
Towards Unified System Modeling and Simulation with ModelicaML:
Modeling of Executable Behavior Using Graphical Notations

Wladimir Schamai1, Peter Fritzson2, Chris Paredis3, Adrian Pop2

1EADS Innovation Works, Hamburg, Germany
2PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
3Georgia Institute of Technology, Atlanta, USA

wladimir.schamai@eads.net, chris.paredis@me.gatech.edu, {petfr, adrpo}@ida.liu.se

Abstract

This paper is a further step towards application of the
Model-Based Systems Engineering (MBSE) paradigm,
using standardized, graphical, and executable system
modeling languages. It presents further development of
Modelica graphical Modeling Language (Modeli-
caML), a UML Profile for Modelica, which enables an
integrated modeling and simulation of system require-
ments and design (for systems including both hardware
and software). This approach combines the power of
the OMG UML/SysML standardized graphical notation
for system and software modeling, and the modeling
and simulation power of Modelica. It facilitates the
creation of executable system-specification and analy-
sis models that can simulate time-discrete (or event-
based) and time-continuous system behavior.
Keywords: Modelica, ModelicaML, UML, SysML,
graphical modeling, system requirements, system de-
sign.

1 Introduction

UML/SysML [2],[4] and Modelica [1] are object-
oriented modeling languages. Both provide means to
represent a system as objects and to describe its internal
structure and behavior. SysML is a UML profile for
systems modeling. It facilitates efficient capturing of
relevant system requirements, design, or test data by
means of graphical formalisms, crosscutting constructs
and views (diagrams) on the model-data. Modelica is
defined as a textual language with standardized graphi-
cal annotations for model icons, and is designed for
efficient simulation of system dynamic behavior.

1.1 Paper Structure

This paper first presents the motivation and previous
work done on the integration of UML/SysML and
Modelica, followed by a brief description of

UML/SysML, Modelica, and ModelicaML languages.
Section 4 summarizes the basic mapping between UML
and Modelica, which results in the ModelicaML pro-
file, and provides examples of applications. Section 5
discusses graphical notations for Modelica behavioral
concepts. Sections 6 and 7 discuss ModelicaML con-
cepts not present in Modelica. Sections 8, 9 and 10 ad-
dress the supporting modeling, code generation and
simulation environment.

2 Motivation

By integrating Modelica and UML/SysML the
UML/SysML's strength in graphical and descriptive
modeling is complemented with Modelica's formal ex-
ecutable modeling for analyses and trade studies. Vice
versa, Modelica will benefit from using the selected
subset of the UML/SysML graphical notation (visual
formalisms) for editing, reading and maintaining
Modelica models.

Graphical modeling, as promoted by the OMG [13],
promises to be more effective and efficient, regarding
editing, human reader perception of models, and main-
taining models compared to a traditional textual repre-
sentation. A unified, standardized graphical notation for
systems modeling and simulation will facilitate the
common understanding of models for parties involved
in the development of systems (i.e., system-engineers,
designers, and testers; software-developers, customers
or stakeholder).

Existing UML/SysML formalisms are typically
translated into (and limited to) the time-discrete or
event-based simulation of a system or software. This
limitation disappears when Modelica comes into play.
UML/SysML models will then be of a higher expres-
siveness and correctness, because they will become
executable while covering simulation of hardware and
software, with integrated continuous-time and event-
based or time-discrete behavior.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 612 DOI: 10.3384/ecp09430081



3 Background and Related Work

Some research work previously done has already iden-
tified the need for integrating UML/SysML and Mode-
lica, and has addressed integration issues to some ex-
tent. For example, [7] has identified the basic mapping
of the structural constructs of Modelica to SysML. It
also pointed out that the SysML Parametrics concept is
not sufficient for modeling the equation-based behavior
of a class. By contrast, [9] leverages the SysML Pa-
rametrics concept for the integration of continuous-time
behavior into SysML models. [8] presents a concept to
use SysML for integrating models of continuous-time
dynamic system behavior with SysML information
models representing systems engineering problems, and
provides rules for graph-based bidirectional transforma-
tion of SysML and Modelica models.

