
EO 
 

OLT  
 

2010

 

 

Proceedings of the

3rd International Workshop on 

Equation-Based Object-Oriented Modeling 

Languages and Tools 

Oslo, Norway, October 3, 2010, 

in conjunction with MODELS 2010

Editors
Peter Fritzson

Edward Lee

François Cellier

David Broman

Sponsored by PELAB,

Department of Computer 

and Information Science,

Linköping University



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Series: Linköping Electronic Conference Proceedings 
Number 47 
ISSN (print):  1650-3686 
ISSN (online):  1650-3740 
http://www.ep.liu.se/ecp/047/ 
 
Printed by LiU-Tryck, Linköping, 2010 
 
Copyright © the authors, 2010 

Copyright 
The publishers will keep this document online on the Internet – or its possible replacement –
starting from the date of publication barring exceptional circumstances.  

The online availability of the document implies permanent permission for anyone to read, 
to download, or to print out single copies for his/her own use and to use it unchanged for non-
commercial research and educational purposes. Subsequent transfers of copyright cannot 
revoke this permission. All other uses of the document are conditional upon the consent of the 
copyright owner. The publisher has taken technical and administrative measures to assure 
authenticity, security and accessibility. 

According to intellectual property law, the author has the right to be mentioned when 
his/her work is accessed as described above and to be protected against infringement.  

For additional information about Linköping University Electronic Press and its 
procedures for publication and for assurance of document integrity, please refer to its www 
home page: http://www.ep.liu.se/. 

ii



Table of Contents 
Preface 
Peter Fritzson, Edward Lee, François Cellier, and David Broman ..................................... v 
 
Session 1. Real-Time Oriented Modeling Languages and Tools 
Session chair: David Broman 

Execution of UMLState Machines Using Modelica 
Wladimir Schamai, Uwe Pohlmann, Peter Fritzson, Christiaan J.J. Paredis,  
Philipp Helle, and Carsten Strobel ....................................................................................... 1 

Modal Models in Ptolemy 
Edward A. Lee and Stavros Tripakis ..................................................................................... 11 

Profiling of Modelica Real-Time Models 
Christian Schulze, Michaela Huhn, and Martin Schüler ...................................................... 23 
 
Session 2. Modeling Language Design 
Session chair: Peter Fritzson 

Towards Improved Class Parameterization and Class Generation in Modelica 
Dirk Zimmer .......................................................................................................................... 33 

Notes on the Separate Compilation of Modelica 
Christoph Höger, Florian Lorenzen, and Peter Pepper ....................................................... 43 

Import of Distributed Parameter Models into Lumped Parameter Model  
Libraries for the Example of Linearly Deformable Solid Bodies 
Tobias Zaiczek, and Olaf Enge-Rosenblatt ........................................................................... 53 
 
Session 3. Simulation and Model Compilation 
Session chair: Francois Cellier 

Synchronous Events in the OpenModelica Compiler with a Petri Net Library 
Application 
Willi Braun, Bernhard Bachmann, and Sabrina Proß .......................................................... 63 

Towards Efficient Distributed Simulation in Modelica using Transmission  
Line Modeling 
Martin Sjölund, Robert Braun, Peter Fritzson, and Petter Krus .......................................... 71 

Compilation of Modelica Array Computations into Single Assignment C  
for Efficient Execution on CUDA-enabled GPUs 
Kristian Stavåker, Daniel Rolls, Jing Guo, Peter Fritzson, and Sven-Bodo Scholz ............. 81 
 
Session 4. Modeling and Simulation Tools 
Session chair: Edward Lee 

An XML Representation of DAE Systems Obtained from Continuous-Time  
Modelica Models 
Roberto Parrotto, Johan Åkesson, and Francesco Casella .................................................. 91 

iii



Towards a Computer Algebra System with Automatic Differentiation for  
use with Object-Oriented Modelling Languages 
Joel Andersson, Boris Houska, and Moritz Diehl ................................................................. 99 

Short Presentations 

Discretizing Time or States? A Comparative Study between DASSL and QSS 
(Work in Progress Paper) 
Xenofon Floros, François E. Cellier, and Ernesto Kofman .................................................. 107 

Model Verification and Debugging of EOO Models Aided by Model Reduction  
Techniques (Work in Progress Paper) 
Anton Sodja and Borut Zupančič .......................................................................................... 117 

iv



Preface 

During the last decade, integrated model-based design of complex cyber-physical systems (which mix physical dynamics 
with software and networks) has gained significant attention. Hybrid modeling languages based on equations, supporting 
both continuous-time and event-based aspects (e.g. Modelica, SysML, VHDL-AMS, and Simulink/ Simscape) enable high 
level reuse and integrated modeling capabilities of both the physically surrounding system and software for embedded 
systems. Using such equation-based object-oriented (EOO) modeling languages, it has become possible to model complex 
systems covering multiple application domains at a high level of abstraction through reusable model components.  

The interest in EOO languages and tools is rapidly growing in the industry because of their increasing importance in 
modeling, simulation, and specification of complex systems. There exist several different EOO language communities 
today that grew out of different application areas (multi-body system dynamics, electronic circuit simulation, chemical 
process engineering). The members of these disparate communities rarely talk to each other in spite of the similarities of 
their modeling and simulation needs.  

The EOOLT workshop series aims at bringing these different communities together to discuss their common needs and 
goals as well as the algorithms and tools that best support them. 

Despite the fact that this is a new not very established workshop series, there was a good response to the call-for-papers. 
Eleven papers were accepted for full presentations and two papers for short presentations in the workshop program out of 
eighteen submissions. All papers were subject to rather detailed reviews by the program committee, on the average four 
reviews per paper. The workshop program started with a welcome and introduction to the area of equation-based object-
oriented languages, followed by paper presentations. Discussion sessions were held after presentations of each set of 
related papers. 

On behalf of the program committee, the Program Chairs would like to thank all those who submitted papers to 
EOOLT'2010. Many thanks to the program committee for reviewing the papers. The venue for EOOLT'2010 was Oslo, 
Norway, in conjunction with the MODELS'2010 conference. 

 

Linköping, September 2010 
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Abstract
ModelicaML is a UML profile for the creation of executa-

ble models. ModelicaML supports the Model-Based Sys-

tems Engineering (MBSE) paradigm and combines the

power of the OMG UML standardized graphical notation

for systems and software modeling, and the simulation

power of Modelica. This addresses the increasing need for

precise integrated modeling of products containing both

software and hardware. This paper focuses on the imple-

mentation of executable UML state machines in Modeli-

caML and demonstrates that using Modelica as an action

language enables the integrated modeling and simulation

of continuous-time and reactive or event-based system

dynamics. More specifically, this paper highlights issues

that are identified in the UML specification and that are

experienced with typical executable implementations of

UML state machines. The issues identified are resolved

and rationales for design decisions taken are discussed.

Keywords UML, Modelica, ModelicaML, Execution

Semantics, State Machine, Statechart

1 Introduction

UML [2], SysML [4] and Modelica [1] are object-oriented

modeling languages. They provide means to represent a

system as objects and to describe its internal structure and

behavior. UML-based languages facilitate the capturing of

information relevant to system requirements, design, or

test data by means of graphical formalisms, crosscutting

constructs and views (diagrams) on the model-data.

Modelica is defined as a textual language with standard-

ized graphical annotations for icons and diagrams, and is

designed for the simulation of system-dynamic behavior.

1.1 Motivation

By integrating UML and Modelica the strength of UML in

graphical and descriptive modeling is complemented with

the Modelica formal executable modeling for system dy-

namic simulation. Conversely, Modelica will benefit from

using the selected subset of the UML-based graphical no-

tation (visual formalisms) for editing, visualizing and

maintaining Modelica models.

Graphical modeling, as promoted by the OMG [12],

promises to be more effective and efficient regarding edit-

ing, human-reader perception of models, and maintaining

models compared to a traditional textual representation. A

unified standardized graphical notation for systems mod-

eling and simulation will facilitate the common under-

standing of models for all parties involved in the devel-

opment of systems (i.e., system engineers, designers, and

testers; software developers, customers or other stake-

holders).

From a simulation perspective, the behavior described

in the UML state machine is typically translated into and

thereby limited to time-discrete or event-based simula-

tions. Modelica enables mathematical modeling of hybrid

(continuous-time and discrete-time dynamic description)

simulation. By integrating UML and Modelica, UML-

based modeling will become applicable to the physical-

system modeling domain, and UML models will become

executable while covering simulation of hardware and

software, with integrated continuous-time and event-based

or time-discrete behavior. Furthermore, translating UML

state machines into executable Modelica code enables

engineers to use a common set of formalisms for behavior

modeling and enables modeling of software parts (i.e.,

discrete or event-based behavior) to be simulated together

with physical behavior (which is typically continuous-

time behavior) in an integrated way.

One of the ModelicaML design goals is to provide the

modeler with precise and clear execution semantics. In

terms of UML state machines this implies that semantic

variation points or ambiguities of the UML specification

have to resolved.
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The main contribution of this paper is a discussion of

issues that were identified when implementing UML state

machines in ModelicaML. Moreover, proposals for the

resolution of these issues are presented. The issues identi-

fied or design decisions taken are not specific to the Mod-

elicaML state machines implementation. The questions

addressed in this paper will most likely be raised by any-

one who intends to generate executable code from UML

state machines.

1.2 Paper Structure

The rest of this paper is structured as follows: Chapter 2

provides a brief introduction to Modelica and Modeli-

caML and gives an overview of related research work.

Chapter 3 describes how state machines are used in Mode-

licaML and highlights which UML state machines con-

cepts are supported in ModelicaML so far. Chapter 4 dis-

cusses the identified issues and explains both resolution

and implementation in ModelicaML. Chapter 5 provides a

conclusion.

2 Background and Related Work

2.1 The Modelica Language

Modelica is an object-oriented equation-based modeling

language that is primarily aimed at physical systems. The

model behavior is based on ordinary and differential alge-

braic equation (OAE and DAE) systems combined with

discrete events, so-called hybrid DAEs. Such models are

ideally suited for representing physical behavior and the

exchange of energy, signals, or other continuous-time or

discrete-time interactions between system components.

2.2 ModelicaML – UML Profile for Modelica

This paper presents the further development of the Mode-

lica Graphical Modeling Language (ModelicaML [15]), a

UML profile for Modelica. The main purpose of Modeli-

caML is to enable an efficient and effective way to create,

visualize and maintain combined UML and Modelica

models. ModelicaML is defined as a graphical notation

that facilitates different views (e.g., composition, inheri-

tance, behavior) on system models. It is based on a subset

of UML and reuses some concepts from SysML. Modeli-

caML is designed for Modelica code generation from

graphical models. Since the ModelicaML profile is an

extension of the UML meta-model it can be used as an

extension for both UML and SysML1. The tools used for

modeling with ModelicaML and generating Modelica

code can be downloaded from [15].

1 SysML itself is also a UML Profile. All ModelicaML stereotypes that
extend UML meta-classes are also applicable to the corresponding
SysML elements.

2.3 Related Work

In previous work, researchers have already identified the

need to integrate UML/SysML and Modelica, and have

partially implemented such an integration. For example, in

[7] the basic mapping of the structural constructs from

Modelica to SysML is identified. The authors also point

out that the SysML Parametrics concept is not sufficient

for modeling the equation-based behavior of a class. In

contrast, [9] leverages the SysML Parametrics concept for

the integration of continuous-time behavior into SysML

models, whereas [8] presents a concept to use SysML to

integrate models of continuous-time dynamic system be-

havior with SysML information models representing sys-

tems engineering problems and provides rules for the

graph-based bidirectional transformation of SysML and

Modelica models.

In Modelica only one type of diagram is defined: the

connection diagram that presents the structure of a class

and shows class-components and connections between

them. Modelica does not provide any graphical notation to

describe the behavior of a class. In [13] an approach for

using the UML-based notation of a subset of state ma-

chines and activity diagrams for modeling the behavior of

a Modelica class is presented.

Regarding state machines, a list of general challenges

with respect to regarding statecharts is presented in [10]

and a summary on existing statechart variants is provided.

In [11] the fact is stressed that different statechart variants

are not compatible even though the syntax (graphical no-

tation) is the same. It is also pointed out that the execution

semantics strongly depend on the implementation deci-

sions taken, which are not standardized in UML.

Few implementations of the translation of statecharts

into Modelica exist ([6], [5]2). However, none implements

a comprehensive set of state machines concepts as defined

in the UML specification.

The main focus of this paper is the resolution of issues

related to the execution semantics of UML state machines.

A detailed description of the execution semantics of the

implementation of UML state machines in ModelicaML

and additional extensions are provided in [15] and are out

of the scope of this paper.

3 State Machines in ModelicaML

3.1 Simple Example

Assume one would like to simulate the behavior defined

by the state machines depicted in Figure 1 using Mode-

lica. This state machine defines part of the behavior of the

2 StateGraph [5] uses a different graphical notation compared to the
UML notation for state machines.

2



class SimpleStateMachine. In UML, this class is referred

to as the context of StateMachine_0.

The UML graphical notation for state machines con-

sists of rectangles with rounded corners representing

states, and edges representing transitions between states.

Transitions can only be executed if appropriate triggers

occur and if the associated guard condition (e.g., [t>1

and x<3]) evaluates to true. If no triggers are defined

then an empty trigger, which is always activated, is as-

sumed. In addition, transitions can have effects (e.g.,

/x:=1).

The UML semantics define that a state machine can

only be in one of the (simple) states in a region3 at the

same instance of time. The filled circle and its outgoing

transition mean that, by default, (i.e. when the execution is

started) the state machine is in its initial state, State_0

(i.e., when the execution is started). The expected execu-

tion behavior is as follows:

 When the execution is started the state machine is in

its initial state, State_0.

 As soon as the guard condition, [t>1 and x<3], is

true, State_0 is exited, the transition effect, x := 1, is

executed and State_1 is entered. The state machine is

again in a stable configuration that is referred to as an

active configuration.

 As soon as the guard condition, t>1.5 and x>0,

becomes true, State_1 is exited, the effect, x:=2, is

executed and State_2 is entered.

 As soon as the condition x>1 becomes true, State_2 is

exited, the transition effect, x:=3, is executed and

State_0 is entered.

Figure 2 shows Modelica code that performs the be-

havior described above. Figure 3 presents the visualized

simulation results.

3 If a composite state or multiple regions are defined for a state machine,
then it means that the state machine is in multiple (simple) states at the
same time.

Figure 1: State machine defines part of class behavior

Figure 2: Corresponding Modelica code

Figure 3: Simulation results
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3.2 State Machines in ModelicaML

UML2 defines two types of state machines: behavior state

machines and protocol state machines. Behavior state ma-

chines are used to model parts of class behavior. Modeli-

caML state machines are derived from UML behavior

state machines. Compared to behavior state machines,

protocol state machines are limited in terms of expres-

siveness and are tailored to the need to express protocols

or to define the lifecycle of objects. Since this is not the

main intended area of application for ModelicaML, proto-

col state machines are not taken into account. Conse-

quently, none of the chapters of the UML specification

that address the protocol state machines are considered.

State machines are used in ModelicaML to model parts

of class behavior. A behavioral class (i.e., Modelica class,

model or block) can have 0..* state machines as well as

0..* other behaviors (e.g. equation or algorithm sections).

This is different from a typical UML application where

usually only one state machine is used to represent the

classifierBehavior. In ModelicaML it is possible to define

multiple state machines for one class which are executed

in parallel. This possibility allows the modeler to structure

the behavior by separating it into individual state ma-

chines. When multiple state machines are defined for one

class they are translated into separate algorithm sections in

the generated Modelica code. This implies that they can-

not set the same class variables (e.g., in entry/do/exit or

transition effects) because it would result in an over-

determined system.

UML state machines are typically used to model the

reactive (event-based) behavior of objects. Usually an

event queue is implemented that collects all previously

generated events which are then dispatched one after the

other (the order is not fully specified by UML) to the state

machine and may cause state machine reactions. Strictly

speaking, a UML state machine reacts (is evaluated) only

when events are taken from the event queue and dis-

patched to the state machine.

ModelicaML uses Modelica as the execution (action)

language. In contrast to the typical implementations of

UML state machines, the Modelica code for a Modeli-

caML state machine is evaluated continuously, namely,

after each continuous-time integration step and, if there

are event iterations, at each event iteration. Event itera-

tions concept is defined by Modelica ([1], p.25) as fol-

lows: “A new event is triggered if at least for one variable

v “pre(v) <> v” after the active model equations are

evaluated at an event instant. In this case, the model is at

once re-evaluated. This evaluation sequence is called

“event iteration”. The integration is restarted, if for all v

used in pre-operators the following condition holds:

“pre(v) == v”.”. The definition of pre(v) is the following:

“Returns the “left limit” y(t
pre

) of variable y(t) at a time

instant t. At an event instant, y(t
pre

) is the value of y after

the last event iteration at time instant t …” (see [1], p.24).

Furthermore, the following definition is essential to

understand the execution of Modelica code (see Modelica

specification [1], p.84): “Modelica is based on the syn-

chronous data flow principle and the single assignment

rule, which are defined in the following way:

 All variables keep their actual values until these values

are explicitly changed. Variable values can be ac-

cessed at any time instant during continuous integra-

tion and at event instants.

 At every time instant, during continuous integration

and at event instants, the active equations express re-

lations between variables which have to be fulfilled

concurrently (equations are not active if the corre-

sponding if-branch, when-clause or block in which the

equation is present is not active).

 Computation and communication at an event instant

does not take time. [If computation or communication

time has to be simulated, this property has to be ex-

plicitly modeled].

 The total number of equations is identical to the total

number of unknown variables (= single assignment

rule).”

3.2.1 Transformation of State Machines to Mode-
lica Code

Two main questions need to be considered when translat-

ing a ModelicaML state machine into Modelica:

 The first question is whether a library should be used

or whether a code generator should be implemented.

One advantage of using a library is that the execution

semantics can be understood simply by inspecting the

library classes. In order to understand the execution

semantics of generated code one also needs to under-

stand the code generation rules.

 The behavior of a ModelicaML state machine can be

expressed by using Modelica algorithmic code or by

using equations. Note that the statements inside an al-

gorithm section in Modelica are executed exactly in

the sequence they are defined. This is different from

the equation sections which are declarative so that the

order of equations is independent from the order of

their evaluation. The Modelica StateGraph library [5]

uses equations to express behavior that is similar to the

UML state machine behavior.

In ModelicaML, the behavior of one state machine is

translated into algorithmic code that is generated into one

algorithm section of the containing class4. The rationale

4 A Modelica class can have 0..* algorithm sections.

4



for the decision to implement a specific code generator

instead of implementing a library and to use algorithm

statements instead of equations is the following:

 The behavior expressed by a state machine is always

causal. There is no need to use the acausal modeling

capability of Modelica. By using algorithm (with pre-

defined causality) no sorting of equations is required.

 Furthermore, for the implementation of inter-level

transitions, i.e. transitions which cross states hierarchy

borders, the deactivation and activation of states and

the execution sequence of associated actions

(exit/entry action of states or state transitions effects)

has to be performed in an explicitly defined order. This

is hard to achieve when using equations that are sorted

based on their data dependencies.

3.2.2 Combining Continuous-Time and Discrete-
Time Behavior

The fact that a ModelicaML state machine is translated

into algorithmic Modelica code implies that all actions

(transition effects, or entry/do/exit actions of states) can

only be defined using algorithmic code. Hence, it is not

possible to insert equations into transition effects or en-

try/do/exit actions of states. However, it is possible to

relate the activation of particular equations based on the

activation or deactivation of state machine states. This is

supported by the dedicated IsInState()-macro in

ModelicaML. Vice versa, state machines can react on the

status of any continuous-time variable.

3.2.3 Event Processing (Run-To-Completion Se-
mantics Applicability)

UML, [2] p. 565, defines the run-to-completion semantics

for processing events. When an event is dispatched to a

state machine, the state machine must process all actions

associated with the reaction to this event before reacting to

further events (which might possibly be generated by the

transitions taken). This definition implies that, even if

events occur simultaneously, they are still processed se-

quentially. In practice, this requires an implementation of

an event queue that ultimately prevents events from being

processed in parallel. This can lead to ambiguous execu-

tion semantics as is pointed out in section 4.2.

The problem with event queues, as discussed in sec-

tion 4.2, does not exist in ModelicaML.If events occur

simultaneously (at the same simulated time instant or

event iteration) in ModelicaML state machines they are

processed (i.e. consumed) in parallel in the next evalua-

tion of the state machine.

However, the definition of the run-to-completion se-

mantics is still applicable to Modelica and, thus, to Mode-

licaML state machines in the sense that when an event has

occurred a state machine first finishes its reactions to this

event before processing events that are generated during

these reactions.

4 State Machines Execution Semantics Is-
sues Discussion

4.1 Issues with Instantaneous States: Deadlocks
(Infinite Looping)

In Modelica the global variable time represents the simu-

lated real time. Computations at event iterations do not

consume simulated time. Hence, states can be entered and

exited at the same simulated point in time. For instance,

Figure 3 shows State_2 being entered and exited at the

same simulated point in time. However, in ModelicaML, a

state cannot be entered and exited during the same event

iteration cycle, i.e., variables that represent states cannot

be set and unset in the same event iteration cycle. This is

ensured by using the pre(state activation status) function

in the conditions of state transition code. This enforces

that the entire behavior first reacts to an event before re-

acting to the events that are generated during event itera-

tions (i.e. re-evaluation of the equation system).

When instantaneous states are allowed it is possible to

model deadlocks that lead to an infinite loop at the same

simulated point in time. Consider Figure 4 (left): The be-

havior will loop infinitely without advancing the simu-

lated time and a simulation tool will stop the simulation

and report an issue.

If such a behavior is intended and the state machine

should loop continuously and execute actions, the modeler

can break the infinite looping by adding a time delay5 to

one of the involved transitions (see the right state machine

in Figure 4). In doing so the simulation time is advanced

and the tool will continue simulating.

In large models deadlocks can exist which are not as

obvious as in the simple example depicted in Figure 4.

Infinite looping is often not modeled on purpose and is

hard to prevent or to detect. This issue is subject to future

research in ModelicaML.

Figure 4: Deadlocks (infinite looping) example

5 AFTER(expression) is a ModelicaML macro. It is expanded to the
guard condition state_local_timer > expression.
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4.2 Issues With Concurrency When Using Event
Queues

Consider the state machine in Figure 5 modeled in IBM

Rational Rhapsody [14]. The events ev1 and ev2 are gen-

erated simultaneously at the same time instant when enter-

ing the initial states of both regions. However, it is not

obvious to the modeler in which order the generated

events are dispatched to the state machine.

When the simulation is started Rhapsody shows that

the events are generated and put into the event queue in

the following order: ev1, ev2. When restarting the simula-

tion the order of events in the queue will always be the

same. Obviously, there is a mechanism that determines the

order of region executions based on the model data.

Next, these events are dispatched to the state machine

one after the other. First the event ev1 is dispatched and

the transition to state_1 is executed, then the event ev2 is

dispatched and the transition from state_1 to state_2 is

executed, as shown in Figure 6.

Figure 5: Events queue issue 1

Figure 6: Events queue issue 1 simulation. The state
machine ends up in state_2 in both regions.

According to this behavior the occurrence of ev2 is

delayed. However, with the state machine in state_1 no

ev2 occurs. The event ev2 occurs when the state machine

is in state_0. This behavior seems to be similar to the con-

cept of deferred events described in the UML specifica-

tion ([2], p.554): “An event that does not trigger any tran-

sitions in the current state, will not be dispatched if its

type matches one of the types in the deferred event set of

that state. Instead, it remains in the event pool while an-

other non-deferred event is dispatched instead. This situa-

tion persists until a state is reached where either the event

is no longer deferred or where the event triggers a transi-

tion.”.

Consider Figure 7. It shows a slightly modified state

machine. The event ev2 is generated inside the left region

and the ev1 is generated inside the right region. The order

of events in the queue is now reversed: ev2, ev1.

Figure 8 shows the simulation result. In contrast to the

assumption above, the event ev2 is not deferred. It is dis-

patched to the state machine and discarded after the transi-

tion to state_1 is taken. The state machine finally stays in

state_1, which is a different behavior than in Figure 6.

Figure 7: Events queue issue 2

Figure 8: Events queue issue 2 simulation. The state
machine ends up in state_1 in both regions.

Along with the fact that the modeler cannot control the

execution order of the parallel regions (this issue is ad-
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dressed in section 4.3) and, thus, the order in which events

are generated, the main issue here is that it leads to behav-

ior that is unpredictable and cannot be expected from the

modeler’s perspective.

Figure 9 shows the same model in ModelicaML. In

contrast to the examples above, regardless of whether the

event ev2 is generated in the right region or in the left re-

gion, the execution behavior is the same – the state ma-

chine always ends up in state_1 in both regions.

This is because the events that occur simultaneously

are processed (i.e., dispatched and consumed) in parallel

during the next state machine evaluation cycle. When the

transitions from the states state_0 to state_1 in both re-

gions are executed, event ev2 is also consumed and the

state machine stays in both states state_1 because with the

state machines in states state_1 in both regions no event

ev2 is generated.

Figure 9: Same model in ModelicaML. The state
machine ends up in state_1 in both regions.

4.3 Issue with Concurrent Execution in Regions

Regions are executed in parallel, i.e. at the same simulated

time instant. However, the corresponding Modelica code

in the algorithm section is still sequential (procedural). To

ensure determinism and make the semantics explicit to the

modeler, in ModelicaML each region is automatically

given a priority relative to its neighboring regions (a lower

priority number implies higher execution order priority).

This may be necessary when there are actions that set the

same variables in multiple parallel regions6, as illustrated

in Figure 10.

6 This example is artificial and is meant for illustration purposes only.
Normally, modeling such behaviour will probably be avoided.

Figure 10: Definition of priority for parallel regions

Since Region_0 is given a higher execution priority, it

will be executed prior to Region_1, which has lower prior-

ity. The result is that openValve is set to false. Note

that if State_0 in Region_0 was a composite state, then its

internal behavior would also be executed before the be-

havior of State_0 in Region_1.

Priorities are set by default by the ModelicaML model-

ing tool. The modeler can change priorities and, in doing

so, define the execution sequence explicitly to ensure the

intended behavior.

The regions priority definition is also used for exiting

and entering composite states as well as inter-level transi-

tions as discussed in sections 4.5 and 4.6.

4.4 Issues with Conflicting Transitions

When a state has multiple outgoing transitions and trigger

and guard conditions overlap, i.e. they can be true at the

same time, then the transitions are said to be in conflict

([2], p.566): “Two transitions are said to conflict if they

both exit the same state, or, more precisely, that the inter-

section of the set of states they exit is non-empty. Only

transitions that occur in mutually orthogonal regions may

be fired simultaneously.” When triggers are defined for a

transition, then there is no issue with overlapping guard

conditions because simultaneous events are not processed

in parallel in UML. This is different in ModelicaML be-

cause events are processed in parallel and can overlap.

However, it is not clear from the UML specification what

should happen if conflicting transitions do not have any

triggers but only have guard conditions defined, that can

evaluate to true at the same time. This issue is addressed

in section 4.4.1

Furthermore, in case the conflicting transitions are at

different hierarchy levels, UML defines the following: “In

situations where there are conflicting transitions, the se-

lection of which transitions will fire is based in part on an

implicit priority. These priorities resolve some transition

conflicts, but not all of them. The priorities of conflicting

transitions are based on their relative position in the state

hierarchy.” This issue is described in section 4.4.2.
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4.4.1 Priorities for State-Outgoing Transitions

Consider the state machine in Figure 11. If x and y are

greater than 2 at the same time both guard conditions

evaluate to true. In ModelicaML, which transition will be

taken then is determined by the transition execution prior-

ity defined by the modeler.

Figure 11: Priorities definition for state-outgoing
transitions

As for regions (discussed in section 4.3), conflicting

transitions coming out of a state are prioritized in Modeli-

caML. Priorities for transitions are set by default by the

modeling tool. The modeler can change priorities and

thereby ensure deterministic behavior.

4.4.2 Priority Schema for Conflicting Transitions at
Different State Hierarchy Levels

UML defines the priority schema for conflicting transi-

tions that are at different levels as follows (see p.567): “…

By definition, a transition originating from a substate has

higher priority than a conflicting transition originating

from any of its containing states.” No rationale is docu-

mented for this decision as pointed out in [11].

Consider the state machine in Figure 12. What should

happen when x and y are greater than 2 at the same time?

This case is not addressed in the UML specification be-

cause no triggers are defined for these transitions. One

possible answer could be: Transition to state NOT OK is

taken. Another answer could be: Transition to state NOT

OK is taken and then transition to state OK is taken. Yet

another answer could be: Transition to state OK is taken

and since State_0 is deactivated no further reaction inside

State_0 is to be expected. The latter is implemented in

ModelicaML.

Figure 12: Transition at higher levels have higher
priority

In ModelicaML the priority scheme is different from

UML. In ModelicaML, outgoing transitions of a compos-

ite state have higher execution priority than transitions

inside the composite state. The rationale for this decision

is as follows:

 This semantics is more intuitive and clear. For exam-

ple, if states are described using sub-state machines

(presented in their own diagrams), the modeler cannot

know if a particular transition is taken unless he or she

has inspected all lower-level sub-state machines dia-

grams. The UML priority scheme can also lead to be-

havior where the composite state is never exited be-

cause events are consumed at some level further down

the hierarchy of the composite state.

 The ModelicaML priority scheme reduces the com-

plexity of the code generator. For example, as already

mentioned above, event queues are not used in Mode-

lica. To avoid that transitions of a composite state con-

sume events that are already consumed inside the

composite states, events need to be marked or removed

from the queue. Such an implementation would drasti-

cally increase the size and complexity of the code gen-

erator as well as of the generated Modelica code.

4.5 Issues with Inter-Level Transitions

This section discusses issues concerning the execution

order of actions as a result of transition executions. Ac-

tions can be entry/do/exit actions of states or effect actions

of transitions. The order in which actions are executed is

important when actions are dependable, i.e. if different

actions set or read the same variables.

Consider the state machine in Figure 13. Assume that

each state has entry and exit actions, and that Region_0 is

always given the highest priority and Region_x the lowest.

When the state machine is in state a and cond1 is true,

the question is in which order the states are activated and

the respective entry actions are executed. This case is not

addressed in the UML specification.

From the general UML state machine semantics defi-

nition we can deduce that sub-states cannot be activated as

long as their containing (i.e. composite) state is not acti-

vated. For example, it is clear that the state b has to be

8



activated before the states c and i can become active. Fur-

thermore, we can argue that since the modeler explicitly

created an inter-level transition the state e2 should be acti-

vated first, i.e. before states in neighboring regions at the

same (i.e. f) or at a higher state hierarchy level (i.e. g, h, or

i). Hence, when the inter-level transition from state a to

state e2 is taken the partial states activation sequence and

its resulting order of entry-actions execution should be: b,

c, d, e2. However, in which sequence shall the states f, g,

h and i be activated? Possible answers are: i, h, g, f, or i, g,

h, f , or f, g, h, i, or f, h, g, i.

