
Profiling of Modelica Real-Time Models

Christian Schulze1 Michaela Huhn1 Martin Schüler2
1Technische Universität Clausthal, Institut für Informatik, Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Deutschland

{Christian.Schulze | Michaela.Huhn}@tu-clausthal.de
2TLK-Thermo GmbH, Hans-Sommer-Str. 5, 38106 Braunschweig, Deutschland

M.Schueler@tlk-thermo.de

Abstract
Modeling and simulation of physical systems have become
a substantial part in the development of mechatronic sys-
tems. A number of usage scenarios for such models like
Rapid Control Prototyping and Hardware-in-the-Loop test-
ing require simulation in real-time. To enable model execu-
tion on a hard real-time target, a number of adaptations are
usually performed on the model and the solver. However, a
profiling facility is needed to direct the developer to perfor-
mance bottlenecks.

We present the concepts and a prototypical implemen-
tation of a profiler for the specific analysis of Modelica
models running on Scale-RT, a Linux-based real-time ker-
nel. The profiler measures the number of calls and execu-
tion times of simulation specific functions calls. Interpret-
ing these results, the developer can directly deduce which
components of a simulation model are most promising for
optimization. Profiling results and their impact on model
optimization are discussed on two case studies from the
area of thermodynamic automotive systems.

Keywords Real-Time, Modelica, Profiling, Optimization,
SimulationX, Scale-RT

1. Introduction
The modeling and simulation language Modelica is widely
accepted in transport industries, in particular in the automo-
tive area. Modelica is employed for modeling the physics of
the controlled system in the software development process
of electronic control components. Whereas so far simula-
tion aimed for conceptual validation in the early concept
phase, nowadays we find an increasing need for real-time
simulation or even real-time execution of models on micro-
controllers.

Prominent usages of real-time simulation are Rapid
Control Prototyping (RCP) [7] and Hardware-in-the-Loop
(HiL). These are techniques for the concept and develop-

3rd International Workshop on Equation-Based Object-Oriented
Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

ment phases: The overall system is modeled as a combi-
nation of the controlled part and a model of the controller
- often in a unified modeling and simulation environment.
Combined simulation facilitates validation not only of the
concepts, but - in a stepwise refinement process - also of
the detailed functional and timing behavior of the controller
under design, provided detailed physical models and suffi-
cient computing resources are available. For this purpose,
the major requirement is that simulation runs as fast as
the real system. Several real-time platforms are available
to support RCP or HiL, like the open-source Linux-based
Scale-RT [9] running on standard PCs, or specific hardware
solutions e.g. dSPACE systems.

Another usage of real-time simulation is to execute the
model of the controlled system as part of the control: The
idea of Model Predictive Control (MPC) is to predict the
short term behavior of the physical system by feeding the
sensored data from the system into the model and simulate
its reaction on possible inputs from the controller, thereby
optimizing the controller strategy. In on-board diagnostics,
the results from a model running in parallel on the con-
troller are compared to the measurements of the real sys-
tem to deduce abnormal behavior that is a sign of failures.
For these usages, the simulation model has to be executed
on the same target as the control, i.e. a micro-controller
with restricted resources in many cases. Consequently, be-
ing part of the control component imposes hard real-time
constraints on model execution.

The usages we mentioned are in the context of hard real-
time systems (HRT), i.e. systems for which the timely re-
sponse has to be verified for all possible executions of a
system component. In contrast to hard real-time, a soft real-
time system is only required to perform its tasks according
to a desired time schedule on the average [3]. As a conse-
quence of the stringent needs for verification, the compo-
nent behavior of HRT systems has to be analyzed in detail
with respect to the timing constraints.

In order to guarantee predictable execution times, simu-
lations on real-time targets typically use a fixed-step solver
to solve the DAE-System (Differential Algebraic Equa-
tion). Moreover, such models require highly efficient mod-
eling to not exceed the given step size. But even then source
code that is automatically generated from Modelica models
may violate the timing constraints.

