . . . , SN . Different error
recovery mechanisms used in the presence of errors are shown in Fig.2(b) - 2(d).

Let us observe that each service should be provided within a certain finite
period of time – the maximal service response time Max SRT. In our model
this time is passed as a parameter of the service request. Since each attempt of
subservice execution takes some time, the service execution might be aborted
even if only recoverable errors have occurred but the overall service execution
time has already exceeded Max SRT. Therefore, by introducing Max SRT in
our model, we also guarantee termination of error recovery, i.e., disallow infinite
retries and rollbacks, as shown in Fig.2(e).

72

3 Fault Tolerance in the Presence of Parallelism

Our formal model briefly described in the previous section assumes sequential
execution of subservices. However, in practice, some of subservices can be exe-
cuted in parallel. Such simultaneous service execution directly affects the fault
tolerance mechanisms incorporated into our B models. As a result, they be-
come more complicated. However, at the same time it provides additional, more
flexible options for error recovery that can be attempted by Service Director.

3.1 Modelling Execution Flow

The information about all subservices and their required execution order be-
comes available at the Service Decomposition phase. This knowledge can be
formalised as a data structure

Task : seq(P(SERV ICE))

Here SERV ICE is a set of all possible subservices. Hence, Task is defined as a
sequence of subsets of subservices. It basically describes the control flow for the
top service in terms of required subservices. At the same time, it also indicates
which subservices can be executed in parallel.

For example,

Task = < {S1, S2}, {S3, S4, S5}, {S6} >

defines the top service as a task that should start by executing the services S1
and S2 (possibly in parallel), then continuing by executing the services S3, S4,
and S5 (simultaneously, if possible), and, finally, finishing the task by executing
the service S6.

Essentially, the sequence Task defines the data dependencies between sub-
services. Also, Task can be considered as the most liberal (from point of view of
parallel execution) model of service execution. In the Service Distribution phase
the knowledge about the given network architecture becomes available. This can
reduce the parallelism of service control flow by making certain services that
can be executed in parallel to be executed in a particular order enforced by the
provided architecture.

Therefore, Task is basically the desired model of service execution that will
serve as the reference point for our formal development. The actual service ex-
ecution flow is modelled in by the sequence Next which is of the same type as
Task:

Next : seq(P(SERV ICE))

Since at the Service Decomposition phase we do not know anything about fu-
ture service distribution, Next is modelled as an abstract function (sequence),
i.e., without giving its exact definition. However, it should be compatible with
Task. More precisely, if Task requires that certain services Si and Sj should be
executed in a particular order, this order should be preserved in the sequence

73

Next. However, Next can split parallel execution of given services (allowed by
Task) by sequentially executing them in any order.

So the sequence Next abstractly models the actual control flow of the top
service. It is fully defined (instantiated) only in the refinement step corresponding
to the Service Distribution phase. For example, the following instantiation of
Next would be correct with respect to Task defined above:

Next = < {S2}, {S1}, {S4}, {S3, S5}, {S6} >

Also, we have to take into account that Service Director itself can become dis-
tributed, i.e., different parts of service execution could be orchestrated by distinct
service directors residing on different network elements. In that case, for every
service director, there is a separate Next sequence modelling the corresponding
part of the service execution flow. All these control flows should complement
each other and also be compatible with Task.

3.2 Modelling Recovery Actions

As we described before, a Service Director is the service component responsi-
ble for orchestrating service execution. It monitors execution of the activated
subservices and attempts different possible recovery actions when these services
fail. Obviously, introducing parallel execution of subservices (described in the
previous subsection) directly affects the behaviour of Service Director.

Now, at each execution step in the service execution flow, several subservices
can be activated and run simultaneously. Service Director should monitor their
execution and react asynchronously whenever any of these services sends its re-
sponse. This response can indicate either success or a failure of the corresponding
subservice.

The formal model for fault tolerance presented in Section 2.2 is still valid.
However, taking into account parallel execution of services presents Service Di-
rector with new options for its recovery actions. For example, getting response
from one of active subservices may mean that some or all of the remaining active
subservices should be stopped (i.e., interrupted). Also, some of the old recovery
action (like retrying of service execution) are now parameterised with a set of
subservices. The parameter indicates which subservices should be affected by
the corresponding recovery actions.

Below we present the current full list of actions that Service Director may
take after it receives and analyses the response from any of active subservices.
Consequently, Service Director might

– Continue to the next service execution step. In case of successful termina-
tion of all involved subservices (complete success).

– Wait for response from the remaining active subservices. In case of successful
termination of one of few active subservices (partial success).