In ModelicaML, this issue is resolved as follows: First

all states containing the target state and the target state

itself are activated. Next, based on the region execution

priority, the initial states from neighboring regions are

activated. Since the priority in this example is defined for

regions from left (highest) to right (lowest) for each com-

posite state, the activation order would be b, c, d, e2, f, g,

h, i. Vice versa, if the region priority would be defined the

other way around (from right to left) the activation order

would be b, c, d, e2, i, h, g, f.

A similar issue exists regarding the transition to state a

when the state machine is in state e2 and when cond2 is

true. Here the states deactivation and exit actions execu-

tion order are involved. The resulting deactivation se-

quence in ModelicaML would be: e2, f, d, g and h (based

on the region priority definition), c, i and b.

Figure 13: Inter-level transition example

4.6 Issues with Fork and Join

Like section 4.5, this section addresses issues regarding

the activation and deactivation of states. However, in this

case, UML fork and join constructs are regarded. Consider

the state machine on Figure 14. With the state machine in

state a the questions are:

 In which sequence are states b, c, d, e, and f activated

when the transitions (fork construct) from state a is

executed?

 In which sequence are states b, c, d, e, and f deacti-

vated when the transitions (join construct) to state g

are executed?

This case is also not addressed in the UML specifica-

tion. In ModelicaML, first the parent states of the transi-

tion target-states are activated. Then the target states

themselves are activated based on the fork-outgoing tran-

sition priority. Next the initial states in the neighboring

regions are activated based on the region priority defini-

tion.

Again assume that each state has entry and exit ac-

tions, and that Region_0 is always given the highest prior-

ity and Region_x the lowest. The resulting states activa-

tion sequence (and respective execution of entry actions)

for the fork construct would be: b, d and e (based on the

fork-outgoing transitions priority), c and f (based on their

region priority). The resulting deactivation for the join

construct would be: d and e (based on the join-incoming

transitions priority), c and f (based on their region priority

definition), b. In any case, the modeler can define the exe-

cution order explicitly.

Figure 14: Fork and join example

5 Conclusion

This paper presents a proof of concept for the translation

of UML state machines into executable Modelica code. It

presents how the executable semantics of UML state ma-

chines are defined in ModelicaML and how state ma-

chines are used to model parts of class behavior in Mode-

licaML. The ModelicaML prototypes can be downloaded

from [15].

Furthermore, this paper highlights issues that should

be addressed in the UML specification and makes propos-

als on how to resolve them. Section 4.2 questions the use

of an event queue that prevents simultaneous events from

being processed in parallel. When procedural code is used

for the implementation of state machines execution, sec-
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tion 4.3 makes a proposal to include priority for regions.

A regions priority also supports the definition of states

activation or deactivation order in case of inter-level state

transitions (section 4.5) or fork/join constructs (section

4.6). Section 4.4.1 introduces execution priority for con-

flicting state-outgoing transitions in order to allow the

modeler to control the execution and to ensure that the

state machine behaves as intended.
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Abstract
Ptolemy is an open-source and extensible modeling and
simulation framework. It offers heterogeneous modeling
capabilities by allowing different models of computation to
be composed hierarchically in an arbitrary fashion. This pa-
per describes modal models, which allow to hierarchically
compose finite-state machines with other models of com-
putation, both untimed and timed. The semantics of modal
models in Ptolemy are defined in a modular manner.

Keywords Hierarchy, State machines, Modes, Hetero-
geneity, Modularity, Modeling, Semantics, Simulation,
Cyber-physical systems.

1. Introduction
Cyber-physical systems (CPS) consist of digital comput-
ers interacting among themselves and with physical pro-
cesses. CPS applications are emerging at high rates today
in many domains, including energy, environment, health-
care, transportation, etc.

Designing CPS is a non-trivial task, as these systems
manifest non-trivial dynamics, complex interactions, dy-
namic behavior, and a large number of components. The

∗ Ptolemy in this document refers to Ptolemy II, see http:
//ptolemy.eecs.berkeley.edu. NOTE: If you are reading
this document on screen (vs. on paper) and you have a network
connection, then you can click on the figures showing Ptolemy
models to execute and experiment with those models on line.
There is no need to pre-install Ptolemy or any other software.
The models that are provided online are summarized at http:
//ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/
jnlp-books/doc/books/design/modal/index.htm.
This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support
from the National Science Foundation (NSF awards #CCR-0225610
(ITR), #0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs)), the
U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S.
Air Force Office of Scientific Research (MURI #FA9550-06-0312 and
AF-TRUST #FA9550-06-1-0244), the Air Force Research Lab (AFRL),
the Multiscale Systems Center (MuSyC) and the following companies:
Bosch, National Instruments, Thales, and Toyota.

3rd International Workshop on Equation-Based Object-Oriented
Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

design complexity is increased by the inherent heterogene-
ity in modeling such systems: parts of the system are digi-
tal, others are analog; parts are timed, others untimed; parts
are discrete-time, others are continuous-time; parts are syn-
chronous, others are asynchronous; and so on. This inher-
ent heterogeneity implies a need for heterogeneous model-
ing. By the latter we mean a method and associated tools,
that provide designers with a way of combining different
models of computation, in an unambiguous way, in a sin-
gle model of a system. A model of computation (MoC)
here refers to a language or class of languages with a com-
mon syntax and semantics. Different MoCs realize differ-
ent modeling paradigms, each being more or less suitable
for capturing different parts of the system.1

A number of modeling languages exist today, realiz-
ing different MoCs. Many of these languages are gain-
ing acceptance in the industry, in so-called model-based
design methodologies. Examples are UML/SysML, Mat-
lab/Simulink/Stateflow, AADL, Modelica, LabVIEW, and
others. These types of languages are raising the level of
abstraction in designing CPS, by offering mechanisms to
capture concurrency, interaction, and time behavior, all of
which are essential concepts in CPS. Moreover, verifica-
tion and code generation tools exist for many of these lan-
guages, allowing to go beyond simple modeling and simu-
lation, and facilitating the process of going from high-level
models to low-level implementations.

Despite these advances, however, no universally ac-
cepted solution exists for heterogeneous modeling. In fact,
integration of modeling languages and tools is still a com-
mon theme in many research or industrial projects, as well
as products (e.g., co-simulation environments) despite the
fact that such solutions are often cumbersome to use and
unsatisfactory, at best.

One of the longest efforts attacking the heterogeneous
modeling problem is the Ptolemy project [15, 25]. Ptolemy
follows the actor-oriented paradigm, where a system con-
sists of a set of actors, which can be seen as processes exe-
cuting concurrently and communicating using some mech-
anism. In Ptolemy, the exact manner in which actors exe-
cute (e.g., by interleaving, in lock-step, or in some other or-

1 We should emphasize the importance of syntax, in addition to semantics,
in choosing a MoC. State machines, for example, can be given a discrete-
time semantics, and so can a synchronous language such as Lustre [19].
Even though the two have the same semantics, their syntax (in the broad
sense) is very different, which makes them suitable for different classes of
applications.
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der) and the exact manner in which they communicate (e.g.,
through message passing or shared variables) are not fixed
once and for all: they are defined by an MoC. The imple-
mentation of an MoC in Ptolemy is called a domain and is
realized by a director, which semantically is a composition
operator. Currently, Ptolemy includes a number of differ-
ent domains and corresponding directors, including, finite-
state machines (FSM), synchronous data flow (SDF) [26],
synchronous reactive (SR) [11, 19, 14], and discrete event
(DE) [7, 33, 9, 37, 23, 30, 8].

Among the important characteristics of Ptolemy is that
(a) it is open-source (and free); and (b) it is architected to
be easily extensible. Thanks to these features, new domains
and new actors are being added to the tool by different
groups, depending on their specific interests.

Another essential feature of Ptolemy is that domains can
be combined hierarchically, in an arbitrary fashion. For ex-
ample, the model in Figure 1 combines SDF with hierar-
chical FSMs; the model in Figure 3 combines DE with
FSMs. This is the fundamental mechanism that Ptolemy
provides to deal with the heterogeneous modeling prob-
lem. It allows designers to build models where different
parts are described in different MoCs, in a well-structured
manner [15].

In this paper, we are particularly interested in one as-
pect of heterogeneous modeling in Ptolemy, namely, modal
models. Modal models are hierarchical models where the
top level model consists of an FSM, the states of which
are refined into other models (possibly from different do-
mains). Modal models are suitable for a number of applica-
tions. They are especially useful in describing event-driven
and modal behavior, where the system’s operation changes
dynamically by switching among a finite set of modes.
Such changes may be triggered by user inputs, sensor data,
hardware failures, or other types of events, and are essen-
tial in fault management, adaptivity, and reconfigurability
(see, for instance, [36, 35]). A modal model is an explicit
representation of this type of behaviors and the rules that
govern transitions between behaviors.

The main contribution of this paper is to provide a for-
mal semantics of Ptolemy modal models. In the process,
we also give a modular and formal framework for Ptolemy
in general, which is an additional contribution. We do not
formalize all the domains of Ptolemy, however, as this is
beyond the scope of this work.

The paper is organized as follows. Section 2 briefly re-
views the visual syntax of Ptolemy through an example.
In Section 3 we provide a formalization of the abstract se-
mantics of Ptolemy. In Section 4 we provide the formal
semantics of Ptolemy modal models. In Section 5 we dis-
cuss possible alternatives and justify our choices. Section 6
discusses related work. Section 7 concludes the paper.

2. Visual Syntax
Ptolemy models are hierarchical. They can be built us-
ing a visual syntax, an example of which is given in Fig-
ure 1. This example contains, at the top level of the hier-
archy, a model with five actors, Temperature Model,

Bernoulli, ModalModel, SequencePlotter and
SequencePlotter2. The SDF domain is used at this
level, as indicated by the use of SDF Director, ex-
plained below. Temperature Model and ModalModel
are composite actors: they are refined into other models, at
a lower level of the hierarchy.

The refinement of ModalModel is an FSM with two
locations,2 normal and faulty. This FSM is hierarchi-
cal: each of its locations is refined into a new FSM, as
shown in the figure. In Ptolemy, FSMs use implicitly the
FSM domain. This is why no director is shown in the FSM
models. The FSM director is implied. Note that, although
in this example the location refinements are FSMs, this
need not be the case: they can be models using any of the
Ptolemy domains (e.g., see example of Figure 3).

The refinement of Temperature Model is shown in
Figure 2. This refinement does not specify a domain (it
contains no director). In such a case, the refinement uses
implicitly the same domain as its parent, that is, in this case,
the SDF domain. Since this model mixes SDF and FSM, it
is an example of a heterogeneous model.

The visual syntax of Ptolemy contains other elements,
which we briefly describe next. For details, the reader is
referred to [27, 24] and the Ptolemy documentation [1].
Each actor contains a set of ports, used for communication
with other actors. Ports are explicitly shown in the internal
model of a composite actor: for instance, fault is an input
port and heat is an output port of ModalModel. A port
may be an input, an output, both, or neither. Parameters
can also be defined: for instance, heatingRate is a
parameter of the top-level model of Figure 1, set initially to
0.1 (the value of parameters can be modified dynamically
during execution).

FSMs in Ptolemy consist of a finite set of locations, one
of which is the initial location, and some of which may
be labeled as final locations. Initial locations are indicated
by a bold outline; the initial locations of the FSMs in
Figure 1 are normal and heating. A transition links
a source location to a destination location. A transition is
annotated with a guard, a number of output actions and
a number of set actions. Guards are expressions written in
the Ptolemy expression language. Actions are written in the
Ptolemy action language. Guards of two or more outgoing
transitions of the same location need not be disjoint, in
which case the FSM is non-deterministic. The user can
indicate this, in which case transitions are visually rendered
in red. Default transitions, indicated with dashed lines, are
to be taken when no other transitions are enabled, i.e., their
guard is the negation of the disjunction of the guards of all
other transitions outgoing from the same source location.
Reset transitions, indicated with open arrowheads, result
in the refinement of the destination state being reset to
its initial condition. Preemptive transitions, indicated by
a red circle at the start of the transition, may prevent the
execution of the current state refinement, when the guard
evaluates to true.

2 For the visual syntax, we use the term location instead of state, in order
to distinguish it from the semantical concept of state (Section 3).
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Figure 1. A hierarchical Ptolemy model.

Figure 2. The Temperature Model composite actor
of Figure 1.

3. Ptolemy Abstract Semantics
The semantics and execution of a Ptolemy model is defined
by means of so-called abstract semantics. The same mech-
anism is used to ensure compositionality of Ptolemy do-
mains. Mathematically, a Ptolemy model can be viewed as
an abstract state machine, with a set of states, inputs and
outputs. The abstract semantics defines the transitions of
this machine, that is, how its state and outputs evolve ac-
cording to the inputs.

Evolution can be seen as being untimed, that is, a se-
quence of transitions, or timed, that is, a sequence of tran-
sitions annotated by some timing information (e.g., a time
delay since the previous transition). It is interesting to note
that time is mostly external to the definition of the abstract
state machine, that is, the times in which transitions are
taken are primarily decided by the environment of the ma-
chine. However, timed, or proactive, machines can also be

defined, by providing means to impose constraints on these
times. We do this using timers (see Section 3.1.2). In the
absence of any such constraints, the machine is untimed, or
reactive.

From an implementation point of view, the abstract
semantics is essentially a set of methods (in the object-
oriented programming sense) that every actor in a model
implements. Composite actors also implement these meth-
ods, through their director. By implementing these methods
in different ways, the various types of Ptolemy directors
realize different models of computation. In the Java imple-
mentation of Ptolemy the abstract semantic methods form
a Java interface that actor and director classes implement.
This interface includes the following methods:3

• initialize: it defines the initial state of the ma-
chine.

• fire: it computes the outputs at a given point in time,
based on the inputs and state at that point in time.

• postfire: it updates the state.

A formalization of the abstract semantics of Ptolemy is
provided next.

3 For the purposes of this discussion, we omit some methods, e.g.,
prefire, etc. We also ignore implementation of communication be-
tween actors. See [1] for details.
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3.1 A formalization of abstract semantics of actors
3.1.1 Untimed actors
An untimed actor is formalized as a tuple

(S,s0, I,O,F,P).

The actor has a set of states S, a set of input values I, and
a set of output values O. The initialize method of
the actor is formalized as an initial state s0 ∈ S. The fire
and postfiremethods of the actor are formalized as two
functions F and P, respectively, of the following type:

F : S× I×N→ O

P : S× I×N→ S

That is, F returns an output value y∈O, given a state s∈ S,
an input value x ∈ I, and an index j ∈ N; P returns a new
state, given a state, an input value and an index. The index
is used to model non-determinism, and can be seen as a
“dummy” input.4

We require that F and P be total in S and I. F and P
may be partial in N (i.e., in their index argument), however,
we require that for any s ∈ S and x ∈ I, there exists at least
one j ∈N such that both F(s,x, j) and P(s,x, j) are defined.
If there is a unique such j for all s ∈ S and x ∈ I then the
actor is deterministic. In that case we omit index j and write
simply F(s,x) and P(s,x).

The semantics of an untimed actor can be then defined
as a set of sequences of transitions, of the form:

s0
x0,y0−→ s1

x1,y1−→ s2
x2,y2−→ ·· ·

such that for all i = 0,1, ..., we have si ∈ S, xi ∈ I, yi ∈ O,
and there exists j ∈ N such that

yi = F(si,xi, j) (1)
si+1 = P(si,xi, j) (2)

Note that, exactly what the sets S, I and O are, and ex-
actly how the functions F and P are defined, is a prop-
erty of a given actor: it is in this sense that this semantics
is abstract. Different actors will have different instantia-
tions of this abstract semantics. Also note that the above
elements essentially define a non-deterministic Mealy ma-
chine, where F is the output function of the machine, and
P the state update function. This machine is not necessar-
ily finite-state. The input and output domains may also be
infinite.

Examples of untimed actors A simple untimed actor is
the Gain actor which produces at its output a value k · x
for every value x appearing at its input. k is a parameter of
the actor. This actor is deterministic. It has a single state,
and therefore a trivial (constant) update function P. Its F
function is defined simply by: F(x) = k · x.

4 Since j ∈ N, we can model unbounded, but enumerable, non-
determinism. The reader may wonder why we do not model the pair F,P
simply as a single function with type S× I → 2O×S, that is, taking a state
and an input and returning a set of state, output pairs. The reason is that
we want to decouple output and update functions, which allows to give
semantics of modal models in a modular manner: see Section 4.2. Once
the F and P functions have been decoupled, it is necessary for some book-
keeping in order to keep track of non-deterministic choices, that must be
consistent among the two functions. This role is played by the index j ∈N.

3.1.2 Timed actors
The semantics of timed actors extend those of untimed
actors with time. In particular, timed actors have special
state variables, called timers, that measure time. Our timers
are dense-time variables (they take values in the set of
non-negative reals, R≥0) inspired by the model of [13]. A
difference with [13] is that in our case timers can be created
or destroyed dynamically, and the set of timers that are
active at any given time is not necessarily bounded. Also,
our timers can be suspended and resumed, which is not the
case with the timers of [13]. Timers are set to some initial
value when they are created, and then run downwards (i.e.,
decrease as time elapses) until they reach zero, at which
point they expire. A timer can be suspended which means
it is “frozen” and ceases to decrease with time. It can
then be resumed. Suspended timers are also called inactive,
otherwise they are active.

In the case of timed actors, the sets I and O often contain
the special value ε denoting absence of a signal at the
corresponding point in time. We will use this value in the
examples that follow.

Consider a timed actor with fire and postfire functions F
and P. The semantics of this actor can be defined as a set
of sequences of timed transitions of the form:

s0
x0,y0,d0−→ s1

x1,y1,d1−→ s2
x2,y2,d2−→ ·· ·

such that there exists a sequence of indices j0, j1, ... ∈ N,
and for all i = 0,1, ..., we have si ∈ S, xi ∈ I, yi ∈O, di ∈ T ,
and

yi = F(si,xi, j) (3)
si+1 = P(si	di,xi, ji) (4)

di ≤ min{c | c an active timer in si} (5)

di ∈R≥0 denotes the time elapsed at state si. si	di denotes
the operation which consists in decrementing all active
timers in si by di. Condition (5) ensures that this operation
will not result in some timers becoming negative, i.e., that
no timer expiration is “missed”. This condition therefore
“forces” the environment of the actor to fire the actor at
least at those instants when its timers are set to expire.
Note that the actor could also be fired at other instants as
well, for example, whenever an external event is received.
The actor itself does not, and cannot, specify those other
instants, because they are generally context-dependent.

Notice that, even though the above semantics does not
explicitly mention suspensions and resumptions of timers,
these actions can be easily modeled as part of the inputs
xi. In Ptolemy, these inputs are not accessible to the user,
however, only to the director. This is particularly the case
for hierarchical modal models, as described in Section 4.2.

Superdense time: It is worth noting that the delays di
can be zero. This implies in particular that multiple output
events can occur at the same real-time instant. It is conve-
nient to model such cases using so-called superdense time,
i.e., the set R≥0 ×N [32, 28, 31]. Then, an output y can
be seen as a signal with a superdense time axis, that is, as
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a partial function from R≥0 ×N to a set of values. For in-
stance, in a run of the form

s0
x0,y0,d0−→ s1

x1,y1,d1−→ s2
x2,y2,d2−→ ·· ·

where d0 = d1 = 0 and d2 > 0, the output signal y can be
seen as a function on superdense time, such that y(0,0) =
y0, y(0,1) = y1, y(d2,0) = y2, and so on.

Examples of timed actors
First, let us consider a DiscreteClock actor that pe-
riodically emits some value v at its output, with period
π ∈ R>0. Both v and π are parameters of the actor. The
DiscreteClock actor has no inputs. It has a single state
variable which is a timer c. Initially, c = 0 (as an option,
the user can also set initially c = π, in which case the ac-
tor will not produce an event until after one period). The
F and P functions of DiscreteClock are defined below
(the actor is deterministic, so we omit reference to index j):

F(c) = v if c = 0, and ε if c > 0
P(c) = π if c = 0, and c if c > 0

The definition of F states that an output with value v is
produced when the timer c reaches zero, otherwise, the
output is absent. The definition of P states that the timer
is reset to π when it reaches zero and is left unchanged
otherwise.

Next, let us consider the ConstantDelay actor,
which, for every input with value x that it receives at time
t, it produces an output with value x at time t + ∆, where
∆ ∈ R>0, is a parameter of the actor. As state variables,
ConstantDelay maintains a set of active timers C plus,
for each c ∈ C, a variable vc to memorize the value that
must be produced when c expires. Initially C is empty. A
new timer c is added to C whenever an input is received:
at that point, c is set to ∆ and vc is set to x, the value of
the input. When a timer c expires it is removed from C
and output with value vc is produced. Formally, a state s of
ConstantDelay is a set of triples of the form (c,δc,vc),
where c is a timer, δc ∈ R≥0 is the current value of c, and
vc is as explained above. The initial state is s0 = /0. The F
and P functions of ConstantDelay can be defined as
follows (again we omit j because of determinism):

F(s,x) =
{

vc if ∃(c,0,vc) ∈ s
ε otherwise

P(s,x) =
{

(s\{(c,0,vc)})∪Q if ∃(c,0,vc) ∈ s
s∪Q otherwise

Q =
{

{(c′,∆,x)} if x 6= ε and 6 ∃(c′,δc′ ,vc′) ∈ s
/0 otherwise

Note that a “fresh” timer c′ is created only when the input
x is not absent, as defined by Q.

3.1.3 Untimed actors as a special case of timed actors
As expected, an untimed actor can be seen as a special case
of a timed actor, with no timers. Because of this, untimed
actors can also be given semantics in terms of sequences
of timed transitions. In this case, Condition (4) reduces to

Condition (2), and Condition (5) is trivially satisfied with
the convention that the minimum of an empty set is infinity.
This means that the time instants when untimed actors are
fired are entirely determined by the context in which these
actors are embedded.

3.2 Composite actors
As illustrated in Section 2, Ptolemy allows to build hier-
archical models, by encapsulating a set of actors, plus a
director, within a composite actor. The latter is itself an ac-
tor, thus can be further encapsulated to create new compos-
ite actors. Models of arbitrary hierarchy depths can be built
this way.

A composite actor C has an abstract semantics just like
any actor. How this abstract semantics is instantiated de-
pends on: (a) the instantiation of the abstract semantics of
the internal actors of C; and (b) the director that C uses.

Directors can be viewed formally as composition oper-
ators: they define functions F and P of a composite actor
C, given defined such functions for all internal actors of C.

A large number of directors are included in Ptolemy, im-
plementing various models of computation. It is beyond the
scope of this document to formalize all these directors. We
informally describe two of them, namely, SR (synchronous
reactive) and DE (discrete event). More information can be
found in [23, 14, 29, 30, 8]. In the next section, we formal-
ize the semantics of the FSM Director. The latter imple-
ments modal models, which is the main topic of this paper.

Synchronous Reactive (SR): Every time a composite ac-
tor C with an SR director is fired, the SR director repeatedly
fires all actors within C until a fixpoint is reached. This fix-
point assigns values to all ports of actors of C. Note that,
because of interconnections between actors, some output
ports are typically connected to input ports of other actors
of C, and therefore obtain equal values in the fixpoint. The
fixpoint is defined with respect to a flat CPO, namely, the
one that has a bottom element ⊥ representing an “unde-
fined” or “unknown” value, and all other, “true” values,
greater than ⊥ in the CPO order (see [14]). The fixpoint is
computed by assigning initially ⊥ to all outputs, and then
iterating in a given order the F functions of all actors of C.
Any execution order can be used and is guaranteed to reach
the fixpoint, although some execution orders may be more
efficient (i.e., may converge faster). When the fixpoint is
reached, the fire() method of the SR director (and conse-
quently, of C) returns.5 The postfire() method P of C is im-
plemented by invoking the P methods of all internal actors
of C.

Discrete Event (DE): DE leverages the SR semantics, but
extends it with time. (see [23, 8]). As is typical with DE
simulators, the DE director maintains an event queue that
stores events in timestamp order. Initially, the event queue
is empty. When actors are initialized, some of them may
post initial events to the event queue. Whenever the com-
posite actor is fired, the earliest events are extracted from

5 The fixpoint may contain ⊥ values, which means the model contains
feedback loops with causality cycles. In this case, the Ptolemy implemen-
tation returns a Java exception.
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the event queue and presented to the actors that receive
them. In contrast to standard DE simulators, Ptolemy in-
corporates the SR semantics for processing simultaneous
events. In particular, a fixpoint is computed, starting with
the extracted events at the specified ports, and ⊥ values for
all other, unknown, ports. Fire() returns when the fixpoint is
found, as in the SR case. Postfire() consists in calling post-
fire() of internal actors, as in the SR case. During postfire(),
actors may post new events to the queue.

4. Modal Model Semantics
A modal model M is a special kind of composite actor. In
the visual syntax, M is defined by a finite-state machine
Mc whose locations can be refined into sub-models, as
illustrated in Figure 1. In Ptolemy terminology, Mc is called
the controller of M. Each of these sub-models is itself a
composite actor. Therefore, the internal actors of M are
the composite actors that refine the locations of Mc, plus
Mc itself. Note that a special case of modal model is an
FSM actor: this is a modal model whose controller has
no refinements. Another special case of modal model is a
hierarchical state machine: this is a modal model whose
refinements are FSM actors or are themselves hierarchical
state machines.

In this section, we describe the semantics of modal mod-
els, starting with the simple case of FSM actors, and ex-
tending to the general case of modal models.

4.1 Semantics of FSM actors
FSM actors are untimed actors. For a given FSM actor M,
its set of states is the set of all possible valuations of the
state variables of M. The set of state variables includes
all parameters of M (which in Ptolemy can be changed
dynamically) as well as a state variable to record the current
location of M. A valuation is a function assigning a value
to every state variable. The initial state assigns to each
parameter its default value (specified by the user) and to
the location variable the initial location (also specified by
the user). M may also have inputs and outputs, defined in
Ptolemy’s visual syntax by input and output ports that the
user specifies, as in Figure 1.

A state s and an input x of M, together with the tran-
sitions of M, define a finite set s1,s2, ...,sk of successor
states, as follows. Let l be the location of M at s and con-
sider an outgoing transition from l. If the guard of this tran-
sition is satisfied by s and x we say that the transition is en-
abled. Suppose there are k≥ 1 enabled transitions. Enabled
transition j defines successor state s j. In particular, if the
destination location of the transition is l j, then the location
at s j is set to l j. Moreover, any parameters that are set in
the set action of the transition are assigned a corresponding
new value at s j, and the rest of the parameters remain un-
changed (i.e., have the same value at s j as at s). Therefore,
this defines function P on s and x, as follows: P(s,x, j) = s j,
for j = 1, ...,k. If there are no enabled transitions at s and x,
then there is a unique successor state, namely s itself, and
we define P(s,x, j) = s, only for j = 1.

The output actions of the enabled transitions define a set
y1,y2, ...,yk of output values, therefore, they define function
F on s and x, as follows: F(s,x, j) = y j, for j = 1, ...,k. The
output values are the values that the output action assigns to
output ports of the actor. If an output port is not mentioned
in the output action, or if no transitions are enabled (and
therefore no output actions are executed) then the value of
this port is ε, i.e., “absent”.

4.2 Semantics of general modal models
A general modal model M consists of its controller Mc,
which is an FSM actor with n locations, l1, ...ln, plus a set
of composite actors M1, ...,Mn, where Mi is the refinement
of location li. Some locations may have no refinement: this
is handled as explained below. Without loss of generality,
we assume that the initial location of Mc is l1 (a controller
has a single initial location). We also denote by Sc the set
of locations: Sc = {l1, ..., ln}.

We denote by Si,si
0,F

i,Pi, respectively, the set of states,
initial state, fire and postfire functions of Mi. As explained
in Section 3.1.3, untimed actors are special cases of timed
actors, therefore, without loss of generality, we can assume
that all composite actors Mi are timed. Then, denote by Ci

the set of timers of Mi.
In addition, without loss of generality, we can assume

that every location has a refinement. Indeed, if location li
has no refinement, then the above elements can be defined
trivially: Si as a singleton set (i.e., containing a single state
which is also the initial state), F i as the identity function
from inputs to outputs, and Pi as the constant function,
since the state is unique.

In a modal model M, the sets I and O of input and output
values are the same for all internal actors of M, namely,
Mc,M1, ...,Mn, and the same for M as well.

The set of states S of M is the cartesian product of the
sets of states of all internal actors of M, and similarly for
the sets of initial states, i.e.:

S = Sc×S1×·· ·×Sn

s0 = (l1,s1
0, ...,s

n
0)

Although timers are just a special kind of state variables,
it is convenient to be able to refer to them specifically.
Therefore, we define C to be the set of timers of M, as

C =
[

i=1,...,n

Ci

In s0, all timers except those in C1 are set to their suspended
state. Those in C1 are set to their active state.

It remains to define functions F and P of M. Consider a
state s ∈ S and an input x ∈ I. Let s = (sc,s1, ...,sn) be the
vector of component states of Mc,M1, ...,Mn, respectively.
Suppose the location of Mc at sc is li. Let J ⊆ N be the set
of indices j for which F i(si,x, j) and Pi(si,x, j) are defined.
We distinguish cases:

1. There are no outgoing transitions of Mc from location
li that are enabled at s and x. Then, for j ∈ J, we define
F(s,x, j) = F i(si,x, j), P(s,x, j) = (sc,s′1, ...,s

′
n), where:
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(a) s′i = Pi(si,x, j);

(b) for all m = 1, ...,n with m 6= i, we have s′m = sm.

2. There exist k ≥ 1 preemptive outgoing transitions from
li that are enabled at s and x. Suppose, without loss
of generality, that the j-th such transition goes from
location li to location l j, for j = 1, ...,k, and denote
its output action and set action by α j and β j, respec-
tively. Then, for j = 1, ...,k, we define F(s,x, j) = y j
and P(s,x, j) = (s′c,s

′
1, ...,s

′
n), where:

(a) y j is obtained from α j, as in the FSM actor seman-
tics;

(b) s′c is obtained from l j and β j as in the FSM actor
semantics;

(c) if the j-th transition is not a reset transition then s′j is
identical to s j, except that all suspended timers in C j

are resumed; if the j-th transition is a reset transition
then s′j is the initial state of M j: s′j = s j

0; (note that
the timers of M j, if any, are also re-initialized in the
case of a reset transition);

(d) s′i is identical to si, except that all timers in Ci are
suspended;

(e) for all m = 1, ...,n with m 6= j and m 6= i, we have
s′m = sm.

3. There are no preemptive outgoing transitions from li
that are enabled at s and x, but there exist k ≥ 1 non-
preemptive outgoing transitions from li that are enabled
at s and x. Let j1 = 1, ...,k and suppose that the j1-
th such transition goes from li to l j1 and has output
and set actions α j1 and β j1 . Let j2 range in J. Then,
for j = j1 · j2, we define F(s,x, j) = y j and P(s,x, j) =
(s′c,s

′
1, ...,s

′
n), where:

(a) y j is obtained by applying the output action α j1 to
F i(si,x, j2), that is, to the output produced by Mi for
non-determinism index j2;

(b) s′c is obtained as in Case 2b.

