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Abstract
Modelling of heterogeneous systems is always a trade-off
between model complexity and accuracy. Most libraries of
object-oriented, equation-based, multi-physical simulation
tools are based on lumped parameter description models.
However, there are different ways of including spatial de-
pendency of certain variables in the model. One way that
might be quite difficult is to manually discretize the model
into an interconnection of lumped parameter models. This
approach can get very time-consuming and is always sen-
sitive to modelling or identification errors.

To avoid these issues, we try to take advantage of the
well-established methods for automatically discretizing a
distributed parameter model for example by means of Fi-
nite Element methods. However, to achieve a suffiently
good approximation, these methods very often result in
large-scale dynamic systems that can not be handled within
equation-based simulators. To overcome this drawback
there exist different approaches within the literature.

On the basis of deformable mechanical structures, one
way of including distributed parameter models into li-
braries of lumped parameter models for the purpose of
common simulation is pointed out in the present paper.
For the implementation of the resulting models the authors
take advantage of equation-based modelling libraries as
new models can here easily be integrated.

Keywords distribuded parameter systems, FEM import,
mechanical systems, deformable bodies

1. Introduction
Simulation of physical heterogeneous systems is getting
more and more important during the design process of tech-
nical systems. Anyway, the simulation of such systems is
not an easy task. Due to the different domains of physical
laws interacting with each other, accurate models may tend
to get very complex. One fundamental principle of mod-
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elling is therefore the hierarchical decomposition and inter-
connection of physical systems. This can be done accord-
ing to the physical domain (e. g. mechanical and electrical
part), according to common physical behaviour (e. g. solid
bodies), or according to the interaction and dependancies
of physical laws.

The common objectives of these different classifications
are the reduction of the model complexity for each part,
the achievement of modularity and exchangeability, the
increase of reusability of the models, and the enhancement
of their understanding. Appropriate assumptions on the
complexity can thus be made for every part and the model
can be seperately described by its physical laws. Of course,
in general, the decomposed parts, the so-called subsystems
of the model, interact with each other. These interactions
can only be expressed via certain finite sets of variables,
the so called interconnectors.

One very common assumption on submodels is the de-
scription of the physical system as a lumped parameter sys-
tem. Here, all variables are assumed to be a function of
time without any spatial dependancy. For such a system
one ends up with a system of algebraic and ordinary dif-
ferential equations, a so called DAE. This assumption is
made in many libraries of object-oriented, equation-based,
multi-physical simulation tools.

Nevertheless, a lumped parameter description is not al-
ways suitable to describe certain effects of physical sys-
tems accurately.

Distributed parameter models are characterized by the
fact that all variables are regarded not only as functions
of time but also as functions of some spatial coordinates.
Hence, the set of independent variables increases to more
than one variable. This type of models can be characterized
in integral or differential form with appropriate initial and
boundary conditions. The differential formulation results in
a system of partial differential equations (PDEs).

In our paper, we only regard linear inhomogeneous sys-
tems of PDEs that can be written down as

Dtu+Ru = w (1)

with dependent variables u, independent variables time t
and position (e. g. x, y, and z), and a dependent source
termw. Dt andR denote appropriate linear operators with
respect to (w. r. t.) time and w. r. t. all spatial coordinates,
respectively.
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This type of models appears in several, different do-
mains of application as a quite natural description of the
physical behaviour. The following three examples should
illustrate this fact.

Example 1: Heat flow
The equations for the heat flow within a homogeneous structure
can be described by the following PDE:

∂u

∂t
− α∆u =

∂u

∂t
− α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= q

where u is the temperature and q is the heat source density, each a
function depending on the time t as well as the spatial coordinates
x, y, and z.

Example 2: Electrical transmission line
An electrical transmission line can be modelled in terms of two
variables i and u both depending on time t and the length z as:

∂u

∂z
+ L′

∂i

∂t
+R′i = 0

∂i

∂z
+ C′

∂u

∂t
+G′u = 0.

The quantitiesR′, L′,G′, andC′ are parameters of the model and
describe the resistance and the inductance load of the transmission
line, the conductance and the capacitance load between the lines,
each per unit length, respectively.

Example 3: Structural mechanics
When analysing the behaviour of solid bodies under static or
dynamic forces, we can use the theory of structural mechanics
to get a linearized model in terms of the displacement u from the
undeformed position and the volume force density k0 as

∂2ρ0u

∂t2
= k0 + Div(H Gradu).