23

http://www.ep.liu.se/ecp/047/
http://www.eoolt.org/2010/

During the solving process the solver generates events
for every zero crossing of a zero function. The solver ex-
amines the DAE-system in an interval close about these
events, so events cause additional work load and will in-
crease the model runtime.

So, timing problems of the simulation model may arise
from various causes like events or the internal complexity
of the model. They become evident when runtime exceeds
the solver step size and hence the HRT-system usually will
abort the execution (although there are ways to construct
solvers that are able to ignore such overruns (see [14]).

In case of a timing violation the developer of the simula-
tion model has to improve the model’s efficiency by reduc-
ing the model’s complexity, by setting better start values, or
other measures. But so far these steps are purely based on
the developer’s experience. Real-time profiling may help
to give him or her a better understanding of the underlying
DAE-System since Kernighan and Pike note "Measurement
is a crucial component of performance improvement since
reasoning and intuition are fallible guides and must be sup-
plemented with tools like timing commands and profilers."
[8]. Based on profiling results the developer is able to iden-
tify the components causing the main work load and de-
cide whether a submodel has to be enhanced or an algebraic
loop has to be broken.

There are several real-time profiling tools available in
particular for Linux-based systems [12, 2], but these are
general purpose profiles and not specifically well suited to
analyze code for real-time targets that was automatically
generated from tools like Dymola or SimulationX. First
of all, the actual profiling shall be performed on the real-
time target itself to get direct information about the runtime
on a specific host. Profiling an execution on a standard
PC under Windows and scaling the results for a specific
target as it can be done in other domains will not give valid
approximations here, because most approaches and tools
employ another (fixed-step) solver for execution on real-
time targets whereas variable step solvers are used under
Windows which differ significantly with respect to their
timing characteristics. In addition, the real-time target may
impose further restrictions on the profiling, e.g. the real-
time Linux Scale-RT 4.1.2 compiles and runs the model as
a Kernel-Module.

The described usage scenario in the development of sim-
ulation models requires a precise measurement of function
execution times and function call counting as well as mea-
surement of certain code sections representing algebraic
loops lead to the development of a new profiling tool that
can be used on such a real-time operating system.

Within the source code of a model calls to external li-
braries may occur, e.g. fluid property libraries. For mod-
eling of thermodynamic systems most of the work load is
generated by those function calls. Therefore it is necessary
to examine them closer.

In general, an algebraic loop results from connecting the
output of a submodel to the input of that particular model.
Due to this cyclic dependency relation, models containing
algebraic loops have to be solved iteratively. Algebraic

loops cause serious problems in simulation tools based on a
simple input-output-block structure like Matlab Simulink.
In equation based modeling the loops are traced back to the
underlying equations and may be solved analytically but
still many of them have to be solved numerically[13].

The profiling method introduced in this paper will mea-
sure the execution time of each function call, to count func-
tion calls separately in each relevant section and to measure
the time needed to solve algebraic loops, so called "(non-
)linear blocks". Especially for profiling of real-time models
the overhead of the profiling method on the model runtime
shall be kept small. This is achieved by implementing the
producer-consumer-pattern as described in Section 4.

Basically this concept can be applied to each target op-
erating system and simulation environment (e.g. Dymola).
Even an online evaluation of the profiling results during ex-
ecution of the model could be implemented. Until now we
implemented this concept for models exported from Simu-
lationX to Scale-RT. The instrumentation for the case stud-
ies has been done manually, but automatisation will be fi-
nalized soon.

2. Profiling on Real-Time Targets
Tracing and profiling are two related techniques that aid the
developer to understand the behavior of a program. Tracing
gives a detailed view on which function is called, who is
the callee, how long does the execution take and also a call
counting may take place. Profiling instead gives a statistical
evaluation of average execution times and frequencies of
the function calls or the profiled sections [12].