(c) s′j is obtained as in Case 2c.

(d) s′i is obtained by applying the set action β j1 to
Pi(si,x, j2) and suspending all timers in Ci;

(e) for all m = 1, ...,n with m 6= j and m 6= i, we have
s′m = sm.

Item 1 treats the case where no transition of the con-
troller is enabled: in this case, the modal model M be-
haves (i.e., fires and postfires) like its current refine-
ment Mi. Item 2 treats the case where preemptive tran-
sitions of the controller are enabled, possibly in addition
to non-preemptive transitions. In this case the preemp-
tive transitions preempt the firing and postfiring of Mi,
and only the outputs produced by the transition of the
controller can be emitted. Item 3 treats the case where
only non-preemptive transitions of the controller are en-
abled. In this case, before choosing and taking such a
transition non-deterministically, we must fire (again, non-
deterministically in general) the current refinement Mi.

Figure 3. A Ptolemy model with a timed modal model.

Examples As a first example, consider the ModalModel
actor of Figure 1. The controller of ModalModel is the
automaton with locations labeled normal and faulty.
The refinements of both these locations are FSM actors.
As all refinements are untimed, ModalModel is also un-
timed. The refinement of faulty is a non-deterministic
FSM actor, as the outgoing transitions of its heating
location have both guard true. The state variables of
ModalModel are the location variables of all FSM actors,
plus the count parameter (the other parameters, such as
heatingRate, etc., should in principle also be included
in the state; however, they can be omitted since they re-
main invariant). A sample of the values that the F and P
functions of ModalModel take is given below (because
of determinism, the index parameter j is omitted):

F
(
(normal,heating,cooling,10),(22, f ault)

)
= −0.05

P
(
(normal,heating,cooling,10),(22, f ault)

)
=

(normal,cooling,cooling,10)
F

(
(normal,heating,cooling,10),(22, f ault)

)
= −0.05

P
(
(normal,heating,cooling,10),(22, f ault)

)
=

( f aulty,cooling,heating,0)

The first two equations correspond to Case 1 whereas the
last two equations correspond to Case 3. No preemptive or
reset transitions exist in this model.

Another example, that illustrates timed modal models,
is shown in Figure 3. This model switches between two
modes every 2.5 time units. In the regular mode it gen-
erates a regularly-spaced clock signal with period 1.0 (and
with value 1, the default output value for DiscreteClock).
In the irregular mode, it generates pseudo-randomly
spaced events using a PoissonClock actor with a mean
time between events set to 1.0 and value set to 2. The re-
sult of a typical run is plotted in Figure 4, with a shaded
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Figure 4. A plot of the output from one run of the model
in Figure 3.
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Figure 5. A variant of Figure 3 where a preemptive
transition prevents the initial firing of the innermost
DiscreteClock actor of that model.

background showing the times over which it is in the two
modes. A number of observations worth making arise from
this plot.

First, note that two events are generated at time 0, a
first event with value 1, at superdense time (0,0), and a
second event with value 2, at superdense time (0,1). The
first event is produced by DiscreteClock, according
to the semantic rules of Case 3a. If we had instead used
a preemptive transition, as shown in Figure 5, then that
first output event would not appear: this is according to the
semantic rules of Case 2a and the fact that the action of the
preemptive transition does not refer to the output port.

The second event is produced by PoissonClock, ac-
cording to the semantic rules of Case 1. The reason for
this second event is the following. When the model is
initialized, a timer is set by PoissonClock to value
zero: this means that this timer is to expire immediately,
i.e., PoissonClock will produce an output immediately
when it starts, and at random intervals thereafter.6 When
the irregular state is entered, this timer is resumed and
since it has value 0, is ready to expire. This forces a new fir-
ing of ModalModel and ultimately of PoissonClock,
which produces the event at superdense time (0,1).

Another interesting observation concerns the output
events with value 1 occurring at times 3.5, 4.5, 8, and so
on. These events occur at times during which the model
is at the regular mode. Notice that the model begins in
the regular mode but spends zero time there, since it

6 This is the default operation, which can be optionally modified by the
user by setting the appropriate parameter of the PoissonClock actor.

immediately transitions to the irregular mode. Hence,
at time 0, the regular mode becomes inactive and the
timer of DiscreteClock is suspended. Since no time
has elapsed yet, the timer is equal to 1, the value of the pe-
riod, at this time. When regular is re-entered at time 2.5,
this timer is resumed, and expires one time unit later, i.e., at
time 3.5. This explains the event at that time. Moreover, the
timer is reset to 1 during postfire(), according to Case 1a.
It expires again 1 time unit later, which explains the event
at time 4.5. Finally, it is reset to 1 at time 4.5, suspended at
time 5, and resumed at time 7.5, which explains the event
at time 8.

The above examples may appear rather artificial, how-
ever, they are given mainly for purposes of illustration
of the semantics. More interesting and realistic examples
can be found in the open-source distribution of Ptolemy
available from http://ptolemy.eecs.berkeley.
edu/. Detailed descriptions of some of these examples can
be found in other publications of the Ptolemy project. For
modal models in particular, we refer the reader to the case
studies described in [8].

5. Alternative Modal Model Patterns
It is instructive to briefly discuss alternative definitions of
modal model semantics and justify our choices.

First, consider our design choice to have the refine-
ment Mi of location li in a modal model M “freeze” while
the controller automaton is in a location different from li.
“Freezing” here means that Mi is inactive, in terms of its
state which does not evolve at all. This includes in partic-
ular the timers of Mi, which are suspended until li is re-
entered. An alternative would be to consider all refinements
“live”, but to feed the inputs of M only to the currently “ac-
tive” refinement, say Mi, and to use the outputs of Mi as out-
puts of M. Let us term this alternative as the “non-freezing”
semantics, for the purposes of this discussion.

One issue with the non-freezing semantics is that it is
redundant from a modeling point of view. Indeed, as we
show next, there exists a simple design pattern that allows
the non-freezing semantics to be easily implemented in
Ptolemy. Since this mechanism already exists, there would
be no need to add modal models to get the same semantics.
In fact, using different modeling patterns that result in the
same semantics may be confusing.

This design pattern, which we call the switch-select pat-
tern, is illustrated in Figure 6. There are five actors in this
model, M1, M2, Controller, BooleanSwitch and
BooleanSelect. M1 and M2 represent the refinements
of the non-freezing modal model that the pattern captures,
and Controller is its controller (which is assumed to
have 2 locations in this example). The switch and select ac-
tors control the routing of the inputs/outputs to/from either
M1 or M2, depending on the state that the Controller is
in. The latter may in turn generally depend on outputs of
these actors, which is captured by the communication links
between Controller, M1 and M2.

Another issue with the non-freezing semantics is that it
is less modular than the freezing semantics. In the freez-
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Figure 6. The switch-select pattern.

ing semantics, a subsystem (refinement of a certain loca-
tion) is completely unaffected by being suspended. In the
non-freezing semantics, behavior of a subsystem continues
while the latter is inactive, only with absent inputs. Thus
the evolution of the subsystem depends on how much time
it remains inactive, for instance.

Another design choice could be to have time pass in in-
active subsystems, i.e., to have their timers active, while
having the rest of their state be frozen. The disadvan-
tage of this approach is that for many components (e.g.
DiscreteClock), the state is intrisically bound to time.
It is therefore hard to separate the two notions.

Finally, it is worth mentioning the approach taken in
the Simulink/Stateflow tool from the Mathworks. Simulink
is a hierarchical block diagram language. Some Simulink
blocks can be Stateflow models, that is, hierarchical state
machines similar to Statecharts [22]. Simulink blocks,
however, cannot be embedded into Stateflow as state refine-
ments. The way to get modal behavior in Simulink/Stateflow
is by connecting Stateflow outputs to enable inputs of
Simulink blocks. When a block is disabled, it is frozen,
as in the Ptolemy semantics. Contrary to Ptolemy, how-
ever, the output of a disabled block can still be used as it
still exists: it is simply held constant while time passes.

6. Related work
A number of formalisms based on hierarchical state ma-
chines (HSMS) have been studied in the literature, in-
cluding Statecharts [22], SyncCharts [5], and commer-
cial variants such as Stateflow from the Mathworks or
Safe State Machines from Esterel Technologies [6] (SSMs
are based on SyncCharts). Hierarchical state machines
are also one of the diagrams of UML. The main differ-
ence of Ptolemy modal models with respect to the above
is that in Ptolemy modal model refinements are not re-
stricted to state machines or concurrent state machines
(built with AND states). In Ptolemy, refinements can in-
clude other domains as well, for instance, as in Figure 3.
Note that AND states can still be modeled in Ptolemy,
using concurrent ModalModel actors. For instance, the
TemperatureModel and ModalModel actors shown
in Figure 1 are concurrent: the TemperatureModel
could very well be another modal model. Note that in this
case, a MoC such as SR or DE must be specified, in order
to define the semantics of the composition of these actors.

Even when we restrict our attention to pure HSMs with
no concurrency, there are differences between the Ptolemy
version and the models above. A variety of different se-
mantics has been proposed for Statecharts for instance,
see [10, 16]. Operational and denotational semantics for
Stateflow are presented in [21, 20]. Implicit formal seman-
tics of Stateflow by translation to Lustre are given in [34].

Also, contrary to Statecharts, SyncCharts and Stateflow,
Ptolemy modal models do not use broadcast events for
communication.7 Guards may refer to input events, how-
ever, these events are transmitted using explicit ports and
connections, and are evaluated when the fire() or postfire()
methods are called (e.g., guard in_isPresent in Fig-
ure 3 is evaluated to true or false depending on whether
the value of the input is present or absent when the fire()
method is called).

Another difference with the above languages is that
Ptolemy modal models include both untimed (reactive)
and timed (proactive) models. Timed versions of State-
charts and UML (but not general modal models) have been
proposed in [12, 17].

The semantics we present are somewhat operational in
nature, given by functions that produce outputs and update
the state. Our semantics is also abstract, as in Abstract
State Machines [18]. Most importantly, our semantics is
modular, in the sense that we show how the output and
state update functions of composite actors are defined given
output and state update functions of sub-actors.

Formal studies of HSMs can be found in [3, 4, 2].

7. Conclusions
We presented a modular and formal framework for Ptolemy,
and described the semantics of modal models, as these are
implemented in Ptolemy. Modal models allow hierarchical
composition of state machines with other MoCs, therefore
generalizing hierarchical state machines and enriching het-
erogeneous modeling with modal behavior.

Existing Ptolemy models emphasize actor semantics, by
having an explicit notion of inputs and outputs. This is in
contrast to languages such as Modelica, which are based on
undirected equations. Note that feedback loops are allowed
in Ptolemy, and can be used to capture some form of equa-
tional constraints. How these loops are handled depends on
the domain used. In the SR and DE domains, for instance,
the equations are solved by fixpoint computations, as men-
tioned above. In the future we intend to study equational
constraints in more depth, borrowing ideas from languages
such as Modelica. One direction would be to implement a
Modelica domain in Ptolemy, which would work by trans-
lating Modelica models into, essentially, CT models, and

7 It is worth pointing out that, although it is common to refer to commu-
nication in Statecharts as being “broadcast”, this is slightly misleading,
since it implies that all processes receive all signals, which is not the case.
A more accurate description is “name matching” since, in fact, only those
processes that refer to the signal by name receive it. Name matching is as
static as ports in Ptolemy, but is less modular (changing the name in one
part of the model requires changing it at other places as well). It also re-
quires more effort to identify the communication links between processes
(e.g., when determining causality loops in a diagram).
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then handle the latter using numerical solvers. This trans-
lation could benefit from the code generation framework
available in Ptolemy [38].

Although our discussion in this paper focused on discrete-
time modal models, Ptolemy currently supports continuous-
time models as well, via the CT domain, which allows a
number of numerical solvers to be expressed, including
those that use backtracking [28, 29]. A formalization of
CT using the framework developed in this paper is a topic
of future work.

The semantics developed in this paper are operational.
It would be interesting to study also a denotational seman-
tics of modal models. The work reported in [20] could be
beneficial in that context.
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Abstract
Modeling and simulation of physical systems have become
a substantial part in the development of mechatronic sys-
tems. A number of usage scenarios for such models like
Rapid Control Prototyping and Hardware-in-the-Loop test-
ing require simulation in real-time. To enable model execu-
tion on a hard real-time target, a number of adaptations are
usually performed on the model and the solver. However, a
profiling facility is needed to direct the developer to perfor-
mance bottlenecks.

We present the concepts and a prototypical implemen-
tation of a profiler for the specific analysis of Modelica
models running on Scale-RT, a Linux-based real-time ker-
nel. The profiler measures the number of calls and execu-
tion times of simulation specific functions calls. Interpret-
ing these results, the developer can directly deduce which
components of a simulation model are most promising for
optimization. Profiling results and their impact on model
optimization are discussed on two case studies from the
area of thermodynamic automotive systems.

Keywords Real-Time, Modelica, Profiling, Optimization,
SimulationX, Scale-RT

1. Introduction
The modeling and simulation language Modelica is widely
accepted in transport industries, in particular in the automo-
tive area. Modelica is employed for modeling the physics of
the controlled system in the software development process
of electronic control components. Whereas so far simula-
tion aimed for conceptual validation in the early concept
phase, nowadays we find an increasing need for real-time
simulation or even real-time execution of models on micro-
controllers.

Prominent usages of real-time simulation are Rapid
Control Prototyping (RCP) [7] and Hardware-in-the-Loop
(HiL). These are techniques for the concept and develop-
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ment phases: The overall system is modeled as a combi-
nation of the controlled part and a model of the controller
- often in a unified modeling and simulation environment.
Combined simulation facilitates validation not only of the
concepts, but - in a stepwise refinement process - also of
the detailed functional and timing behavior of the controller
under design, provided detailed physical models and suffi-
cient computing resources are available. For this purpose,
the major requirement is that simulation runs as fast as
the real system. Several real-time platforms are available
to support RCP or HiL, like the open-source Linux-based
Scale-RT [9] running on standard PCs, or specific hardware
solutions e.g. dSPACE systems.

Another usage of real-time simulation is to execute the
model of the controlled system as part of the control: The
idea of Model Predictive Control (MPC) is to predict the
short term behavior of the physical system by feeding the
sensored data from the system into the model and simulate
its reaction on possible inputs from the controller, thereby
optimizing the controller strategy. In on-board diagnostics,
the results from a model running in parallel on the con-
troller are compared to the measurements of the real sys-
tem to deduce abnormal behavior that is a sign of failures.
For these usages, the simulation model has to be executed
on the same target as the control, i.e. a micro-controller
with restricted resources in many cases. Consequently, be-
ing part of the control component imposes hard real-time
constraints on model execution.

The usages we mentioned are in the context of hard real-
time systems (HRT), i.e. systems for which the timely re-
sponse has to be verified for all possible executions of a
system component. In contrast to hard real-time, a soft real-
time system is only required to perform its tasks according
to a desired time schedule on the average [3]. As a conse-
quence of the stringent needs for verification, the compo-
nent behavior of HRT systems has to be analyzed in detail
with respect to the timing constraints.

In order to guarantee predictable execution times, simu-
lations on real-time targets typically use a fixed-step solver
to solve the DAE-System (Differential Algebraic Equa-
tion). Moreover, such models require highly efficient mod-
eling to not exceed the given step size. But even then source
code that is automatically generated from Modelica models
may violate the timing constraints.
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During the solving process the solver generates events
for every zero crossing of a zero function. The solver ex-
amines the DAE-system in an interval close about these
events, so events cause additional work load and will in-
crease the model runtime.

So, timing problems of the simulation model may arise
from various causes like events or the internal complexity
of the model. They become evident when runtime exceeds
the solver step size and hence the HRT-system usually will
abort the execution (although there are ways to construct
solvers that are able to ignore such overruns (see [14]).

In case of a timing violation the developer of the simula-
tion model has to improve the model’s efficiency by reduc-
ing the model’s complexity, by setting better start values, or
other measures. But so far these steps are purely based on
the developer’s experience. Real-time profiling may help
to give him or her a better understanding of the underlying
DAE-System since Kernighan and Pike note "Measurement
is a crucial component of performance improvement since
reasoning and intuition are fallible guides and must be sup-
plemented with tools like timing commands and profilers."
[8]. Based on profiling results the developer is able to iden-
tify the components causing the main work load and de-
cide whether a submodel has to be enhanced or an algebraic
loop has to be broken.

There are several real-time profiling tools available in
particular for Linux-based systems [12, 2], but these are
general purpose profiles and not specifically well suited to
analyze code for real-time targets that was automatically
generated from tools like Dymola or SimulationX. First
of all, the actual profiling shall be performed on the real-
time target itself to get direct information about the runtime
on a specific host. Profiling an execution on a standard
PC under Windows and scaling the results for a specific
target as it can be done in other domains will not give valid
approximations here, because most approaches and tools
employ another (fixed-step) solver for execution on real-
time targets whereas variable step solvers are used under
Windows which differ significantly with respect to their
timing characteristics. In addition, the real-time target may
impose further restrictions on the profiling, e.g. the real-
time Linux Scale-RT 4.1.2 compiles and runs the model as
a Kernel-Module.

The described usage scenario in the development of sim-
ulation models requires a precise measurement of function
execution times and function call counting as well as mea-
surement of certain code sections representing algebraic
loops lead to the development of a new profiling tool that
can be used on such a real-time operating system.

Within the source code of a model calls to external li-
braries may occur, e.g. fluid property libraries. For mod-
eling of thermodynamic systems most of the work load is
generated by those function calls. Therefore it is necessary
to examine them closer.

In general, an algebraic loop results from connecting the
output of a submodel to the input of that particular model.
Due to this cyclic dependency relation, models containing
algebraic loops have to be solved iteratively. Algebraic

loops cause serious problems in simulation tools based on a
simple input-output-block structure like Matlab Simulink.
In equation based modeling the loops are traced back to the
underlying equations and may be solved analytically but
still many of them have to be solved numerically[13].

The profiling method introduced in this paper will mea-
sure the execution time of each function call, to count func-
tion calls separately in each relevant section and to measure
the time needed to solve algebraic loops, so called "(non-
)linear blocks". Especially for profiling of real-time models
the overhead of the profiling method on the model runtime
shall be kept small. This is achieved by implementing the
producer-consumer-pattern as described in Section 4.

Basically this concept can be applied to each target op-
erating system and simulation environment (e.g. Dymola).
Even an online evaluation of the profiling results during ex-
ecution of the model could be implemented. Until now we
implemented this concept for models exported from Simu-
lationX to Scale-RT. The instrumentation for the case stud-
ies has been done manually, but automatisation will be fi-
nalized soon.

2. Profiling on Real-Time Targets
Tracing and profiling are two related techniques that aid the
developer to understand the behavior of a program. Tracing
gives a detailed view on which function is called, who is
the callee, how long does the execution take and also a call
counting may take place. Profiling instead gives a statistical
evaluation of average execution times and frequencies of
the function calls or the profiled sections [12].

The tracing results on a particular program execution
can be displayed as call-chains in a call-graph. A call-graph
demonstrates the possibly complex call structures anno-
tated with the execution times of the callee. Call-graphs
are especially helpful to understand the communication of
threads within multi-threaded applications. A Profiling tool
generates simpler, statistical results without any structure
or evaluation of the call context. However, as the execution
of a simulation model follows a fixed elementary plan as
described in Section 3, profiling is sufficient for our pur-
poses. Profiling and tracing generally involve three phases:

• instrumentation or modification of the application to
perform the measurement

• actual measurement during execution of the application
• analysis of results

Instrumentation adds instructions to the application for
measuring execution times, updating counter variables and
measuring the consumption of resources. Instrumentation
cannot only be performed at source code level but also dur-
ing compilation, linking or even at the target code level.
Where the instrumentation takes place depends on the pro-
filing tool. However, in any case the measured data need to
be traced back to the source code level for interpretation.

The instrumentation will obviously increase the execu-
tion time of the application, because additional steps will
be taken to measure and store the profiling or tracing data.
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In general, the overhead caused by instrumentation shall be
reduced to a minimum.

The two main approaches to profiling are based on sam-
pled process timing and measured process timing. In pro-
filing based on sampling, a hardware interval timer period-
ically interrupts the execution of the profiled application.
During interruption the profiling tool examines which parts
of the program have been executed since last interruption.
Profiling tools like prof [5] and gprof [4] are based on sam-
pling and commonly employed.

In profiling based on measured process timing the in-
strumentation procedures are called at function entry and
exit. When entering or leaving a function a time stamp is
recorded additionally to counters and timers. Profiling tools
like TAU [11] are based on this approach and we will fol-
low it, too.

3. Profiling of Modelica Models

C source files of the model application

Solver

User source code

Target I/O-methods

Compiler

Application

Model converted to
C source files

Export

Model created
in Simulator

Figure 1. Export of models from a simulator to target

Simulation tools like SimulationX, Dymola or Mat-
lab/Simulink Realtime Workshop share the basic process
of exporting models which is depicted in Figure 1. The
simulator transforms the model to a DAE-System and after
that into C code written in a file. Several other sources are
added to the transformed model including a mathematical
solver and target specific I/O-methods, but those additional
files are always the same. Furthermore, user code can be
integrated manually at this point introducing user methods
or user libraries. This set of files builds the source code for
an application that calculates the desired results.

The C code originating from the models that were trans-
formed by the simulator have a common simple structure.
In the moment, this is specific to the framework used for
simulation, but with the new Functional Mock-up Interface
(FMI) [1] this is standardized. The FMI defines the exter-
nal interface between the C-Code or even the target code
generated from models and the solvers. By using the FMI
interface, models can be connected to any solver that real-
izes the solver’s side of the interface; and vice versa a solver
may be attached to any model that communicates via FMI.
Thereby models can be executed in "foreign" simulation

frameworks. When connecting the model code to a solver
which is part of the native simulator another internal and
more efficient interface may be used. However, in our cur-
rent approach the proprietary format of the model C code
provided by Simulation X is taken as input for the profiling.

To execute the model the following steps are taken:

• export of the model
• compilation of the model application
• transfer to the real-time target
• execution

The work flow for Scale-RT 4.1.2 as the target system is
as follows: SimulationX compiles the source of the model
in the Cygwin environment, which has to be installed un-
der Windows. This environment provides all libraries and
includes needed by this version of Scale-RT. The resulting
file is a tgz-file containing the compiled model and addi-
tional settings.

In order to be executed on the Scale-RT, the model
application is sent to the target system, e.g. by using the
Scale-RT Suite, which is part of the Scale-RT Environment
as well as Cygwin. Subsequently the model application
can be executed from the Scale-RT Suite. SimulationX is
able to send the model application to the target system and
execute it, too, but the results cannot be observed from
there.

In general, the model is separated in an initialization and
the simulation problem. Both of them consist of a number
of integration steps as well as a set of explicit calculations
of the outputs. A global fixed-step solver is used on real-
time targets for solving. In case of an overrun the execution
stops; so it is considered as a hard real-time simulation
guaranteeing the delivery of results within a certain time.

Each step of the global solver consists of one method
called several times representing the integration step and
one method called only once outputting the simulation
results through defined I/O-methods. Within those two
methods every calculation including function calls to user
libraries occur. Within the integration steps (non-)linear
equations (algebraic loops) that could not be solved analyt-
ically are evaluated numerically using a local solver. So the
structure of the source code for both, the initialization and
the simulation problem, looks as follows:

• Global solver step

nI · integration steps

− eI · external function calls

− cI · additional calculations

− aI · (non-)linear blocks

· eaI · external function calls

· caI · additional calculations

1 · output of variables

− eO· external function calls

− aO· additional calculations
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Because of the flat structure of the automatically gener-
ated source code the call-chain is not needed to understand
and analyze performance bottlenecks in a model in many
cases. We consider that a flat profiling for each relevant
section as the best choice. A flat profiling should be per-
formed on each (non-)linear block within the integration
step as well as the integration step and the output of vari-
ables itself. This gives the clearest view on the work load
caused by every single section.

Since hard real-time simulation shall guarantee the de-
livery of the results within the time limits, the maximum
runtime of a model is more important than the average run-
time. The profiling methods described in this paper mea-
sure and save the execution times of each simulation step
separately. Then the average and variance as well as the
maximum of the execution times are determined.

The aim of profiling is to direct the developer towards
parts of the model that are worth optimizing. But the devel-
oper is in charge of optimizing the model manually. How-
ever, after optimization it has not only to be verified that
the model application is running faster as before indeed,
but also that the optimized model calculates its results with
sufficient accuracy. So the work flow of real-time optimiza-
tion is as follows:

1. check model runtime, if real-time constraints are satis-
fied finish optimization

2. perform profiling

3. analyze the profiling data and identify performance bot-
tlenecks worth optimizing

4. optimize the model

5. check correctness of modification, if deviation errors are
too big revert and go back to 3.

6. go back to 1.

4. Implementation

C source files of the model application

Solver

User source code

Target I/O-methods

Compiler

Application

Modified model 
source files

Export

Model created
in Simulator

Profiling I/O-methods

Figure 2. Modified export of models from a simulator to
target

Comparing figure 1 and figure 2 reveals the modifi-
cations necessary for profiling. The converted model C

source file and the file containing the main real-time rou-
tines have been modified to perform the profiling, access
a FIFO buffer and to provide buffer memory to store the
profiling data internally.

As explained, the contribution of the profiling on ex-
ecution times shall be as small as possible. In our con-
text where the model will be executed as a kernel model,
an efficient solution for outputing profiling data is a ma-
jor point for minimizing the overhead. Therefore we ap-
plied the consumer-producer pattern and divided the pro-
filing into two tasks: The real-time Kernel task executing
the model and a User Space task - outside the hard real-
time context of the kernel - evaluating and storing the mea-
sured data. The two tasks are communicating through first-
in-first-out (FIFO) buffer.

As displayed in figure 3 the source code for the model
application is compiled as real-time task kernel module in
Scale-RT. The goal of instrumentation of the kernel task is
to log each external function call’s execution time in detail.
The instrumentation can easily be automated. For different
analysis szenarios the instrumentation is configured to pro-
file only the functions calls and sections of interest. For the
case studies described in Section 5 insturmentation has to
be done manually, but automatisation will be finished soon.

In order to store the profiling data on the hard disk
without delaying the execution of the model, a consumer is
created reading the FIFO buffer, interpreting the data and
storing statistical data, the minima and maxima for each
global solver step on the hark disk. As the execution times
of different sections as well as the external function calls
are measured the overhead of the global solver as well as
the profiling overhead can be estimated by comparing it to
the performance of the uninstrumented model.

For profiling, the model allocates memory of a fixed size
for an intermediate buffer and a main buffer when it begins
to execute. The main buffer is used to store the data until
the non-real-time user task can process it. This buffer is
implemented as a double buffer to avoid buffer overflows.
As soon as the first buffer is filled the routine switches to
the secondary buffer and sends the content of the first one to
the FIFO buffer. The intermediate buffer is used to record
all profiling data of one global solver step and is emptied in
the main buffer at the end of the current step.

Since in version 4.1.2 of Scale-RT in combination with
Cygwin the Kernel-Module cannot export symbols to the
user address space, the main buffer cannot be accessed di-
rectly by the user task. Writing the data into the virtual file
system procfs a.k.a FIFO buffer is a temporary workaround
for this problem enabling the Kernel task to store data ef-
ficiently. The user task triggers the execution of a Kernel
tasks method which copies the main buffer into the FIFO
buffer. In future the main buffer will be accessed and read
out by the user task directly, therefore these buffers will use
shared memory allocation methods.

For each global solver step of the model, the profiling
methods record the following information:

• execution time and frequency of an integration step
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Figure 3. Communication between user task and model task

• execution time and frequency of each external function
call within the integration step that does not reside in-
side a (non-)linear block

• execution time and number of loops of each (non-)linear
block within the integration step

• execution time and frequency of each external function
call within each (non-)linear block

• execution time of outputting variables at the end of the
current step

5. Case Studies
5.1 Case 1: Moist Air inside the Cabin of a Car
5.1.1 Description

min mout

msteam

Qperson

Qsun Qloss

Figure 4. Model of the air inside a cars passenger cabin

This Modelica model describes a simple system of the
air within a cabin of a car as displayed in figure 4 and it
uses the TEMO-property-library.

There is a mass flow of moist air entering the system
coming from the air conditioning and another mass flow of
moist air leaving the system. There is an heat flow induced
by the sun heating up the air inside the cabin and another
heat flow out of the cabin due to heat losses. In addition to
that there is a person inside the cabin who heats up the air
and also increases the moisture by a given water mass flow.

The thermodynamic properties of the moist air are mod-
elled on the basis of the ideal gas theory [15]. Condensing
and simple frost formation can be described with the prop-
erty equations given below. As the pressure in this case
study is about 1bar with temperatures down to 0◦C the
error introduced by applying the ideal gas theory is very
small.

dm

dt
(h− pv) +

(cp −Ri) ·
dT

dt
·m = ṁin · hin

+ṁsteam · hsteam
− ˙mout · hout
+Q̇sun + Q̇person (1)

dm

dt
= ṁin + ṁsteam − ṁout (2)

dmsteam

dt
= ṁin · ξin + ṁsteam

−ṁout · ξout (3)

Equation (1) is the first law of thermodynamics applied
to this model. The left side represents the dynamic change
of energy inside the cabin, the right side embodies the heat
and mass flows into and out of the cabin.

The pure mass balance is described in equation (2),
the balance for the water inside the cabin is defined by
equation (3). The concentration of water inside the air can
be calculated using these definitions.

This model has been developed during development of
the real-time TEMO-property-library, so it was used to
optimize the structure and interface of the library and has
been optimized several times. As a result, the number of
calculations is reduced to a minimum.

5.1.2 Results
Figure 5 shows the execution time of a global solver step
split into the main contributors described on page 3. The
four integration steps cause almost 98% of the work load.
The output of the results can be neglected as it causes less
than 1% of the work load. The summing up the integration
steps does not equal the model runtime, as the global solver
still has to evaluate the results and to perform auxiliary
operations. The profiling itself increases the gap between
the sum of each single contribution and the total runtime of
the model, but this manipulation cannot be avoided.

The impact of profiling on the execution times can be es-
timated by capturing the total runtime of the whole model
before and after the instrumentation. If every external func-
tion call and every (non-)linear block is profiled then the
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results
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global solver
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Figure 5. Integration steps cause main work load in the
global solver steps

runtime of the model in both case studies increases by 4%
at maximum.