The main focus of this paper is the representation of
Modelica behavioral constructs using graphical nota-
tions and formalisms that are based on a subset of
UML, which can be translated into executable Mode-
lica code.

3.1 OMG Systems Modeling Language
(SysML)

SysML [4] is a UML profile1 and a general-purpose
systems modeling language that enables systems engi-
neers to create and manage models of engineered sys-
tems using graphical notations. SysML reuses a subset
of UML 2.1 [2] constructs and extends them by adding
new modeling elements and two new diagram types.
Through these extensions, SysML is capable of repre-
senting the specification, analysis, design, verification,
and validation of any engineered system.

MBSE promotes the usage of models as primary
engineering artifacts. However, textual requirements
are still the main vehicle for communicating and agree-
ing on system specification in a system development
process. SysML provides mechanisms to include tex-
tual requirements into models. In doing so, traceability
of textual requirements to design artifacts and test cases
is facilitated.

The logical behavior of systems is captured in
SysML through a combination of activity diagrams,
state machine diagrams, and/or interaction diagrams. In
addition, SysML includes Parametrics to support the
execution of constraint-based behavior such as con-
tinuous-time dynamics in terms of energy flow. How-
ever, the syntax and semantics of such behavioral de-
scriptions in Parametrics have been left unspecified to

1 UML profiles allow domain-specific extensions of UML
by means of stereotypes.

interoperate with other simulation and analysis model-
ing capabilities.

3.2 The Modelica Language

Modelica is an object-oriented equation-based model-
ing language primarily aimed at physical systems. The
model behavior is based on ordinary and differential
algebraic equation (OAE and DAE) systems combined
with discrete events, so-called hybrid DAEs. Such
models are ideally suited for representing physical be-
havior and the exchange of energy, signals, or other
continuous-time or discrete-time interactions between
system components.

Modelica models are similar in structure to
UML/SysML models in the sense that Modelica mod-
els consist of compositions of sub-models connected by
ports that represent energy flow (undirected) or signal
flow (directed). The models are acausal, equation-
based, and declarative. The Modelica language is de-
fined and maintained by the Modelica Association [1]
which publishes a formal specification but also pro-
vides an extensive Modelica Standard Library that in-
cludes a broad foundation of essential models covering
domains ranging from (analog and digital) electrical
systems, mechanical motion and thermal systems, to
block diagrams for control. Finally, it is worth noting
that there are several efforts within the Modelica com-
munity to develop open-source solvers, such as in the
OpenModelica project [12].

3.3 ModelicaML
This paper presents the further development of the

Modelica graphical Modeling Language (Modeli-
caML), a UML profile for Modelica. The main purpose
of ModelicaML is to enable an efficient and effective
way to create, read or understand, and maintain Mode-
lica models reusing notations that are also used for
software modeling. ModelicaML is defined as a
graphical notation that facilitates different views (com-
position, inheritance, behavior) on system models. It is
based on a subset of the OMG Unified Modeling Lan-
guage (UML) and reuses concepts from the OMG Sys-
tems Modeling Language (SysML). ModelicaML is
designed towards the generation of Modelica code from
graphical models. Since the ModelicaML profile is an
extension of the UML meta-model it can be used for
both: Modeling with standard UML and with SysML2.

UML/SysML provide the modeler with powerful
descriptive constructs at the expense of loosely defined

2 SysML itself is also a UML Profile. All stereotypes that
extend UML meta-classes are also applicable to the corre-
sponding SysML elements.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 613



semantics that are marked as “semantic variation
points” in the UML/SysML specifications. The inten-
tion of ModelicaML is to provide the modeler with
powerful executable constructs and precise execution
semantics that are based on the Modelica language.

Therefore, ModelicaML uses a limited set of the
UML, extends the UML meta-model (using the UML
profiling mechanism) with new constructs in order to
introduce missing Modelica concepts, and reuses con-
cepts from the SysML. However, like UML and
SysML, ModelicaML is only a graphical notation.
ModelicaML models are eventually translated into
Modelica code. Hence, the execution semantics are
defined by the Modelica language and ultimately by a
Modelica compiler that will translate the generated
Modelica code into an executable form.