The tracing results on a particular program execution
can be displayed as call-chains in a call-graph. A call-graph
demonstrates the possibly complex call structures anno-
tated with the execution times of the callee. Call-graphs
are especially helpful to understand the communication of
threads within multi-threaded applications. A Profiling tool
generates simpler, statistical results without any structure
or evaluation of the call context. However, as the execution
of a simulation model follows a fixed elementary plan as
described in Section 3, profiling is sufficient for our pur-
poses. Profiling and tracing generally involve three phases:

• instrumentation or modification of the application to
perform the measurement

• actual measurement during execution of the application
• analysis of results

Instrumentation adds instructions to the application for
measuring execution times, updating counter variables and
measuring the consumption of resources. Instrumentation
cannot only be performed at source code level but also dur-
ing compilation, linking or even at the target code level.
Where the instrumentation takes place depends on the pro-
filing tool. However, in any case the measured data need to
be traced back to the source code level for interpretation.

The instrumentation will obviously increase the execu-
tion time of the application, because additional steps will
be taken to measure and store the profiling or tracing data.

24

In general, the overhead caused by instrumentation shall be
reduced to a minimum.

The two main approaches to profiling are based on sam-
pled process timing and measured process timing. In pro-
filing based on sampling, a hardware interval timer period-
ically interrupts the execution of the profiled application.
During interruption the profiling tool examines which parts
of the program have been executed since last interruption.
Profiling tools like prof [5] and gprof [4] are based on sam-
pling and commonly employed.

In profiling based on measured process timing the in-
strumentation procedures are called at function entry and
exit. When entering or leaving a function a time stamp is
recorded additionally to counters and timers. Profiling tools
like TAU [11] are based on this approach and we will fol-
low it, too.

3. Profiling of Modelica Models

C source files of the model application

Solver

User source code

Target I/O-methods

Compiler

Application

Model converted to
C source files

Export

Model created
in Simulator

Figure 1. Export of models from a simulator to target

Simulation tools like SimulationX, Dymola or Mat-
lab/Simulink Realtime Workshop share the basic process
of exporting models which is depicted in Figure 1. The
simulator transforms the model to a DAE-System and after
that into C code written in a file. Several other sources are
added to the transformed model including a mathematical
solver and target specific I/O-methods, but those additional
files are always the same. Furthermore, user code can be
integrated manually at this point introducing user methods
or user libraries. This set of files builds the source code for
an application that calculates the desired results.

The C code originating from the models that were trans-
formed by the simulator have a common simple structure.
In the moment, this is specific to the framework used for
simulation, but with the new Functional Mock-up Interface
(FMI) [1] this is standardized. The FMI defines the exter-
nal interface between the C-Code or even the target code
generated from models and the solvers. By using the FMI
interface, models can be connected to any solver that real-
izes the solver’s side of the interface; and vice versa a solver
may be attached to any model that communicates via FMI.
Thereby models can be executed in "foreign" simulation

frameworks. When connecting the model code to a solver
which is part of the native simulator another internal and
more efficient interface may be used. However, in our cur-
rent approach the proprietary format of the model C code
provided by Simulation X is taken as input for the profiling.

To execute the model the following steps are taken:

• export of the model
• compilation of the model application
• transfer to the real-time target
• execution

The work flow for Scale-RT 4.1.2 as the target system is
as follows: SimulationX compiles the source of the model
in the Cygwin environment, which has to be installed un-
der Windows. This environment provides all libraries and
includes needed by this version of Scale-RT. The resulting
file is a tgz-file containing the compiled model and addi-
tional settings.

In order to be executed on the Scale-RT, the model
application is sent to the target system, e.g. by using the
Scale-RT Suite, which is part of the Scale-RT Environment
as well as Cygwin. Subsequently the model application
can be executed from the Scale-RT Suite. SimulationX is
able to send the model application to the target system and
execute it, too, but the results cannot be observed from
there.

In general, the model is separated in an initialization and
the simulation problem. Both of them consist of a number
of integration steps as well as a set of explicit calculations
of the outputs. A global fixed-step solver is used on real-
time targets for solving. In case of an overrun the execution
stops; so it is considered as a hard real-time simulation
guaranteeing the delivery of results within a certain time.