In this equation the operators Div(·) and Grad(·) are defined by

Grad(u) ≡ 1

2
(∂iuj + ∂jui)i,j=1,2,3

Div(S) ≡

(
3∑

j=1

∂jSij

)
i=1,2,3

and the quantities ρ0 and H denote the mass density and the
symmetric stiffness tensor resulting from the material properties,
respectively.

In these examples no care has been taken of the initial
and boundary values, that of course influence the solvabil-
ity as well as the solution of the problem. One can very
often assume to have initial conditions for the independent
variable t and boundary conditions of appropriate type for
all spatial independent variables x, y, and z.

For the simulation of such distributed parameter mod-
els, there exist different methods, that automatically dis-
cretize the models (see e. g. [2, 11]). Very often these al-
gorithms result in large scale dynamic systems that cause a
high order of complexity. In any case, it is desirable to in-
clude such models into equation-based simulators (as e. g.
Dymola). To this end, two different but sometimes com-
plementing approaches have been established [17]. The
first approach tries to combine the models in one simula-
tor. The second approach aims to use different spezialized,
well adapted simulators for each domain and tries to link
these simulators for all necessary interactions [5, 13, 19].

While both ways have their own advantages and drawbacks
([14, 17]), this paper will focus on the first approach.

There have already been different authors attending the
import of PDEs into Modelica (as e. g. in [12]). Anyway,
in difference to other papers, our paper does not aim to
directly include PDEs into the modeling language Model-
ica. Our focus is given to the necessary preprocessing of
PDEs in general and for the import of flexible bodies into
the multi-body library.

The first part of the paper covers the detailed discus-
sion of the general approach of including distributed pa-
rameter models. Afterwards, in section three this approach
is applied to the import of mechanical Finite Element dis-
cretized models into a classical multi-body library. Here,
all issues of section two are picked up and explained for the
concrete example. Section four presents some examples for
the foregoing work flow in order to validate the generated
models. In section five, an outlook is given while section
six summarizes the content of this paper.

2. General considerations for the import of
distributed parameter systems

The import of distributed parameter models requires the
definition of an appropriate interface to lumped parameter
simulation libraries. For the sake of exchangeability, this
interface is supposed to be compatible to the connectors of
the other library elements. The issue of creating such an
interface for the distributed parameter model is discussed
in subsections 2.1 and 2.3.

Another question that arises for the import of distributed
parameter models concerns the embedding regarding a nu-
merical method to solve this kind of problems, as equation-
based simulation tools in general do not have solvers for
PDEs. Anyway, for the numerical solution of distributed
parameter models there already exist serveral different al-
gorithms. They all have one property in common: they try
to solve the simulation task in a finite-dimensional solution
space. The process of deriving a finite-dimensional model
is also called discretization. In fact, one could distinguish
between the discretization in terms of the time t and the
discretization in terms of the spatial independent coordi-
nates x, y, and z. Since for the spatial discretization there
exist already many elaborate numerical tools, our starting
point will be the spatially discretized system rather than the
original distributed parameter model. This topic is treated
in subsection 2.2.

However, there is a difficulty arising from the spatial
discretization. The discretized models become generally
very large in scale and are therefore often intractable for
equation-based solvers. Subsection 2.4 is dedicated to this
issue.

2.1 Connectors of the distributed parameter model
This subsection covers the definition of an appropriate in-
terface to the lumped parameter simulation library as it is
essential for the import of distributed parameter models.
For the unobstructed integration and exchangeability of the
imported models it is necessary to design the interface in
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Figure 1. Connector definition for the distributed parame-
ter model

compliance with the existing connector classes of the li-
brary. A connector class in an object-oriented simulation
tool is a class that defines the set of variables that are neces-
sary for the interconnection of the elements in this library.
In a mechanical multi-body library for example, these con-
nector classes are often called flanges and include all nec-
essary kinematic and kinetic variables. The connectors of
an electrical circuit library often consist of the two quan-
tities current and voltage, while for a heat flow library the
connectors typically contain the two variables heat flow and
temperature.

In this paper, we present an approach of creating such an
interface within the distributed parameter model. Figure 1
gives an illustration for the explanations below. As a first
step, we assume to have a connector of the lumped param-
eter model library with a defined set C of variables. Fur-
thermore, let V be the domain of all dependent quantities
of the distributed parameter model. In structural mechanics
for example, we could identify V with the set of all points
of the considered structure. In Figure 1 the gray and blue
colourized set V has been chosen to be an ellipsoid.

Then, it seems very meaningful to consider a connector
of the distributed parameter system as a (perhaps lower di-
mensional) subset VC of the domain V that satisfies the two
following constraints (see also Figure 1: the blue coloured
shape).