As the external functions are called within the integra-
tion step, the execution time of the integration step inherits
the profiling overhead caused by the external function calls.
Therefore the gap between the sum of the executions times
of integration steps and the output of variables is not as big
as the increase of the whole model runtime. Because of this
the overhead displayed in figure 5 can partially be assigned
to the global solver.

gas properties
2.192 µs

mass balance
9.558 µs

moisture and 
energy balance

3.460 µs

overhead
0.527

Figure 6. Work load of an integration step broken down to
contributions

Figure 6 details the partitioning of the execution times
within the global solvers integration step. There are just
two algebraic loops, one representing the mass balance and
another embodying the moisture and energy balance. The
calls to the external gas property functions only occur out-
side the algebraic loops. The gap between these three sum-
mands and the execution time of one integration step is
equal to the overhead. This overhead contains all calcula-
tions that are not external function calls and not algebraic
loops. The rest is caused by the profiling methods.

The described model is already optimized so there is no
algebraic loop or external function call causing extraordi-
nary model runtime anymore. Figure 6 shows the balanced
sharing of the given step time.

5.2 Case 2: Steady State Continuity
5.2.1 Description
This case was built up in Modelica using the real-time
TEMO-property-library with the TIL-Library by TLK-
Thermo and the Institute for Thermodynamics of the Tech-
nische Universität Braunschweig [10, 6].

∑
ṁ =

dm

dt

∑
ṁ = 0

Figure 7. Non-linear pump and tube models with and
without thermal expansion of incompressible liquid

As visualized in figure 7 the model is composed of two
boundaries, a pump and a tube. The medium used in this
case is incompressible water, so all fluid properties only
depend on the temperature. Each property can be calculated
using a Modelica function of temperature. The pressure
increases at the pump is a second order function of the
volume flow rate. The tube model is based on the finite
volume concept and here composed of 2 cells. Within every
cell there is a mass-, energy- and momentum-balance. The
sine curve source sets the temperature at the inlet of the
system. The temperature changes with an amplitude of 5K
and an offset of 300K.

In each component a parameter called "SteadyStateCon-
tinuity" is introduced by the TIL-Library. This parameter
switches the mass balance of that component. In steady
state the amount of mass flowing into a component equals
the flow out at the same time (5). But in dynamic scenarios
a mass flow is induced by a change of temperature due to
the expansion of the fluid (7). The isobaric expansion co-
efficient β can be used to describe the expansion of a fluid
due to temperature change (4). For incompressible liquids
the density is not dependent on the pressure, so the change
of density can directly be related to β.

β = −1

ρ

(
∂ρ

∂T

)

p

(4)

0 = ṁin + ṁout (5)

0 = ṁin + ṁout − V · ρ · β ·
dT

dt
(6)

0 = ṁin + ṁout + V · dρ
dt

(7)
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If a submodel for a component uses dynamic state con-
tinuity, the mass flow is directly related to the change of
temperature. The DAE-system generated from this model
must take this relation into account and hence the simula-
tor has to increase the complexity of the DAE-system.

The change of density due to the change of temperature
can be neglected in most cases of dynamic simulation since
this effect is not relevant to the overall results of the whole
model. By activating the steady state continuity the mass
balance is not fulfilled anymore and mass may appear or
disappear, but the main algebraic loop is broken into several
smaller ones. There is no direct connection between mass
balance and energy balance anymore, so the underlying
smaller algebraic loops can be solved separately. This trick
reduces the size of the DAE-System in paricular for the
simulations of cycles.

For comparison, two subsystems with a tube and a pump
were instantiated, where one is using the steady state con-
tinuity equation while the other one is not. The profiling
should expose the work load caused by computing a negli-
gible effect of density change by temperature.

5.2.2 Results
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Figure 8. Profiling aids identifying the critical algebraic
loop causing the main work load

Figure 8 visualizes the contributions of the each alge-
braic loop to the whole integration step separately for the
steady state continuity submodel and the dynamic state
continuity submodel. It allows the user to identify the crit-
ical calculations. The major work load in the submodel us-
ing dynamic state continuity equation is caused by that par-
ticular continuity equation. This algebraic loop generated
from that equation has to be broken to reduce the execu-
tion time of this sub model. The simplification using steady
state continuity is a method to break this loop into several
smaller loops which can be solved more quickly.

Both models are equivalent in their results but differ
with respect to their performance. As the global symbolic
analysis performed during export selects different state
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Figure 9. Solving times for algebraic loops in integration
step of steady state continuity model are clearly faster

variables for each model, the contributions by the single al-
gebraic loops cannot be related directly to the correspond-
ing algebraic loops in the other model. The only way to
link the algebraic loops back to the underlying equations is
to trace back the involved variables.

These models were built using thermodynamic property
functions which provide properties as a external function
of temperature. This may cause additional algebraic loops
if inverse calculation is needed, e.g. for finding the cor-
responding temperature to a given enthalpy. To avoid this
the temperature inside the finite volumes of the tube is de-
scribed as a differential state. As a result there is no alge-
braic loop including calls to the fluid property functions in
both models.

Figure 9 relates the two models with respect to the work
load caused by algebraic loops to the external function calls
and the overhead of the global solver. The overhead and
the amount of fluid property calculations is the same for
both submodels. The contribution to the execution time
of the integration step by the steady state submodel is
significantly smaller.

There are other ways to break algebraic loops in a
model, if the resulting relation between the variables em-
bodies no or less important physical effects. For example
a capacitor can be used to decouple the direct dependency
between variables introducing a new differential state vari-
able. Many physical models idealize a system that normally
contains capacitors (e.g. the expansion of a tube due to a
pressure increase) that have been neglected. Although the
capacity may be very small, the effect is an uncoupling of
the algebraic loops.

Figure 10 visualizes the mass flow at both sinks. The
change of temperature at the inlet leads to a change of mass
flow rate. In case of the dynamic state continuity equation
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Figure 10. Error in mass flow due to usage of steady state
continuity equation

the mass flow rate at the inlet is not equal to the outlet
as a result of the expansion of the liquid. In case of the
steady state continuity equation the mass flow entering all
components is equal to the mass leaving the system and
hence this also applies to the whole system.

The deviation between the mass flow rate entering and
leaving those systems is smaller than 0.3%. So the simplifi-
cation of using steady state continuity equation for dynamic
state simulation is hardly affecting the results.
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Figure 11. Model runtime during initialization is the bottle
neck

The Figure 11 illustrates the temporal variation of the
model runtime. After that first peak of 59µs during ini-
tialization of the model the runtime resides at a constantly
lower level of 48µs. There are no bigger changes or events
inside the model after the initialization process. This case
study was performed on a common Desktop PC with a In-

tel Pentium 4/ 540 CPU at 3.2 GHz without any realtime
I/O-Interfaces.

6. Conclusion
This paper presents a brief description how profiling on
source code that was automatically generated from Model-
ica tools like SimulationX can be performed under the tar-
get real-time operating system. Profiling can be a powerful
tool aiding the user to understand the work load contribu-
tions by the internal algebraic loops. For optimization of
Modelica models in general profiling should be introduced
as a standard tool.
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Abstract 
Class parameterization and class generation enhance the 
object-oriented means of Modelica, either by making 
them better accessible for the user or more powerful to 
apply for the library designer. Nevertheless, the current 
solution in Modelica does not properly distinguish 
between these two concepts, and hence it does not 
represent a fully satisfying solution. This paper presents a 
proposal or vision for a partial redesign of the language 
by separating class parameterization and class generation. 
In this way, the language becomes simpler and yet more 
powerful. The derived concepts may serve as guideline 
for future considerations of the Modelica language design. 

Keywords     language design, class-parameterization 

1. Introduction 
This paper presents the concepts of class parameterization 
and class generation for equation-based modeling 
languages as Modelica. It is highlighted why these 
concepts are important for a modeling language and how 
they could be better regarded in the future. 

The paper is organized as a proposal for a future design 
of Modelica. It is instructive in order to be concise. The 
suggestions are concrete in order to be illustrative. 
Nevertheless, what finally matters is the abstract idea 
behind our concept that could as well be finally realized 
in a different form. 

To understand the current situation in Modelica [6,8], 
the problems of a language designer, and the motivation 
behind our proposal, let us review the most important 
fundamentals. 

1.1 Processing Scheme 

The translation of Modelica models into code for 
simulation purposes, involves several stages. These are 
depicted in Figure 1.  

The semantics of the language concern nearly every 
part of this processing scheme. For instance, the 
causalization of an equation is done in stage 4, whereas 
the realization of a model extension concerns stage 2. 
Even with the same syntactic elements, a modeler can 

formulate expressions that belong to different stages.  
An if-branch that depends on a parameter value 

corresponds to stage 2. If its condition is, however, 
dependent on a variable then it belongs to stage 4 and 5. 
In this paper, we are concerned with class 
parameterization and class generation. These two aspects 
belong to stage 2 of the processing scheme.  

Modelica contains language constructs of all these 
processing stages in one single layer. This makes the 
language very powerful and highly convenient. To some 
degree this style results out of the declarative character of 
Modelica. It enables the modeler to focus on what he 
wants to model rather than thinking about how to create a 
computational realization. In this way, a modeler can 
achieve his or her goals without being fully aware of the 
underlying processing scheme. 

Nevertheless, this puts an increasingly higher burden 
on the designers of such a language. Whereas the modeler 
does not need to know about the processing scheme, a 
language designer must have a very detailed knowledge. 
He or she is required to foresee all possible combinations 
with their potential problems that are introduced by a new 
language construct. As a language drifts towards higher 
complexity, this becomes a very hard task. 

1.2 Structural Type System 

The declarative style of Modelica is supported by a 
structural type system [1].  This means that the type 
results solely out of the structure of a class. Roughly 
speaking, type A is a sub-type of (or compatible to) type 
B, if all (public) elements of B are declared (by the same 
identifier) in A, and these elements are themselves sub-
types of their counterparts in B. 

In a structural type-system, the type is therefore 
independent from the methods used for its generation, and 
hence different lines of implementation may lead to 
compatible types. This is a big strength of structural type 
systems. Compatible types can have a common ancestor 
(mostly a partial model), but it is not required. 

With respect to class generation and class 
parameterization, two additional definitions of 
compatibility must be concerned that impose additional 
restrictions on the simple sub-type relationship. Plug 
compatibility requires that, in addition to sub-type 
compatibility, no further connections are introduced that 
must be connected from outside. Plug compatibility is 
required when models get exchanged by class 
parameterization. 
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Figure 1: Processing Scheme of a Modelica Translator 

Inheritance compatibility means that type A could replace 
type B as an ancestor for an arbitrary type C. To this end, 
the sub-type requirements are extended to protected 
elements. Inheritance compatibility is required for class 
generation purposes. The relation between these different 
sub-type relations is depicted in Figure 2.  
 

 
Figure 2. Set relation of different type requirements 
 

1.3 Available Language Constructs 

Let us briefly review those language constructs that are to 
be revised in the future. The use of all these keywords is 
then demonstrated by means of examples in the next 
section. 

1.3.1 replaceable and redeclare 

A modeler can declare a component B of model M as 
replaceable. By doing so, this component can be 
replaced, either in a possible extension of the model M or 
by a modifier that is applied to an instance M. 

In order to replace the component B, the keyword 
redeclare (redeclare replaceable resp.)  has to be 
applied. A new component A is then put into the place of 
B.  

The type of the component A can be further 
constrained with the keyword constrainedby. It is 
applied at the original declaration that was marked as 
replaceable. 

1.3.2 Parameters for classes 

The keyword replaceable cannot only be applied to the 
declaration of components but also to the definition of 
models, packages, records, etc. To this end, the term 
replaceable model (or package, record, …) has been 
introduced. 

Such definitions can then be extended by the use of the 
term redeclare model or (redeclare replaceable 
model resp.). Also the replacement of definitions can be 
constrained by the keyword constrainedby. 

It is in general not possible to extend from replaceable 
model definitions. An exception is enabled by the term 
redeclare [replaceable] model extends. 

1.3.3 Conditional Declarations 

In addition to these tools, there are also conditional 
declarations available in Modelica. To this end, a short if-
statement is appended to the normal declaration of a 
component. It is, however, not possible to combine 
conditional declarations with replaceable components or 
with components that are being redeclared. 

2. The Important Difference between Class 
Generation and Class Parameterization 

The presented language elements in Modelica may now 
serve two entirely distinct purposes: class 
parameterization and class generation. It is very important 
to make a proper distinction between these two concepts, 
since the lack of this distinction is the root of the current 
problems in Modelica. In order to clarify the situation, we 
present a representative set of examples for both concepts. 

2.1 Examples for Class Parameterization 

Class parameterization means that a class itself or a 
component is a parameter. 

Class parameterization with respect to Modelica does 
mostly mean, model parameterization. To this end, a sub-
component is made exchangeable by means of the 
parameter menu. Let us review three typical examples of 
this process. 

2.1.1 Container Model (Wheels and Tires) 

The container model is one of the most primitive methods 
to achieve class-parameterization. Essentially, it 
represents a set of conditionally declared components. 
Given a parameter value (mostly an enumeration value), 
one of the conditions evaluates to true, whereas all other 
components are disabled. 

IdealRolling...

RigidWheel1

SlickTyred...

TreadTyred...

DynamicTyr...

DynamicTyr...

ExplDynami...

fram
e_a

 
Figure 3. Container model for different wheel models 
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Figure 3 presents a container model that enables 
switching between different wheel models. The model 
parameterization is done indirectly by transforming a 
regular parameter into the conditional declaration of sub-
models.  

 
model MultiLevelWheel 
public 
  parameter ModLevels level //enumeration 
  Interfaces.Frame_a frame_a; 
  … 

IdealWheel wheel1(...) 
  if level == ModLevels.IdealWheel; 
RigidWheel wheel2(...)  
  if level == ModLevels.RigidWheel; 
SlickTyredWheel wheel3(...)  
  if level == ModLevels.SlickTyredWheel; 
  … 

equation 
  connect(wheel1.frame_a, frame_a); 
  connect(wheel2.frame_a, frame_a); 
  connect(wheel3.frame_a, frame_a); 
  … 
end MultiLevelWheel; 

 

Given the construct of replaceable/redeclare, this 
design pattern has actually become redundant. It is, 
however still applied. It is better suited if the sub-models 
shall not be public but protected. Another application 
results, if the standard dropdown list (of the Dymola GUI) 
for replaceable components is not the preferred 
parameterization since another user interface is 
demanded. 

2.2 Exchangeable Resistor Model 

The standard method of model parameterization is 
performed by means of a replaceable model. An electric 
circuit may contain a resistor component. If it is declared 
as replaceable: 

 
model Circuit1 

replaceable Resistor R1(R=100); 
… 

end Circuit1; 

A potential user of this circuit model may now exchange 
the resistor 
model Test 

Circuit1 C( 
  redeclare ThermoRes R1(R=100) 
 ); 

   … 
end Test; 

If the circuit contains two resistors, each can be 
redeclared separately. Alternatively, the circuit can have a 
parameter for the model definition. 
model Circuit2 

replaceable model R = Resistor(R=100); 
R R1; 
R R2; 
… 

end Circuit2 

A user can now redefine the model definition:  

model Test 
Circuit2 C( 
  redeclare model R = ThermoRes(R=100) 
); 
 … 

end Test 

2.2.1 Media-Exchange 

Having parameters for class definitions enables more 
advanced modeling techniques. The models of the 
Modelica Fluid [4,5] library serve as a good example. 
Here each fluid model contains a parameter for a package 
definition. Given this package, the model declares now 
those package members that it requires. 

 
model TemperatureSensor  
  replaceable package Medium =   
    Interfaces.PartialMedium; 
  Interfaces.FluidPort_in port( 
    redeclare package Medium = 
      Medium 
    ) 

Medium.BaseProperties medium; 
  Modelica.Blocks.Interfaces.RealOutput 
T(unit="K"); 
 
equation  

… 
port.p = medium.p; 
port.h = medium.h; 
port.Xi = medium.Xi; 
T = medium.T; 

end Temperature; 

2.3 Examples for Class Generation 

Class Generation is a collective term for all those 
methods that are used to generate a new class. Most 

commonly, the new class is created out of one or more 
existing ones. 

The most common technique of class-generation in 
Modelica is class extension that is represented by the 
keyword extends. 

Mostly, replaceable and redeclare are used for class 
parameterization, but there are also applications for class 
generation. The following two examples shall 
demonstrate this. 

2.3.1 MultiBondLib 

The MultiBondLib [11] features various mechanical 
libraries based on the bond-graphic modeling 
methodology. There is the planar mechanical library and  
the 3D-mechanical library. In addition, there is the 3D-
mechanical library that includes the modeling of force-
impulses. This library was derived from its continuous-
system version. To this end, the connector of the classic 
mechanical package was made replaceable. 

 
connector Frame  

Potentials P; 
flow SI.Force f[3]; 
flow SI.Torque t[3]; 
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end Frame; 
 

model FixedTranslation  
replaceable Interfaces.Frame_a frame_a; 
replaceable Interfaces.Frame_b frame_b; 
… 

end FixedTranslation; 

The connector of the impulse library was then extended 
from its continuous version. 
connector IFrame  
  extends Mech3D.Interfaces.Frame; 

Boolean contact; 
SI.Velocity Vm[3]; 
SI.AngularVelocity Wm[3]; 
flow SI.Impulse F[3]; 
flow SI.AngularImpulse T[3]; 

end IFrame; 

Finally, each component of the impulse-library was 
inherited from its continuous counterparts, had its 
connectors replaced and the required impulse equations 
added: 
model FixedTranslation  
  extends Mech3D.Parts.FixedTranslation( 
    redeclare Interfaces.IFrame_a frame_a, 

  redeclare Interfaces.IFrame_b frame_b 
 ); 

  … 
equation  
  … 
  frame_a.contact = frame_b.contact; 
  frame_a.F + frame_b.F = zeros(3); 
  frame_a.T + frame_b.T + 
    cross(r,R*frame_b.F) = zeros(3); 
  frame_a.Vm + ( transpose(R) * 
    cross(frame_a.Wm,r) ) = frame_b.Vm; 
  frame_a.Wm = frame_b.Wm; 
end FixedTranslation; 

Making the connector directly replaceable is not the 
preferred solution given the current means of the 
language. It would be better to use a model parameter C 
(via replaceable model) for the connectors and declare the 
connectors by the use of C. At its time of creation, 
however, this solution was not available for the 
MultiBondLib. 

2.3.2 Medium equations in the MediaLib 

Another example for class generation can be found in the 
Modelica MediaLib. Here, an individual package is 
created for each medium. Among other members the 
package contains a model BaseProperties that 
describes those balance equations that are specific to the 
medium (e.g. the ideal gas law). 

A new medium may now inherit from an existing 
medium package and redefine its BaseProperties 
model. In this way a class is generated for each medium: 

 
partial package SingleGasNasa  

extends PartialPureSubstance(…) 
redeclare model extends BaseProperties(…)  

equation  
… 

  MM = data.MM; 
  R = data.R; 

  h =h_T(data, T, h_offset); 
  u = h - R*T; 
  d = p/(R*T); 
  state.T = T; 
  state.p = p; 
end BaseProperties; 

2.4 Foresight versus Hindsight 

Since both, class parameterization and class generation 
are performed during the preprocessing stage in the 
translation process, it may be tempting to use one set of 
tools for both purposes as is done in Modelica. However, 
this turns out to be problematic because of the entirely 
distinct motivation behind these two concepts. 

Class parameterization is requested by the model 
designer to be performed by a user of its library. Thus, it 
is performed in foresight since the corresponding 
parameterization needs to be declared. Rules for class 
parameterization must be rather strict to prohibit abuses 
by the user to a meaningful extent. 

In contrast, class generation is done in hindsight. It is 
performed by the model-designer and requested from a 
previous library. Since it is done in hindsight and mostly 
performed by experts, rules for class generation should 
not be prohibitive. It is not possible to foresee which 
models might be extended; so a potential keyword 
extendable does not make much sense. It is, however, 
also not foreseeable which elements might be 
redeclared; so the keyword replaceable is 
inappropriate. Prohibitive measures will tend rather to 
corrupt existing classes than to prevent the faulty creation 
of new classes.  

2.5 Different Aspects of the Type System 

Another vital difference between class parameterization 
and class generation is highlighted by the criteria of the 
type system that are relevant for each concept. 

A proper class parameterization requires that the new 
type A is compatible to the original type B. Obviously A 
must be a sub-type of B. An even more strict requirement 
is that it needs to be plug-compatible since it is not 
possible (and certainly not convenient) to introduce new 
connections into a parameterized model. 

Plug-compatibility is of no relevance for class 
generation. When a new class is generated, new 
connections can also be introduced in an effortless way. 
Instead, it is important that the new type is inheritance-
compatible since potential extensions of a redefined 
model ought to remain valid. 

Evidently, separate aspects of the type system need to 
be concerned for both tasks. 

2.6 Current Deficiencies 

The confusion of class parameterization and class 
generation involves a number of disadvantages: 

 Non-uniform parameterization: The syntax that has 
been chosen for class parameterization purposes is 
different to those of normal parameters. One 
unfortunate consequence of this decision is that class 
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parameterization becomes inaccessible for normal 
parameter computations. For instance, it is not 
possible to combine if-statements with redeclarations. 
This means that redeclarations cannot be coupled to 
conditions. 

 Inappropriate sub-elements: Since model parameters 
are not properly declared as parameters but more as a 
replaceable sub-element this leads to inappropriate 
structures. For instance, models that contain sub-
packages. It makes sense that a model cannot contain 
a package, but it makes no sense that a model can 
contain a package just because it is replaceable. 

 Prohibitive class generation: Since potential 
redeclarations and redefinitions must be marked as 
replaceable in advance, the options for class 
generation are unnecessarily limited. Often this leads 
to an ex post modification of the original library in 
order to enable the desired class generation 

 Unwanted parameterization: Since potential 
redeclarations or definitions for the purpose of class 
generation need to be marked as replaceable an 
unwanted parameterization is introduced into the 
models. In order to avoid this, the replaceable objects 
are often moved to the protected section.  

 Unnecessary restriction: To extend from replaceable 
model definitions is currently prohibited in Modelica 
(with one exception). This restriction will turn out to 
be unnecessary. 

 Overelaborated syntax: The current syntax is simply 
more complicated than actually necessary and can be 
simplified. 

3. Design Decisions 
For the partial redesign of Modelica, we establish the 
following guidelines: 

 Separate class parameterization and class generation 

We want to clearly separate class parameterization 
from class generation. In this way, the specific needs 
and motivation of each concept can be optimally 
taken into account. 

 Give classes first class status on the parameter level 

We want to treat class parameters just as any normal 
parameter. There is no reason why parameters should 
be restricted to base-types or quasi base-types. This 
will simplify and unify the syntax. Furthermore, class 
parameterization can be integrated in the normal 
computation process for parameters. 

 Enable non-prohibitive class generation 

Class generation shall be performed by a special 
subset of keywords. It shall be designed in a way that 
it is not hampered or prohibited by means that require 
foresight. Maximum freedom should be given to the 
modeler in order to create new classes. On the other 
hand side, existing classes shall be protected from 
corruption. 

 Unify and simplify the language 

The complete language should be simpler and more 
powerful after the revision. It should also be more 
intuitive to understand and to learn. 

4. Improved Class Parameterization 
In this section, we will propose new language constructs 
for class parameterization. In order to show their potential 
applications and highlight their advantages, we will 
review the examples of chapter 2.1. 

4.1 Unification of Expression 
In a first, preparatory step, we integrate the expression 

of classes into normal statements. To this end, we have to 
slightly change the modifier syntax of an expression: the 
modification is now applied in curly brackets instead of 
round parentheses. 

This change has been implemented in order to make a 
class-definition with its modifier distinguishable from a 
function-call with its argument-list. In this way you know 
that foo(x=a) represents a function call but 
bar{x=a} represents a class-definition with its modifier. 
The term baz{p=b}(a) represents then consequently a 
parameterized function call.  

Since classes can be used in expressions, the language 
power is increased, e.g., by using classes in if-clauses or 
as arrays: 

 
// The result of this if-clause is a class 
if expr then foo2{x2=b} else foo2{x2=c}; 

 
 // An array of 4 classes 
 foo2[4] 
 foo2{x2=a}[4] 

One might hesitate, to integrate class-expressions as basic 
part of normal expressions, since this gives classes a first-
class status [2,3] and opens up the grammar quite 
substantially. It might seem smarter (and easier to 
achieve) to form two separate kinds of expressions that 
are distinguished on the top level: normal expressions and 
class expressions. However, this is misleading for the 
following reasons. 

Firstly, normal expressions and class expressions can 
both start with a name. This means that an undefined 
number of look-up tokens are required to distinguish these 
two kinds of expressions. Practically this means that an 
extra keyword is needed, but this leads to an ugly and 
unpractical syntax. Also, many syntax elements would 
need to be doubled and still two kinds of grammars would 
be required. Hence such a solution would not be fully 
generic. 

A1.B2.C3.Model{…}           class expression 
A1.B2.C3.Function(…)   normal expression 

Secondly, the integration of class-expressions into normal 
expressions provides an important generalization for 
future language extensions. Whereas many syntactic 
formulations such as foo{x2=3} + foo{x2=2} are 
semantically still invalid for this proposal, this may 
change in future revisions. Let us envision a future 
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version of Modelica (5 or 6) that enables anonymous 
declarations of models or records. Then, the former 
statement foo{x2=3} + foo{x2=2} may become valid 
if, for instance, foo is a record and overloads the + 
operator. Hence the integration of class-expressions opens 
up a number of fruitful opportunities for future language 
revisions. It is notable that the first-class status of higher-
level language constructs is absolutely common in 
contemporary programming languages. Even a few 
equation-based modeling languages (Sol [9,10], Hydra 
[7], Modeling Kernel Language [2]) have explored this 
important topic. 

In this proposal, only the following uses of class-
expressions shall be semantically supported. All other 
uses yield error messages. 

 Pure class expressions: foo{x=y} 

 Class expressions in if-statements:  if a then 
foo{x=y} else bar{x=y} 

 Array-lists of class-expressions: {foo{x=y}, 
bar{x=y}, …} 

4.2 Say It As You Want It: Treat Component 
Parameters as Normal Parameters 

If a component (let us suppose: a resistor) shall be a 
parameter of a model, it is the most natural thing, just to 
write it down as a normal parameter. Instead of the 
awkward formulation: 

 
model Circuit1 

replaceable ThermoRes R1(k=0.5)  
constrainedby Resistor(R=100); 
… 

end Circuit1 

simply write it as a component parameter: 
 

model Circuit1 
parameter component Resistor R1{R=100} = 

ThermoRes{k=0.5} 
… 

end Circuit1 

A user of this circuit model may now give a new 
parameter value and thereby replace the prior model. 

 
model Test 

Circuit1 C{R1 = ThermoRes{k=1.2}}; 
… 

end Test 

The type of the parameter hereby represents the constraint 
type for the parameterized model. Naturally one can apply 
modifiers also on the constraint type, and of course the 
new resistor type must be plug-compatible to this 
constraint type.  

The keyword component is necessary in order to 
avoid potential ambiguities. These originate from the fact 
that the formulation of a component parameter is a 
language construct that performs two tasks at the same 
time. One, it enables direct class-parameterization of a 
component. Two, it declares a component that invokes an 
instance. 

Hence it must be clarified if the = operator assigns a 
value 
parameter Real r = 1;  

or a component (sub-model) 
parameter component Resistor R = ThermoRes; 

In these cases, the meaning is clear, but when records are 
concerned both interpretations of the assignment are 
meaningful: 

 
//value assignment 
parameter Complex c1 = Complex.j();  

 
//component assignment 
parameter component Complex c2 =  
                      Quaternion;   

In fact, the keyword does not just change the 
interpretation of the assignment, but also if the values of 
the instance shall be constant or not. In the example 
above, c1 is constant-valued but c2 may express variable 
values. 

4.3 Say It As Want You Want It: Treat Class 
Parameters as Normal Parameters 

The very same can be done for parameters that identify 
class definitions, such as model parameters or package 
parameters. Again, the best solution is to simply write it 
down as one wants it to have. So, instead of writing: 

 
replaceable model R1 = Resistor{R=100}  
  constrainedby Resistor; 

you can simply turn the model into a parameter: 
 

parameter model Resistor R1 =  
                  Resistor{R=100}; 

Since such parameters will ultimately always be used for 
class parameterization, plug-compatibility shall also be 
required here. In this way, the temperature sensor of 
section 2.1 could be formulated as follows: 

 
model TemperatureSensor  
 parameter package  
  Interfaces.PartialMedium Medium; 

 
  Interfaces.FluidPort_in port{ 
    Medium = Medium} 

Medium.BaseProperties medium; 
Blocks.Interfaces.RealOutput T{unit="K"}; 

equation  
… 

end Temperature; 

4.4 Improved Computational Power 

One obvious advantage is that the language has been 
unified. Now, the same notation is used for all kinds of 
parameters. It has also become simpler. The keywords 
replaceable, redeclare and constrainedby are not 
needed any more.  

Another major advantage is that class parameters can 
be computed with as any other parameter. In this way, 
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conditional declarations become redundant in many cases. 
Let us review the example of the container model. Here 
we had to transform an enumeration into a class. This was 
done by number of conditional declarations. Now, we 
have the option to use an array of model parameters for 
this purpose. 
model MultiLevelWheel 
public 

parameter TModLevels level //enumeration 
Interfaces.Frame_a frame_a; 
… 

protected 
final parameter model BaseWheel  
  wheelModels[7]= { IdealWheel {…},  
                    RigidWheel{…}, 
                    SlickTyredWheel{…}, 
                    … }; 

  final parameter component BaseWheel wheel  
  = wheelModels[level]; 

equation 
  connect(wheel.frame_a, frame_a); 
end MultiLevelWheel; 

Here we can organize different model parameters in an 
array. In the same way, this could be done in a record.  It 
is important to notice that class parameters become 
accessible to all kinds of computations. Especially useful 
is the conditional evaluation: 

 
parameter Boolean constantTemp = true; 
final parameter BaseTempModel 
ambientTemperature =  

if constantTemp then ConstTempModel{…} 
else TempFileHistory{…}; 

One inconvenience of the proposed notation is that it 
sometimes leads to redundant formulation. In some 
applications, the default parameter value will equal the 
type constraint.  

 
parameter component Resistor R1{R=100} = 
                      Resistor{R=100}; 

Here, Resistor{R=100} had to occur twice. If this turns 
out to be a frequent case, one may consider adding a new 
keyword itself in order to provide some syntactic 
sugar. 

 
parameter component Resistor R1{R=100} =  
                      itself; 

5. Improved Class Generation 
Having available powerful and well-integrated means for 
class parameterization, we can now provide separate 
means for class generation. To this end, we need to keep 
our eye on two different targets: 

1. Enable the convenient creation of new classes out of 
existing classes. 

2. Prevent the corruption of existing classes. 

The second goal is easily forgotten, but it is equally 
important to the first goal. Again, we explain the new 

language constructs by means of examples and review for 
this purpose the models from section 2.2. 