Each step of the global solver consists of one method
called several times representing the integration step and
one method called only once outputting the simulation
results through defined I/O-methods. Within those two
methods every calculation including function calls to user
libraries occur. Within the integration steps (non-)linear
equations (algebraic loops) that could not be solved analyt-
ically are evaluated numerically using a local solver. So the
structure of the source code for both, the initialization and
the simulation problem, looks as follows:

• Global solver step

nI · integration steps

− eI · external function calls

− cI · additional calculations

− aI · (non-)linear blocks

· eaI · external function calls

· caI · additional calculations

1 · output of variables

− eO· external function calls

− aO· additional calculations

25

Because of the flat structure of the automatically gener-
ated source code the call-chain is not needed to understand
and analyze performance bottlenecks in a model in many
cases. We consider that a flat profiling for each relevant
section as the best choice. A flat profiling should be per-
formed on each (non-)linear block within the integration
step as well as the integration step and the output of vari-
ables itself. This gives the clearest view on the work load
caused by every single section.

Since hard real-time simulation shall guarantee the de-
livery of the results within the time limits, the maximum
runtime of a model is more important than the average run-
time. The profiling methods described in this paper mea-
sure and save the execution times of each simulation step
separately. Then the average and variance as well as the
maximum of the execution times are determined.

The aim of profiling is to direct the developer towards
parts of the model that are worth optimizing. But the devel-
oper is in charge of optimizing the model manually. How-
ever, after optimization it has not only to be verified that
the model application is running faster as before indeed,
but also that the optimized model calculates its results with
sufficient accuracy. So the work flow of real-time optimiza-
tion is as follows:

1. check model runtime, if real-time constraints are satis-
fied finish optimization

2. perform profiling

3. analyze the profiling data and identify performance bot-
tlenecks worth optimizing

4. optimize the model

5. check correctness of modification, if deviation errors are
too big revert and go back to 3.

6. go back to 1.

4. Implementation

C source files of the model application

Solver

User source code

Target I/O-methods

Compiler

Application

Modified model
source files

Export

Model created
in Simulator

Profiling I/O-methods

Figure 2. Modified export of models from a simulator to
target

Comparing figure 1 and figure 2 reveals the modifi-
cations necessary for profiling. The converted model C

source file and the file containing the main real-time rou-
tines have been modified to perform the profiling, access
a FIFO buffer and to provide buffer memory to store the
profiling data internally.

As explained, the contribution of the profiling on ex-
ecution times shall be as small as possible. In our con-
text where the model will be executed as a kernel model,
an efficient solution for outputing profiling data is a ma-
jor point for minimizing the overhead. Therefore we ap-
plied the consumer-producer pattern and divided the pro-
filing into two tasks: The real-time Kernel task executing
the model and a User Space task - outside the hard real-
time context of the kernel - evaluating and storing the mea-
sured data. The two tasks are communicating through first-
in-first-out (FIFO) buffer.

As displayed in figure 3 the source code for the model
application is compiled as real-time task kernel module in
Scale-RT. The goal of instrumentation of the kernel task is
to log each external function call’s execution time in detail.
The instrumentation can easily be automated. For different
analysis szenarios the instrumentation is configured to pro-
file only the functions calls and sections of interest. For the
case studies described in Section 5 insturmentation has to
be done manually, but automatisation will be finished soon.

In order to store the profiling data on the hard disk
without delaying the execution of the model, a consumer is
created reading the FIFO buffer, interpreting the data and
storing statistical data, the minima and maxima for each
global solver step on the hark disk. As the execution times
of different sections as well as the external function calls
are measured the overhead of the global solver as well as
the profiling overhead can be estimated by comparing it to
the performance of the uninstrumented model.

For profiling, the model allocates memory of a fixed size
for an intermediate buffer and a main buffer when it begins
to execute. The main buffer is used to store the data until
the non-real-time user task can process it. This buffer is
implemented as a double buffer to avoid buffer overflows.
As soon as the first buffer is filled the routine switches to
the secondary buffer and sends the content of the first one to
the FIFO buffer. The intermediate buffer is used to record
all profiling data of one global solver step and is emptied in
the main buffer at the end of the current step.

