
Notes on the Separate Compilation of Modelica

Ch. Höger F. Lorenzen P. Pepper
Fakultät für Elektrotechnik und Informatik, Technische Universität Berlin

{choeger, florenz, pepper}@cs.tu-berlin.de

Abstract
Separate compilation is a must-have in software engineer-
ing. The fact that Modelica models are compiled from the
global sources at once results from the language design as
well as from the way compiled physical models are finally
simulated. We show that the language in fact can be com-
piled separately when certain runtime conditions are met.
We demonstrate this by transforming some specific Mod-
elica language features (structural subtyping and dynamic
binding) into a much simpler form that is closer to current
OO languages like C++ or Java.

Keywords Modelica, Separate Compilation

1. Introduction
Separate compilation is the state of the art in today’s soft-
ware engineering and compilation tools. Therefore it is also
a natural request for Modelica tools. Large models (hav-
ing hundreds or even thousands of equations) evolve over
time, undergo small incremental changes and are often de-
veloped by whole teams. So it is unacceptable in practice,
when a small modification in one class causes the recom-
pilation of hundreds of unchanged classes. This could be
avoided by the creation of smaller compilation units which
are finally combined to create the desired model.
Unfortunately, it is not a priori clear that this approach

is feasible for Modelica, since some features of the lan-
guage are quite complex to handle with separate compila-
tion. Potential problems could in particular arise in connec-
tion with the process of flattening, structural subtyping, in-
ner/outer declarations, redeclarations and expandable con-
nectors. We will sketch in the present paper solutions for
all of these issues with the exception of expandable con-
nectors, which would require a more in-depth discussion
of the operational semantics of runtime instantiation.
The flattening of the whole model can actually be

avoided by using object-oriented features of the target lan-
guage: Instead of creating the set of equations, a compiler
can directly translate the object tree into the target lan-

3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/
EOOLT 2010 website:
http://www.eoolt.org/2010/

guage. The equations can then be simply collected at run-
time. This principle also leads to a elegant solution for the
compilation of expandable connectors, as we will show in
Section 2.
While Modelica’s type system gives great flexibility in

code re-usage, its translation into an object-oriented lan-
guage with nominal subtyping like C++ is not straightfor-
ward. We will show how a compiler can handle this with
the usage of coercions in Section 3.
Rumor has it that separate compilation is made very

complex through the presence of Modelica’s inner and
outer pairing.We will show (in Section 4) that this rumor is
unsubstantiated: By combining some kind of parameteriza-
tion with standard typing principles we can not only solve
the separate-compilation issue in a straightforward manner
but also obtain a very clean and well comprehensible se-
mantic definition of the inner/outer principles.
Finally we will summarize the costs and drawbacks of

the separate compilation of Modelica models in Section 5.

1.1 Related work
Although separate compilation of Modelica models seems
to be an important topic, only little research has yet been
done in this field. In [8] and [9] some extensions to the lan-
guage are proposed that would allow users to write models
which can be compiled separately with nearly no impact
on the quality of the generated code (as mentioned in Sec-
tion 5). The work presented in [12] aims to decidewether or
not separate compilation is possible (with respect to causal-
ization) and worth the price for a given model. While both
approaches do not allow the separate compilation of arbi-
trary compilation units, they could be combined easily with
our method to raise the quality of generated code.

2. Principles of Separate Code Generation
As stated earlier the main reason for separate code genera-
tion is to reduce the overall compilation time by re-using
output units that have not been affected by source level
changes after the last compiler run. This at least requires
a compiler to create output files for each input file given.
Furthermore the content of those generated files should not
depend on any context of their usage but only on their in-
terfaces: If content from a source file is used two or more
times the output file(s) should be usable in all those cases.
While the above requirements would generally suffice

for separate compilation, a good design additionally en-
forces the separation of the compiler from the build sys-