4 Representing Modelica Structural
Constructs in ModelicaML

The class concept is the basic structural unit in Mode-
lica. Classes provide the structure for objects and con-
tain equations, which ultimately serves as the basis for
the executable simulation code. The most general kind
of class is “model”. Specialized categories of classes
such as “record”, “type”, “block”, “package”, “func-
tion” and “connector” have most of the properties of a
“model” but with restrictions and sometimes enhance-
ments.

In UML the “Class” is the main structural unit
which can have behavior. A non-behavioral concept is
the “DataType”.

The following table summarizes the mapping of the
structural Modelica constructs to UML. The details of
the associated properties of the Modelica constructs are
left out.

Table 1: Mapping of Modelica structural constructs to
UML

Modelica UML

package UML::Package

model, block UML::Class

connector, record, type UML::DataType

component of type connector UML::Port

variable, component UML::Property

extends relation UML::Generalization

connection clause UML::Connector

The mapping listed above is specified by [11] and
has been implemented as a UML profile in a the E-
clipse-based open-source tool Papyrus UML [10].
Modelica constructs are represented using stereotypes

(extensions of the UML meta-model) with required
properties (attributes) that are specific to Modelica.

It is subject to the current implementation work of
the ModelicaML editor to reflect the Modelica lan-
guage wording, so that the Modelica modeler will not
be forced to work with UML/SysML wording. Based
on this mapping it is also possible to import existing
Modelica models (or libraries) into ModelicaML mod-
els, to represent them using graphical notations and to
reuse them the same way as is done in Modelica tools.

The following figures present examples of tank sys-
tems inspired from [3], sections 12.2.3, 12.2.4 and
12.2.5. The only means to represent Modelica code
graphically is the Modelica connection diagram (see
the two tanks example on the Figure 1). A Connection
Diagram shows Modelica class components (typically
depicted as domain specific icons with connectors) of
the class and their interconnection (connect clauses) as
depicted in the figure below. The graphical notation is
defined by the Modelica modeler (e.g. the developer of
a library) and is not standardized by the language speci-
fication; it is usually specific to the domain of applica-
tion.

Figure 1. Two Tanks System example, [3] page 391.

The corresponding ModelicaML notation is based
on the UML Composite Diagram as illustrated in
Figure 2.

Figure 2. Example of ModelicaML notation
(connections)

By contrast, UML defines different types of dia-
grams, which enable different visual views on the
model data, such as inheritance, classes that are nested,
the composition of a class or interconnection of com-
ponents of a class or its defined behavior.

Moreover, the graphical notation is not specific to a
domain (although it is possible to include domain spe-
cific icons into the class compartment). It is abstracted

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 614



from the domain. Thanks to such an abstracted, unified
notation, engineers from different domains or disci-
plines will share a common understanding of the
model.

Figure 3. Example of ModelicaML notation (packages,
classes)

Figure 4. Example of ModelicaML notation (class,
components, asserts)

Figure 5. Example of ModelicaML notation
(inheritance)

In particular the inheritance (extension) graphical rep-
resentation (Figure 5) is useful if there are multiple lev-
els of inheritance.

5 Representing Modelica Behavioral
Constructs in ModelicaML

Modelica does not define any graphical notation for
representing the behavior of a class. Instead, the behav-
ior of a Modelica Class is specified by its equations or
algorithm statements (including all conditional con-
structs) which are provided as text.

In addition to basic equations or statements Mode-
lica defines conditional constructs, which are allowed
in both equation and algorithm sections, and can have
nested constructs or not.

A good match for representing conditional con-
structs in UML is the Activity Diagrams notation in-
cluding decision nodes and conditional control flow
constructs. The following figures present notations that
is used for representing Modelica conditional “if-
statement”. This notation is used for both “if/when”
statements and “if/when” equations. The execution se-
mantics of such Activity Diagrams are the same as for
the conditional statements or equations in Modelica.
The conditions are evaluated at each time instance. The
actions, presented on the diagram are not time-
consuming activities; their execution does not take any
simulation time.

Figure 6. Conditional “if-statement” in ModelicaML

Modelica is a specific language in the context of
UML/SysML. For the capturing code of specific lan-
guages UML provides opaque constructs which are
defined as “A behavior with implementation-specific
semantics.” (see [2], p.446). In UML, any opaque con-
struct has an attribute “language” (in our case it will be
set to “Modelica”) indicating how to interpret the code
that is entered into the further attribute “body”.