Since in version 4.1.2 of Scale-RT in combination with
Cygwin the Kernel-Module cannot export symbols to the
user address space, the main buffer cannot be accessed di-
rectly by the user task. Writing the data into the virtual file
system procfs a.k.a FIFO buffer is a temporary workaround
for this problem enabling the Kernel task to store data ef-
ficiently. The user task triggers the execution of a Kernel
tasks method which copies the main buffer into the FIFO
buffer. In future the main buffer will be accessed and read
out by the user task directly, therefore these buffers will use
shared memory allocation methods.

For each global solver step of the model, the profiling
methods record the following information:

• execution time and frequency of an integration step

26

Realtime Linux

Kernel Space (RTAI-API) User Space

Source code

Model
(Kernel module)

Realtime Task

User Space
Application

data exchange

Buffer

Hard Drive

data storage

FIFO

Figure 3. Communication between user task and model task

• execution time and frequency of each external function
call within the integration step that does not reside in-
side a (non-)linear block

• execution time and number of loops of each (non-)linear
block within the integration step

• execution time and frequency of each external function
call within each (non-)linear block

• execution time of outputting variables at the end of the
current step

5. Case Studies
5.1 Case 1: Moist Air inside the Cabin of a Car
5.1.1 Description

min mout

msteam

Qperson

Qsun Qloss

Figure 4. Model of the air inside a cars passenger cabin

This Modelica model describes a simple system of the
air within a cabin of a car as displayed in figure 4 and it
uses the TEMO-property-library.

There is a mass flow of moist air entering the system
coming from the air conditioning and another mass flow of
moist air leaving the system. There is an heat flow induced
by the sun heating up the air inside the cabin and another
heat flow out of the cabin due to heat losses. In addition to
that there is a person inside the cabin who heats up the air
and also increases the moisture by a given water mass flow.

The thermodynamic properties of the moist air are mod-
elled on the basis of the ideal gas theory [15]. Condensing
and simple frost formation can be described with the prop-
erty equations given below. As the pressure in this case
study is about 1bar with temperatures down to 0◦C the
error introduced by applying the ideal gas theory is very
small.

dm

dt
(h− pv) +

(cp −Ri) ·
dT

dt
·m = ṁin · hin

+ṁsteam · hsteam
− ˙mout · hout
+Q̇sun + Q̇person (1)

dm

dt
= ṁin + ṁsteam − ṁout (2)

dmsteam

dt
= ṁin · ξin + ṁsteam

−ṁout · ξout (3)

Equation (1) is the first law of thermodynamics applied
to this model. The left side represents the dynamic change
of energy inside the cabin, the right side embodies the heat
and mass flows into and out of the cabin.

The pure mass balance is described in equation (2),
the balance for the water inside the cabin is defined by
equation (3). The concentration of water inside the air can
be calculated using these definitions.

This model has been developed during development of
the real-time TEMO-property-library, so it was used to
optimize the structure and interface of the library and has
been optimized several times. As a result, the number of
calculations is reduced to a minimum.

5.1.2 Results
Figure 5 shows the execution time of a global solver step
split into the main contributors described on page 3. The
four integration steps cause almost 98% of the work load.
The output of the results can be neglected as it causes less
than 1% of the work load. The summing up the integration
steps does not equal the model runtime, as the global solver
still has to evaluate the results and to perform auxiliary
operations. The profiling itself increases the gap between
the sum of each single contribution and the total runtime of
the model, but this manipulation cannot be avoided.

The impact of profiling on the execution times can be es-
timated by capturing the total runtime of the whole model
before and after the instrumentation. If every external func-
tion call and every (non-)linear block is profiled then the

27

integration
step

15.737 µs

integration
step

15.737 µs

integration
step

15.737 µs

integration
step

15.737 µs

output of
results

0.096 µs

overhead by
global solver

1.493 µs

Figure 5. Integration steps cause main work load in the
global solver steps

runtime of the model in both case studies increases by 4%
at maximum.