43

tem (so that the build system of choice can be used). This
requires the compiler to produce a predictable set of out-
put files for a given input file and the language to allow the
detection of dependencies with simplistic tools. A good ex-
ample for the usage of this principle is the compilation of
C++ programs with GNU Make: Since the C++ compiler
will create one object file per given input file and dependen-
cies are clearly marked as file-wise includes, the build sys-
tem can decide which source files need to be rebuilt given
only modification times and regular pattern rules. Although
imports in Modelica are only allowed from packages (and
packages have a clear mapping into a file system layout)
a Modelica type name cannot be mapped to the file it is
defined in by such pattern rules. Therefore a complete de-
pendency analysis must fully implementModelica’s (rather
complex) lookup mechanisms. For smaller projects this de-
pendency analyis might still be handled manually, but for
complex uses one would have to generate e.g. makefiles au-
tomatically, to get all the benefits from incremental builds.
While the possibility to have a more fine grained build

system is already extremely useful, there is another advan-
tage of separate compilation that should be considered for
Modelica: Currently Modelica library developers have to
hide their expert knowledge from their customers by ob-
scure methods like the Digital Rights Management that is
part of the current Modelica specification[1]. If a library
would be compiled separately, only the source code of the
interface (comparable to a C/C++ header file) would have
to be shipped. Also a clear separation between interface and
code would be possible without any additional cost.

Figure 1. Common compilation of Modelica.

Unfortunately the compilation target of a Modelica
model is a single matrix consisting of both differential
and algebraic equations (short DAE). The usual process-
ing scheme can be seen in Figure 1: After parsing (and
correctness-checking) aModelicamodel is flattened, mean-
ing that both the inheritance and instance trees are resolved
into sets of variables and (acasual) equations. Those equa-
tions can then be causalized and finally translated into the
target language.
As can be seen in Figure 1, causalization of the model’s

equations depends on the model being completely instan-
tiated. Obviously, there is no method to work around this
dependency. Therefore, the only way to achieve real sep-
arate compilation is to move the code generation stage in
front of the instantiation. This means that we are not go-
ing to generate code from the DAE but actually code that
itself can generate the DAE with some help from the run-
time system. Although this design has been in use with the
Mosilab [10] compiler, it has neither been used for sep-
arate compilation nor formally specified. The closest thing
to a specification of this method (although not implemented
for Modelica) would be the Modeling Kernel Language se-
mantics by David Broman [2].

The runtime instantiation implies that there is no need to
translate flattened models (since the generation of the DAE
can be done in the correct order). Also there is no need to
generate all equations directly at compile-time. Instead the
compiler might generate special functions that can create
equations at runtime, which allows a quite natural trans-
lation of advanced language features like expandable con-
nectors.
With this method, the output of our compilation process

can easily satisfy the above requirements by directly map-
ping everyModelica source file to a compilation unit of the
target language. The compiler of course has to use a nam-
ing scheme that allows the generated files to reference each
other, but this is a trivial task.

3. Subtypes
In Modelica’s type system [3] subtype relations are defined
implicitly by the set of fields of a class. For separate com-
pilation this means that (contrary to e. g. Java or C++) there
is actually no need for a class B to know anything about a
classA to be a subtype of that class. Therefore the compiler
output of B must be able to be used with A and vice versa
even if both were compiled completely separately.

class A
output Real x;
equation
x = sin(time);

end A;
class B
Real y;
output Real x;
equation
y = 23.0;
x = 42.0;

end B;
class Foo
replaceable A a;
output Real x;
equation
connect(a.x, x);
...

end Foo;
class Bar
Foo foo1;
Foo foo2(redeclare B a);

end Bar;

1
2
3
4
5

6
7
8
9

10
11
12

13
14
15
16
17
18
19

20
21
22
23

Listing 1: Example for redeclaration.