1. There exist two (disjoint) subsets Um ⊂ C andWm ⊂
C that are minimal sets of variables in order to uniquely
determine the behaviour of all variables in u and w
belonging to elements of the subset VC of the structure
and

2. the values of all variables in Um andWm are uniquely
defined by a "valid" spatial characteristic of all depen-
dent variables in u and w belonging to elements of the
subset VC .

Now, let ξm be the column vector of all variables in Um

and ηm the column vector of all variables in Wm. As we

will see later on, these conditions can be expressed as some
constraint equations between the variables ξm anduwithin
VC as well as between the variables ηm andw within VC1.
Thus, we will denote all possible values of u andw within
VC as "valid" if they satisfy the constraint equations.

2.2 Discretization of the model
As already noticed, it seems very convenient to start from
the spatially discretized model rather than from the original
PDEs. The reason is, that for the spatial discretization there
already exist sophisticated tools that might use different
methods as for example

• FDM (Finite Difference method),
• FEM (Finite Element method),
• FVM (Finite Volume method), or
• BEM (Boundary Element method).

For all models of this paper, only the Finite Element
method has been used to discretize the model. Since we
only regard linear inhomogeneous systems with maximal
second order of derivatives w. r. t. time, we can already
write the spatially discretized model as

A2
d2ξ

dt2
+A1

dξ

dt
+A0ξ = η (2)

with generally time dependent matrices Ai (i ∈ {0, 1, 2})
and time dependent vector η. The vector ξ collects the
variables u for every node of the Finite Element mesh,
while η consists of appropriate spatial integral terms of the
variable w for every node.

For the case of mechanical systems we denoteA2 = M
as the mass matrix, A1 = D as the damping matrix,
and A0 = K as the stiffness matrix of the model. The
column vector η combines all force components acting on
the discretized structure while the column vector ξ covers
all dispacement variables of the nodes.

In the spatially discretized version of the heat flow equa-
tion the matrixA2 vanishes due to the non-existence of sec-
ond order time derivatives in the PDEs. Matrices A1 = C
and −A0 = G can here be interpreted as the heat capaci-
tance matrix and the heat conductance matrix, respectively.
The column vector η collects the heat source densities for
each element of the spatially discretized structure. The de-
pendent vector ξ contains the temperatures of all nodes
within the structure.

2.3 Connectors of the discretized model
In subsection 2.1 we already defined a connector for the
original distributed parameter model. For the spatially dis-
cretized model, we can now adapt this definition. To do
this, we define a set ΩC as the set of all nodes of the body
that lie in VC . In Figure 2, these are all nodes within the
blue area. The connector of the discretized model is formed
by the dependent variables of all nodes of ΩC . Hence, the
conditions derived in subsection 2.1 can easily be stated.

1 More precisely, sinceu andw are functions of all independent variables,
we must use the restriction ofu andw to the set T ×VC , with time t ∈ T .
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Assume the vectors ξs and ηs to be the column vectors of
all coordinates of ξ and η that belong to nodes within the
subset VC , respectively. Then, there must exist two injec-
tive mappings ϕ and ψ from the set of all values of ξm

and ηm to the set of values of ξs and ηs, respectively. The
second condition is then inherently satisfied, if we denote
an element of the image of ϕ and ψ as a "valid" spatial
characteristic. The mapping ϕ can then also be interpreted
as a constraint equation on the differential system of equa-
tions (2).

Figure 2. Connector definition for the discretized model

For simplicity, we assume these mappings ϕ and ψ to
be linear in ξm and ηm. The constraint equations can thus
be stated as

ξs = Φ̂ξm, ηs = Ψ̂ηm (3)

with constant full column rank matrices Φ̂ and Ψ̂.
In order to take these constraints into account, we first

have to define another column vector ξr consisting of all
the remaining variables of ξ that are neither in ξm nor in
ξs.

Then, we can add the variables in ξm to the set of
dependent variables by defining the vector ξ̂ according to

ξ ≡
(
ξr

ξs

)
=

(
0 I 0
0 0 I

)ξmξr
ξs

 ≡ Γξ̂.

Now, we expand all matrices and vectors to

Â2 = ΓTA2Γ, Â1 = ΓTA1Γ,

Â0 = ΓTA0Γ, η̂ = ΓTη.

Note, that the inserted variables ξm still do not influence
the model except through the constraint equation (3), that
can also be written implicitly as

0 =
(
Φ̂ 0 −I

)
ξ̂ ≡ Ξξ̂.