As the external functions are called within the integra-
tion step, the execution time of the integration step inherits
the profiling overhead caused by the external function calls.
Therefore the gap between the sum of the executions times
of integration steps and the output of variables is not as big
as the increase of the whole model runtime. Because of this
the overhead displayed in figure 5 can partially be assigned
to the global solver.

gas properties
2.192 µs

mass balance
9.558 µs

moisture and
energy balance

3.460 µs

overhead
0.527

Figure 6. Work load of an integration step broken down to
contributions

Figure 6 details the partitioning of the execution times
within the global solvers integration step. There are just
two algebraic loops, one representing the mass balance and
another embodying the moisture and energy balance. The
calls to the external gas property functions only occur out-
side the algebraic loops. The gap between these three sum-
mands and the execution time of one integration step is
equal to the overhead. This overhead contains all calcula-
tions that are not external function calls and not algebraic
loops. The rest is caused by the profiling methods.

The described model is already optimized so there is no
algebraic loop or external function call causing extraordi-
nary model runtime anymore. Figure 6 shows the balanced
sharing of the given step time.

5.2 Case 2: Steady State Continuity
5.2.1 Description
This case was built up in Modelica using the real-time
TEMO-property-library with the TIL-Library by TLK-
Thermo and the Institute for Thermodynamics of the Tech-
nische Universität Braunschweig [10, 6].

∑
ṁ =

dm

dt

∑
ṁ = 0

Figure 7. Non-linear pump and tube models with and
without thermal expansion of incompressible liquid

As visualized in figure 7 the model is composed of two
boundaries, a pump and a tube. The medium used in this
case is incompressible water, so all fluid properties only
depend on the temperature. Each property can be calculated
using a Modelica function of temperature. The pressure
increases at the pump is a second order function of the
volume flow rate. The tube model is based on the finite
volume concept and here composed of 2 cells. Within every
cell there is a mass-, energy- and momentum-balance. The
sine curve source sets the temperature at the inlet of the
system. The temperature changes with an amplitude of 5K
and an offset of 300K.

In each component a parameter called "SteadyStateCon-
tinuity" is introduced by the TIL-Library. This parameter
switches the mass balance of that component. In steady
state the amount of mass flowing into a component equals
the flow out at the same time (5). But in dynamic scenarios
a mass flow is induced by a change of temperature due to
the expansion of the fluid (7). The isobaric expansion co-
efficient β can be used to describe the expansion of a fluid
due to temperature change (4). For incompressible liquids
the density is not dependent on the pressure, so the change
of density can directly be related to β.

β = −1

ρ

(
∂ρ

∂T

)

p

(4)

0 = ṁin + ṁout (5)

0 = ṁin + ṁout − V · ρ · β ·
dT

dt
(6)

0 = ṁin + ṁout + V · dρ
dt

(7)

28

If a submodel for a component uses dynamic state con-
tinuity, the mass flow is directly related to the change of
temperature. The DAE-system generated from this model
must take this relation into account and hence the simula-
tor has to increase the complexity of the DAE-system.

The change of density due to the change of temperature
can be neglected in most cases of dynamic simulation since
this effect is not relevant to the overall results of the whole
model. By activating the steady state continuity the mass
balance is not fulfilled anymore and mass may appear or
disappear, but the main algebraic loop is broken into several
smaller ones. There is no direct connection between mass
balance and energy balance anymore, so the underlying
smaller algebraic loops can be solved separately. This trick
reduces the size of the DAE-System in paricular for the
simulations of cycles.

For comparison, two subsystems with a tube and a pump
were instantiated, where one is using the steady state con-
tinuity equation while the other one is not. The profiling
should expose the work load caused by computing a negli-
gible effect of density change by temperature.