5.1 The New Role of Redeclared 

We replace the former keyword redeclare by a new 
keyword redeclared. The new keyword is now solely 
implemented for the purpose of class generation. It can 
actually be applied similar to the former keyword. Let us 
therefore review the example of the mechanical impulse 
library where we wanted to exchange the continuous-
system connector with an extended counterpart.  

 
model FixedTranslation  

extends 
Mechanics3D.Parts.FixedTranslation; 

redeclared Interfaces.IFrame_a frame_a; 
redeclared Interfaces.IFrame_b frame_b; 
… 

equation  
… 
frame_a.contact = frame_b.contact; 
frame_a.F + frame_b.F = zeros(3); 
frame_a.T + frame_b.T + 

cross(r,R*frame_b.F) = zeros(3); 
frame_a.Vm  
+ transpose(R)*cross(frame_a.Wm,r) 
= frame_b.Vm; 
frame_a.Wm = frame_b.Wm; 

end FixedTranslation; 

This solution is very similar to the existing methods in 
Modelica, but there are crucial and important differences. 
Most importantly, the elements are not redeclared in 
the modifier of the extension belonging to the existing 
class, but in the public section of the new class.  In this 
way, we prevent the existing class from being corrupted 
and we prohibit an abuse of the keyword redeclared for 
the purpose of class parameterization. For this reason, the 
use of redeclared in modifiers is strictly forbidden. 

Furthermore the redeclaration can be applied to all 
inherited components without restriction. It is not 
necessary (nor desirable) to mark these components as 
replaceable beforehand in the inherited models. Doing so 
would be not even superfluous but even harmful since... 

1. it would require an inappropriate amount of 
foresight.  

2. it is very tempting to add the replaceable 
keyword ex post and thereby to corrupt the original 
models that should not be touched 

3. the replaceable keyword actually introduces an 
unwanted parameterization of the original model. 

Hence the original translation model can be formulated 
just normally without replaceable connectors. 

 
model FixedTranslation  

Interfaces.Frame_a frame_a; 
Interfaces.Frame_b frame_b; 
  … 

end FixedTranslation; 
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Also the class requirements that are imposed on 
redeclarations are different. For class parameterization the 
replaced models must have been plug-compatible to the 
constraint or the original model, respectively. This was 
necessary since additional connections could not be 
introduced anymore.  In the case of class generation, it 
would be easy to add a new connection in the new model, 
and hence the only requirement is that the redeclared 
model is a sub-type of the original type. Plug-
compatibility is not requested anymore. 

5.2 The New Role of Redefined 

Another application of class generation is the redefinition 
of whole models, packages, etc. To this end, the keyword 
redefined is provided. When class definitions are inherited 
(for instance by inheriting a package), any definition can 
be redefined. To clarify this, let us review the example of 
the MediaLib. 

 
partial package SingleGasNasa  
  extends PartialPureSubstance{…}; 

 
redefined model BaseProperties{…}    
  extends itself; 
equation  
  … 
end BaseProperties; 
 

end SingleGasNasa; 

In principle, not much has changed on the syntax level. 
Nevertheless, there are again important differences to the 
prior solution. First of all, the original BaseProperties 
model did not need to be marked as replaceable. The 
reasons for this are exactly the same as for redeclared 
components. Correspondingly, the use of redefined is also 
banned from modifiers. 

Second, the use of redefined on class definitions 
imposes different type restrictions than the use of 
redeclared on components. Since class definitions 
might get extended within the inherited package, the 
redefined type must be inheritance-compatible to the 
original type. It is still possible that there are conflicts for 
inheritance since the redefined class may generate a sub-
type that leads to name clashes. However, these type of 
errors can be fairly well reported and it is a rather 
uncommon situation. 

Since, now the proper type restrictions are applied (and 
not the inappropriate plug-compatibility), the redefinition 
of base-classes is enabled. In fact, this can be a powerful 
design tool. Let us consider once more the mechanical 
impulse library of the MultiBondLib: instead of 
redeclaring the connectors in each component, it would be 
far more elegant, to extend the whole package and 
redefine the connector.  Then all components adapt 
automatically and the missing equations can be added to 
each component by providing an extended redefinition of 
itself. 
package Mechanics3D; 

 
  connector Frame  

  Potentials P; 

  flow SI.Force f[3]; 
  flow SI.Torque t[3]; 
end Frame; 
 
connector Frame_a extends Frame; 
 … 
end Frame_a: 
 
model FixedTranslation  
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_b frame_b; 
  … 
end FixedTranslation; 
 
… 

end Mechanics3D; 
 

package Mechanics3DwithImpulses; 
extends Mechanics3D; 
 
redefined connector Frame extends itself  

    Boolean contact; 
    SI.Velocity Vm[3]; 
    SI.AngularVelocity Wm[3]; 
    flow SI.Impulse F[3]; 
    flow SI.AngularImpulse T[3]; 
  end Frame; 

 
//The extended model Frame_a will automatically adapt and 
does not need to be redefined. 
 
  redefined model FixedTranslation  

//Here the connectors do not need to be  redeclared 
equation 
  … 

    frame_a.contact = frame_b.contact; 
  frame_a.F + frame_b.F = zeros(3); 
  frame_a.T + frame_b.T + 
    cross(r,R*frame_b.F) = zeros(3); 
  frame_a.Vm + (transpose(R)* 
    cross(frame_a.Wm,r))= frame_b.Vm; 
  frame_a.Wm = frame_b.Wm; 
end FixedTranslation; 
… 
 

end Mechanics3DwithImpulses; 

6. Final Review 
Let us quickly review the proposed modifications of the 
language. 

6.1  Simplification of the Language 

The grammar has become simpler and more unified (see 
appendix). The keywords replaceable and 
constrainedby have become obsolete. Non-uniform 
and complicated construction as: redeclare 
replaceable model extends can also be removed 
from the language. The keyword redeclare is replaced 
by redeclared or redefined respectively that have a 
different meaning. These new keywords are also removed 
from the modifiers, which simplifies the grammar.  
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6.2 Higher Degree of Expressiveness 

The unification of class parameters and normal 
parameters not only simplifies the grammar and makes 
the language more intuitive to understand. It also 
improves the expressiveness of the language. Now we can 
compute with class parameters just as with normal 
parameters and create all kinds of models. 

The separation of class generation from class 
parameterization helps to protect existing classes from the 
introduction of unwanted parameterization. Since class 
generation is now applicable to all components (but only 
in a new class), less foresight is required and more can be 
done in hindsight without having to modify the original 
models. This separation also helps to impose the correct 
class requirements for each operation. 

6.3 Deficiencies of this proposal 

Syntactically, the introduction of the keyword itself is 
regrettable. Here the former notation was more 
convenient. However, the new grammar enables to 
formulate a component or class parameter without a 
default value and, in this way, to enforce a 
parameterization in an evident manner. This is not 
possible in the current grammar. Also, the keyword 
itself can be reused in the extends-clause and here it 
leads to a more natural and better understandable 
expression. 

Semantically, the new notation almost completely 
covers the expressiveness of the current Modelica. Only 
for the redefinition of classes, there exists no short 
notation.  For instance, if the redefinition of a model 
occurs in a modifier of a replaceable class, then we have a 
problem.  

 
replaceable package Medium =  
  PureSubstance(redeclare model  
    BaseProperties = myProperties 
  ) 

The new language version (maybe rightfully) prohibits 
such ad-hoc class-generations. To this end, we have to 
create a new class and assign it to the model parameter.  
 
partial package newMedium  
  extends PureSubstance; 
  redefined model BaseProperties 
   = myProperties; 
  … 
end newMedium; 
 
package parameter Medium = newMedium; 

Please keep in mind: this is only the case for this specific 
kind of redefinitions. Most of the current redeclarations 
get replaced by parameter assignments and these are 
totally uncritical. Hence, this is a rather uncommon case 
and since such a transformation is better implemented 
manually. To our knowledge, this application does hardly 
occur. 

6.4 Backward Compatibility  

Backward compatibility is major issue since this proposal 
would definitely represent a drastic change of the 
Modelica language. Unfortunately, it is not easy to 
achieve. Our proposal distinguishes class generation from 
class parameterization. This was not done before. Hence, 
one needs to separate what is currently intermixed. It is 
possible to do so for 90% of all occurring cases but there 
remain, inevitably, some cases that cannot be resolved 
automatically. 

6.5 Final Conclusions 

The main two points of this paper are: 

 It is highly meaningful to distinguish class generation 
from class parameterization since entirely different 
motivations are underlying these two concepts. 

 Introducing class expressions (and thereby giving 
classes a first-class status) can drastically simplify the 
grammar while making the language more powerful. 
Class parameterization is only one possible 
application of class expressions. 

Appendix 
These are the resulting grammar changes to the Modelica 
language. Please note, this represents not our exact 
proposal. We provide this just in order to show the 
simplifications and to concretize the conceptual 
explanations of this paper. 

The following keywords are removed from the 
language:  

replaceable  
constrainedby  
redeclare 

The following keywords are introduced into the 
language:  

component  
redeclared  
redefined  
itself 

The following grammar changes are listed according to 
the order of the language specification. New elements are 
underlined, removed elements are scratched. 

 
B 2.2 Class Definition 
 

element: 
 import_clause | 
 extends_clause | 

[ redeclare ] 
[ redeclared ] 
[ final ] 
[ inner ] [ outer ] 
(( class_definition | 
component_clause ) | 
replaceable ( class definition | 
component_clause) 
  [constraining_clause comment])  

  
B 2.3 Extends 
 

extends_clause : 
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 extends (name | itself)  
      [ class_modifications ] [annotation] 
 
contraining_clause: 
 constrainedby name 
[class_modification ]  
 
B 2.4 Component Clause 
 

type_prefix: 
[flow | stream] 

 [discrete | (parameter  [par-
specifier]) | constant ] 
 [input | output] 
par_specifier: 
 (component | class | model | record 
| block | connector | type |  

 package | function | operator | 
operator function | operator record) 
 
B 2.5 Modification 
 

modification: 
 class_modification ["=" 
(expression|itself) ] 
 | "=" (expression|itself) 
 | ":=" expression 
 
class modification :   
 "{" element_modification {"," 
element_modification }  "}" 
 
argument_list: 
 argument {“,” argument} 
 
argument : 
 element_modification_or_replaceable 
 element_redeclaration 
 
element_modification_or_replaceable 
 [ each ] [ final ] (element 
modification | element_replaceable) 
 
element_modification: 
 [ each ] [ final ] name [ 
modification ] string_comment 
 
element_redeclaration : 
 redeclare [ each ] [ final ] 
 ( ( class_definition | 
component_clause) | element_replaceable ) 
 
element_replaceable: 
 replaceable (class definition | 
component_clause1)  

[constraining clause ] 
 

component_clause1: 
 type_prefix type_specifier 
component_declaration1 
 
component_declaration1 : 
 declaration comment 
 
B 2.7 Expressions 
 

primary: 
 UNSIGNED_NUMBER 
 | STRING 
 | false | true 

 | class_expression 
 | (der | initial)  
(function_call_args) 
 | component reference 
 | "(" output_expression_list } ")" 
 | "[" expression_list { ";" 
expression_list } "]" 
 | "{" function_arguments "}" 
 | end 
 
class_expression: 
name [class_modification] 
[(function_call_args)] 
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Abstract
Separate compilation is a must-have in software engineer-
ing. The fact that Modelica models are compiled from the
global sources at once results from the language design as
well as from the way compiled physical models are finally
simulated. We show that the language in fact can be com-
piled separately when certain runtime conditions are met.
We demonstrate this by transforming some specific Mod-
elica language features (structural subtyping and dynamic
binding) into a much simpler form that is closer to current
OO languages like C++ or Java.

Keywords Modelica, Separate Compilation

1. Introduction
Separate compilation is the state of the art in today’s soft-
ware engineering and compilation tools. Therefore it is also
a natural request for Modelica tools. Large models (hav-
ing hundreds or even thousands of equations) evolve over
time, undergo small incremental changes and are often de-
veloped by whole teams. So it is unacceptable in practice,
when a small modification in one class causes the recom-
pilation of hundreds of unchanged classes. This could be
avoided by the creation of smaller compilation units which
are finally combined to create the desired model.
Unfortunately, it is not a priori clear that this approach

is feasible for Modelica, since some features of the lan-
guage are quite complex to handle with separate compila-
tion. Potential problems could in particular arise in connec-
tion with the process of flattening, structural subtyping, in-
ner/outer declarations, redeclarations and expandable con-
nectors. We will sketch in the present paper solutions for
all of these issues with the exception of expandable con-
nectors, which would require a more in-depth discussion
of the operational semantics of runtime instantiation.
The flattening of the whole model can actually be

avoided by using object-oriented features of the target lan-
guage: Instead of creating the set of equations, a compiler
can directly translate the object tree into the target lan-
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Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
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guage. The equations can then be simply collected at run-
time. This principle also leads to a elegant solution for the
compilation of expandable connectors, as we will show in
Section 2.
While Modelica’s type system gives great flexibility in

code re-usage, its translation into an object-oriented lan-
guage with nominal subtyping like C++ is not straightfor-
ward. We will show how a compiler can handle this with
the usage of coercions in Section 3.
Rumor has it that separate compilation is made very

complex through the presence of Modelica’s inner and
outer pairing.We will show (in Section 4) that this rumor is
unsubstantiated: By combining some kind of parameteriza-
tion with standard typing principles we can not only solve
the separate-compilation issue in a straightforward manner
but also obtain a very clean and well comprehensible se-
mantic definition of the inner/outer principles.
Finally we will summarize the costs and drawbacks of

the separate compilation of Modelica models in Section 5.

1.1 Related work
Although separate compilation of Modelica models seems
to be an important topic, only little research has yet been
done in this field. In [8] and [9] some extensions to the lan-
guage are proposed that would allow users to write models
which can be compiled separately with nearly no impact
on the quality of the generated code (as mentioned in Sec-
tion 5). The work presented in [12] aims to decidewether or
not separate compilation is possible (with respect to causal-
ization) and worth the price for a given model. While both
approaches do not allow the separate compilation of arbi-
trary compilation units, they could be combined easily with
our method to raise the quality of generated code.

2. Principles of Separate Code Generation
As stated earlier the main reason for separate code genera-
tion is to reduce the overall compilation time by re-using
output units that have not been affected by source level
changes after the last compiler run. This at least requires
a compiler to create output files for each input file given.
Furthermore the content of those generated files should not
depend on any context of their usage but only on their in-
terfaces: If content from a source file is used two or more
times the output file(s) should be usable in all those cases.
While the above requirements would generally suffice

for separate compilation, a good design additionally en-
forces the separation of the compiler from the build sys-
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tem (so that the build system of choice can be used). This
requires the compiler to produce a predictable set of out-
put files for a given input file and the language to allow the
detection of dependencies with simplistic tools. A good ex-
ample for the usage of this principle is the compilation of
C++ programs with GNU Make: Since the C++ compiler
will create one object file per given input file and dependen-
cies are clearly marked as file-wise includes, the build sys-
tem can decide which source files need to be rebuilt given
only modification times and regular pattern rules. Although
imports in Modelica are only allowed from packages (and
packages have a clear mapping into a file system layout)
a Modelica type name cannot be mapped to the file it is
defined in by such pattern rules. Therefore a complete de-
pendency analysis must fully implementModelica’s (rather
complex) lookup mechanisms. For smaller projects this de-
pendency analyis might still be handled manually, but for
complex uses one would have to generate e.g. makefiles au-
tomatically, to get all the benefits from incremental builds.
While the possibility to have a more fine grained build

system is already extremely useful, there is another advan-
tage of separate compilation that should be considered for
Modelica: Currently Modelica library developers have to
hide their expert knowledge from their customers by ob-
scure methods like the Digital Rights Management that is
part of the current Modelica specification[1]. If a library
would be compiled separately, only the source code of the
interface (comparable to a C/C++ header file) would have
to be shipped. Also a clear separation between interface and
code would be possible without any additional cost.







Figure 1. Common compilation of Modelica.

Unfortunately the compilation target of a Modelica
model is a single matrix consisting of both differential
and algebraic equations (short DAE). The usual process-
ing scheme can be seen in Figure 1: After parsing (and
correctness-checking) aModelicamodel is flattened, mean-
ing that both the inheritance and instance trees are resolved
into sets of variables and (acasual) equations. Those equa-
tions can then be causalized and finally translated into the
target language.
As can be seen in Figure 1, causalization of the model’s

equations depends on the model being completely instan-
tiated. Obviously, there is no method to work around this
dependency. Therefore, the only way to achieve real sep-
arate compilation is to move the code generation stage in
front of the instantiation. This means that we are not go-
ing to generate code from the DAE but actually code that
itself can generate the DAE with some help from the run-
time system. Although this design has been in use with the
Mosilab [10] compiler, it has neither been used for sep-
arate compilation nor formally specified. The closest thing
to a specification of this method (although not implemented
for Modelica) would be the Modeling Kernel Language se-
mantics by David Broman [2].

The runtime instantiation implies that there is no need to
translate flattened models (since the generation of the DAE
can be done in the correct order). Also there is no need to
generate all equations directly at compile-time. Instead the
compiler might generate special functions that can create
equations at runtime, which allows a quite natural trans-
lation of advanced language features like expandable con-
nectors.
With this method, the output of our compilation process

can easily satisfy the above requirements by directly map-
ping everyModelica source file to a compilation unit of the
target language. The compiler of course has to use a nam-
ing scheme that allows the generated files to reference each
other, but this is a trivial task.

3. Subtypes
In Modelica’s type system [3] subtype relations are defined
implicitly by the set of fields of a class. For separate com-
pilation this means that (contrary to e. g. Java or C++) there
is actually no need for a class B to know anything about a
classA to be a subtype of that class. Therefore the compiler
output of B must be able to be used with A and vice versa
even if both were compiled completely separately.

class A
output Real x;
equation
x = sin(time);

end A;
class B
Real y;
output Real x;
equation
y = 23.0;
x = 42.0;

end B;
class Foo
replaceable A a;
output Real x;
equation
connect(a.x, x);
...

end Foo;
class Bar
Foo foo1;
Foo foo2(redeclare B a);

end Bar;

1
2
3
4
5

6
7
8
9

10
11
12

13
14
15
16
17
18
19

20
21
22
23

Listing 1: Example for redeclaration.

In the listing of Listing 1 the instantiation of foo2 is
modified with a so called redeclaration, a construct that
allows the enclosing class to replace an element of its child
with an element of any compatible type (in other words: a
subtype). Since both Foo and B may already have been
compiled earlier, there is no way to modify one of the
compiled classes to be type compatible to the redeclaration.
The same problems can arise from the use of the

extends declaration:
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class Baz
extends Foo(redeclare B a);

end Baz;

1
2
3

In the above example we assume that code generation
does not compile code from Foo into Baz (which would
violate the first requirement of separate compilation, since
compiling Foo would become useless). Therefore, if Foo
is already compiled, all code generated from its equations
has to be made type compatible with the new type of the
field a prior to knowing how that new type actually looks
like. If the target language has a nominal type system 1 (a
rather common case), this is actually impossible without
compiling the complete source code at once [5] — which
is clearly no option in our case.
While we cannot change the code itself due to separate

compilation requirements, we can build a bridge between
the use and declaration site by means of coercion seman-
tics.

3.1 Coercion semantics
Coercion semantics [11] is an implementation technique
for languages with subtyping that translates a programwith
subtyping into a simpler one without subtyping. The gen-
eral idea is as follows:
Whenever a given program context Γ requires an object

a of class A any object b of a subclass B of A may also be
used (context criterion). Since the runtime representation
of b and a are different (usually apparent by a different
type in the target language), e. g. b might have additional
fields, the compiled form of Γ must be able to cope with
many different object representations. If we demand that
the compiled form of Γ is independent of the object given,
i. e. a or b, it must inspect the object at runtime to access
its fields correctly. This inspection, unfortunately, has a
non-negligible runtime-overhead. We can circumvent this
overhead by always passing an object of class a. Therefore,
we have to coerce, hence the name coercion semantics, b to
a before handing it to Γ. Since B is a subclass of A this
coercion is always possible. Experience in other systems
[6, 7] shows that the coercion is much cheaper, in terms of
performance, than runtime inspection of objects. Applying
coercions semantics, the compiled form of Γ has to operate
on objects of class A, exclusively.
We illustrate this technique by an example. Class Bar in

Listing 1 creates an instance of Class Foo while redeclar-
ing Foo’s field a from A to B. To enable reuse of the code
of Foo — Foo now acting as the context Γ — without
expanding B into Foo and recompiling we coerce an ob-
ject of class B to class A. We can describe the effect of this
coercion by introducing a temporary class B’ that is struc-
turally identical to A but has B’s fields:

1 Even if the generated code has no type system at all, at least the memory
layout of objects would have to be made compatible.

class B
Real y;
output Real x;
equation
x = 42.0;
y = 23.0;

end B;

coerce

=⇒

class B’
output Real x;
equation
x = 42.0;

end B’;

We now redeclare a to B’ instead of B and replace
line 21 of Listing 1 by

Foo foo2(redeclare B’ a);

This is possible since all information of B that is rele-
vant to Foo is contained in B’ and objects of B’ can be
represented in the same way as objects of A.

3.2 xModelica
To make use of this technique in Modelica with as little
overhead as possible we have to make use of the fact that
the object tree of a Modelica model is static. Thus coer-
cions should not contain values (and be updated every time
the original value changes), but rather express equivalence
between two names. Usually in Modelica this can be ex-
pressed by equations, but since those are part of the actual
model (which we do not want to change) and would have to
be evaluated at runtime, we prefer to introduce the notion
of references.
Technically we achieve this by adding some expressive

power to Modelica. Inside a compiler this is simply done
by providing additional constructs and fields in the abstract
syntax tree, which do not have counterparts in the external
syntax. But for discussing these issues it is preferrable to
present the concepts in concrete syntax. Therefore we aug-
ment Modelica by some notations that allow us to express
the additional concepts, thus obtaining an extended lan-
guage xModelica. (Keep in mind, xModelica is not avail-
able to users, it is just a “prettyprinting” of the internal
abstract syntax trees.) The following changes are made to
transform aModelica program into its xModelica represen-
tation:
1. Introduce type modifiers {indirect, direct}. Modifiers
of this kind are well known in languages; for exam-
ple, Java has a modifier set {public, protected,
standard, private} (of which standard is in-
visible, that is, represented by writing nothing) or the
modifier set {final, nonfinal} (of which the sec-
ond one is again invisible). Modelica itself does the
same with inner or outer.

2. A function indirect is added that creates an instance of
an indirect type from a direct variable. This function
is defined for every type but does not really need an
implementation. In fact, this function could be seen as
an explicit coercion itself (explicit because direct types
are not subtypes of indirect types).

3. This modifier is an actual part of the type, that is, the
type direct Real is different from the type indirect
Real. But to simplify the usage of indirect types, we
consider them being subtypes of their respective direct
counterpart.
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4. The default type declaration is direct. Indirect types
will only be introduced by some transformations. The
distinction between indirect and direct types allows the
clear usage of object references (which are not part of
Modelica): Every instance of an indirect type can be
seen as the reference to a direct type. This interpreta-
tion gives a natural meaning of the function indirect
which simply returns a new reference to an already ex-
isting direct typed object. Note, that instead of explicitly
defining a function direct that would do the opposite,
we kept the design simple by using the subtype relation
mentioned above (which has the same natural interpre-
tation). Also we intentionally did not introduce some-
thing like references of references (we do not need that
level of complexity until now).

5. The instantiation of a class can now have indirect pa-
rameters (declared after the name of the class). Since
they are a special kind of parameter, we denote them
by the special brackets 〈...〉. The usual scoping rules
apply to those parameters as well as the ability to use
default parameters. The actual indirect parameters must
be given at object instantiation.
Note: In a clean language design, one could argue that
the indirect arguments should be added to the class, not
to objects. But we only want an external representation
of the internal data structures. Hence, we properly re-
flect the fact that the additional field is indeed added to
the object, not to the class.

record A* 〈indirect output Real x 〉
end A*;
class A
direct output Real x;
...

end A;
class Foo〈indirect A a = indirect(A())〉
direct output Real x;
...

end Foo;
function CB →A

input indirect B b;
output direct A* a〈x = indirect(b.x)〉();

end CB →A;

class Bar
Foo foo1;
B a;
A* a’ = CB →A(indirect(a));
Foo foo2〈indirect(a’)〉();

end Bar;

1
2

3
4
5
6

7
8
9

10

11
12
13
14

15
16
17
18
19
20

Listing 2: Example of Listing 1 converted to xModelica

In our example of Listing 1 a coercion can then be ex-
pressed as shown in Listing 2. As can be seen the coercion
transformation consists of several parts:
1. A class A* is introduced that contains an indirect field
for each field of A. This class is by definition always
a subtype of the original class (and can thus safely be

used instead of the original). Note that it can be created
while compiling the definition of A.

2. Every replaceable field of Foo is moved up to the indi-
rect parameters list as the default definition of a indirect
parameter of the same name. Again the resulting class
is a subtype of the original class.

3. A coercion function CB →A : B → A* is created. This
function lifts every field of B into an indirect field of the
same name in a instance of A*.

4. Finally the coercion function is applied to a local in-
stance of B and its output is fed into the instatiation of
Foo.
With this method the redeclaration statements can be

transformed into a much more common concept. There-
fore the translation into object oriented (or even functional)
code is now much simpler. The new interface of instantia-
tion ensures that no dependencies from redeclaration state-
ments are left in the generated code and thereby make sep-
arate compilation possible.

3.3 Subtyping in functions
Subtyping in Modelica is not restricted to models and
records but also covers functions. Unfortunately, the Mod-
elica Specification (version 3.2 [1]) is unclear about when
one function is a subtype of another: Since Functions are
special classes in Modelica (and their parameters special
fields), the subtyping rule for functions just references the
rule for classes which makes no difference between output
and input fields. Thus the principle of contravariance in
function parameters [4] is violated. Since we want to focus
on separate compilation, we will assume that this problem
has been solved, by redefining the rules for subtypes of
functions in the Modelica Specification.

function foo
input Bar bar;
output Baz bar;
...

end foo;
...
MyBaz baz; //subtype of Baz
MyBar bar; //subtype of Bar
algorithm
...
baz := foo(bar);

1
2
3
4
5
6
7
8
9

10
11

Listing 3: Example for function application.

Function application with subtypes is pretty straightfor-
ward due to our coercion routine: The Modelica fragment
in Listing 3 can easily be transformed into its correspond-
ing xModelica fragment:
CBaz →MyBaz(foo(CMyBar →Bar(bar)))
The application of (subtype) functions is a little bit more

complicated but still no big problem, as long as the above
mentioned error is corrected. With the principle of con-
travariance a function f : A → B is a subtype of g : C →
D if, for the types A, B, C, D, A ⊆ C and D ⊆ B holds
true.
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class C;
class A extends C;
class B;
class D extends B;
function F
input A a;
output B b;

end F;
function G
input C a;
input D b;

end G;
function H
input function F f;
input A a;
output B b = f(bar);
...

end H;
...
function G g //subtype of F;...
B b := H(g, bar);

1
2
3
4

5
6
7
8

9
10
11
12

13
14
15
16
17
18
19
20
21

Listing 4: Example for function contravariance.

The problem here is that while parameter coercion can
take place just at the location of the function call, this is
not possible for function parameters (simply because the
possible type of the function is again unknown). Therefore
the function parameter itself must be subject to coercion but
not the function application. Since we did not introduce a
xModelica notation for function parameters, we will use a
mathematical notation here. The parameter g of foo in line
21 will be replaced by CD→B ◦ g ◦ CA→C . We’ll leave it
open on how to implement function composition but since
function parameters are allowed in Modelica some kind
of functional object will be needed in the runtime system
anyway. The step to a higher order function is not too big
from there.

4. Dynamic Binding (inner/outer)
One of the Modelica language features that causes trou-
ble among users is the inner/outer pairing. Some people
consider it as being mandatory for reasons of practical us-
ability in certain application scenarios, others are deterred
by the incomprehensibility and error-proneness, which the
feature exhibits in particular in slightly more intricate con-
stellations.
What are the reasons for these contradictory view-

points? As usual a clarification of such seeming ad-hoc
phenomena can be obtained by mapping them to classical
concepts of programming language theory. Then it is im-
mediately seen that we simply encounter the standard di-
chotomy between static and dynamic binding of variables.
And – as usual – problems arise, whenever two concepts
(even though each of them may be clean and clear in isola-
tion) are mixed in some odd fashion.
As usual, the scope of a name x is the textual region

of the program text, where it is known; let us denote that

class A
Real x;

class A1
... use x ...
end A1;
class A2
Real x;
... use x ...
end A1;
...
end A;

1
2

3
4
5

6
7
8
9

10
11

Listing 5: Simple scoping

region as scopex. And it is also standard knowledge that
such scopes can contain holes due to declarations of the
same name inside the scope. As a consequence, any point in
the program has for each name x a unique scope scopex.
In Listing 5, the scope of the variable x in line 2 is the
whole region of the class A with the exception of class A2;
hence, scopex2 = [1..5] ∪ [10..11]. Analogously,
the scope of the variable x on line 7 is the region of class
A2, that is, scopex7 = [6..9].

{ int a=0;
fun f(int x) = a * x;
{ int a = 2;
f(3)
...

}
}

1
2
3
4
5
6
7

Listing 6: Different binding example.

Static binding states that for an applied occurrence of a
name x at some program point p the corresponding decla-
ration is directly given by the scope scopex, in which p

lies. In the above example, the application of x in line 4
refers to the declaration of x in line 2, since 4 ∈ scopex2
and analogously x in line 8 refers to the declaration in line
7, since 8 ∈ scopex7 .
Dynamic binding uses a more complex principle for

the association between an applied occurrence of a name
x and its corresponding declaration – at least for local
applications in functions, classes etc. Now we don’t use the
scope of the point, where x is applied, but the scope of the
point, where the function, the class etc. is applied.
Listing 6 illustrates dynamic binding in some fictitious

λ-style language, thus demonstrating that the concept is
long known in many languages.
Under static binding the non-local name a in line 2

would refer to the declaration in line 1 such that the call
f(3) would yield the value 0. But under dynamic binding
the application of the non-local name a would refer to
the declaration of a that is valid in line 4, that is, to the
declaration in line 3. Hence the call f(3) yields the value
6.
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class A
outer Real x;
end A;
class E
inner Real x;
class F
inner Real x;
class G
Real x;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F f;
end E;
class I
inner Real x;
E e;
A a;
end I;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

class A〈indirect Real x〉

end A;
class E
indirect Real x;
class F
indirect Real x;
class G〈indirect Real dx〉
direct Real x;
class H〈indirect Real dx〉
direct A a〈dx〉;
end H;
H h〈dx〉;
end G;
G g〈x〉;
end F;
F f;
end E;
class I
indirect Real x;
E e;
A a〈x〉;
end I;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Listing 7: Complex example from section 5.4 of the Modelica Specification.

class A
outer Real x;
... use x ...
end A;
class B
inner Real x;
A a1, a2;
... use a1.x ... a2.x ...
end B;

1
2
3
4

5
6
7
8
9

Listing 8: Simple example for inner/outer.

class A〈indirect Real x〉
... use x ...
end A;
class B
indirect Real x;
direct A a1〈x〉, a2〈x〉;
... use a1.x ... a2.x ...
end B;

1
2
3

4
5
6
7
8

Listing 9: inner/outer removed.