Since all variables in ξs can be expressed through the
variables in ξm, we can write down the vector ξ̂ in terms of
the newly defined vector ξ̄ as

ξ̂ =

I 0
0 I

Φ̂ 0

(ξm
ξr

)
≡ Φ̆ξ̄. (4)

Applying the Lagrange Multiplier Theorem (see e. g. [7]),
equation (2) yields

Â2
¨̂
ξ + Â1

˙̂
ξ + Â0ξ̂ = η̂e + ΞTλ+ B̂ηm

Ξξ̂ = 0

ξm = Ĉξ̂ =
(
I 0 0

)
ξ̂,

where we split up η̂ into a sum of the external influences η̂e

and the influence of the connector variables ηm by the ma-
trix B̂, that is given by B̂

T
=
(
I 0 Ψ̂

T
)

. Furthermore,
we added an equation that expresses the connector vari-
ables ξm in terms of the variables in ξ.

Note, that the columns of Φ̆ are orthogonal to the rows
of Ξ and thus we can multiply the first equation by Φ̄

T from
the left and replace the vector ξ̂ by means of equation (4).
Then, the Lagrange Multipliers λi inλ disappear and hence
we get the new equations as

Ā2
¨̄ξ + Ā1

˙̄ξ + Ā0ξ̄ = η̄e + B̄ηm (5a)

ξm = C̄ξ̄. (5b)

2.4 Model order reduction
The linear system of differential equations (5) is typically
large in scale to achieve a good approximation of the con-
straint PDE for all nodes over a wide range of the frequency
domain.

Anyway, equation-based simulation tools apply com-
puter algebra to derive a solvable system of differential al-
gebraic equations. The computational efforts and the mem-
ory consumption for these operations increase dramatically
for a growing number of equations and variables. Thus,
these simulators are generally not able to handle large-scale
dynamic systems directly.

However, for many applications it is already sufficient to
approximate the behaviour between the variables ηm and
ξm in a relevant range of the frequency domain. Hence, it
is preferable and, as stated, often necessary to reduce the
size of the system drastically by an appropriate reduction
method.

This reduction method should of course take the inter-
esting range of the frequency domain into account. There
are many different methods [1, 6] for the linear model order
reduction and they all produce a matrix V defining a linear
mapping from the set of all reduced variable vectors q to
the set of all original vectors ξ̄. Consequently, we can write
down the relation between those vectors as

ξ̄ = V q. (6)

From a mathematical point of view, this mapping can
also be interpreted as a linear constraint on the governing
differential equations (5).
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Thus, one could apply the same algorithm as for the con-
nector constraint equations and end up with the following
equation

Aq,2q̈ +Aq,1q̇ +Aq,0q = ηe,q +Bqη
m (7a)

ξm = Cqq (7b)

where

A2,q = V TĀ2V , A1,q = V TĀ1V , A0,q = V TĀ0V ,

Bq = V TB̄, Cq = C̄V , ηe,q = V Tη̄e.

3. Import of mechanical structures
As a non-trivial example, an approach of importing models
from structural mechanics into a multi-body library is pre-
sented in the subsequent subsections. All previously dis-
cussed issues will be picked up and explained for this ex-
ample. Some simulation results for an implementation in
Modelica will follow in section 4.

3.1 Introduction
The task of including the dynamic behaviour of deformable
bodies into classical multi-body libraries has already been
investigated by several authors [3, 15, 18]. Here, a different
approach will be presented, as we try to derive the differ-
ential equations of motion directly from the parameters of
the Finite Element model.

Compared to the work flow presented in the foregoing
section, an additional challenge arises for this task. Even
though we start from the linearized model for small de-
formations of the body we have to take into account the
nonlinear character of the large motions of the considered
body. Hence, we also have to add nonlinear terms to the
equations of motion.

Before doing so, some assumptions and simplifications
which are used for our approach are listed below.

• Only the linear elastic behaviour of solid bodies is con-
sidered. In this paper no beam or plate elements are
treated.

• All geometric as well as physical nonlinearities are ne-
glected within the solid body.

• All properties of the solid body are assumed to be con-
stant over time.

• The interconnection points are modelled as rigid bodies,
where the joints and bodies of the multi-body library
can be rigidly attached (see below).

• The rigid body modes and the mass matrix are consid-
ered not to dependent on the deformation of the body.

3.2 The Finite Element model
The starting point of the presented task is the output of a
Finite Element simulation tool. Within the tool, the solid
body can be described concerning its geometry and its ma-
terial properties. Using the Finite Element solver a spa-
tially discretized model can be generated that can be writ-
ten down as

Mξ̈ +Dξ̇ +Kξ = η (8)

with the quantities already explained in section 2. This
linear system of differential equations describes the elastic
behaviour of the body under small deformations and small
displacements2.