– Abort the entire service and send the corresponding message to the user
or requesting component. In case of an unrecoverable error or the service
timeout.

74

– Cancel (a set of subservices) by sending the corresponding requests to in-
terrupt their execution (partial abort). In case of a failure which requires to
retry or rollback in the service execution flow.

– Retry (a set of subservices) by sending the corresponding requests to re-
execute the corresponding subservices. In case of a recoverable failure.

– Rollback to a certain point of the service execution flow. In case of a recov-
erable failure.

Service Director makes its decision using special abstract functions needed for
evaluating responses from service components. These functions should be sup-
plied (instantiated) by the system developers at a certain point of system devel-
opment.

Here is a small excerpt from the B specification of Service Director specifying
the part where it evaluates a response and decides on the next step:

handle =

...

resp := Eval(curr task, curr state);

CASE resp OF EITHER

CONTINUE THEN

IF curr task = size(Next) THEN finished := TRUE

ELSE active serv, curr task := Next(curr task + 1), curr task + 1 END

WAIT THEN skip

RETRY THEN active serv := active serv ∪ Retry(curr task, curr state)

CANCEL THEN active serv := active serv ∪ Cancel(curr task, curr state)

ROLLBACK THEN curr task := Rollback(...); active serv := Next(curr task)

ABORT THEN finished := TRUE

END

...

where the abstract functions Next, Retry, Cancel, and Rollback are defined (typed)
as follows:

Next : seq(P(SERVICE))

Eval : 1..size(Next) ∗ STATE → {CONTINUE, WAIT, RETRY, CANCEL, ROLLBACK, ABORT}
Retry : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Cancel : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Rollback : 2..size(Next) ∗ STATE 7→ 1..size(Next)− 1

4 Conclusions

In this paper we proposed a formal approach to development of communicating
distributed systems. Our approach formalises and extends Lyra [6] – the UML2-
based design methodology adopted in Nokia. The formalisation is done within

75

the B Method [1] and its extension EventB [2] – a formal framework supporting
system development by stepwise refinement. The proposed approach establishes
a basis for automatic translation of UML2-based development of communicating
systems into the refinement process in B. Such automation would enable smooth
integration of formal methods into existing development practice.

In particular, in this paper we focused on integrating fault tolerance mech-
anisms into the formalised Lyra development process. A big challenge is formal
modelling of parallel service execution and its effect on system fault tolerance.
The ideas presented in this paper are implemented by extending our previously
developed B models. The formalised Lyra development is verified by completely
proving the corresponding B refinement steps using the Atelier B tool. At the
moment, we are in the process of moving this development to new Event B
language developed within the EU RODIN project [8].

Acknowledgements

This work has been supported by IST FP6 RODIN Project.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial. Extending B without Changing it (for Developing Distributed Sys-

tems). Proceedings of 1st Conference on the B Method, pp.169-191, Springer-Verlag,
November 1996, Nantes, France.

3. Clearsy. AtelierB: User and Reference Manuals. Available at
http://www.atelierb.societe.com/index uk.html.

4. L. Laibinis, E. Troubitsyna, S. Leppänen, J.Lilius, and Q. Malik. Formal Service-
Oriented Development of Fault Tolerant Communicating Systems. Rigorous De-
velopment of Complex Fault-Tolerant Systems, Lecture Notes in Computer Science,
Vol.4157, chapter 14, pp.261-287, Springer-Verlag, 2006.

5. L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Qaisar Malik. Formal Model-
Driven Development of Communicating Systems. Proceedings of 7th International
Conference on Formal Engineering Methods (ICFEM’05), LNCS 3785, Springer,
November 2005.

6. S. Leppänen, M. Turunen, and I. Oliver. Application Driven Methodology for Devel-
opment of Communicating Systems. Forum on Specification and Design Languages,
Lille, France, 2004.

7. Rigorous Open Development Environment for Complex Systems (RODIN). Deliv-
erable D7, Event B Language, online at http://rodin.cs.ncl.ac.uk/.

8. Rigorous Open Development Environment for Complex Systems (RODIN). IST
FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

76

	NOrdic workshop and doctoral symposium on DEpendability and Security
	Copyright
	Program Committee
	Organizers
	Table of Contents

	ecp09041.pdf
	ecp0941005.pdf
	An Authentication Framework for Nomadic Users
	Abstract
	1. Introduction
	2. Authentication and Nomadic users
	3. Authentication Framework for Nomadic Users
	4. Analysis and Result
	Conclusion

	References