In the listing of Listing 1 the instantiation of foo2 is
modified with a so called redeclaration, a construct that
allows the enclosing class to replace an element of its child
with an element of any compatible type (in other words: a
subtype). Since both Foo and B may already have been
compiled earlier, there is no way to modify one of the
compiled classes to be type compatible to the redeclaration.
The same problems can arise from the use of the

extends declaration:

44

class Baz
extends Foo(redeclare B a);

end Baz;

1
2
3

In the above example we assume that code generation
does not compile code from Foo into Baz (which would
violate the first requirement of separate compilation, since
compiling Foo would become useless). Therefore, if Foo
is already compiled, all code generated from its equations
has to be made type compatible with the new type of the
field a prior to knowing how that new type actually looks
like. If the target language has a nominal type system 1 (a
rather common case), this is actually impossible without
compiling the complete source code at once [5] — which
is clearly no option in our case.
While we cannot change the code itself due to separate

compilation requirements, we can build a bridge between
the use and declaration site by means of coercion seman-
tics.

3.1 Coercion semantics
Coercion semantics [11] is an implementation technique
for languages with subtyping that translates a programwith
subtyping into a simpler one without subtyping. The gen-
eral idea is as follows:
Whenever a given program context Γ requires an object

a of class A any object b of a subclass B of A may also be
used (context criterion). Since the runtime representation
of b and a are different (usually apparent by a different
type in the target language), e. g. b might have additional
fields, the compiled form of Γ must be able to cope with
many different object representations. If we demand that
the compiled form of Γ is independent of the object given,
i. e. a or b, it must inspect the object at runtime to access
its fields correctly. This inspection, unfortunately, has a
non-negligible runtime-overhead. We can circumvent this
overhead by always passing an object of class a. Therefore,
we have to coerce, hence the name coercion semantics, b to
a before handing it to Γ. Since B is a subclass of A this
coercion is always possible. Experience in other systems
[6, 7] shows that the coercion is much cheaper, in terms of
performance, than runtime inspection of objects. Applying
coercions semantics, the compiled form of Γ has to operate
on objects of class A, exclusively.
We illustrate this technique by an example. Class Bar in

Listing 1 creates an instance of Class Foo while redeclar-
ing Foo’s field a from A to B. To enable reuse of the code
of Foo — Foo now acting as the context Γ — without
expanding B into Foo and recompiling we coerce an ob-
ject of class B to class A. We can describe the effect of this
coercion by introducing a temporary class B’ that is struc-
turally identical to A but has B’s fields:

1 Even if the generated code has no type system at all, at least the memory
layout of objects would have to be made compatible.

class B
Real y;
output Real x;
equation
x = 42.0;
y = 23.0;

end B;

coerce

=⇒

class B’
output Real x;
equation
x = 42.0;

end B’;

We now redeclare a to B’ instead of B and replace
line 21 of Listing 1 by

Foo foo2(redeclare B’ a);

This is possible since all information of B that is rele-
vant to Foo is contained in B’ and objects of B’ can be
represented in the same way as objects of A.

3.2 xModelica
To make use of this technique in Modelica with as little
overhead as possible we have to make use of the fact that
the object tree of a Modelica model is static. Thus coer-
cions should not contain values (and be updated every time
the original value changes), but rather express equivalence
between two names. Usually in Modelica this can be ex-
pressed by equations, but since those are part of the actual
model (which we do not want to change) and would have to
be evaluated at runtime, we prefer to introduce the notion
of references.
Technically we achieve this by adding some expressive

power to Modelica. Inside a compiler this is simply done
by providing additional constructs and fields in the abstract
syntax tree, which do not have counterparts in the external
syntax. But for discussing these issues it is preferrable to
present the concepts in concrete syntax. Therefore we aug-
ment Modelica by some notations that allow us to express
the additional concepts, thus obtaining an extended lan-
guage xModelica. (Keep in mind, xModelica is not avail-
able to users, it is just a “prettyprinting” of the internal
abstract syntax trees.) The following changes are made to
transform aModelica program into its xModelica represen-
tation:
1. Introduce type modifiers {indirect, direct}. Modifiers
of this kind are well known in languages; for exam-
ple, Java has a modifier set {public, protected,
standard, private} (of which standard is in-
visible, that is, represented by writing nothing) or the
modifier set {final, nonfinal} (of which the sec-
ond one is again invisible). Modelica itself does the
same with inner or outer.