For our further calculations we thus have to export the
matrices M , D, and K. In addition we need to export the
position of all nodes of the undeformed body. For a possible
visualization of the body, one could also export some mesh
or element information.

3.3 Connector definition
In order to include the model into a multi-body library, one
has to define connectors (flanges). These must be compat-
ible to the connectors of the library and thus must include
all variables that are defined in the connector class of the li-
brary. For multi-body libraries each of the sets of dependent
variables Um andWm consist of at least six elements3 (di-
rectly related to the six degrees of freedom (DoF) of a rigid
body), three translational and three rotational elements.

A connector of the spatially discretized model can be
composed by considering a subset of nodes, the so-called
slave nodes of the flange. The dependent variables ξs be-
longing to the slave nodes can then be experessed in terms
of the variables of the connector class ξm by a constraint
equation, which must satisfy condition 1 and 2 in sec-
tion 2.1.

As the flange is supposed to be an interconnection ele-
ment to a rigid body library, it seems very meaningful to
use a constraint equation on the slave nodes that rigidly at-
taches all slave nodes to each other. Hence, all nodes com-
posing a flange can be interpreted as a single rigid body in-
terconnected with the structure. The variables ξm provide
the position and orientation of that rigid body, that can also
be seen as a node with translational and rotational DoFs,
the so-called master node. Using geometric linearization
one can state the constraint equations for the nm connec-
tors in a linear way according to

ξsi = Φ̂iξ
m
i , i = 1, .., nm,

where ξsi denotes the vector of coordinates of the slave
nodes and ξmi the vector of the connector variables belong-
ing to the i-th connector. The constraint matrix constists of
three lines for each slave node and is given by

Φ̂i =
(
I r̃c,i − r̃j

)
j

j ∈ Ωi

with Ωi the set of indices of all slave nodes belonging to
the connector i, rj the position vector to the node j, r̃j
its cross product matrix, and r̃c,i the cross product matrix
of the connector reference point. This connector reference
position can be chosen arbitrarily w. r. t. the undeformed
shape of the body and is thus part of the designing process.

In order to satisfy condition 2 of subsection 2.1, there
are also constraints on the minimal number of slave nodes.
2 Please note, that it is very important to model the body as a free body
within the Finite Element simulation tool, i. e. without any constraints on
the undeformed motion of the body.
3 In many libraries more variables are used for the connector definition in
order to avoid singularities and numerical problems.
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Every flange must consist of at least three nodes that do not
lie in one line in order to uniquely define the orientation of
the master.

For further calculations we introduce the following
quantities

Φ̂ ≡

Φ̂1 0
. . .

0 Φ̂nm

 ,

ξs ≡

 ξs1
...
ξsnm

 , and ξm ≡

 ξ
m
1
...
ξmnm


and we summarize the coordinates of all nodes in ξr that
are not in ξs. In addition we assume without loss of gener-
ality4, that the vector ξT =

(
(ξr)T (ξs)T

)
.

Hence, we can express ξ in terms of ξr and the connec-
tor variables ξm by

ξ =

(
ξr

ξs

)
=

(
0 I

Φ̂ 0

)(
ξm

ξr

)
≡ Φ̄ξ̄.

Applying the Lagrange Multiplier Theorem and project-
ing the equations of motion into the achievable subspace,
i. e. the image of Φ̄, we get the constraint equations of mo-
tion

M̄ ¨̄ξ + D̄ ˙̄ξ + K̄ξ̄ = η̄e + B̄ηm (9a)

ξm = B̄
T
ξ̄ (9b)

with the new quantities

M̄ = Φ̄
T
MΦ̄, D̄ = Φ̄

T
DΦ̄,

K̄ = Φ̄
T
KΦ̄, η̄e = Φ̄

T
ηe,

B̄ =

(
I6nm

0

)
.

The quantity ηm summarizes all forces and torques acting
on the body through the connectors while ηe covers all
remaining external forces influencing the body.

For the sake of simplicity, at this point it is very conve-
nient to change the node numbering according to the po-
sition within the vector ξ̄. For all further calculations this
change will be presumed.

Because the equations above are typically large in scale,
the next subsection is dedicated to the reduction of the
system size.

3.4 Model order reduction
As already discussed in subsection 2.4, in the majority of
cases, it is necessary to reduce tremendously the number of
variables and equations of the dynamic model (9).