This kind of binding is well known from a number of
functional languages, from object-oriented languages such
as Java (in the form of method binding with superclasses),
but also from typesetting languages such as TEX.
In Modelica it takes the syntactic form of inner/outer

pairs. The simplest instance is illustrated by the example
given in Listing 8 (adapted from Section 5.4 of the Model-
ica 3.1 reference).
Here B.x ≡ B.a.x ≡ A.x holds, that is, all three

names are the same. Except for the possibly aberrant syn-

tax, this looks fairly simple. However – as we will see in a
moment – there are much more intricate scenarios, where
the correct associations are not so easily seen.
In the class I in the complex example from Listing 7

(section 5.4, due to space concerns only parts of the ex-
ample are shown) we have, among others the following
equivalences: e.f.x ≡ e.f.g.h.a.x (lines 22+8 and
lines 22+8+12) or a.x ≡ x (lines 23+1 and line 21).
By contrast, other applications are different, for example
e.x *≡ e.f.x (lines 22+6 and 22+8) or e.f.g.x *≡
e.f.g.h.x (lines 9+10+14 and line 11).
The root of the problem is that we encounter an isolated

occurrence of dynamic binding in an otherwise statically
binding language. It is this clash of paradigms that makes
things both hard to digest and hard to implement. Therefore
the obvious solution is to transform the dynamic bindings
into static bindings. This will be sketched in the following.
We will use the code from Listing 9 to illustrate the

augmented concepts. As is illustrated by this example, our
transformation consists of four parts:

1. Both outer and inner declarations are converted to in-
direct types.

2. An outer declaration is converted into a parameter of the
corresponding class. This new parameter has (in con-
trast to replaceable fields) no default value. Therefore
this class becomes what in other languages is called ab-
stract, since it cannot be instantiated without that pa-
rameter.

3. Finally we add to each instantiation of the abstract class
a corresponding argument. If the current class has no
indirect field, that class is made abstract too and the
parameter is pulled up.
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model CI
outer Boolean b;
Real x(start=1);
equation
der(x) = if b then ?x else 0;
end CI;
model Sub
Boolean c = time<=1;
inner outer Boolean b = b and c;
CI i1;
CI i2;
end SubSystem;
model System
Sub s;
inner Boolean b = time>=0.5;
// s.i1.b will be b and s.c
end System;

1
2
3
4
5
6

7
8
9

10
11
12

13
14
15
16
17

model CI〈indirect Boolean b〉

Real x(start=1);
equation
der(x) = if b then x else 0;
end CI;
model Sub〈indirect Boolean db〉
Boolean c = time =< 1;
indirect Boolean b = db and c;
CI i1〈b〉;
CI i2〈b〉;
end SubSystem;
model System
Sub s〈b〉;
indirect Boolean b = time>=0.5;
// s.i1.b will be b and s.c
end System;

1
2
3
4
5
6

7
8
9
10
11
12

13
14
15
16
17

Listing 10: Simultaneous inner/outer.

4. If necessary (e. g. because an element with the same
name already exists) the newly introduced parameter is
renamed.
Let us briefly look at the typing issue. We again take

an example from Section 5.4 of the Modelica 3.1 specifi-
cation (Listing 11). By the standard rules of typing under
static binding it is clear that the argument x that would be
given to the instantiation in line 7 has type indirect Real,
whereas the requested type in line 3 is indirect Integer.
This shows that the transformation naturally preserves the
requirement that a inner declaration shall be a subtype of
all corresponding outer declarations.

class A
inner Real x; //error
class B
outer Integer x;
...
end B;
B b;
end A;

1
2

3
4
5
6

7
8

Listing 11: Type error in inner/outer usage.

Finally, there is the odd case of allowing both inner and
outer modifiers simultaneously. According to the Model-
ica 3.1 specification this “conceptually introduces two dec-
larations with the same name: one that follow the above
rules for inner and another that follow the rules for outer.”
With this advise our transformation works straightforward
for that case too: When a direct field of the same name
already exists, the indirect parameter is renamed. The ex-
ample from Listing 10 shows how the informal interpreta-
tion of simultaneous inner/outer declarations fits naturally
in our transformation.
Also functions are an interesting issue (taking the exam-

ple from the specification shown in Listing 12). Listing 13
shows that this case can be handled easily too, if we also
allow functions as indirect parameters. Since (direct) func-

partial function A
input Real u;
output Real y;
end A;
function B
extends A;
algorithm
...
end B;
class D
outer function fc = A;
...
equation
y = fc(u);
end D;
class C
inner function fc = B;
D d;
end C;

// equation now y = B(u)

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19

Listing 12: inner/outer with functions.

tion parameters are allowed in the latest Modelica specifi-
cation and there is no conceptual difference between direct
and indirect function parameters, doing so does not intro-
duce any complexity. The only inconvenience results from
the fact that functions are not first class citizens of Mod-
elica. Therefore a (useless) instantiation has to be made.
But since our target language is object oriented, this would
probably have to happen anyway (in a functional language
the instantiation would just be a renaming).
What does this achieve? The answer is simple: We elim-

inated dynamic binding! In other words, we now have a
uniform system of static bindings (and thus a uniform com-
piler design without complex exceptions) but still retain all
effects of Modelica’s dynamic inner/outer binding in a se-
mantically correct fashion.
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partial function A
input Real u;
output Real y;
end A;
function B
extends A;
algorithm
...
end B;
class D〈indirect function A fc〉

...
equation
y = fc(u);
end D;
class C
indirect function B fc;
D d〈fc〉;
end C;

// equation now y = B(u)

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15

16
17
18
19

Listing 13: Listing 12 translated to xModelica.

This also applies to the important issue of separate
compilation. We now only implement the classical static-
binding variant of separate compilation and obtain a correct
treatment of Modelica’s inner/outer binding for free.

5. Drawbacks and Costs of Separate
Compilation

Although separate compilation is a worthy goal, there are
of course some drawbacks that occur from our design:
1. By creating code that does not contain a DAE but only
tries to create one, we lose the ability to check for cer-
tain model properties. The most important of those is
probably the requirement of the model being balanced.
Since we do not know how compiled models are actu-
ally used, it is at least hard, if not impossible, to know if
a model is balanced (if, e. g. only an interface is shipped
with pre-compiled code). This is a general problemwith
separate compilation and usually solved by having the
linker checking the global assertions. Since there is no
Modelica linker, currently the only solution left is to
move these checks into the runtime as well.

2. A more subtle effect of separate compilation is the com-
patibility of generated code. If module A is compiled
with a more recent compiler than module B, there is
no guaranty that both work together as expected, since
small changes in the compiler may render both modules
incompatible. The only way to workaround this issue is
either to not change the output format at all (rather unre-
alistic) or to have some kind of versioning that hinders
the user from plugging together incompatible compila-
tion units.

3. The probably most far-reaching restriction that results
from our approach is the impossibility to run optimiza-
tions at compile-time. For Modelica this means that
there can be no causalization or index reduction done
by the compiler. Again this problem depends on the ab-

sence of a dedicated Modelica linker. Thus both these
operations have to be run before the actual simulation
starts. Luckily this is generally possible and even nec-
essary if one adds model structural dynamics to Mod-
elica [13] (which is e. g. already present in the Mosilab
compiler [10]).

6. Conclusion
With the usage of separate compilation a Modelica com-
piler comes closer to what state-of-the art tools can offer a
software engineer. This applies to the overall compilation
effort as well as to the opportunity to ship pre-compiled
libraries with a clean interface.
We have shown that the most complex features of the

Modelica language can in fact be transformed into an
object oriented language by only using features that are
much more common. This enables the creation of Model-
ica compilers for many target languages. The used transla-
tion scheme gives a new way of handling constructs with
special semantics like stream connectors by simply moving
those semantics into the runtime system.
While the language is thereby ready for separate com-

pilation, some problems still remain open for future work.
The most important is the conciliation of separate compila-
tion with causalization. The same applies for symbolic ma-
nipulations. We will investigate both topics in the future.
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Abstract
Modelling of heterogeneous systems is always a trade-off
between model complexity and accuracy. Most libraries of
object-oriented, equation-based, multi-physical simulation
tools are based on lumped parameter description models.
However, there are different ways of including spatial de-
pendency of certain variables in the model. One way that
might be quite difficult is to manually discretize the model
into an interconnection of lumped parameter models. This
approach can get very time-consuming and is always sen-
sitive to modelling or identification errors.

To avoid these issues, we try to take advantage of the
well-established methods for automatically discretizing a
distributed parameter model for example by means of Fi-
nite Element methods. However, to achieve a suffiently
good approximation, these methods very often result in
large-scale dynamic systems that can not be handled within
equation-based simulators. To overcome this drawback
there exist different approaches within the literature.

On the basis of deformable mechanical structures, one
way of including distributed parameter models into li-
braries of lumped parameter models for the purpose of
common simulation is pointed out in the present paper.
For the implementation of the resulting models the authors
take advantage of equation-based modelling libraries as
new models can here easily be integrated.

Keywords distribuded parameter systems, FEM import,
mechanical systems, deformable bodies

1. Introduction
Simulation of physical heterogeneous systems is getting
more and more important during the design process of tech-
nical systems. Anyway, the simulation of such systems is
not an easy task. Due to the different domains of physical
laws interacting with each other, accurate models may tend
to get very complex. One fundamental principle of mod-
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elling is therefore the hierarchical decomposition and inter-
connection of physical systems. This can be done accord-
ing to the physical domain (e. g. mechanical and electrical
part), according to common physical behaviour (e. g. solid
bodies), or according to the interaction and dependancies
of physical laws.

The common objectives of these different classifications
are the reduction of the model complexity for each part,
the achievement of modularity and exchangeability, the
increase of reusability of the models, and the enhancement
of their understanding. Appropriate assumptions on the
complexity can thus be made for every part and the model
can be seperately described by its physical laws. Of course,
in general, the decomposed parts, the so-called subsystems
of the model, interact with each other. These interactions
can only be expressed via certain finite sets of variables,
the so called interconnectors.

One very common assumption on submodels is the de-
scription of the physical system as a lumped parameter sys-
tem. Here, all variables are assumed to be a function of
time without any spatial dependancy. For such a system
one ends up with a system of algebraic and ordinary dif-
ferential equations, a so called DAE. This assumption is
made in many libraries of object-oriented, equation-based,
multi-physical simulation tools.

Nevertheless, a lumped parameter description is not al-
ways suitable to describe certain effects of physical sys-
tems accurately.

Distributed parameter models are characterized by the
fact that all variables are regarded not only as functions
of time but also as functions of some spatial coordinates.
Hence, the set of independent variables increases to more
than one variable. This type of models can be characterized
in integral or differential form with appropriate initial and
boundary conditions. The differential formulation results in
a system of partial differential equations (PDEs).

In our paper, we only regard linear inhomogeneous sys-
tems of PDEs that can be written down as

Dtu+Ru = w (1)

with dependent variables u, independent variables time t
and position (e. g. x, y, and z), and a dependent source
termw. Dt andR denote appropriate linear operators with
respect to (w. r. t.) time and w. r. t. all spatial coordinates,
respectively.
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This type of models appears in several, different do-
mains of application as a quite natural description of the
physical behaviour. The following three examples should
illustrate this fact.

Example 1: Heat flow
The equations for the heat flow within a homogeneous structure
can be described by the following PDE:

∂u

∂t
− α∆u =

∂u

∂t
− α

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= q

where u is the temperature and q is the heat source density, each a
function depending on the time t as well as the spatial coordinates
x, y, and z.

Example 2: Electrical transmission line
An electrical transmission line can be modelled in terms of two
variables i and u both depending on time t and the length z as:

∂u

∂z
+ L′

∂i

∂t
+R′i = 0

∂i

∂z
+ C′

∂u

∂t
+G′u = 0.

The quantitiesR′, L′,G′, andC′ are parameters of the model and
describe the resistance and the inductance load of the transmission
line, the conductance and the capacitance load between the lines,
each per unit length, respectively.

Example 3: Structural mechanics
When analysing the behaviour of solid bodies under static or
dynamic forces, we can use the theory of structural mechanics
to get a linearized model in terms of the displacement u from the
undeformed position and the volume force density k0 as

∂2ρ0u

∂t2
= k0 + Div(H Gradu).

In this equation the operators Div(·) and Grad(·) are defined by

Grad(u) ≡ 1

2
(∂iuj + ∂jui)i,j=1,2,3

Div(S) ≡

(
3∑

j=1

∂jSij

)
i=1,2,3

and the quantities ρ0 and H denote the mass density and the
symmetric stiffness tensor resulting from the material properties,
respectively.

In these examples no care has been taken of the initial
and boundary values, that of course influence the solvabil-
ity as well as the solution of the problem. One can very
often assume to have initial conditions for the independent
variable t and boundary conditions of appropriate type for
all spatial independent variables x, y, and z.

For the simulation of such distributed parameter mod-
els, there exist different methods, that automatically dis-
cretize the models (see e. g. [2, 11]). Very often these al-
gorithms result in large scale dynamic systems that cause a
high order of complexity. In any case, it is desirable to in-
clude such models into equation-based simulators (as e. g.
Dymola). To this end, two different but sometimes com-
plementing approaches have been established [17]. The
first approach tries to combine the models in one simula-
tor. The second approach aims to use different spezialized,
well adapted simulators for each domain and tries to link
these simulators for all necessary interactions [5, 13, 19].

While both ways have their own advantages and drawbacks
([14, 17]), this paper will focus on the first approach.

There have already been different authors attending the
import of PDEs into Modelica (as e. g. in [12]). Anyway,
in difference to other papers, our paper does not aim to
directly include PDEs into the modeling language Model-
ica. Our focus is given to the necessary preprocessing of
PDEs in general and for the import of flexible bodies into
the multi-body library.

The first part of the paper covers the detailed discus-
sion of the general approach of including distributed pa-
rameter models. Afterwards, in section three this approach
is applied to the import of mechanical Finite Element dis-
cretized models into a classical multi-body library. Here,
all issues of section two are picked up and explained for the
concrete example. Section four presents some examples for
the foregoing work flow in order to validate the generated
models. In section five, an outlook is given while section
six summarizes the content of this paper.

2. General considerations for the import of
distributed parameter systems

The import of distributed parameter models requires the
definition of an appropriate interface to lumped parameter
simulation libraries. For the sake of exchangeability, this
interface is supposed to be compatible to the connectors of
the other library elements. The issue of creating such an
interface for the distributed parameter model is discussed
in subsections 2.1 and 2.3.

Another question that arises for the import of distributed
parameter models concerns the embedding regarding a nu-
merical method to solve this kind of problems, as equation-
based simulation tools in general do not have solvers for
PDEs. Anyway, for the numerical solution of distributed
parameter models there already exist serveral different al-
gorithms. They all have one property in common: they try
to solve the simulation task in a finite-dimensional solution
space. The process of deriving a finite-dimensional model
is also called discretization. In fact, one could distinguish
between the discretization in terms of the time t and the
discretization in terms of the spatial independent coordi-
nates x, y, and z. Since for the spatial discretization there
exist already many elaborate numerical tools, our starting
point will be the spatially discretized system rather than the
original distributed parameter model. This topic is treated
in subsection 2.2.

However, there is a difficulty arising from the spatial
discretization. The discretized models become generally
very large in scale and are therefore often intractable for
equation-based solvers. Subsection 2.4 is dedicated to this
issue.

2.1 Connectors of the distributed parameter model
This subsection covers the definition of an appropriate in-
terface to the lumped parameter simulation library as it is
essential for the import of distributed parameter models.
For the unobstructed integration and exchangeability of the
imported models it is necessary to design the interface in
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Figure 1. Connector definition for the distributed parame-
ter model

compliance with the existing connector classes of the li-
brary. A connector class in an object-oriented simulation
tool is a class that defines the set of variables that are neces-
sary for the interconnection of the elements in this library.
In a mechanical multi-body library for example, these con-
nector classes are often called flanges and include all nec-
essary kinematic and kinetic variables. The connectors of
an electrical circuit library often consist of the two quan-
tities current and voltage, while for a heat flow library the
connectors typically contain the two variables heat flow and
temperature.

In this paper, we present an approach of creating such an
interface within the distributed parameter model. Figure 1
gives an illustration for the explanations below. As a first
step, we assume to have a connector of the lumped param-
eter model library with a defined set C of variables. Fur-
thermore, let V be the domain of all dependent quantities
of the distributed parameter model. In structural mechanics
for example, we could identify V with the set of all points
of the considered structure. In Figure 1 the gray and blue
colourized set V has been chosen to be an ellipsoid.

Then, it seems very meaningful to consider a connector
of the distributed parameter system as a (perhaps lower di-
mensional) subset VC of the domain V that satisfies the two
following constraints (see also Figure 1: the blue coloured
shape).

1. There exist two (disjoint) subsets Um ⊂ C andWm ⊂
C that are minimal sets of variables in order to uniquely
determine the behaviour of all variables in u and w
belonging to elements of the subset VC of the structure
and

2. the values of all variables in Um andWm are uniquely
defined by a "valid" spatial characteristic of all depen-
dent variables in u and w belonging to elements of the
subset VC .

Now, let ξm be the column vector of all variables in Um

and ηm the column vector of all variables in Wm. As we

will see later on, these conditions can be expressed as some
constraint equations between the variables ξm anduwithin
VC as well as between the variables ηm andw within VC1.
Thus, we will denote all possible values of u andw within
VC as "valid" if they satisfy the constraint equations.

2.2 Discretization of the model
As already noticed, it seems very convenient to start from
the spatially discretized model rather than from the original
PDEs. The reason is, that for the spatial discretization there
already exist sophisticated tools that might use different
methods as for example

• FDM (Finite Difference method),
• FEM (Finite Element method),
• FVM (Finite Volume method), or
• BEM (Boundary Element method).

For all models of this paper, only the Finite Element
method has been used to discretize the model. Since we
only regard linear inhomogeneous systems with maximal
second order of derivatives w. r. t. time, we can already
write the spatially discretized model as

A2
d2ξ

dt2
+A1

dξ

dt
+A0ξ = η (2)

with generally time dependent matrices Ai (i ∈ {0, 1, 2})
and time dependent vector η. The vector ξ collects the
variables u for every node of the Finite Element mesh,
while η consists of appropriate spatial integral terms of the
variable w for every node.

For the case of mechanical systems we denoteA2 = M
as the mass matrix, A1 = D as the damping matrix,
and A0 = K as the stiffness matrix of the model. The
column vector η combines all force components acting on
the discretized structure while the column vector ξ covers
all dispacement variables of the nodes.

In the spatially discretized version of the heat flow equa-
tion the matrixA2 vanishes due to the non-existence of sec-
ond order time derivatives in the PDEs. Matrices A1 = C
and −A0 = G can here be interpreted as the heat capaci-
tance matrix and the heat conductance matrix, respectively.
The column vector η collects the heat source densities for
each element of the spatially discretized structure. The de-
pendent vector ξ contains the temperatures of all nodes
within the structure.

2.3 Connectors of the discretized model
In subsection 2.1 we already defined a connector for the
original distributed parameter model. For the spatially dis-
cretized model, we can now adapt this definition. To do
this, we define a set ΩC as the set of all nodes of the body
that lie in VC . In Figure 2, these are all nodes within the
blue area. The connector of the discretized model is formed
by the dependent variables of all nodes of ΩC . Hence, the
conditions derived in subsection 2.1 can easily be stated.

1 More precisely, sinceu andw are functions of all independent variables,
we must use the restriction ofu andw to the set T ×VC , with time t ∈ T .
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Assume the vectors ξs and ηs to be the column vectors of
all coordinates of ξ and η that belong to nodes within the
subset VC , respectively. Then, there must exist two injec-
tive mappings ϕ and ψ from the set of all values of ξm

and ηm to the set of values of ξs and ηs, respectively. The
second condition is then inherently satisfied, if we denote
an element of the image of ϕ and ψ as a "valid" spatial
characteristic. The mapping ϕ can then also be interpreted
as a constraint equation on the differential system of equa-
tions (2).

Figure 2. Connector definition for the discretized model

For simplicity, we assume these mappings ϕ and ψ to
be linear in ξm and ηm. The constraint equations can thus
be stated as

ξs = Φ̂ξm, ηs = Ψ̂ηm (3)

with constant full column rank matrices Φ̂ and Ψ̂.
In order to take these constraints into account, we first

have to define another column vector ξr consisting of all
the remaining variables of ξ that are neither in ξm nor in
ξs.

Then, we can add the variables in ξm to the set of
dependent variables by defining the vector ξ̂ according to

ξ ≡
(
ξr

ξs

)
=

(
0 I 0
0 0 I

)ξmξr
ξs

 ≡ Γξ̂.

Now, we expand all matrices and vectors to

Â2 = ΓTA2Γ, Â1 = ΓTA1Γ,

Â0 = ΓTA0Γ, η̂ = ΓTη.

Note, that the inserted variables ξm still do not influence
the model except through the constraint equation (3), that
can also be written implicitly as

0 =
(
Φ̂ 0 −I

)
ξ̂ ≡ Ξξ̂.

Since all variables in ξs can be expressed through the
variables in ξm, we can write down the vector ξ̂ in terms of
the newly defined vector ξ̄ as

ξ̂ =

I 0
0 I

Φ̂ 0

(ξm
ξr

)
≡ Φ̆ξ̄. (4)

Applying the Lagrange Multiplier Theorem (see e. g. [7]),
equation (2) yields

Â2
¨̂
ξ + Â1

˙̂
ξ + Â0ξ̂ = η̂e + ΞTλ+ B̂ηm

Ξξ̂ = 0

ξm = Ĉξ̂ =
(
I 0 0

)
ξ̂,

where we split up η̂ into a sum of the external influences η̂e

and the influence of the connector variables ηm by the ma-
trix B̂, that is given by B̂

T
=
(
I 0 Ψ̂

T
)

. Furthermore,
we added an equation that expresses the connector vari-
ables ξm in terms of the variables in ξ.

Note, that the columns of Φ̆ are orthogonal to the rows
of Ξ and thus we can multiply the first equation by Φ̄

T from
the left and replace the vector ξ̂ by means of equation (4).
Then, the Lagrange Multipliers λi inλ disappear and hence
we get the new equations as

Ā2
¨̄ξ + Ā1

˙̄ξ + Ā0ξ̄ = η̄e + B̄ηm (5a)

ξm = C̄ξ̄. (5b)

2.4 Model order reduction
The linear system of differential equations (5) is typically
large in scale to achieve a good approximation of the con-
straint PDE for all nodes over a wide range of the frequency
domain.

Anyway, equation-based simulation tools apply com-
puter algebra to derive a solvable system of differential al-
gebraic equations. The computational efforts and the mem-
ory consumption for these operations increase dramatically
for a growing number of equations and variables. Thus,
these simulators are generally not able to handle large-scale
dynamic systems directly.

However, for many applications it is already sufficient to
approximate the behaviour between the variables ηm and
ξm in a relevant range of the frequency domain. Hence, it
is preferable and, as stated, often necessary to reduce the
size of the system drastically by an appropriate reduction
method.

This reduction method should of course take the inter-
esting range of the frequency domain into account. There
are many different methods [1, 6] for the linear model order
reduction and they all produce a matrix V defining a linear
mapping from the set of all reduced variable vectors q to
the set of all original vectors ξ̄. Consequently, we can write
down the relation between those vectors as

ξ̄ = V q. (6)

From a mathematical point of view, this mapping can
also be interpreted as a linear constraint on the governing
differential equations (5).
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Thus, one could apply the same algorithm as for the con-
nector constraint equations and end up with the following
equation

Aq,2q̈ +Aq,1q̇ +Aq,0q = ηe,q +Bqη
m (7a)

ξm = Cqq (7b)

where

A2,q = V TĀ2V , A1,q = V TĀ1V , A0,q = V TĀ0V ,

Bq = V TB̄, Cq = C̄V , ηe,q = V Tη̄e.

3. Import of mechanical structures
As a non-trivial example, an approach of importing models
from structural mechanics into a multi-body library is pre-
sented in the subsequent subsections. All previously dis-
cussed issues will be picked up and explained for this ex-
ample. Some simulation results for an implementation in
Modelica will follow in section 4.

3.1 Introduction
The task of including the dynamic behaviour of deformable
bodies into classical multi-body libraries has already been
investigated by several authors [3, 15, 18]. Here, a different
approach will be presented, as we try to derive the differ-
ential equations of motion directly from the parameters of
the Finite Element model.

Compared to the work flow presented in the foregoing
section, an additional challenge arises for this task. Even
though we start from the linearized model for small de-
formations of the body we have to take into account the
nonlinear character of the large motions of the considered
body. Hence, we also have to add nonlinear terms to the
equations of motion.

Before doing so, some assumptions and simplifications
which are used for our approach are listed below.

• Only the linear elastic behaviour of solid bodies is con-
sidered. In this paper no beam or plate elements are
treated.

• All geometric as well as physical nonlinearities are ne-
glected within the solid body.

• All properties of the solid body are assumed to be con-
stant over time.

• The interconnection points are modelled as rigid bodies,
where the joints and bodies of the multi-body library
can be rigidly attached (see below).

• The rigid body modes and the mass matrix are consid-
ered not to dependent on the deformation of the body.

3.2 The Finite Element model
The starting point of the presented task is the output of a
Finite Element simulation tool. Within the tool, the solid
body can be described concerning its geometry and its ma-
terial properties. Using the Finite Element solver a spa-
tially discretized model can be generated that can be writ-
ten down as

Mξ̈ +Dξ̇ +Kξ = η (8)

with the quantities already explained in section 2. This
linear system of differential equations describes the elastic
behaviour of the body under small deformations and small
displacements2.

For our further calculations we thus have to export the
matrices M , D, and K. In addition we need to export the
position of all nodes of the undeformed body. For a possible
visualization of the body, one could also export some mesh
or element information.

3.3 Connector definition
In order to include the model into a multi-body library, one
has to define connectors (flanges). These must be compat-
ible to the connectors of the library and thus must include
all variables that are defined in the connector class of the li-
brary. For multi-body libraries each of the sets of dependent
variables Um andWm consist of at least six elements3 (di-
rectly related to the six degrees of freedom (DoF) of a rigid
body), three translational and three rotational elements.

A connector of the spatially discretized model can be
composed by considering a subset of nodes, the so-called
slave nodes of the flange. The dependent variables ξs be-
longing to the slave nodes can then be experessed in terms
of the variables of the connector class ξm by a constraint
equation, which must satisfy condition 1 and 2 in sec-
tion 2.1.

As the flange is supposed to be an interconnection ele-
ment to a rigid body library, it seems very meaningful to
use a constraint equation on the slave nodes that rigidly at-
taches all slave nodes to each other. Hence, all nodes com-
posing a flange can be interpreted as a single rigid body in-
terconnected with the structure. The variables ξm provide
the position and orientation of that rigid body, that can also
be seen as a node with translational and rotational DoFs,
the so-called master node. Using geometric linearization
one can state the constraint equations for the nm connec-
tors in a linear way according to

ξsi = Φ̂iξ
m
i , i = 1, .., nm,

where ξsi denotes the vector of coordinates of the slave
nodes and ξmi the vector of the connector variables belong-
ing to the i-th connector. The constraint matrix constists of
three lines for each slave node and is given by

Φ̂i =
(
I r̃c,i − r̃j

)
j

j ∈ Ωi

with Ωi the set of indices of all slave nodes belonging to
the connector i, rj the position vector to the node j, r̃j
its cross product matrix, and r̃c,i the cross product matrix
of the connector reference point. This connector reference
position can be chosen arbitrarily w. r. t. the undeformed
shape of the body and is thus part of the designing process.

In order to satisfy condition 2 of subsection 2.1, there
are also constraints on the minimal number of slave nodes.
2 Please note, that it is very important to model the body as a free body
within the Finite Element simulation tool, i. e. without any constraints on
the undeformed motion of the body.
3 In many libraries more variables are used for the connector definition in
order to avoid singularities and numerical problems.
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Every flange must consist of at least three nodes that do not
lie in one line in order to uniquely define the orientation of
the master.

For further calculations we introduce the following
quantities

Φ̂ ≡

Φ̂1 0
. . .

0 Φ̂nm

 ,

ξs ≡

 ξs1
...
ξsnm

 , and ξm ≡

 ξ
m
1
...
ξmnm


and we summarize the coordinates of all nodes in ξr that
are not in ξs. In addition we assume without loss of gener-
ality4, that the vector ξT =

(
(ξr)T (ξs)T

)
.

Hence, we can express ξ in terms of ξr and the connec-
tor variables ξm by

ξ =

(
ξr

ξs

)
=

(
0 I

Φ̂ 0

)(
ξm

ξr

)
≡ Φ̄ξ̄.

Applying the Lagrange Multiplier Theorem and project-
ing the equations of motion into the achievable subspace,
i. e. the image of Φ̄, we get the constraint equations of mo-
tion

M̄ ¨̄ξ + D̄ ˙̄ξ + K̄ξ̄ = η̄e + B̄ηm (9a)

ξm = B̄
T
ξ̄ (9b)

with the new quantities

M̄ = Φ̄
T
MΦ̄, D̄ = Φ̄

T
DΦ̄,

K̄ = Φ̄
T
KΦ̄, η̄e = Φ̄

T
ηe,

B̄ =

(
I6nm

0

)
.

The quantity ηm summarizes all forces and torques acting
on the body through the connectors while ηe covers all
remaining external forces influencing the body.

For the sake of simplicity, at this point it is very conve-
nient to change the node numbering according to the po-
sition within the vector ξ̄. For all further calculations this
change will be presumed.

Because the equations above are typically large in scale,
the next subsection is dedicated to the reduction of the
system size.

3.4 Model order reduction
As already discussed in subsection 2.4, in the majority of
cases, it is necessary to reduce tremendously the number of
variables and equations of the dynamic model (9).

For our model we used a sophisticated model order re-
duction algorithm that has been implemented at the Fraun-
hofer Institute for Integrated Circuits, Design Automation
Division in Dresden ([8, 9]). Anyway, there are a lot of
other algorithms that can be used to reduce the model size.

4 If the coordinates in ξ have a different order, the assumed order can be
achieved by simply permuting the appropriate lines and columns of all
matrices and vectors in equation (8).

However, for a proper inclusion of the large motion
behaviour it is necessary that the matrix V includes the
six rigid body modes of the compound, i. e. that the matrix
includes six columns with the displacements of all nodes
when moving the undeformed body a little according to its
six DoFs.

3.5 Inclusion of nonlinear terms
In addition to many other physical domains in a mechanical
multi-body library we have to take some nonlinear terms
into account, namely the nonlinear dynamic forces result-
ing from the large motions in the three-dimensional space.
To do so, we consider the original equations (9) in a mov-
ing frame. So, we replace all time derivatives ()̇ w. r. t. the
inertial frame I by time derivatives ()

o w. r. t. the moving
reference frame B and express the acceleration as a linear
superposition of the acceleration w. r. t. the moving refer-
ence frame and the acceleration of the moving reference
frame itself. Then we can write equations (9) as

M̄

(
oo

ξ̄ + a0

)
+ D̄

o

ξ̄ + K̄ξ̄ = Φ̄
T
ηe + ηc + B̄ηm

ξm = B̄
T
ξ̄

with a0 consisting of three lines, namely

(a0)i = r̈0 + ( ˙̃ω + ω̃2)(r̃i + ξi) + 2ω̃ξ̇i, i ∈ Ωr

for every node in Ωr which is the set of all node indices
that are neither slave nore master node of any connector.