2. A function indirect is added that creates an instance of
an indirect type from a direct variable. This function
is defined for every type but does not really need an
implementation. In fact, this function could be seen as
an explicit coercion itself (explicit because direct types
are not subtypes of indirect types).

3. This modifier is an actual part of the type, that is, the
type direct Real is different from the type indirect
Real. But to simplify the usage of indirect types, we
consider them being subtypes of their respective direct
counterpart.

45

4. The default type declaration is direct. Indirect types
will only be introduced by some transformations. The
distinction between indirect and direct types allows the
clear usage of object references (which are not part of
Modelica): Every instance of an indirect type can be
seen as the reference to a direct type. This interpreta-
tion gives a natural meaning of the function indirect
which simply returns a new reference to an already ex-
isting direct typed object. Note, that instead of explicitly
defining a function direct that would do the opposite,
we kept the design simple by using the subtype relation
mentioned above (which has the same natural interpre-
tation). Also we intentionally did not introduce some-
thing like references of references (we do not need that
level of complexity until now).

5. The instantiation of a class can now have indirect pa-
rameters (declared after the name of the class). Since
they are a special kind of parameter, we denote them
by the special brackets 〈...〉. The usual scoping rules
apply to those parameters as well as the ability to use
default parameters. The actual indirect parameters must
be given at object instantiation.
Note: In a clean language design, one could argue that
the indirect arguments should be added to the class, not
to objects. But we only want an external representation
of the internal data structures. Hence, we properly re-
flect the fact that the additional field is indeed added to
the object, not to the class.

record A* 〈indirect output Real x 〉
end A*;
class A
direct output Real x;
...

end A;
class Foo〈indirect A a = indirect(A())〉
direct output Real x;
...

end Foo;
function CB →A

input indirect B b;
output direct A* a〈x = indirect(b.x)〉();

end CB →A;

class Bar
Foo foo1;
B a;
A* a’ = CB →A(indirect(a));
Foo foo2〈indirect(a’)〉();

end Bar;

1
2

3
4
5
6

7
8
9

10

11
12
13
14

15
16
17
18
19
20

Listing 2: Example of Listing 1 converted to xModelica

In our example of Listing 1 a coercion can then be ex-
pressed as shown in Listing 2. As can be seen the coercion
transformation consists of several parts:
1. A class A* is introduced that contains an indirect field
for each field of A. This class is by definition always
a subtype of the original class (and can thus safely be

used instead of the original). Note that it can be created
while compiling the definition of A.

2. Every replaceable field of Foo is moved up to the indi-
rect parameters list as the default definition of a indirect
parameter of the same name. Again the resulting class
is a subtype of the original class.

3. A coercion function CB →A : B → A* is created. This
function lifts every field of B into an indirect field of the
same name in a instance of A*.

4. Finally the coercion function is applied to a local in-
stance of B and its output is fed into the instatiation of
Foo.
With this method the redeclaration statements can be

transformed into a much more common concept. There-
fore the translation into object oriented (or even functional)
code is now much simpler. The new interface of instantia-
tion ensures that no dependencies from redeclaration state-
ments are left in the generated code and thereby make sep-
arate compilation possible.

3.3 Subtyping in functions
Subtyping in Modelica is not restricted to models and
records but also covers functions. Unfortunately, the Mod-
elica Specification (version 3.2 [1]) is unclear about when
one function is a subtype of another: Since Functions are
special classes in Modelica (and their parameters special
fields), the subtyping rule for functions just references the
rule for classes which makes no difference between output
and input fields. Thus the principle of contravariance in
function parameters [4] is violated. Since we want to focus
on separate compilation, we will assume that this problem
has been solved, by redefining the rules for subtypes of
functions in the Modelica Specification.

function foo
input Bar bar;
output Baz bar;
...

end foo;
...
MyBaz baz; //subtype of Baz
MyBar bar; //subtype of Bar
algorithm
...
baz := foo(bar);

1
2
3
4
5
6
7
8
9

10
11

Listing 3: Example for function application.