Since the UML is an object-oriented modeling lan-
guage (encapsulating data and behavior), the UML
meta-model defines that a classifier can have owned-
Behavior (0..*). A behavior in UML can be represented
by: State Machine, Activity, Interaction or OpaqueBe-
havior (see Figure 7).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 615



Figure 7. Extract from the UML meta model, from [2]
page 426.

A Modelica model can have (0..*) (from zero to any
number) of equation or algorithm sections, which cor-
responds to the ownedBehavior associations of a Clas-
sifier in UML. Conditional equation or algorithm state-
ments can be modeled using a subset of the UML Ac-
tivity Diagram as illustrated above. Alternatively, the
modeler may use the OpaqueBehavior for capturing
pure textual Modelica code as illustrated in the follow-
ing figure.

Figure 8. Modelica textual code in ModelicaML models

If conditional equations or algorithm statements are
modeled using UML Activity Diagrams, the actual
equations or statements are captured using UML
OpaqueAction as depicted in the following figure.

Figure 9. Modelica code in ModelicaML diagrams

[11] summarizes the mapping of the Modelica behav-
ioral constructs to the UML in detail.

6 ModelicaML Concepts Not Pro-
vided by Modelica

UML State Machines are typically used for modeling
the reactive (event-based) behavior of objects. In Mod-
elicaML the State Machines are used for modeling ex-
plicit states or modes of a system or its components.
The behavior defined by a State Machine is translated
into Modelica algorithm code. Following the principles
of a synchronous language the following restrictions
are imposed on the semantic of the State Machines as
used in ModelicaML:

 The system is at any time in a defined state (note,
that the state machines include composite and paral-
lel states, which means that it can be in multiple
sub-states at the same time)

 Events and transitions between states take no simu-
lation time. For that reason the effect actions on
transitions are not allowed.

 Any behavior that is executed when the state is en-
tered or exited takes no simulation time as well.

 Even though the system will stay in certain states
for a time the Do-behavior of a state is also not
time-consuming.

Consider the State Machine defined for the tank. De-
pending on the level of liquid in the tank (represented
by the variable “h”) we can define that the tank is
empty, partially filled or even in an overflow state.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 616



Figure 10. State Machine of the Tank

The next State Machine specifies the behavior of the
controller. It shows that only if the controller is in the
state “on” it will monitor or control the level of liquid
in tank depending on the sensor values received.

Figure 11. State Machine of the Controller

Any other behavior defined for a system can be de-
fined as being dependent on a specific explicit state of
the system. For example, the following shows how
conditional equations are modeled including the de-
pendence on the defined states. Depending on if the
controller is in the state ”controlling the level” it will
activate (the equation is not visible on the diagram, it
is: cOut.act = outCtr;) or deactivate (cOut.act = 0;) the
actuator signal.

Figure 12. Example of state-dependent equations

The generation of Modelica code from StateCharts
was already investigated previously, for example in [5].
Furthermore, [6] introduced the State Graph library for
Modelica, which has similar power compared to State-
Charts, although it has a slightly different graphical
notation. ModelicaML takes a similar approach. In ad-
dition to the limitation listed above, the current version
of the ModelicaML code generator does not support
compound transitions (transition which cross state hier-

archy borders), History, Fork/Joins, Entry/ExitPoints
and ConnectionPointReference. The limitation and
formal definition of the semantics for the State Ma-
chines and the Activity Diagrams (including time-
consuming activities) are subject to the current Modeli-
caML research work.

7 Further Concepts (under investiga-
tion by ModelicaML)

Inspired by the SysML, ModelicaML reuses the
concept of textual requirements within models. As in
the SysML it is possible to include textual requirements
into ModelicaML models and link requirements to
model artifacts. This enables traceability between tex-
tual requirements and design artifacts, and supports
impact analysis when requirements and/or the model
change. Figure 13 illustrates how textual requirements
appears graphically on diagrams in ModelicaML.