For every master node, one has to add the following six
lines to the vector a0

(a0)i =

(
r̈0 + ( ˙̃ω + ω̃2)(r̃c,i + ξi) + 2ω̃ξ̇i

ω̇ + ω̃ξ̇i

)
, i ∈ Ωm

with Ωm being the index set of connectors.
Furthermore, we have to add for every master node an

additional nonlinear expression due to the rotational DoFs
that can be combined in the vector ηc as

(ηc)i =


(
ω̃ 0

0 ω̃

)
M̄ i,i

(
0

ω

)
for i ∈ Ωm

0 for i ∈ Ωr.

Then, applying the model order reduction and an appro-
priate projection to the linear part of the equations, one can
end up with the following equations of motion: mI mr̃T

s M T
b1

mr̃s Θ0 M T
b2

M b1 M b2 M q

r̈0ω̇
q̈

+ Ďq̇ + Ǩq (10a)

+ g(ω, q, q̇) = V TΦ̄
T
ηe +Bqη

m

ξm = B̄
T
ξ̄ (10b)

HereM q = V TM̄V andBq = V TB̄.

4. Simulation examples
Within this section some examples are presented, that il-
lustrate the previously explained work flow and show the
accuracy of this approach.
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All models are formulated using the modelling language
Modelica. For this purpose a tool, the FEM-Import-Tool,
has been developed that reads the data exported from the
Finite Element tool, does all necessary modifications in-
cluding an optional model order reduction, and finally gen-
erates a Modelica based model. The model can than easily
be integrated into a threedimensional multi-body library.
Here, the programme is able to generate two different types
of models, one tailored to the particular needs of the Simu-
lationX multi-body library and one fitting to the Modelica
Standard Library. For the latter, it was very beneficial to
use an equation based language like Modelica, as the body
class from the multi-body library had only to be extended
for a model of flexible bodies.

4.1 Example 1 – static deformation of a long beam
As a first example the static deformation of a long beam
due to a static force and torque will be investigated. On one
side the beam will be rigidly fixed, while on the other side a
force and a torque will be applied. Table 1 lists all relevant
properties of the analysed beam.

Length: l = 1 m

Width: b = 0, 01 m

Height: h = 0, 02 m

Density: ρ = 7850 kg/m3

Young’s modulus: E = 2 · 1011 Pa

Poisson’s ratio: ν = 0.3

Damping (Rayleigh): α = 1 s−1

(D = αM + βK) β = 0.001 s

Table 1. Model parameters of the long beam

According to the foregoing sections, first, the body has
to be modelled within a Finite Element programm as a solid
body in order to extract all necessary parameter matrices.
Figure 3 shows the discretized ANSYS model (with all the
boundary conditions applied to it).

Figure 3. Discretized model of the long beam

4.1.1 Reference
According to [16]5, the theoretical solution for the devia-
tion uz and the rotations ϕx as well as ϕy of the free flange

5 The equation forϕy in [16] contained a wrong sign, which was corrected
here.

are given by

uz =
Fzl

3

3EIy
− Myl

2

2EIy
, ϕx =

Mxl

St

ϕy =
Myl

EIy
− Fzl

2

2EIy

with

Iy =
bh3

12
, St =

Ghb3

3
.

As a second reference, the same static analysis has been
carried out with ANSYS.

Afterwards the model for the multi-body library has
been generated using the FEM-Import-Tool. Here a model
order reduction was necessary to reduce the model com-
plexity. The produced Modelica model could than be used
to implement a simulation model in Dymola for this spe-
cific example as seen in Figure 4.

Figure 4. Dymola model of the long beam example

4.1.2 Results in Dymola
The results of the simulation in Dymola are listed in the
following Table.

uz [m] ϕx [rad] ϕy [rad]
−1.1897 · 10−008 2.6823 · 10−007 3.5687 · 10−008

4.1.3 Interpretation
Table 2 shows the relative errors of the results of the simu-
lation in Dymola compared to the reference calculation and
the reference simulation in ANSYS, respectively.

Calculation ANSYS

uz 0.000614 4.08 · 10−005

ϕx 0.444 1.75 · 10−005

ϕy 0.000751 1.36 · 10−005

Table 2. Relative error of the results of Dymola compared
to the reference calculation and ANSYS results

The results in Dymola coincide with the reference re-
sults in ANSYS up to the fourth decimal place. Also, the
relative error of the variables uz and ϕy are suffiently small
with less than 0.08% compared to the theoretical solutions.
The large deviation of the variable ϕx compared to the the-
oretical solution can be explained through the bad approx-
imation of the polar geometrical moment of inertia St in
[16]. A better approximation would lead to much better re-
sults.
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4.2 Example 2 – eigenfrequency analysis of an
L-shaped beam

For the second example an eigenfrequency analysis for an
L-shaped beam (see Figure 5) was performed and com-
pared to the theoretical calculations in [20] as well as to
reference simulation results in ANSYS. The beam has a
rectangular cross section. It is modelled as a solid body.

Figure 5. L-shaped beam with its flanges

The dimension and its material properties can be taken
from Table 3.

Length: l = 1 m

Width: b = 12 mm

Height: h = 5 mm

Density: ρ = 7900 kg/m3

Young’s modulus: E = 2.1 · 1011 Pa

Shear modulus: G = 82 · 109 Pa

Damping (Rayleigh): α = 0 s−1

(D = αM + βK) β = 0 s

Table 3. Model parameters of the L-shaped beam

The beam is rigidly fixed on one flange (flange 1) to
the inertial frame, while the second flange remains free.
The objective of this example is the proof of accuracy con-
cerning the first in-plane eigenfrequencies of the generated
model.

Again, for the generation of a Modelica model, the first
step was to export all necessary data from an appropri-
ate Finite Element model. For this example each line of
the L-shaped beam has been discretized into ten elements.
Afterwards the Modelica model has been generated using
FEM-Import-Tool with the expansion points s = ±40πi
and s = ±280πi for the model order reduction.

4.2.1 Reference
The theoretic results from the paper [20] and the eigen-
mode analysis of ANSYS are taken as the reference for the
Dymola simulation.

Figure 6 shows the first five eigenmodes of the L-shaped
beam in the considered plane. These eigenmodes are com-
pared to the simulation results in Dymola.

4.2.2 Results in Dymola
The results of the eigenvalue analysis in Dymola can be
compared to the theoretic results from [20], as well as the
ANSYS results which all are listed in the following table.

Figure 6. First five eigenmodes of the L-shaped beam

Theory [20] ANSYS Dymola
f1 3.331 Hz 3.337 Hz 3.337 Hz
f2 9.070 Hz 9.121 Hz 9.121 Hz
f3 44.772 Hz 44.802 Hz 44.802 Hz
f4 65.687 Hz 66.03 Hz 66.03 Hz
f5 143.179 Hz 143.173 Hz 143.173 Hz

4.2.3 Interpretation
Table 4 lists the relative errors of the Dymola frequencies
compared to the eigenfrequencies of the reference simula-
tion in ANSYS and the theoretic results.

Calculation ANSYS

f1 0.00185 5.16 · 10−005

f2 0.00564 1.73 · 10−005

f3 0.000667 3.44 · 10−006

f4 0.00523 6.07 · 10−006

f5 4.39 · 10−005 1.98 · 10−006

Table 4. Relative error of the eigenfrequency analysis in
Dymola compared to ANSYS and [20]

The maximal relative error is approximately 0.56%
compared to the theoretic results and smaller than 0.01%
compared to the ANSYS results. Hence, the deviation is
suffiently small.

4.3 Example 3 – T-square under uniform rotation
The third example is a dynamic test that shows the effect
of a uniform rotation of a body. The T-square under inves-
tigation (see Figure 8) is fixed at one flange (flange1) to a
revolute joint that rotates with

√
3 · 60 rpm around its axis

(n = 1√
3

(
1 1 1

)
). The static deformation due to the

centrifugal forces acting on the body are determined.
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Figure 7. Reference results for the static deformation of the rotating T-square

Figure 8. T-square with its flanges and dimensions

All relevant properties of the T-square are listed in Ta-
ble 5.

Length 1: l1 = 20 cm

Length 2: l2 = 15 cm

Width: b = 4 cm

Height: h = 2 cm

Density: ρ = 7850 kg/m3

Young’s modulus: E = 2 · 1011 Pa

Poisson’s ratio: ν = 0.3

Damping (Rayleigh): α = 1 s−1

(D = αM + βK) β = 0.001 s

Table 5. Model parameters of the T-square

4.3.1 Reference
After discretizing the model all necessary data have been
exported and a reference simulation has been carried out
within the Finite Element tool ANSYS (see Figure 7).

Furthermore a Modelica model has been generated and
simulated with the tool SimulationX.

4.3.2 Results in SimulationX
The simulation has been carried out in two different ways.
In the first case, a model was used in which the flanges
had already been strutted within the Finite Element tool by
means of constraint equations. For the other simulation this

was not the case. Here, all flanges had been strutted in the
model generator.

The results of the simulation for both versions do not
differ up to the sixth decimal place and are shown in the
table below.

Displacement

Flange 2 Flange 3
ux 9.6957 · 10−009 5.0039 · 10−007

uy −4.0418 · 10−007 −1.3583 · 10−007

uz −2.3823 · 10−006 −3.6993 · 10−006

4.3.3 Interpretation
Table 6 lists the relative error of all results of the simulation
in SimulationX compared to the reference simulation in
ANSYS.

Flange 2 Flange 3
Without CEs With CEs Without CEs With CEs

ux 0.000217 0.000316 0.000152 0.000152

uy 0.00015 0.000151 0.000188 0.000219

uz 0.000283 0.000286 0.000174 0.000168

Table 6. Relative error between results of reference simu-
lation and results of SimulationX

The maximal relative error between ANSYS and Simu-
lationX is lower than 0.03%. Hence the deviations remain
sufficiently small and the model achieves a good approxi-
mation.

5. Outlook
As stated at the beginning, there are also other examples
from different physical domains that use nearly the same
procedure to derive models for the combined simulation
with lumped parameter models. One example has been
investigated in [5]. Here, a thermal model of an electric
motor has been studied as depicted in Figure 9. The work
flow that has been used can exactly be mapped on the
method described in section 2. This fact gives motivation to
further investigate examples of different domains in order
to enhance and consolidate the work flow explained in this
paper.

For a more general and more sophisticated method
of including distributed parameter models into libraries
of lumped parameter models, the approach of port-based
modelling seems very attractive and promising. Especially
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Figure 9. Discretized thermal model of a electric motor

in the area of port-hamiltonian systems already some re-
markable results have been achieved that might be used to
effectively integrate distributed parameter models [4, 10].

In this context, for every port, there exist pairs of so-
called conjugate variables (flow and efforts) with the prop-
erty, that their product results in a physical quantity that
can be interpreted as a power. Please note, that within a
connector there should not disappear any power. This fact
leads to a special symmetry within the governing differen-
tial equations. Hence, it seems also very interesting to study
the integration process for this type of models.

6. Summary and Conclusions
The paper presented an approach of including discretized
distributed parameter models into libraries of lumped pa-
rameter models for equation-based simulation tools. As an
example, for a solid state body the authors showed how
to import the Finite Element discretized model into a clas-
sical multi-body equation-based library. The result was a
model that was able to describe the behaviour of the body
in terms of its elastic deformations also for large motions.
In order to achieve that goal, it was necessary to define ap-
propriate connectors and to reduce the size of the spatially
discretized model by a model order reduction algorithm.
The generated model was produced using the modelling
language Modelica that fully realizes the equation-based
modelling paradigm and thus offers the opportunity of sim-
ply changing existing models according to the new require-
ments.
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Abstract
In this work an approach is presented that extends the
OpenModelica Compiler (OMC) with an event handling
module and controls events separately from the integra-
tor. The aim of this extension is to improve the event han-
dling controller of the OMC to handle all equations syn-
chronously, resulting in an efficient simulation of hybrid
dynamical systems. This improvements of the event han-
dling allows to formulate the Petri Net library in optimal
Modelica code.

Keywords Modelica, Hybrid Models, Petri Nets, Open-
Modelica, Synchronous

1. Introduction
In general, Modelica models are represented mathemati-
cally through differential-algebraic equations (DAEs). A
special feature of the Modelica language is the ability to
describe continuous and discrete processes in a so-called
hybrid model. Hybrid models consist of continuous differ-
ential and algebraic as well as discrete equations. The latter
introduces events during simulation.

Typical applications for hybrid models are electronic
circuits or models with collisions of bodies. These models
generate events which can change the behaviour of the sys-
tem. Furthermore, there are also approaches within event-
based modelling, e.g. with hybrid Petri Nets, which involve
discrete and continuous places and transitions as well as
stochastic transitions.

For the numerical simulation of hybrid systems, a spe-
cial treatment of events is therefore needed. In addition to
a robust numerical integration of the DAEs, the instant of
time in which events modify the system should be approx-
imately determined and events should be treated in the cor-
rect chronological sequence as they appear. Modelica re-
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quires that all equations are handled synchronously at all
points in time, even more at events.

In OpenModelica a version of the DASSL algorithm
with associated root finding (DASRT) is used, so that the
event handling can not be considered independently from
the solver [5]. The Petri Net Library [8] could not been
expressed in optimal Modelica code since at that time the
OMC did not treat discrete events synchronously. This pa-
per describes the correct treatment of the event handling
which has been implemented in the OMC, leading to an
enhanced formulation of the Petri Net library.

2. Modelica Synchronous Data-flow
Principle

A hybrid Modelica model consists of differential, algebraic
and discrete equations. The discrete equations are not per-
manently active, they are only activated when an event oc-
curs. It is important to keep all variables synchronously at
all time points.

In order to solve Modelica models efficiently, all equa-
tions are sorted into the block-lower-triangular form. The
Modelica synchronous principle states that at every time
instant, the active equations express relations between vari-
ables which have to be fulfilled concurrently (cf. [7]).
Based on this synchronous data-flow principle, all equa-
tions are considered active during sorting to ensure a cor-
rect order at all points of time. The idea of using the syn-
chronous data flow principle in the context of hybrid sys-
tems was introduced in [4].

The following Modelica example illustrates how all
equations are kept synchronously.

when y1 > 2 then
y2 = f1(y3);

end when;
y3 = f3(y4);
when y0 > 0 then
y4 = f2(u);
y1 = f4(y3);

end when;
y0 = f5(u);

The example consists of five equations. The three when-
equations are only active at the points of time at which

63



the conditions are even fulfilled. The other two equations
describe the continuous behavior. The order of evaluation
plays an important role to ensure the synchronous princi-
ple.

The individual equations are sorted according to the
contained variables. So it must be assumed that all equa-
tions are activated simultaneously during transformation
into a block-lower-triangular form. Then the right evalu-
ation order can be determined automatically. To sort the
when-equations correctly, it has to be noted that they also
depend on variables that occur in the condition of a when-
expression.

If the block-lower-triangular transformation is per-
formed on these principles, the evaluation results in the
following specified order.

//known Variable: u
y0 = f5(u);
when y0 > 0 then
y4 = f2(u);

end when;
y3 = f3(y4);
when y0 > 0 then
y1 = f4(y3);

end when;
when y1 > 2 then
y2 = f1(y3);

end when;

During continuous integration and also at events the sorting
order is always correct because the discrete variables are
kept constant during the continuous integration [6].

3. Hybrid Modelica Model represented as
DAEs

Flat hybrid DAEs could represent continuous-time behav-
ior and discrete-time behavior. This is done mathematically
by the equation (1).

F (ẋ(t), x(t), u(t), y(t), q(te), qpre(te), c(te), p, t) = 0
(1)

This implicit equation (1) is transformed to the explicit
representation of equation (2) by block-lower-triangular
transformation. ẋ(t)

y(t)
q(te)

 =

 fs(x(t), u(t), p, qpre(te), c(te), t)

fa(x(t), u(t), p, qpre(te), c(te), t)

fq(x(t), u(t), p, qpre(te), c(te), t)


(2)

From this explicit form all necessary calculations can be
educed for the simulation of hybrid models. This is done
by formulating the continuous-time part, followed by the
discrete-time part. Below are summarized the notation used
in the following equations:

• ẋ(t), the differentiated vector of state variables of the
model.

• x(t), the vector of state variables of the model, i.e.,
variables of type Real that also appear differentiated,

meaning that der() is applied to them somewhere in
the model.

• u(t), a vector of input variables, i.e., not dependent
on other variables, of type Real. They also belong to
the set of algebraic variables since they do not appear
differentiated.

• y(t), a vector of Modelica variables of type Realwhich
do not fall into any other category.

• q(te), a vector of discrete-time Modelica variables of
type discrete Real, Boolean, Integer or String.
These variables change their value only at event in-
stants, i.e., at points te in time.

• qpre(te), the values of q immediately before the current
event occurred, i.e., at time te.

• c(te), a vector containing all Boolean condition ex-
pressions evaluated at the most recent event at time te.
This includes conditions from all if-equations and if-
statements and if-expressions from the original model
as well as those generated during the conversion of
when-equations and when-statements.

• p = p1, p2, . . ., a vector containing the Modelica vari-
ables declared as parameter or constant i.e., variables
without any time dependency.

• t, the Modelica variable time, the independent variable
of type Real implicitly occurring in all Modelica mod-
els.

3.1 Continuous Behavior
The continuous behavior of hybrid DAEs can be formu-
lated with the following equations (3).(

ẋ(t)
y(t)

)
=

(
fs(x(t), u(t), qpre(te), c(te), p, t)

fa(x(t), u(t), qpre(te), c(te), p, t)

)
(3)

The states x(t) are determined by an integration method,
so that they are assumed to be known as the vectors u(t)
and p. For discrete variables and the condition expressions
te is used instead of t to indicate that such variables may
only change values at event points of time and are kept con-
stant in the continuous parts of the simulation. Additional
the values of q(te) and qpre(te) are equivalent in the con-
tinuous parts of the simulation. Since every dependents of
the functions fs and fa are known, the continuous behavior
is fully described by (3).

3.2 Discrete Behavior
The discrete behavior is controlled by events. Events are
triggered by the event conditions c(te) and can appear at
any time as well as influence the system several times.

An event occurs when a condition of c(te) change its
value at time te from false to true or the other way
around. This occurs if and only if for a sufficient small
ε, one condition in c(te) is changed, for e.g. c(te − ε) is
false and for c(te + ε) is true. When an event occurs
all caused changes in the system can be carried out. In addi-
tion, the entire system must be determined by the function
(2) to guarantee the synchronism of all equations. However,
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it is not enough to determine only the discrete variables by
the function fq at this point.

The problem to be solved here is the most accurate
determination of the event time te. For this conditions c(te)
can be divided into three groups.

1. Conditions ck(te), which also depend on continuous
variables.

2. Conditions cd(te), that only depend on discrete vari-
ables.

3. Conditions cnoEvent(t), where the noEvent() operator
is present.

If the smooth operator applies to a condition in c(te)
this condition can be categorized depending on the order of
the integration method by 1. or 3., respectively.

The second and third group of conditions are easy to
handle, because if a condition in c(te) only depends on dis-
crete variables, then they could only change at events and
the conditions cd(te) must be tested only at events. The
conditions cnoEvent(t) result logically in no events. Thus,
the equations which depend on conditions cnoEvent(t), will
be determined during the continuous integration at the out-
put points. Hence the variables that are determined by the
function (4) should be treated appropriately, like algebraic
variables.

qnoEvent(t) := g(x(te), u(te), qpre(te), cnoEvent(te), p, t)
(4)

The event conditions ck(te), that depend only on time,
can be considered separately as they lead to time events.
The presence of time events is known at the start of the
simulation, thus they can be treated efficiently. This sep-
aration is not yet implemented in OpenModelica, but can
easily be realized.

What remains is the group of conditions, that lead to
state events. For this group of conditions a time-consuming
search has to be performed. These conditions have to be
checked during the continuous solution as described in the
next section.

Additional, discontinuous changes can caused by the
reinit() operator to the continuous states x(t). As for
purely discrete conditions cd(te) the reinit() operator
can only be activated at event times te . This new allocation
to the states could use the function (5).

x(te) := fx(x(t), ẋ(t), u(t), q(te), qpre(te), c(te), p, t)
(5)

3.3 Crossing Functions
In order to evaluate and check conditions ck(te) during
the continuous solution, they are converted into continuous
functions, so-called ZeroCrossing functions. Such func-
tions have a root if the Boolean condition jumps from
false to true. The relation x > 2, for example, changes
its value from false to true if x− 2 changes their value
from less zero to greater than zero, as shown in figure 1.

The values of ZeroCrossing functions are evaluated at
the points ti as this points are provided by the continuous

Figure 1. A boolean condition and its ZeroCrossing-
function.

solution. Through the continuous monitoring of ZeroCross-
ing functions the interval [ti, ti+1] is obtained, where at
least one of the ZeroCrossing function has a zero-crossing.
To determine the zero-crossing more precisely, the state
values are necessary for the entire interval. A continuous
solution for that can be provided by interpolating methods
within the interval limits. The order of the used interpolat-
ing method should match the order of the integration pro-
cess, to get an error that only depends on the used step size
(cf. [9, p. 197-215]).

4. Hybrid DAE Solution Algorithm
A general approach for the simulation of hybrid systems
has been developed by Cellier ( cf. [2]). In the following a
schematic Flowchart (see fig. 2) for the simulation is shown
and each step is described.

First of all the simulation must be initialized consis-
tently. For that the initial values are found with a simplex
optimization method in OpenModelica (cf. [1]). By use of
the initial conditions the initial values for the entire sys-
tem can be determined with the function (2). This will also
execute all initial events at time t0.

After the initialization the main simulation loop starts
with the continuous integration step that calculates the
states x(ti+1). With the new values of x(ti+1), the func-
tions fs and fa can be evaluated. Thus, the entire continu-
ous system is determined.

The continuous integration step is accepted if none
of the ZeroCrossing functions has a zero-crossing, i.e in
c(ti+1) no value has changed compared to c(ti). If no event
has occurred the values can be saved and the next step can
be performed.

However, if a value of c(ti+1) changes, an event oc-
curred within the interval ti and ti+1. Then the exact time
te has to be detected. Therefore a root finding method
is performed on the ZeroCrossing functions of the corre-
sponding conditions. If several ZeroCrossing functions ap-
ply the first occurring root is chosen as the next event time
te.

The next step is to prepare the treatment of an event by
evaluating the system just before an event at time te − ε,
and shortly after the event at te + ε. Current derivative-
free root finding methods work under the principle that
the root is approximated through limits at the two sides,
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Figure 2. Schematic Flowchart for simulation hybrid
models.

so that the delivered root lies somewhere in the interval
[te − ε; te + ε]. Here ε is the tolerance level of the root
finding method. Thus the necessary information to treat the
event are available after the root is found.

The treatment of an event looks like that: The continu-
ous part is evaluated at the time just before the event te − ε
and all values are saved to provide them to the pre() op-
erator. Then the entire system is evaluated by the function
(2) at time te + ε. At this point the causing event is han-
dled and now further caused events are processed with the
so-called EventIteration. Therefore the entire system con-
stantly is re-evaluated, as long as there exist discrete vari-
ables qj that satisfy pre(qj)6= qj . Only if for all discrete
variables pre(qj)= qj is fulfilled, the EventIteration has
reached a stable state and the next integration step can be
performed.

5. Test and Evaluation in OpenModelica
In the following two test cases are presented to verify
the implementation. The first model will show that when-
equations are sorted properly and events are processed cor-
rectly. The next model is from [5] and an example for Even-
tIteration, that works with only one re-evaluation through

the correct order of all equations. Finally a hybrid Petri-Net
model with its results is presented.

In order to check the correct sorting for when-equations
the following test model is considered.

model when_sorting
Real x;
Real y;
Boolean w(start=true);
Boolean v(start=true);
Boolean z(start=true);

equation
when y > 2 and pre(z) then
w = false;

end when;
when y > 2 and z then
v = false;

end when;
when x > 2 then
z = false;

end when;
when sample(0,1) then
x = pre(x) + 1;
y = pre(y) + 1;

end when;
end when_sorting;

All variables in the model are discrete variables because
all are contained within the when-equations. The variables
w and v are taken to determine whether the system behaves
correctly. The condition sample(0,1) creates events at
points of time 0.0, 1.0, 2.0, . . ., and the variables x and y
are incremented by one at this points. At time point 2.0 the
variables x and y are set to 3, so the other when-equations
are activated at point of time 2.0 firstly. The evaluation
order of the equations is significant for this example. The
order of evaluation has to be read on the basis of the
following sorted adjacency matrix of the model.

y w x z v

y = pre(y) + 1
w = false
x = pre(x) + 1
z = false
v = false


1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1 0
1 0 0 1 1



The variable w is turned to false because the variables
y and pre(z) are both true and are not dependent on
the equation of variable z. The variable v is not turned
because it depends on variable z and is always evaluated
afterwards. Thus the condition for this equation can not
be fulfilled. As a result, the equation that describes the
variable v is not activated. However, the order of evaluation
in this example is not unique, but it would not change the
described behavior of the model. The results of the model
are illustrated in figure 3.

The following example is developed in [5] for demon-
stration of the event iteration mechanism.
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Figure 3. Results of the above example.

model EventIteration
Real x(start = 1);
discrete Real a(start = 1.0);
Boolean z(start = false);
Boolean h1,h2;

equation
der(x) = a * x;
h1 = x >= 2;
h2 = der(x) >= 4;
when h1 then
y = true;

end when;
when y then
a = 2;

end when;
when h2 then
z = true;

end when;
end EventIteration;

In the original version of the OMC which did not fulfill
the synchronous data flow principle this example produced
up to three EventIterations. However, if all equations are
sorted in correct order and an event is handled like de-
scribed above, the chain of events is treated at once. There-
fore we consider again the sorted adjacency matrix to the
model:

h1 y a dx h2 z

h1 = x >= 2
y = true
a = 2
der(x) = a ∗ x
h2 = der(x) >= 4
z = true


1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1


(6)

The first event appears if x reaches 2 and the condition
x>=2 is fulfilled. Thus the function (2) is executed and
all further caused events are treated directly. So that the
variable z is turned to true after the first evaluation of
(2).

6. Petri Net Example in OpenModelica
The Petri Net library developed at the University of Ap-
plied Sciences Bielefeld consists of Modelica Models for
the basic components of a Petri Net (see [8]). In the library
models for discrete and continuous places and transitions as
well as stochastic transitions are included. With these ba-
sic components Petri Net models can be created intuitively
and quickly with a graphical representation. With hierar-
chical capabilities of Modelica large Petri Net models can
be constructed easily.

In the following we present an example of a produc-
tion process modeled by the Petri Net Library. Figure 4
shows the correnspond Petri Net of the production process
of crude steel, compare [3]. At first, the iron ore is trans-
ported per ship from Brasilia to a stock at the port of Rot-
terdam. This trip takes generally 14 days. Every 24 days
a ship arrives at the port of Rotterdam. But the exact time
of arrival is uncertain. The trip can take a little bit longer
or shorter because of nature or other conditions. This is
modeled with the aid of a stochastic Transition (Transition
ship). The time of arrival is a normal distributed random
variable with the expectation value m = 24 and the stan-
dard deviation s = 1. A shipload contains 360.000t iron
ore. For this reason add1 of Transition ship is equal to
360.000. The stock at the port can contain at most 720.000t
iron ore. Therefore, the maximal value of the Place stock
is fixed to 720.000. The start value of this Place is 360.000.

At the next level the iron ore is loaded from the stock
to several trains. A train can contain 5000t iron ore and
the drive to the steel production in Duisburg takes 8 hours.
The iron ore is delivered “just in time” to the produc-
tion process. Hence, no other stock is needed. The dis-
crete Transition train represents the transport from Rotter-
dam to Duisburg. The delay is 1/3 day (= 8 hours) and
sub1 = add1 = 5000. The iron ore (Place pro) and
the coke (Place coke) are mixed in the sintering plant. It
accrues the intermediate product sinter (Place I1). For one
ton employed iron ore 0.2t coke is needed and 0.73t sinter
is produced. This production step is modeled continuously
by means of the Transition Si. The edge weightings are the
following:

sub1 = 0.2 pro.t
sub2 = pro.t
add1 = 0.73 pro.t

The sinter is further processed in the blast furnace to hot
metal (Place I2). In addition, the by-products slag (Place
slag) and blast furnace dust (Place dust1) are produced.
For one ton employed sinter 0.2t coke is needed and 0.1t
slag, 0.65t hot metal and 0.01t blast furnace dust are pro-
duced. The Transition Fu displays this. The edges weight-
ings are:

sub1 = 0.2 I1.t
sub2 = I1.t
add1 = 0.1 I1.t
add2 = 0.65 I1.t
add3 = 0.01 I1.t
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Figure 4. Steel production process.

Figure 5. Three simulation results of the iron ore stock at
the port Rotterdam.

The by-product slag is sold to building industry. When
50.000t slag are produced the company is informed but
it is uncertain when the company arrives to pick up the
slag and how long this procedure takes. This is modeled

with a stochastic Transition with a normal distributed delay
(m = 1/2 and s = 1/8) and sub1 = 50.000. In the
last production step the hot metal is processed to crude
steel (Place steel) in the steel works. Slag (Place slag)
and converter dust (Place dust2) are the by-products here.
For one ton employed hot metal 0.13t slag, 0.8t crude steel
and 0.05t converter dust are produced. The Transition SW
represents the steel works. The edge weightings are:

sub1 = I2.t
add1 = 0.13 I2.t
add2 = 0.8 I2.t
add3 = 0.05 I2.t

Iron ore can be substituted by blast furnace dust (Place
dust1) and converter dust (Place dust2). This is mod-
eled with the Transition Tr and the edges weightings are:

sub1 = dust1.t
sub2 = dust2.t
add1 = 0.1 (dust1.t +dust2.t)

Following, some simulation results are shown. Figure
5 displays three possible progressions of the stock of iron
ore at the port of Rotterdam. Every progression is different
because of the stochastic modeling. The stock is limited to
720.000t iron ore. Hence, this border is not exceed. The
iron ore is loaded to trains. Every 8 hours a train drives
with 5000t iron ore to Duisburg. These are the discrete
stages in the magnification. The iron ore is exhausted in
all simulations at specific time points:

Simulation1 Simulation2 Simulation3
48 - 48.5 48 - 49.5 24 - 25.25
72.5 - 73 73.5 - 75.4 49.25 - 50.31

74.31 - 76.28
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Figure 6. The progressions of iron ore (pro), sinter (I1)
and hot metal (I2) (simulation 3).