For our model we used a sophisticated model order re-
duction algorithm that has been implemented at the Fraun-
hofer Institute for Integrated Circuits, Design Automation
Division in Dresden ([8, 9]). Anyway, there are a lot of
other algorithms that can be used to reduce the model size.

4 If the coordinates in ξ have a different order, the assumed order can be
achieved by simply permuting the appropriate lines and columns of all
matrices and vectors in equation (8).

However, for a proper inclusion of the large motion
behaviour it is necessary that the matrix V includes the
six rigid body modes of the compound, i. e. that the matrix
includes six columns with the displacements of all nodes
when moving the undeformed body a little according to its
six DoFs.

3.5 Inclusion of nonlinear terms
In addition to many other physical domains in a mechanical
multi-body library we have to take some nonlinear terms
into account, namely the nonlinear dynamic forces result-
ing from the large motions in the three-dimensional space.
To do so, we consider the original equations (9) in a mov-
ing frame. So, we replace all time derivatives ()̇ w. r. t. the
inertial frame I by time derivatives ()

o w. r. t. the moving
reference frame B and express the acceleration as a linear
superposition of the acceleration w. r. t. the moving refer-
ence frame and the acceleration of the moving reference
frame itself. Then we can write equations (9) as

M̄

(
oo

ξ̄ + a0

)
+ D̄

o

ξ̄ + K̄ξ̄ = Φ̄
T
ηe + ηc + B̄ηm

ξm = B̄
T
ξ̄

with a0 consisting of three lines, namely

(a0)i = r̈0 + ( ˙̃ω + ω̃2)(r̃i + ξi) + 2ω̃ξ̇i, i ∈ Ωr

for every node in Ωr which is the set of all node indices
that are neither slave nore master node of any connector.

For every master node, one has to add the following six
lines to the vector a0

(a0)i =

(
r̈0 + ( ˙̃ω + ω̃2)(r̃c,i + ξi) + 2ω̃ξ̇i

ω̇ + ω̃ξ̇i

)
, i ∈ Ωm

with Ωm being the index set of connectors.
Furthermore, we have to add for every master node an

additional nonlinear expression due to the rotational DoFs
that can be combined in the vector ηc as

(ηc)i =


(
ω̃ 0

0 ω̃

)
M̄ i,i

(
0

ω

)
for i ∈ Ωm

0 for i ∈ Ωr.

Then, applying the model order reduction and an appro-
priate projection to the linear part of the equations, one can
end up with the following equations of motion: mI mr̃T

s M T
b1

mr̃s Θ0 M T
b2

M b1 M b2 M q

r̈0ω̇
q̈

+ Ďq̇ + Ǩq (10a)

+ g(ω, q, q̇) = V TΦ̄
T
ηe +Bqη

m

ξm = B̄
T
ξ̄ (10b)

HereM q = V TM̄V andBq = V TB̄.

4. Simulation examples
Within this section some examples are presented, that il-
lustrate the previously explained work flow and show the
accuracy of this approach.
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All models are formulated using the modelling language
Modelica. For this purpose a tool, the FEM-Import-Tool,
has been developed that reads the data exported from the
Finite Element tool, does all necessary modifications in-
cluding an optional model order reduction, and finally gen-
erates a Modelica based model. The model can than easily
be integrated into a threedimensional multi-body library.
Here, the programme is able to generate two different types
of models, one tailored to the particular needs of the Simu-
lationX multi-body library and one fitting to the Modelica
Standard Library. For the latter, it was very beneficial to
use an equation based language like Modelica, as the body
class from the multi-body library had only to be extended
for a model of flexible bodies.

4.1 Example 1 – static deformation of a long beam
As a first example the static deformation of a long beam
due to a static force and torque will be investigated. On one
side the beam will be rigidly fixed, while on the other side a
force and a torque will be applied. Table 1 lists all relevant
properties of the analysed beam.

Length: l = 1 m

Width: b = 0, 01 m

Height: h = 0, 02 m

Density: ρ = 7850 kg/m3

Young’s modulus: E = 2 · 1011 Pa

Poisson’s ratio: ν = 0.3

Damping (Rayleigh): α = 1 s−1

(D = αM + βK) β = 0.001 s

Table 1. Model parameters of the long beam

According to the foregoing sections, first, the body has
to be modelled within a Finite Element programm as a solid
body in order to extract all necessary parameter matrices.
Figure 3 shows the discretized ANSYS model (with all the
boundary conditions applied to it).