5.2.2 Results

0µs

10µs

20µs

30µs

40µs

50µs

60µs

70µs

80µs

90µs

100µs

dynamic state
continuity

steady state
continuity

e
xe

cu
ti

o
n

 t
im

e
 o

f
al

ge
b

ra
ic

 lo
o

p
s

94.398 µs

18.976 µs

dynamic
state

continuity
equation

Figure 8. Profiling aids identifying the critical algebraic
loop causing the main work load

Figure 8 visualizes the contributions of the each alge-
braic loop to the whole integration step separately for the
steady state continuity submodel and the dynamic state
continuity submodel. It allows the user to identify the crit-
ical calculations. The major work load in the submodel us-
ing dynamic state continuity equation is caused by that par-
ticular continuity equation. This algebraic loop generated
from that equation has to be broken to reduce the execu-
tion time of this sub model. The simplification using steady
state continuity is a method to break this loop into several
smaller loops which can be solved more quickly.

Both models are equivalent in their results but differ
with respect to their performance. As the global symbolic
analysis performed during export selects different state

algebraic
loops

algebraic
loops

0µs

20µs

40µs

60µs

80µs

100µs

120µs

dynamic state
continuity

steady state
continuity

ex
ec

u
ti

o
n

 t
im

e
o

f
in

te
gr

at
io

n
 s

te
p

32.732 µs

108.154 µs

fluid properties

overhead

Figure 9. Solving times for algebraic loops in integration
step of steady state continuity model are clearly faster

variables for each model, the contributions by the single al-
gebraic loops cannot be related directly to the correspond-
ing algebraic loops in the other model. The only way to
link the algebraic loops back to the underlying equations is
to trace back the involved variables.

These models were built using thermodynamic property
functions which provide properties as a external function
of temperature. This may cause additional algebraic loops
if inverse calculation is needed, e.g. for finding the cor-
responding temperature to a given enthalpy. To avoid this
the temperature inside the finite volumes of the tube is de-
scribed as a differential state. As a result there is no alge-
braic loop including calls to the fluid property functions in
both models.

Figure 9 relates the two models with respect to the work
load caused by algebraic loops to the external function calls
and the overhead of the global solver. The overhead and
the amount of fluid property calculations is the same for
both submodels. The contribution to the execution time
of the integration step by the steady state submodel is
significantly smaller.

There are other ways to break algebraic loops in a
model, if the resulting relation between the variables em-
bodies no or less important physical effects. For example
a capacitor can be used to decouple the direct dependency
between variables introducing a new differential state vari-
able. Many physical models idealize a system that normally
contains capacitors (e.g. the expansion of a tube due to a
pressure increase) that have been neglected. Although the
capacity may be very small, the effect is an uncoupling of
the algebraic loops.

Figure 10 visualizes the mass flow at both sinks. The
change of temperature at the inlet leads to a change of mass
flow rate. In case of the dynamic state continuity equation

29

0.3135

0.314

0.3145

0.315

0.3155

0.316

2 3 4

m
as

s
fl

o
w

 r
at

e
[k

g/
s]

time [s]

dynamicSC_source

dynamicSC_sink

steadySC_sink&source

Figure 10. Error in mass flow due to usage of steady state
continuity equation

the mass flow rate at the inlet is not equal to the outlet
as a result of the expansion of the liquid. In case of the
steady state continuity equation the mass flow entering all
components is equal to the mass leaving the system and
hence this also applies to the whole system.

The deviation between the mass flow rate entering and
leaving those systems is smaller than 0.3%. So the simplifi-
cation of using steady state continuity equation for dynamic
state simulation is hardly affecting the results.

47 µs

49 µs

51 µs

53 µs

55 µs

57 µs

59 µs

61 µs

-0,2s 0,0s 0,2s 0,4s 0,6s 0,8s

m
od

el
 r

un
tim

e

simulated time

Figure 11. Model runtime during initialization is the bottle
neck

The Figure 11 illustrates the temporal variation of the
model runtime. After that first peak of 59µs during ini-
tialization of the model the runtime resides at a constantly
lower level of 48µs. There are no bigger changes or events
inside the model after the initialization process. This case
study was performed on a common Desktop PC with a In-

tel Pentium 4/ 540 CPU at 3.2 GHz without any realtime
I/O-Interfaces.