Figure 13. Example of textual requirements in
ModelicaML

In contrast to SysML, requirement is defined in Mode-
licaML as a sub-class of the UML Class which can
have behavior. It is possible to define properties and
behavior (e.g. assertions) for requirements. In doing so
it is possible to evaluate if a requirement is violated or
not during system simulation. Our current research in
this field aims at finding ways to formalize different
types of requirements and to find a flexible way to as-
sociate requirements with design models. The follow-
ing examples present some ideas.

Assume the following requirements to be imposed
on the two tanks system:

Req. 001: The level of liquid in a tank shall never ex-
ceed 80% of the tank-height.

Req. 002: The volume of tank1 shall be 0.8 m3.

The first requirement specifies a type: Tank in this
case. In order to establish the traceability between the
textual requirement and the design artifact the class
Tank is referenced from the requirement inside the
model using the requirement property “specifiesType”.
It implies that any instance of a tank must meet this
requirement. In contrast, the second requirement is a

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 617



design requirement defining the required volume of
tank 1. This requirement is imposed only on a particu-
lar instance of the type Tank. Therefore, the dot-
notation in the requirement property “specifiesObject”
is used to reference the respective instance. The “speci-
fies…” - relations are descriptive only. They are not
translated into Modelica code and do not impact the
simulation.

In order to be able to evaluate these requirements
during the system simulation requirements need to be
formalized. In the following one possible way to do so
is presented.

From the textual statement of the requirement 001
we can identify measurable properties such as: level
(current level in a tank), maxLevel (80 % max. allowed
level), tank_height (the height of a tank). Moreover, we
can define a property indicating if the requirement is
violated or not by evaluating: level > maxLevel *

tank_height. Consider the following state machine
specifying if the requirement 001 is violated or not. The
second requirement is modeled in a similar way; it is
not presented here.

Figure 14: Example of requirements behavior

The modeled requirements can now be instantiated and
their properties can be bound to the values within the
corresponding design model (TanksConnectedPI in that
case). In this example, the declarations for the
r001_tank2 (Figure 14) are:

 level = dm.tank1.h

 tank_height = dm.tank1.tank_height

Figure 15: Instantiated design model and associated
requirements

Note that requirement 001, which specifies the type
Tank, is instantiated two times (because there are two
tanks in the system).

Figure 16 shows the results of the evaluation (the
tank_height is 0.6m in this example). The requirement
001 evaluated for the tank2 (r001_tank2) was violated
two times during the simulation.

Figure 16: Example of requirements evaluation during
system simulation

Similar to the concept of textual requirements, the
modeller can define measures of effectiveness of mod-
els, which are used to record dedicated, measurable
properties of system models during simulations and can
compare them according to predefined metrics, for ex-
ample, in order to select the best potential design alter-
native.

Our future ModelicaML research aims at develop-
ing a flexible association of requirements to multiple
design alternatives in a way that requirement models
can be instantiated automatically together with the as-
sociated design models in order to be evaluated during
system simulation.

8 Modeling Support

Usually, when using a UML modeling tool, the model
elements can be created either directly in the model
browser (a tree-like representation of the classes, etc.)
or using diagrams. In both cases the model data is
stored in the model repository (see Figure 17).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 618



Figure 17: Example of a ModelicaML model browser

Diagrams only provide a view on a selected part of
the model data. Diagrams can be used only for model-
ing (i.e., capturing the data), and might be deleted3 after
the data is captured. In some cases the modeler may
decide to leave some diagrams for documentation or
communication purposes. In this case, the modeler will
need to select the data that should appear on dedicated
diagrams (depending on which data can be displayed
on a specific diagram type). An appropriate partitioning
of the model data into different diagram and diagram
types is essential in order to improve readability and to
support the modeler by automatic generation and layout
of diagrams. For example, the diagrams in figures
Figure 3, Figure 4, Figure 5, Figure 13 or Figure 15
would not need to be modeled (and arranged visually).
These can be generated from the model data.

This will prove rather difficult for the diagrams in
Figure 2, Figure 10, Figure 11 or Figure 14. Those dia-
grams will need to be modeled (arranged visually) by
the modeler. This is a good indicator to see if value is
added by spending time on a diagram.