Figure 3. Discretized model of the long beam

4.1.1 Reference
According to [16]5, the theoretical solution for the devia-
tion uz and the rotations ϕx as well as ϕy of the free flange

5 The equation forϕy in [16] contained a wrong sign, which was corrected
here.

are given by

uz =
Fzl

3

3EIy
− Myl

2

2EIy
, ϕx =

Mxl

St

ϕy =
Myl

EIy
− Fzl

2

2EIy

with

Iy =
bh3

12
, St =

Ghb3

3
.

As a second reference, the same static analysis has been
carried out with ANSYS.

Afterwards the model for the multi-body library has
been generated using the FEM-Import-Tool. Here a model
order reduction was necessary to reduce the model com-
plexity. The produced Modelica model could than be used
to implement a simulation model in Dymola for this spe-
cific example as seen in Figure 4.

Figure 4. Dymola model of the long beam example

4.1.2 Results in Dymola
The results of the simulation in Dymola are listed in the
following Table.

uz [m] ϕx [rad] ϕy [rad]
−1.1897 · 10−008 2.6823 · 10−007 3.5687 · 10−008

4.1.3 Interpretation
Table 2 shows the relative errors of the results of the simu-
lation in Dymola compared to the reference calculation and
the reference simulation in ANSYS, respectively.

Calculation ANSYS

uz 0.000614 4.08 · 10−005

ϕx 0.444 1.75 · 10−005

ϕy 0.000751 1.36 · 10−005

Table 2. Relative error of the results of Dymola compared
to the reference calculation and ANSYS results

The results in Dymola coincide with the reference re-
sults in ANSYS up to the fourth decimal place. Also, the
relative error of the variables uz and ϕy are suffiently small
with less than 0.08% compared to the theoretical solutions.
The large deviation of the variable ϕx compared to the the-
oretical solution can be explained through the bad approx-
imation of the polar geometrical moment of inertia St in
[16]. A better approximation would lead to much better re-
sults.
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4.2 Example 2 – eigenfrequency analysis of an
L-shaped beam

For the second example an eigenfrequency analysis for an
L-shaped beam (see Figure 5) was performed and com-
pared to the theoretical calculations in [20] as well as to
reference simulation results in ANSYS. The beam has a
rectangular cross section. It is modelled as a solid body.

Figure 5. L-shaped beam with its flanges

The dimension and its material properties can be taken
from Table 3.

Length: l = 1 m

Width: b = 12 mm

Height: h = 5 mm

Density: ρ = 7900 kg/m3

Young’s modulus: E = 2.1 · 1011 Pa

Shear modulus: G = 82 · 109 Pa

Damping (Rayleigh): α = 0 s−1

(D = αM + βK) β = 0 s

Table 3. Model parameters of the L-shaped beam

The beam is rigidly fixed on one flange (flange 1) to
the inertial frame, while the second flange remains free.
The objective of this example is the proof of accuracy con-
cerning the first in-plane eigenfrequencies of the generated
model.

Again, for the generation of a Modelica model, the first
step was to export all necessary data from an appropri-
ate Finite Element model. For this example each line of
the L-shaped beam has been discretized into ten elements.
Afterwards the Modelica model has been generated using
FEM-Import-Tool with the expansion points s = ±40πi
and s = ±280πi for the model order reduction.

4.2.1 Reference
The theoretic results from the paper [20] and the eigen-
mode analysis of ANSYS are taken as the reference for the
Dymola simulation.

Figure 6 shows the first five eigenmodes of the L-shaped
beam in the considered plane. These eigenmodes are com-
pared to the simulation results in Dymola.

4.2.2 Results in Dymola
The results of the eigenvalue analysis in Dymola can be
compared to the theoretic results from [20], as well as the
ANSYS results which all are listed in the following table.

Figure 6. First five eigenmodes of the L-shaped beam

Theory [20] ANSYS Dymola
f1 3.331 Hz 3.337 Hz 3.337 Hz
f2 9.070 Hz 9.121 Hz 9.121 Hz
f3 44.772 Hz 44.802 Hz 44.802 Hz
f4 65.687 Hz 66.03 Hz 66.03 Hz
f5 143.179 Hz 143.173 Hz 143.173 Hz

4.2.3 Interpretation
Table 4 lists the relative errors of the Dymola frequencies
compared to the eigenfrequencies of the reference simula-
tion in ANSYS and the theoretic results.