Function application with subtypes is pretty straightfor-
ward due to our coercion routine: The Modelica fragment
in Listing 3 can easily be transformed into its correspond-
ing xModelica fragment:
CBaz →MyBaz(foo(CMyBar →Bar(bar)))
The application of (subtype) functions is a little bit more

complicated but still no big problem, as long as the above
mentioned error is corrected. With the principle of con-
travariance a function f : A → B is a subtype of g : C →
D if, for the types A, B, C, D, A ⊆ C and D ⊆ B holds
true.

46

class C;
class A extends C;
class B;
class D extends B;
function F
input A a;
output B b;

end F;
function G
input C a;
input D b;

end G;
function H
input function F f;
input A a;
output B b = f(bar);
...

end H;
...
function G g //subtype of F;...
B b := H(g, bar);

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21

Listing 4: Example for function contravariance.

The problem here is that while parameter coercion can
take place just at the location of the function call, this is
not possible for function parameters (simply because the
possible type of the function is again unknown). Therefore
the function parameter itself must be subject to coercion but
not the function application. Since we did not introduce a
xModelica notation for function parameters, we will use a
mathematical notation here. The parameter g of foo in line
21 will be replaced by CD→B ◦ g ◦ CA→C . We’ll leave it
open on how to implement function composition but since
function parameters are allowed in Modelica some kind
of functional object will be needed in the runtime system
anyway. The step to a higher order function is not too big
from there.

4. Dynamic Binding (inner/outer)
One of the Modelica language features that causes trou-
ble among users is the inner/outer pairing. Some people
consider it as being mandatory for reasons of practical us-
ability in certain application scenarios, others are deterred
by the incomprehensibility and error-proneness, which the
feature exhibits in particular in slightly more intricate con-
stellations.
What are the reasons for these contradictory view-

points? As usual a clarification of such seeming ad-hoc
phenomena can be obtained by mapping them to classical
concepts of programming language theory. Then it is im-
mediately seen that we simply encounter the standard di-
chotomy between static and dynamic binding of variables.
And – as usual – problems arise, whenever two concepts
(even though each of them may be clean and clear in isola-
tion) are mixed in some odd fashion.
As usual, the scope of a name x is the textual region

of the program text, where it is known; let us denote that

class A
Real x;

class A1
... use x ...
end A1;
class A2
Real x;
... use x ...
end A1;
...
end A;

1
2

3
4
5

6
7
8
9

10
11

Listing 5: Simple scoping

region as scopex. And it is also standard knowledge that
such scopes can contain holes due to declarations of the
same name inside the scope. As a consequence, any point in
the program has for each name x a unique scope scopex.
In Listing 5, the scope of the variable x in line 2 is the
whole region of the class A with the exception of class A2;
hence, scopex2 = [1..5] ∪ [10..11]. Analogously,
the scope of the variable x on line 7 is the region of class
A2, that is, scopex7 = [6..9].

{ int a=0;
fun f(int x) = a * x;
{ int a = 2;
f(3)
...

}
}

1
2
3
4
5
6
7

Listing 6: Different binding example.

Static binding states that for an applied occurrence of a
name x at some program point p the corresponding decla-
ration is directly given by the scope scopex, in which p

lies. In the above example, the application of x in line 4
refers to the declaration of x in line 2, since 4 ∈ scopex2
and analogously x in line 8 refers to the declaration in line
7, since 8 ∈ scopex7 .
Dynamic binding uses a more complex principle for

the association between an applied occurrence of a name
x and its corresponding declaration – at least for local
applications in functions, classes etc. Now we don’t use the
scope of the point, where x is applied, but the scope of the
point, where the function, the class etc. is applied.
Listing 6 illustrates dynamic binding in some fictitious

λ-style language, thus demonstrating that the concept is
long known in many languages.
Under static binding the non-local name a in line 2

would refer to the declaration in line 1 such that the call
f(3) would yield the value 0. But under dynamic binding
the application of the non-local name a would refer to
the declaration of a that is valid in line 4, that is, to the
declaration in line 3. Hence the call f(3) yields the value
6.