3 Of course, any diagram can be recreated from the model
data.

9 Model Validation and Code Gen-
eration

The ModelicaML code generator that generates Mode-
lica code from the ModelicaML models is implemented
using the Acceleo Eclipse Plug-In [16], which follows
the MDA approach and the model-to-text recommenda-
tions of the OMG.

Presently, ModelicaML is implemented as a UML
Profile that can be used in any (Eclipse-based) UML2
tool. This way the modeler needs to first create a UML
element and then apply a stereotype, defined in the
ModelicaML profile, in order to represent a specific
concept or to introduce (or to specify) the semantics.
The advantage of this approach is: it allows creating or
reading ModelicaML models using any UML2 tool.
The disadvantage is: the modeling tool GUI does not
directly reflect the Modelica wording. The modeler
needs to have a basic knowledge of the UML in order
to know which stereotypes of the ModelicaML profile
should be applied to which UML elements. Moreover,
all limitations, constraints and possible inconsistencies
will have to be checked and resolved before the Mode-
lica code generation. Therefore, the ModelicaML code
generator includes a validator that checks the model
and informs the modeler about inconsistencies before
the Modelica code is generated.

10 Simulation Support (Using Open-
Modelica Environment)

In addition to the convenient way of simulating a Mod-
elica model from startTime to stopTime, in the frame of
the ModelicaML research and implementation the
OpenModelica Environment [12] was enhanced by in-
teraction simulation capabilities (similar to the Interac-
tion Library in Dymola [15] Modelica tool). It is possi-
ble to generate Modelica code directly from the Mode-
licaML models and to pass it to the OMC. A dedicated
simulation GUI has been implemented providing the
user with possibilities to interact with the Modelica
model (i.e., to change parameters at runtime) and to
observe the reaction of the system immediately on
plots. Moreover, any additional GUI (with domain spe-
cific animations or widgets) can be implemented and
connected to the simulation using the implemented
OMC interactive simulation interface. This feature will
support model debugging as well as the communicating
and discussing of the modeled system behavior to and
with any parties involved in the system development
process.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 619



11 Conclusion

This paper presents a step towards, and a proof of con-
cept for, a unified executable system modeling lan-
guage and environment using open-source UML mod-
eling (Papyrus UML) and simulation (OpenModelica)
tools.

One of our main future research activities in the
field of ModelicaML will be dedicated to developing
graphical notations for modeling any kind of equations
or statements, as well as other constructs (e.g. type- or
instance-modification) that are now captured using
strings. This will avoid the refactoring of models and
enable semantic analysis of the ModelicaML models.

In conclusion, UML/SysML and Modelica are com-
plementary languages supported by two active commu-
nities. By integrating UML/SysML and Modelica into
ModelicaML, we combine the very expressive, formal
language for differential algebraic equations and dis-
crete events of Modelica with the expressive
UML/SysML graphical notation for requirements,
structural decomposition, logical behavior, and corre-
sponding cross-cutting constructs.

In addition, the two communities are expected to
benefit from the exchange of multi-domain model li-
braries and the potential for improved and expanded
commercial and open-source tool support.

12 Acknowledgements

This work has been supported by EADS Innovation
Works, by Swedish Vinnova in the ITEA2 OPEN-
PROD project and by the Swedish Research Council
(VR).

References

[1] Modelica Association. Modelica: A Unified Ob-
ject-Oriented Language for Physical Systems
Modeling: Language Specification Version 3.0,
Sept 2007. www.modelica.org

[2] OMG. OMG Unified Modeling Language TM

(OMG UML). Superstructure Version 2.2, Feb-
ruary 2009.

[3] Fritzson P. Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

[4] OMG. OMG Systems Modeling Language
(OMG SysML™), Version 1.1, November 2008.

[5] Ferreira J. A. and Estima de Oliveira J. P., De-
partment of Mechanical Engineering, University
of Aveiro, 3810 Aveiro (PORTUGAL), Depart-
ment of Electronic Engineering, University of

Aveiro, 3810 Aveiro (PORTUGAL), MODEL-
LING HYBRID SYSTEMS USING STATE-
CHARTS AND MODELICA, J. A.