Calculation ANSYS

f1 0.00185 5.16 · 10−005

f2 0.00564 1.73 · 10−005

f3 0.000667 3.44 · 10−006

f4 0.00523 6.07 · 10−006

f5 4.39 · 10−005 1.98 · 10−006

Table 4. Relative error of the eigenfrequency analysis in
Dymola compared to ANSYS and [20]

The maximal relative error is approximately 0.56%
compared to the theoretic results and smaller than 0.01%
compared to the ANSYS results. Hence, the deviation is
suffiently small.

4.3 Example 3 – T-square under uniform rotation
The third example is a dynamic test that shows the effect
of a uniform rotation of a body. The T-square under inves-
tigation (see Figure 8) is fixed at one flange (flange1) to a
revolute joint that rotates with

√
3 · 60 rpm around its axis

(n = 1√
3

(
1 1 1

)
). The static deformation due to the

centrifugal forces acting on the body are determined.
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Figure 7. Reference results for the static deformation of the rotating T-square

Figure 8. T-square with its flanges and dimensions

All relevant properties of the T-square are listed in Ta-
ble 5.

Length 1: l1 = 20 cm

Length 2: l2 = 15 cm

Width: b = 4 cm

Height: h = 2 cm

Density: ρ = 7850 kg/m3

Young’s modulus: E = 2 · 1011 Pa

Poisson’s ratio: ν = 0.3

Damping (Rayleigh): α = 1 s−1

(D = αM + βK) β = 0.001 s

Table 5. Model parameters of the T-square

4.3.1 Reference
After discretizing the model all necessary data have been
exported and a reference simulation has been carried out
within the Finite Element tool ANSYS (see Figure 7).

Furthermore a Modelica model has been generated and
simulated with the tool SimulationX.

4.3.2 Results in SimulationX
The simulation has been carried out in two different ways.
In the first case, a model was used in which the flanges
had already been strutted within the Finite Element tool by
means of constraint equations. For the other simulation this

was not the case. Here, all flanges had been strutted in the
model generator.

The results of the simulation for both versions do not
differ up to the sixth decimal place and are shown in the
table below.

Displacement

Flange 2 Flange 3
ux 9.6957 · 10−009 5.0039 · 10−007

uy −4.0418 · 10−007 −1.3583 · 10−007

uz −2.3823 · 10−006 −3.6993 · 10−006

4.3.3 Interpretation
Table 6 lists the relative error of all results of the simulation
in SimulationX compared to the reference simulation in
ANSYS.

Flange 2 Flange 3
Without CEs With CEs Without CEs With CEs

ux 0.000217 0.000316 0.000152 0.000152

uy 0.00015 0.000151 0.000188 0.000219

uz 0.000283 0.000286 0.000174 0.000168

Table 6. Relative error between results of reference simu-
lation and results of SimulationX

The maximal relative error between ANSYS and Simu-
lationX is lower than 0.03%. Hence the deviations remain
sufficiently small and the model achieves a good approxi-
mation.

5. Outlook
As stated at the beginning, there are also other examples
from different physical domains that use nearly the same
procedure to derive models for the combined simulation
with lumped parameter models. One example has been
investigated in [5]. Here, a thermal model of an electric
motor has been studied as depicted in Figure 9. The work
flow that has been used can exactly be mapped on the
method described in section 2. This fact gives motivation to
further investigate examples of different domains in order
to enhance and consolidate the work flow explained in this
paper.

For a more general and more sophisticated method
of including distributed parameter models into libraries
of lumped parameter models, the approach of port-based
modelling seems very attractive and promising. Especially
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Figure 9. Discretized thermal model of a electric motor

in the area of port-hamiltonian systems already some re-
markable results have been achieved that might be used to
effectively integrate distributed parameter models [4, 10].

In this context, for every port, there exist pairs of so-
called conjugate variables (flow and efforts) with the prop-
erty, that their product results in a physical quantity that
can be interpreted as a power. Please note, that within a
connector there should not disappear any power. This fact
leads to a special symmetry within the governing differen-
tial equations. Hence, it seems also very interesting to study
the integration process for this type of models.

6. Summary and Conclusions
The paper presented an approach of including discretized
distributed parameter models into libraries of lumped pa-
rameter models for equation-based simulation tools. As an
example, for a solid state body the authors showed how
to import the Finite Element discretized model into a clas-
sical multi-body equation-based library. The result was a
model that was able to describe the behaviour of the body
in terms of its elastic deformations also for large motions.
In order to achieve that goal, it was necessary to define ap-
propriate connectors and to reduce the size of the spatially
discretized model by a model order reduction algorithm.
The generated model was produced using the modelling
language Modelica that fully realizes the equation-based
modelling paradigm and thus offers the opportunity of sim-
ply changing existing models according to the new require-
ments.
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