47

class A
outer Real x;
end A;
class E
inner Real x;
class F
inner Real x;
class G
Real x;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F f;
end E;
class I
inner Real x;
E e;
A a;
end I;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

class A〈indirect Real x〉

end A;
class E
indirect Real x;
class F
indirect Real x;
class G〈indirect Real dx〉
direct Real x;
class H〈indirect Real dx〉
direct A a〈dx〉;
end H;
H h〈dx〉;
end G;
G g〈x〉;
end F;
F f;
end E;
class I
indirect Real x;
E e;
A a〈x〉;
end I;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 7: Complex example from section 5.4 of the Modelica Specification.

class A
outer Real x;
... use x ...
end A;
class B
inner Real x;
A a1, a2;
... use a1.x ... a2.x ...
end B;

1
2
3
4

5
6
7
8
9

Listing 8: Simple example for inner/outer.

class A〈indirect Real x〉
... use x ...
end A;
class B
indirect Real x;
direct A a1〈x〉, a2〈x〉;
... use a1.x ... a2.x ...
end B;

1
2
3

4
5
6
7
8

Listing 9: inner/outer removed.

This kind of binding is well known from a number of
functional languages, from object-oriented languages such
as Java (in the form of method binding with superclasses),
but also from typesetting languages such as TEX.
In Modelica it takes the syntactic form of inner/outer

pairs. The simplest instance is illustrated by the example
given in Listing 8 (adapted from Section 5.4 of the Model-
ica 3.1 reference).
Here B.x ≡ B.a.x ≡ A.x holds, that is, all three

names are the same. Except for the possibly aberrant syn-

tax, this looks fairly simple. However – as we will see in a
moment – there are much more intricate scenarios, where
the correct associations are not so easily seen.
In the class I in the complex example from Listing 7

(section 5.4, due to space concerns only parts of the ex-
ample are shown) we have, among others the following
equivalences: e.f.x ≡ e.f.g.h.a.x (lines 22+8 and
lines 22+8+12) or a.x ≡ x (lines 23+1 and line 21).
By contrast, other applications are different, for example
e.x *≡ e.f.x (lines 22+6 and 22+8) or e.f.g.x *≡
e.f.g.h.x (lines 9+10+14 and line 11).
The root of the problem is that we encounter an isolated

occurrence of dynamic binding in an otherwise statically
binding language. It is this clash of paradigms that makes
things both hard to digest and hard to implement. Therefore
the obvious solution is to transform the dynamic bindings
into static bindings. This will be sketched in the following.
We will use the code from Listing 9 to illustrate the

augmented concepts. As is illustrated by this example, our
transformation consists of four parts:

1. Both outer and inner declarations are converted to in-
direct types.

2. An outer declaration is converted into a parameter of the
corresponding class. This new parameter has (in con-
trast to replaceable fields) no default value. Therefore
this class becomes what in other languages is called ab-
stract, since it cannot be instantiated without that pa-
rameter.

3. Finally we add to each instantiation of the abstract class
a corresponding argument. If the current class has no
indirect field, that class is made abstract too and the
parameter is pulled up.

48

model CI
outer Boolean b;
Real x(start=1);
equation
der(x) = if b then ?x else 0;
end CI;
model Sub
Boolean c = time<=1;
inner outer Boolean b = b and c;
CI i1;
CI i2;
end SubSystem;
model System
Sub s;
inner Boolean b = time>=0.5;
// s.i1.b will be b and s.c
end System;

1
2
3
4
5
6

7
8
9

10
11
12

13
14
15
16
17

model CI〈indirect Boolean b〉

Real x(start=1);
equation
der(x) = if b then x else 0;
end CI;
model Sub〈indirect Boolean db〉
Boolean c = time =< 1;
indirect Boolean b = db and c;
CI i1〈b〉;
CI i2〈b〉;
end SubSystem;
model System
Sub s〈b〉;
indirect Boolean b = time>=0.5;
// s.i1.b will be b and s.c
end System;

1
2
3
4
5
6

7
8
9
10
11
12

13
14
15
16
17

Listing 10: Simultaneous inner/outer.