[6] M. Otter, K.-E. Arz´en, I. Dressler. StateGraph-A
Modelica Library for Hierarchical State Ma-
chines. DLR Oberpfaenhofen, Germany; Lund
Institute of Technology, Sweden. Proceedings of
the 4th International Modelica Conference, Ham-
burg. March 7-8, 200.

[7] Pop, A., and Akhvlediani, D., and Fritzson, P.
Towards Unified Systems Modeling with the
ModelicaML UML Profile. International Work-
shop on Equation-Based Object-Oriented Lan-
guages and Tools. Berlin, Germany, Linköping
University Electronic Press, 2007

[8] Peak, R., McGinnis, L., Paredis, C. Integrating
System Design with Simulation and Analysis Us-
ing SysML – Phase 1 Final Report. 2008

[9] Johnson, T. A. Integrating Models and Simula-
tions of Continuous Dynamic System Behavior
into SysML. M.S. Thesis, G.W. Wood-ruff
School of Mechanical Engineering, Georgia In-
stitute of Technology. Atlanta, GA. 2008

[10] Papyrus UML, www.papyrusuml.org

[11] Schamai W.. Modelica Modeling Language
(ModelicaML) A UML Profile for Modelica,
technical report 2009:5, EADS IW, Germany,
Linkoping University, Sweden, 2009

[12] The OpenModelica Project
www.ida.liu.se/labs/pelab/modelica/OpenModeli
ca.html

[13] Object Management Group (OMG).
www.omg.org

[14] Modelica Association. www.modelica.org

[15] Dymola (Dynamic Modeling Laboratory), Dy-
namism. www.dymola.com

[16] Acceleo, Eclipse Plug-In.
www.acceleo.org/pages/home/en

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 620



Appendix: Modelica Example Code

connector ActSignal "Signal to actuator for setting
valve position"

Real act;
end ActSignal;

connector ReadSignal "Reading fluid level"
Real val(unit = "m");

end ReadSignal;

connector LiquidFlow "Liquid flow at inlets or
outlets"

Real lflow(unit = "m3/s");
end LiquidFlow;

partial model BaseController
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference

level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

function limitValue
input Real pMin;
input Real pMax;
input Real p;
output Real pLim;

algorithm
pLim := if p>pMax then pMax

else if p<pMin then pMin
else p;

end limitValue;

model LiquidSource
LiquidFlow qOut;
parameter Real flowLevel = 0.02;

equation
qOut.lflow = if time > 150 then 3*flowLevel else

flowLevel;
end LiquidSource;

model PIcontinuousController
extends BaseController(K = 2, T = 10);
Real x "State variable of continuous PI

controller";
equation

der(x) = error/T;
outCtr = K*(error + x);

end PIcontinuousController;

model Tank
ReadSignal tSensor "Connector, sensor reading tank

level (m)";
ActSignal tActuator "Connector, actuator controlling

input flow";
LiquidFlow qIn "Connector, flow (m3/s) through input

valve";
LiquidFlow qOut "Connector, flow (m3/s) through

output valve";
parameter Real area(unit = "m2") = 0.5;
parameter Real flowGain(unit = "m2/s") = 0.05;
parameter Real minV= 0, maxV = 10; // Limits for

output valve flow
Real h(start = 0.0, unit = "m") "Tank level";

equation
assert(minV>=0,"minV - minimum Valve level must be

>= 0 ");
der(h) = (qIn.lflow - qOut.lflow)/area; // Mass

balance equation
qOut.lflow = limitValue(minV, maxV, -

flowGain*tActuator.act);
tSensor.val = h;

end Tank;

model TanksConnectedPI
LiquidSource source(flowLevel = 0.02);
Tank tank1(area = 1);
Tank tank2(area = 1.3);
PIcontinuousController piContinuous1(ref = 0.25);
PIcontinuousController piContinuous2(ref = 0.4);

equation
connect(source.qOut,tank1.qIn);
connect(tank1.tActuator,piContinuous1.cOut);
connect(tank1.tSensor,piContinuous1.cIn);
connect(tank1.qOut,tank2.qIn);
connect(tank2.tActuator,piContinuous2.cOut);
connect(tank2.tSensor,piContinuous2.cIn);

end TanksConnectedPI;

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 621