6. Conclusion
This paper presents a brief description how profiling on
source code that was automatically generated from Model-
ica tools like SimulationX can be performed under the tar-
get real-time operating system. Profiling can be a powerful
tool aiding the user to understand the work load contribu-
tions by the internal algebraic loops. For optimization of
Modelica models in general profiling should be introduced
as a standard tool.

Acknowledgments
This work was funded by the Federal Ministry of Education
and Research (BMBF), Germany, in the project TEMO
(grant 01|S08013C).

We are thankful to Adina Aniculăesei for implementa-
tion support.

References
[1] MODELISAR (ITEA 2 07006). Functional mock-up

interface for model exchange, January 26 2010.

[2] Tim Bird. Measuring function duration with ftrace. In
Proceedings of the Linux Symposium, 2009.

[3] L. Dozio and P. Mantegazza. Linux real time application
interface (rtai) in low cost high performance motion control.
Motion Control 2003, 2003. Milano, Italy.

[4] S. Graham, P. Kessler, and M. McKusick. gprof: A call
graph execution profiler. In Proceedings of SIGPLAN Ś82
Symposium on Compiler Construction, volume 17, number
6, pages 120–126, June 1982. SIGPLAN Notices.

[5] S. Graham, P. Kessler, and M. McKusick. An execution
profiler for modular programs. In Software - Practice and
Experience, volume 13, pages 671–685, 1991.

[6] M. Gräber, K. Kosowski, C. Richter, and W. Tegethoff.
Modeling of heat pumps with an object-oriented model
library for thermodynamic systems. In 6th Vienna Inter-
national Conference on Mathematical Modelling, Vienna,
2009. ISBN 978-3-901608-35-3.

[7] K. Hoffmann, F. Heßeler, and D. Abel. Rapid control
prototyping with dymola and matlab for a model predictive
control for the air path of a boosted diesel engine. In E-
COSM - Rencontres Scientifiques de l’IFP, pages 25–33.
Institut Francais du Petrole, 2006.

[8] Brian Kernighan and Rob Pike. Finding performance
improvements: Excerpt from the practice of programming.
IEEE Software, 16(2):61–65, 1999.

[9] Cosateq GmbH & Co. KG. Scale-RT, 2010.

[10] Christoph C. Richter. Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermodynamic
Systems. PhD thesis, Technische Universität Carolo-
Wilhelmina zu Braunschweig, 2008.

[11] S. Shende, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman,
and S. Karmesin. Portable profiling and tracing for parallel
scientific applications using c++. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed
Tools, pages 134–145. ACM, August 1998.

30

[12] Sameer Shende. Profiling and tracing in linux. In
Proceedings of Extreme Linux Workshop, 1999.

[13] Karl Johan Åström, Hilding Elmqvist, and Sven Erik Matts-
son. Evolution of continuous-time modeling and simulation.
In The 12th European Simulation Multiconference, Manch-
ester, UK, June 16 - 19 1998.

[14] Inc. The Mathworks. Execution and real-time implementa-
tion of a temporary overrun scheduler, 2006.

[15] VDI. Thermodynamische Stoffwerte von feuchter Luft und
Verbrennungsgasen. VDI-Handbuch Energietechnik, 2000.
VDI Richtlinie 4670.

31

	1 Introduction
	2 Profiling on Real-Time Targets
	3 Profiling of Modelica Models
	4 Implementation
	5 Case Studies
	5.1 Case 1: Moist Air inside the Cabin of a Car
	5.1.1 Description
	5.1.2 Results

	5.2 Case 2: Steady State Continuity
	5.2.1 Description
	5.2.2 Results

	6 Conclusion

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 23
 TR
 1
 0
 1690
 285

 0
 10.0000

 Both
 9
 1
 AllDoc

 CurrentAVDoc

 11.3386
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryList_V1
 qi2base