4. If necessary (e. g. because an element with the same
name already exists) the newly introduced parameter is
renamed.
Let us briefly look at the typing issue. We again take

an example from Section 5.4 of the Modelica 3.1 specifi-
cation (Listing 11). By the standard rules of typing under
static binding it is clear that the argument x that would be
given to the instantiation in line 7 has type indirect Real,
whereas the requested type in line 3 is indirect Integer.
This shows that the transformation naturally preserves the
requirement that a inner declaration shall be a subtype of
all corresponding outer declarations.

class A
inner Real x; //error
class B
outer Integer x;
...
end B;
B b;
end A;

1
2

3
4
5
6

7
8

Listing 11: Type error in inner/outer usage.

Finally, there is the odd case of allowing both inner and
outer modifiers simultaneously. According to the Model-
ica 3.1 specification this “conceptually introduces two dec-
larations with the same name: one that follow the above
rules for inner and another that follow the rules for outer.”
With this advise our transformation works straightforward
for that case too: When a direct field of the same name
already exists, the indirect parameter is renamed. The ex-
ample from Listing 10 shows how the informal interpreta-
tion of simultaneous inner/outer declarations fits naturally
in our transformation.
Also functions are an interesting issue (taking the exam-

ple from the specification shown in Listing 12). Listing 13
shows that this case can be handled easily too, if we also
allow functions as indirect parameters. Since (direct) func-

partial function A
input Real u;
output Real y;
end A;
function B
extends A;
algorithm
...
end B;
class D
outer function fc = A;
...
equation
y = fc(u);
end D;
class C
inner function fc = B;
D d;
end C;

// equation now y = B(u)

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19

Listing 12: inner/outer with functions.

tion parameters are allowed in the latest Modelica specifi-
cation and there is no conceptual difference between direct
and indirect function parameters, doing so does not intro-
duce any complexity. The only inconvenience results from
the fact that functions are not first class citizens of Mod-
elica. Therefore a (useless) instantiation has to be made.
But since our target language is object oriented, this would
probably have to happen anyway (in a functional language
the instantiation would just be a renaming).
What does this achieve? The answer is simple: We elim-

inated dynamic binding! In other words, we now have a
uniform system of static bindings (and thus a uniform com-
piler design without complex exceptions) but still retain all
effects of Modelica’s dynamic inner/outer binding in a se-
mantically correct fashion.

49

partial function A
input Real u;
output Real y;
end A;
function B
extends A;
algorithm
...
end B;
class D〈indirect function A fc〉

...
equation
y = fc(u);
end D;
class C
indirect function B fc;
D d〈fc〉;
end C;

// equation now y = B(u)

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19

Listing 13: Listing 12 translated to xModelica.

This also applies to the important issue of separate
compilation. We now only implement the classical static-
binding variant of separate compilation and obtain a correct
treatment of Modelica’s inner/outer binding for free.

5. Drawbacks and Costs of Separate
Compilation

Although separate compilation is a worthy goal, there are
of course some drawbacks that occur from our design:
1. By creating code that does not contain a DAE but only
tries to create one, we lose the ability to check for cer-
tain model properties. The most important of those is
probably the requirement of the model being balanced.
Since we do not know how compiled models are actu-
ally used, it is at least hard, if not impossible, to know if
a model is balanced (if, e. g. only an interface is shipped
with pre-compiled code). This is a general problemwith
separate compilation and usually solved by having the
linker checking the global assertions. Since there is no
Modelica linker, currently the only solution left is to
move these checks into the runtime as well.

2. A more subtle effect of separate compilation is the com-
patibility of generated code. If module A is compiled
with a more recent compiler than module B, there is
no guaranty that both work together as expected, since
small changes in the compiler may render both modules
incompatible. The only way to workaround this issue is
either to not change the output format at all (rather unre-
alistic) or to have some kind of versioning that hinders
the user from plugging together incompatible compila-
tion units.

3. The probably most far-reaching restriction that results
from our approach is the impossibility to run optimiza-
tions at compile-time. For Modelica this means that
there can be no causalization or index reduction done
by the compiler. Again this problem depends on the ab-

sence of a dedicated Modelica linker. Thus both these
operations have to be run before the actual simulation
starts. Luckily this is generally possible and even nec-
essary if one adds model structural dynamics to Mod-
elica [13] (which is e. g. already present in the Mosilab
compiler [10]).

6. Conclusion
With the usage of separate compilation a Modelica com-
piler comes closer to what state-of-the art tools can offer a
software engineer. This applies to the overall compilation
effort as well as to the opportunity to ship pre-compiled
libraries with a clean interface.
We have shown that the most complex features of the

Modelica language can in fact be transformed into an
object oriented language by only using features that are
much more common. This enables the creation of Model-
ica compilers for many target languages. The used transla-
tion scheme gives a new way of handling constructs with
special semantics like stream connectors by simply moving
those semantics into the runtime system.
While the language is thereby ready for separate com-

pilation, some problems still remain open for future work.
The most important is the conciliation of separate compila-
tion with causalization. The same applies for symbolic ma-
nipulations. We will investigate both topics in the future.

References
[1] The Modelica Association. Modelica - a unified object-

oriented language for physical systems modeling, 2010.
[2] David Broman. Flow lambda calculus for declarative

physical connection semantics. Technical Report 1,
Linköping University, PELAB - Programming Environment
Laboratory, The Institute of Technology, 2007.

[3] David Broman, Peter Fritzson, and Sébastien Furic. Types
in the modelica language. In Proceedings of the Fifth
International Modelica Conference, 2006.

[4] Luca Cardelli. A semantics of multiple inheritance. InProc.
of the international symposium on Semantics of data types,
pages 51–67, New York, NY, USA, 1984. Springer-Verlag
New York, Inc.

[5] Gilles Dubochet and Martin Odersky. Compiling structural
types on the jvm: a comparison of reflective and generative
techniques from scala’s perspective. In ICOOOLPS ’09:
Proceedings of the 4th workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages
and Programming Systems, pages 34–41, New York, NY,
USA, 2009. ACM.

[6] Christopher League, Zhong Shao, and Valery Trifonov.
Representing java classes in a typed intermediate language.
SIGPLAN Not., 34(9):183–196, 1999.

[7] Christopher League, Zhong Shao, and Valery Trifonov.
Type-preserving compilation of featherweight java. ACM
Trans. Program. Lang. Syst., 24(2):112–152, 2002.

[8] Ramine Nikoukhah. Extensions to modelica for efficient
code generation and separate compilation. In Proceed-
ings of the 1st International Workshop on Equation-Based
Object-Oriented Languages and Tools, Linköping Elec-
tronic Conference Proceedings, pages 49–59. Linköping
University Electronic Press, Linköpings universitet, 2007.

50

[9] Ramine Nikoukhah and Sébastien Furic. Towards a full
integration of modelica models in the scicos environment.
Proceedings of the 7th International Modelica Conference,
43(74):631–645, 2009.

[10] Christoph Nytsch-Geusen and Thilo et al Ernst. Mosilab:
Development of a modelica based generic simulation tool
supporting model structural dynamics. In Gerhard Schmitz,
editor, Proceedings of the 4th International Modelica
Conference, Hamburg, March 7-8, 2005, pages 527–535.
TU Hamburg-Harburg, 2005.

[11] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[12] Dirk Zimmer. Module-preserving compilation of mod-
elica models. In Proceedings of the 7th International
Modelica Conference, Como, Italy, 20-22 September 2009,
Linköping Electronic Conference Proceedings, pages 880–
889. Linköping University Electronic Press, Linköpings
universitet, 2009.

[13] Dirk Zimmer. Equation-based Modeling of Variable-
structure Systems. PhD thesis, ETH Zürich, 2010.

51

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 43
 TR
 1
 0
 1690
 285

 0
 10.0000

 Both
 9
 1
 AllDoc

 CurrentAVDoc

 11.3386
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 9
 8
 9

 1

 HistoryList_V1
 qi2base