This causes bottlenecks in the production process. The
next figure 6 shows the progression of iron ore, sinter and
hot metal of simulation 3. The decrease after day 24.3,
49.6 and 74.4 is caused by the exhaused stocks. Figure
7 illustrates the bottleneck in the production process of
simulation 3, too. The exhausted stocks are reflected in the
amount of crude steel. The production is decreased after
every empty stock period.

Figure 7. Stock of iron ore (stock) and produced crude
steel (steel) by comparison (simulation 3).

The conclusion of these simulations is that the delivery
period of iron ore has to be reduced. The new period has
to be big enough that only small bottlenecks appear and
small enough that no high stocks accumulate. If for exam-
ple a period of 22.5 days is chosen, the probability of a
bottleneck is 6.7% and the probability that this bottleneck
takes longer than one day is 0.62%. Now is the task to find

the “optimal” solution between bottlenecks and stock costs.
Figure 8 shows three simulation results of the progression
of the iron ore stock if the delivery period is 22.5 days.

Figure 8. Three simulation results of the iron ore stock
with a delivery period of 22.5.

7. Conclusion and Future Work
In this paper the algorithmic approach with respect to the
synchronous event handling in the OpenModelica Com-
piler is stated. The advantage of this procedural method has
been clearly demonstrated on some application examples.

Previously, the use of when-equations had to be avoided
in the OpenModelica version of the Petri Net library. In or-
der to get correct simulation results the equivalent formula-
tion if edge(b) then ... end if had to be em-
ployed. This also yields for all other event driven Modelica
libraries. Since this work this reformulation is unnecessary.
The description of the Petri Net Library for OpenModel-
ica has been optimized, so that now events can be specified
with the aid of when-equations.

The current implementation represents the concept, but
efficiency can be further improved in the near future. For
example, an increase in performance can be achieved by
more advanced root finding methods. Furthermore, the effi-
ciency can be enhanced by handling time events separately
with a suitable step-size control.
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Abstract
The current development towards multiple processor cores
in personal computers is making distribution and paral-
lelization of simulation software increasingly important.
The possible speedups from parallelism are however of-
ten limited with the current centralized solver algorithms,
which are commonly used in today’s simulation environ-
ments. An alternative method investigated in this work uti-
lizes distributed solver algorithms using the transmission
line modeling (TLM) method. Creation of models using
TLM elements to separate model components makes them
very suitable for computation in parallel because larger
models can be partitioned into smaller independent sub-
models. The computation time can also be decreased by us-
ing small numerical solver step sizes only on those few sub-
models that need this for numerical stability. This is espe-
cially relevant for large and demanding models. In this pa-
per we present work in how to combine TLM and solver in-
lining techniques in the Modelica equation-based language,
giving the potential for efficient distributed simulation of
model components over several processors.

Keywords TLM, transmission lines, distributed model-
ing, Modelica, HOPSAN, parallelism, compilation

1. Introduction
An increasingly important way of creating efficient compu-
tations is to use parallel computing, i.e., dividing the com-
putational work onto multiple processors that are available
in multi-core systems. Such systems may use either a CPU
[11] or a GPU using GPGPU techniques [14, 26]. Since
multi-core processors are becoming more common than
single-core processors, it is becoming important to utilize
this resource. This requires support in compilers and devel-
opment tools.

3rd International Workshop on Equation-Based Object-Oriented
Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

However, while parallelization of models expressed in
equation-based object-oriented (EOO) languages is not an
easily solved task, the increased performance if successful
is important. A hardware-in-the-loop real-time simulator
using detailed computationally intensive models certainly
needs the performance to keep short real-time deadlines, as
do large models that take days or weeks to simulate. There
are a few common approaches to parallelism in program-
ming:

• No parallelism in the programming language, but acces-
sible via library calls. You can divide the work by exe-
cuting several processes or jobs at once, each utilizing
one CPU core.

• Explicit parallelism in the language. You introduce lan-
guage constructs so that the programmer can express
parallel computations using several CPU cores.

• Automatic parallelization. The compiler itself analyzes
the program or model, partitions the work, and automat-
ically produces parallel code.

Automatic parallelization is the preferred way because
the users do not need to learn how to do parallel program-
ming, which is often error-prone and time-consuming. This
is even more true in the world of equation-based languages
because the "programmer/modeler" can be a systems de-
signer or modeler with no real knowledge of programming
or algorithms.

However, it is not so easy to do automatic paralleliza-
tion of models in equation-based languages. Not only is it
needed to decide which processor to perform a particular
operation on; it is also needed to determine in which or-
der to schedule computations needed to solve the equation
system.

This scheduling problem can become quite difficult and
computationally expensive for large equation systems. It
might also be hard to split the sequence of operations
into two separate threads due to dependencies between the
equations [2].

There are methods that can make automatic paralleliza-
tion easier by introducing parallelism over time, e.g. dis-
tributing solver work over time [24]. However, parallelism
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over time gives very limited speedup for typical ODE sys-
tems of equations.

A single centralized solver is the normal approach to
simulation in most of today’s simulation tools. Although
great advances have been made in the development of al-
gorithms and software, this approach suffers from inherent
poor scaling. That is, execution time grows more than lin-
early with system size.

By contrast, distributed modeling, where solvers can be
associated with or embedded in subsystems, and even com-
ponent models, has almost linear scaling properties. Spe-
cial considerations are needed, however, to connect the
subsystems to each other in a way that maintains stabil-
ity properties without introducing unwanted numerical ef-
fects. Technologies based on bilateral delay lines [3], also
called transmission line modeling, TLM, have been devel-
oped for a long time at Linköping University. It has been
successfully implemented in the HOPSAN simulation pack-
age, which is currently almost the only simulation package
that utilizes the technology, within mechanical engineer-
ing and fluid power. It has also been demonstrated in [16]
and subsequently in [5]. Although the method has its roots
already in the sixties, it has never been widely adopted,
probably because its advantages are not evident for small
applications, and that wave-propagation is regarded as a
marginal phenomenon in most areas, and thus not well un-
derstood.

In this paper we focus on introducing distributed sim-
ulation based on TLM technology in Modelica, and com-
bining this with solver inlining which further contributes to
avoiding the centralized solver bottleneck. In a future paper
we plan to demonstrate these techniques for parallel simu-
lation.

Summarizing the main contents of the paper.

• We propose using a structured way of modeling with
model partitioning using transmission lines in Modelica
that is compatible with existing Modelica tools (Section
6).

• We investigate two different methods to model trans-
mission lines in Modelica and compare them to each
other (Section 6).

• We show that such a system uses a distributed solver
and may contain subsystems with different time steps,
which may improve simulation performance dramati-
cally (Section 7).

• We demonstrate that solver inlining and distributed sim-
ulation using TLM can be combined, and that the result-
ing simulation results are essentially identical to those
obtained using the HOPSAN simulation package.

We use the Modelica language [8, 21] and the Open-
Modelica Compiler [9, 10] to implement our prototype, but
the ideas should be valid for any similar language.

2. Transmission Line Element Method
A computer simulation model is basically a representation
of a system of equations that model some physical phenom-

ena. The goal of simulation software is to solve this system
of equations in an efficient, accurate and robust way. To
achieve this, the by far most common approach is to use
a centralized solver algorithm which puts all equations to-
gether into a differential algebraic equation system (DAE)
or an ordinary differential equation system (ODE). The sys-
tem is then solved using matrix operations and numeric
integration methods. One disadvantage of this approach is
that it often introduces data dependencies between the cen-
tral solver and the equation system, making it difficult to
parallelize the equations for simulation on multi-core plat-
forms. Another problem is that the stability of the numeri-
cal solver often will depend on the simulation time step.

An alternative approach is to let each component in the
simulation model solve its own equations, i.e. a distributed
solver approach. This allows each component to have its
own fixed time step in its solvers. A special case where
this is especially suitable is the transmission line element
method. Such a simulator has numerically highly robust
properties, and a high potential for taking advantage of
multi-core platforms [15]. Despite these advantages, dis-
tributed solvers have never been widely adopted and cen-
tralized solvers have remained the de facto strategy on the
simulation software market. One reason for this can per-
haps be the rapid increase in processor speed, which for
many years has made multi-core systems unnecessary and
reduced the priority of increasing simulation performance.
Modeling for multi-core-based simulation also requires ap-
plications of significant size for the advantages to become
significant. With the recent development towards an in-
crease in the number of processor cores rather than an in-
crease in speed of each core, distributed solvers are likely
to play a more important role.

The fundamental idea behind the TLM method is to
model a system in a way such that components can be
somewhat numerically isolated from each other. This al-
lows each component to solve its own equations indepen-
dently of the rest of the system. This is achieved by re-
placing capacitive components (for example volumes in
hydraulic systems) with transmission line elements of a
length for which the physical propagation time corresponds
to one simulation time step. In this way a time delay is
introduced between the resistive components (for example
orifices in hydraulic systems). The result is a physically ac-
curate description of wave propagation in the system [15].
The transmission line element method (also called TLM
method) originates from the method of characteristics used
in HYTRAN [17], and from Transmission Line Modeling
[13], both developed back in the nineteen sixties [3]. To-
day it is used in the HOPSAN simulation package for fluid
power and mechanical systems, see Section 3, and in the
SKF TLM-based co-simulation package [25].

Mathematically, a transmission line can be described
in the frequency domain by the four pole equation [27].
Assuming that friction can be neglected and transforming
these equations to the time domain, they can be described
according to equation 1 and 2.

p1(t) = p2(t− T ) + Zcq1(t) + Zcq2(t− T ) (1)
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Figure 1. Transmission line components calculate wave
propagation through a line using a physically correct sepa-
ration in time.

p2(t) = p1(t− T ) + Zcq2(t) + Zcq1(t− T ) (2)

Here p equals the pressure before and after the transmission
line, q equals the volume flow and Zc represents the char-
acteristic impedance. The main property of these equations
is the time delay they introduce, representing the communi-
cation delay between the ends of the transmission line, see
Figure 1. In order to solve these equations explicitly, two
auxiliary variables are introduced, see equations 3 and 4.

c1(t) = p2(t− T ) + Zcq2(t− T ) (3)

c2(t) = p1(t− T ) + Zcq1(t− T ) (4)

These variables are called wave variables or wave charac-
teristics, and they represent the delayed communication be-
tween the end nodes. Putting equations 1 to 4 together will
yield the final relationships between flow and pressure in
equations 5 and 6.

p1(t) = c1 + Zcq1(t) (5)

p2(t) = c2 + Zcq2(t) (6)

These equations can now be solved using boundary con-
ditions. These are provided by adjacent (resistive) compo-
nents. In the same way, the resistive components get their
boundary conditions from the transmission line (capaci-
tive) components.

One noteworthy property with this method is that the
time delay represents a physically correct separation in
time between components of the model. Since the wave
propagation speed (speed of sound) in a certain liquid can
be calculated, the conclusion is that the physical length of
the line is directly proportional to the time step used to
simulate the component, see equation 7. Note that this time
step is a parameter in the component, and can very well
differ from the time step used by the simulation engine.
Keeping the delay in the transmission line larger than the
simulation time step is important, to avoid extrapolation of
delayed values. This means that a minimum time delay of
the same size as the time step is required, introducing a
modeling error for very short transmission lines.

l = ha =

√
β

ρ
(7)

Here, h represents the time delay and a the wave propaga-
tion speed, while β and ρ are the bulk modulus and the den-
sity of the liquid. With typical values for the latter two, the
wave propagation speed will be approximately 1000 m/s,
which means that a time delay of 1 ms will represent a
length of 1m. [16]

3. HOPSAN

HOPSAN is a simulation software for simulation and opti-
mization of fluid power and mechanical systems. This soft-
ware was first developed at Linköping University in the late
1970’s [7]. The simulation engine is based on the trans-
mission line element method described in Section 2, with
transmission lines (called C-type components) and restric-
tive components (called Q-type) [1]. In the current version,
the solver algorithms are distributed so that each compo-
nent uses its own local solvers, although many common
algorithms are placed in centralized libraries.

In the new version of HOPSAN, which is currently under
development, all equation solvers will be completely dis-
tributed as a result of an object-oriented programming ap-
proach [4]. Numerical algorithms in HOPSAN are always
discrete. Derivatives are implemented by first or second
order filters, i.e. a low-order rational polynomial expres-
sion as approximation, and using bilinear transforms, i.e.
the trapetzoid rule, for numerical integration. Support for
built-in compatibility between HOPSAN and Modelica is
also being investigated.

4. Example Model with Pressure Relief
Valve

The example model used for comparing TLM implementa-
tions in this paper is a simple hydraulic system consisting
of a volume with a pressure relief valve, as can be seen
in Figure 2. A pressure relief valve is a safety component,
with a spring at one end of the spool and the upstream pres-
sure, i.e., the pressure at the side of the component where
the flow is into the component, acting on the other end, see
Figure 3. The preload of the spring will make sure that the
valve is closed until the upstream pressure reaches a cer-
tain level, when the force from the pressure exceeds that of
the spring. The valve then opens, reducing the pressure to
protect the system.

In this system the boundary conditions are given by
a constant prescribed flow source into the volume, and a
constant pressure source at the other end of the pressure
relief valve representing the tank. As oil flows into the
volume the pressure will increase at a constant rate until
the reference pressure of the relief valve is reached. The
valve then opens, and after some oscillations a steady state
pressure level will appear.

A pressure relief valve is a very suitable example model
when comparing simulation tools. The reason for this is
that it is based on dynamic equations and also includes
several non-linearities, making it an interesting component
to study. It also includes multiple physical domains, namely
hydraulics and mechanics. The opening of a relief valve
can be represented as a step or ramp response, which can
be analyzed by frequency analysis techniques, for example
using bode plots or Fourier transforms. It also includes
several physical phenomena useful for comparisons, such
as wave propagations, damping and self oscillations. If
the complete set of equations is used, it will also produce
non-linear phenomena such as cavitation and hysteresis,
although these are not included in this paper.
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Figure 2. The example system consists of a volume and
a pressure relief valve. Boundary conditions is represented
by a constant flow source and a constant pressure source.
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Figure 3. A pressure relief valve is designed to protect
a hydraulic system by opening at a specified maximum
pressure.

The volume is modeled as a transmission line, in HOP-
SAN known as a C-type component. In practice this means
that it will receive values for pressure and flow from its
neighboring components (flow source and pressure relief
valve), and return characteristic variables and impedance.
The impedance is calculated from bulk modulus, volume
and time step, and is in turn used to calculate the character-
istic variables together with pressures and flows. There is
also a low-pass damping coefficient called α, which is set
to zero and thereby not used in this example.

mZc = mBulkmodulus/mVolume * mTimestep;
c10 = p2 + mZc * q2;
c20 = p1 + mZc * q1;
c1 = mAlpha*c1 + (1.0-mAlpha)*c10;
c2 = mAlpha*c2 + (1.0-mAlpha)*c20;

The pressure relief valve is a restrictive component,
known as Q-type. This means that it receives characteris-
tic variables and impedance from its neighboring compo-
nents, and returns flow and pressure. Advanced models of
pressure relief valves are normally performance oriented.
This means that parameters that users normally have little
or no knowledge about, such as the inertia of the spool or
the stiffness of the spring are not needed as input parame-
ters but are instead implicitly included in the code. This is
however complicated and not very intuitive. For this reason

a simpler model was created for this example. It is basi-
cally a first-order force equilibrium equation with a mass,
a spring and a force from the pressure. Hysteresis and cav-
itation phenomena are also excluded from the model.

The first three equations below calculate the total force
acting on the spool. By using a second-order filter, the x
position can be received from Newton’s second law. The
position is used to retrieve the flow coefficient of the valve,
which in turn is used to calculate the flow using a turbu-
lent flow algorithm. Pressure can then be calculated from
impedance and characteristic variables according to trans-
mission line modeling.

mFs = mPilotArea*mPref;
p1 = c1 + q1*Zc1;
Ftot = p1*mPilotArea - mFs;
x0 = mFilter.value(Ftot);
mTurb.setFlowCoefficient(mCq*mW*x0);
q2 = mTurb.getFlow(c1,c2,Zc1,Zc2);
q1 = -q2;
p1 = c1 + Zc1*q1;
p2 = c2 + Zc2*q2;

5. OpenModelica and Modelica
OpenModelica [9, 10] is an open-source Modelica-based
modeling and simulation environment, whereas Modelica
[21] is an equation-based, object-oriented modeling/pro-
gramming language. The Modelica Standard Library [22]
contains almost a thousand model components from many
different application domains.

Modelica supports event handling as well as delayed
expressions in equations. We will use those properties later
in our implementation of a distributed TLM-style solver. It
is worth mentioning that HOPSAN may access the value
of a state variable, e.g. x, from the previous time step.
This value may then be used to calculate derivatives or do
filtering since the length of time steps is fixed.

In standard Modelica, it is possible to access the pre-
vious value before an event using the pre() operator, but
impossible to access solver time-step related values, since a
Modelica model is independent of the choice of solver. This
is where sampling and delaying expressions comes into
play. Note that while delay(x,0) will return a delayed
value, if the solver takes a time step > 0, it will extrapo-
late information. Thus, it needs to take an infinite number
of steps to simulate the system, which means a delay time
> 0 needs to be used.

6. Transmission Lines in an Equation-based
Language

There are some issues when trying to use TLM in an
equation-based language.

TLM has been proven to work well using fixed time
steps. In Modelica however, events can happen at any
time. When an event is triggered due to an event-inducing
expression changing sign, the continuous-time solver is
temporarily stopped and a root-finding solution process is
started in order to find the point in time where the event
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occurs. If the event occurs e.g. in the middle of a fixed time
step, the solver will need to take a smaller (e.g. half) time
step when restarted, i.e. some solvers may take extra time
steps if the specified tolerance is not reached. However, this
occurs only for hybrid models. For pure continuous-time
models which do not induce events, fixed steps will be kept
when using a fixed step solver.

The delay in the transmission line can be implemented
in several ways. If you have a system with fixed time
steps, you get a sampled system. Sampling works fine in
Modelica, but requires an efficient Modelica tool since
you typically need to sample the system quite frequently.
An example usage of the Modelica sample() built-in
function is shown below. Variables defined within when-
equations in Modelica (as below) will have discrete-time
variability.

when sample(-T,T) then
left.c = pre(right.c) + 2 * Zc * pre(

right.q);
right.c = pre(left.c) + 2 * Zc * pre(

left.q);
end when;

Modelica tools also offer the possibility to use delays
instead of sampling. If you use delays, you end up with
continuous-time variables instead of discrete-time ones.
The methods are numerically very similar, but because the
variables are continuous when you use delay, the curve will
look smoother.

left.c = delay(right.c + 2 * Zc * right
.q, T);

right.c = delay(left.c + 2 * Zc * left.
q, T);

Finally, it is possible to explicitly specify a derivative
rather than obtaining it implicitly by difference computa-
tions relating to previous values (delays or sampling). This
then becomes a transmission line without delay, which is a
good reference system.

der(left.p) = (left.q+right.q)/C;
der(right.p) = der(left.p);

Figure 4 contains the results of simulating our example
system, i.e., the pressure relief valve from section 4. Fig-
ures 5 and 6 are magnified versions that show the difference
between our different TLM implementations. The models
used to create the Figures, are part of the Modelica package
DerBuiltin in Appendix A.

If you decrease the delay in the transmission even closer
to zero (it is now 10−4), the signals are basically the same
(as would be expected). It does however come at a signifi-
cant increase in simulation times and decreased numerical
stability. This is not acceptable if stable real-time perfor-
mance is desired. We use the same step size as the delay
of the transmission line since that is the maximum allowed
time step using this method, and better shows numerical
issues than a tiny step size.

Due to the nature of integrating solvers, we calculate
the value der(x), and use reinit() when der(x)
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Figure 4. Pressure increases until the reference pressure of
10 MPa is reached, where the relief valve opens.
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Figure 5. Comparison of spool position using different
TLM implementations.
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Figure 6. Comparison of system pressure using different
TLM implementations.
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Figure 7. Comparison of spool position with inlined ex-
plicit euler.

Table 1. Performance comparison between different mod-
els in the DerBuiltin and DerInline packages.

Method Builtin (sec) Inlined (sec)
OpenModelica Delay 0.13 0.40
OpenModelica Ideal 0.04 0.27
OpenModelica Sample 3.65 63.63
Dymola Ideal 0.64 0.75
Dymola Sample 1.06 1.15

changes sign. The OpenModelica DASSL solver cannot be
used in all of these models due to an incompatibility with
the delay() operator (the solver does not limit its step
size as it should). DASSL is used together with sampling
since the solver does limit its step size if a zero crossing
occurs; in the other simulations the Euler solver is used.

Because of these reasons we tried to use another method
of solving the equation system, see package DerInline
in Appendix A. We simply inlined a derivative approxima-
tion (x-delay(x,T))/T instead of der(x), which is
much closer to the discrete-time approximation used in the
HOPSAN model. This is quite slow in practice because of
the overhead delay adds, but it does implicitly inline the
solver, which is a good property for in parallelization.

If you look at Figures 7 and 8, you can see that all sim-
ulations now have the same basic shape. In fact, the Open-
Modelica ones have almost the same values. The time step
is still 10−4, which means you get the required behavior
even without sacrificing simulation times.

Even in this small example, the implementation using
delays has 1 state variable, while the ideal, zero-delay, im-
plementation has 3 state variables. This makes it easier to
automatically parallelize larger models since the central-
ized solver handles fewer calculations. When inlining the
der() operator, we end up with 0 continuous-time state
variables.

Table 1 contains some performance numbers on the
models used. At this early stage in the investiagtion the
numbers are not that informative for several reasons.

We only made single-core simulations so far. Models
that have better parallelism will get better speedups when
we start doing multi-core simulations.
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Figure 8. Comparison of system pressure with inlined ex-
plicit euler.

The current OpenModelica simulation runtime system
implementation does not have special efficient implemen-
tations of time events or delayed expressions.

The inlined solver uses delay explicitly instead of be-
ing an actual inlined solver. This means it needs to search
an array for the correct value rather than accessing it di-
rectly, resulting in an overhead that will not exist once in-
line solvers are fully implemented in OpenModelica.

We used the -noemit flag in OpenModelica to disable
generation of result files. Generating them takes between
20% and 90% of total simulation runtime depending on
solver and if many events are generated.

Do not compare the current Dymola [6] performance
numbers to OpenModelica. We run Dymola inside a Win-
dows virtual machine, while we run OpenModelica on
Linux.

The one thing that the performance numbers really tells
you is not to use sampling in OpenModelica until perfor-
mance is improved, and that the overhead of inlining the
derivative using delay is a lot lower in Dymola than it is
in OpenModelica.

7. Distributed Solver
The implementation using an inlined solver in Section 6
is essentially a distributed solver. It may use different time
steps in different submodels, which means a system can
be simulated using a very small time step only for certain
components. The advantage of such a distributed system
becomes apparent in [16].

In the current OpenModelica implementation this is not
yet taken advantage of, i.e., the states are solved in each
time step regardless.

8. Related Work
Several people have performed work on parallelization of
Modelica models [2, 18, 19, 20, 23, 28], but there are still
many unsolved problems to address.

The work closest to this paper is [23], where Nyström
uses transmission lines to perform model partitioning for
parallelization of Modelica simulations using computer
clusters. The problem with clusters is the communication
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overhead, which is huge if communication is performed
over a network. Real-time scheduling is also a bit hard to
reason about if you connect your cluster nodes through
TCP/IP. Today, there is an increasing need to parallelize
simulations on a single computer because most CPUs are
multi-core. One major benefit is communication costs; we
will be able to use shared memory with virtually no delay
in interprocessor communication.

Another thing that is different between the two imple-
mentations is the way TLM is modeled. We use regular
Modelica models without function calls for communica-
tion between model elements. Nyström used an external
function interface to do server-client communication. His
method is a more explicit way of parallelization, since he
looks for the submodels that the user created and creates a
kind of co-simulation.

Inlining solvers have also been used in the past to intro-
duce parallelism in simulations [18].

9. Further Work
To progress further we need to introduce replace the use of
the delay() operator in the delay lines with an algorithm
section. This would make the initial equations easier to
solve, the system would simulate faster, and it would retain
the property that connected subsystems don’t depend on
each other.

Once we have partitioned a Modelica model into a dis-
tributed system model, we will be able to start simulating
the submodels in parallel, as described in [12, 16].

Some of the problems inherent in parallelization of
models expressed in EOO languages are solved by doing
this partitioning. By partitioning the model, you essentially
create many smaller systems, which are trivial to schedule
on multi-core systems.

To progress this work further a larger more computa-
tionally intensive model is also needed. Once we have a
good model and inlined solvers, we will work on making
sure that compilation and simulation scales well both with
the target number of processors and the size of the problem.

10. Conclusions
We conclude that all implementations work fine in Model-
ica.

The delay line implementation using delays is not con-
siderably slower than the one using the der() operator,
but can be improved by using for example algorithm sec-
tions here instead. Sampling also works fine, but is far too
slow for real-time applications. The delay implementation
should be preferred over using der(), since the delay will
partition the whole system into subsystems, which are easy
to parallelize.

Approximating integration by inline euler using the de-
lay operator is not necessary to ensure stability although it
produces results that are closer to the results of the same
simulation in HOPSAN. When you view the simulation as a
whole, you can’t see any difference (Figure 4).
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A. Pressure Relief Valve - Modelica Source
Code

package TLM
package Basic
connector Connector_Q

output Real p;
output Real q;
input Real c;
input Real Zc;

end Connector_Q;
connector Connector_C
input Real p;
input Real q;
output Real c;

output Real Zc;
end Connector_C;
model FlowSource
Connector_Q source;
parameter Real flowVal;

equation
source.q = flowVal;
source.p = source.c + source.q*

source.Zc;
end FlowSource;
model PressureSource
Connector_C pressure;
parameter Real P;

equation
pressure.c = P;
pressure.Zc = 0;

end PressureSource;
model HydrAltPRV
Connector_Q left;
Connector_Q right;
parameter Real Pref = 20000000;
parameter Real cq = 0.67;
parameter Real spooldiameter = 0.01;
parameter Real frac = 1.0;
parameter Real W = spooldiameter*frac

;
parameter Real pilotarea = 0.001;
parameter Real k = 1e6;
parameter Real c = 1000;
parameter Real m = 0.01;
parameter Real xhyst = 0.0;
constant Real xmax = 0.001;
constant Real xmin = 0;
parameter Real T;
parameter Real Fs = pilotarea*Pref;
Real Ftot = left.p*pilotarea - Fs;
Real Ks = cq*W*x;
Real x(start = xmin);
parameter Integer one = 1;
constant Boolean useDerInlineDelay;
Real xfrac = x*Pref/xmax;
Real v = if useDerInlineDelay then (

x-delay(x,T))/T else der(xtmp);
Real a = if useDerInlineDelay then (

v-delay(v,T))/T else der(v);
Real v2 = c*v;
Real x2 = k*x;
Real xtmp;

equation
left.p = left.c + left.Zc*left.q;
right.p = right.c + right.Zc*right.q;
left.q = -right.q;
right.q = sign(left.c-right.c) * Ks *

(sqrt(abs(left.c-right.c)+((
left.Zc+right.Zc)*Ks)^2/4) - Ks*(
left.Zc+right.Zc)/2);

xtmp = (Ftot - c*v - m*a)/k;
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x = if noEvent(xtmp < xmin) then xmin
else if noEvent(xtmp > xmax)

then xmax else xtmp;
end HydrAltPRV;
end Basic;
package Continuous
extends Basic;
model Volume
parameter Real V;
parameter Real Be;
parameter Real Zc = Be*T/V;
parameter Real T;
Connector_C left(Zc = Zc);
Connector_C right(Zc = Zc);

equation
left.c = delay(right.c+2*Zc*right.q,T

);
right.c = delay(left.c+2*Zc*left.q,T)

;
end Volume;
end Continuous;
package ContinuousNoDelay
extends Basic;
model Volume
parameter Real V;
parameter Real Be;
parameter Real Zc = Be*T/V;
parameter Real T;
parameter Real C =V/Be;
Connector_C left(Zc = Zc);
Connector_C right(Zc = Zc);

protected
Real derleftp;

equation
derleftp = (left.q+right.q)/C;
derleftp = der(left.p);
derleftp = der(right.p);

end Volume;
end ContinuousNoDelay;
package Discrete
extends Basic;
model Volume
parameter Real V;
parameter Real Be;
parameter Real Zc = Be*T/V;
parameter Real T = 0.01;
Connector_C left(Zc = Zc);
Connector_C right(Zc = Zc);

equation
when sample(-T,T) then
left.c = pre(right.c)+2*Zc*pre(

right.q);
right.c = pre(left.c)+2*Zc*pre(

left.q);
end when;

end Volume;
end Discrete;
end TLM;

package BaseSimulations
constant Boolean useDerInlineDelay;
model HydrAltPRVSystem
replaceable model Volume =

TLM.Continuous.Volume;
parameter Real T = 1e-4;
Volume volume(V=1e-3,Be=1e9,T=T);
TLM.Continuous.FlowSource

flowSource(flowVal = 1e-5);
TLM.Continuous.PressureSource

pressureSource(P = 1e5);
TLM.Continuous.HydrAltPRV hydr(Pref

=1e7,cq=0.67,spooldiameter
=0.0025,frac=1.0,pilotarea=5
e-5,xmax=0.015,m=0.12,c=400,k
=150000,T=T,useDerInlineDelay=
useDerInlineDelay);

equation
connect(

flowSource.source,volume.left);
connect(volume.right,hydr.left);
connect(

hydr.right,pressureSource.pressure
);

end HydrAltPRVSystem;
model DelayDassl
extends HydrAltPRVSystem;

end DelayDassl;
model DelayEuler
extends HydrAltPRVSystem;

end DelayEuler;
model NoDelay
extends HydrAltPRVSystem(redeclare

model Volume =
TLM.ContinuousNoDelay.Volume);

end NoDelay;
model Disc
extends HydrAltPRVSystem(redeclare

model Volume =
TLM.Discrete.Volume);

end Disc;
end BaseSimulations;
package DerBuiltin
extends BaseSimulations(

useDerInlineDelay = false);
redeclare class extends

HydrAltPRVSystem
equation
when (hydr.v > 0) then
reinit(hydr.xtmp, max(

hydr.xmin,hydr.xtmp));
elsewhen (hydr.v < 0) then
reinit(hydr.xtmp, min(

hydr.xmax,hydr.xtmp));
end when;

end HydrAltPRVSystem;
end DerBuiltin;
package DerInline
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extends BaseSimulations(
useDerInlineDelay = true);

end DerInline;
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Abstract
Mathematical models, derived for example from discreti-
sation of partial differential equations, often contain opera-
tions over large arrays. In this work we investigate the pos-
sibility of compiling array operations from models in the
equation-based language Modelica into Single Assignment
C (SAC). The SAC2C SAC compiler can generate highly
efficient code that, for instance, can be executed on CUDA-
enabled GPUs. We plan to enhance the open-source Mod-
elica compiler OpenModelica, with capabilities to detect
and compile data parallel Modelica for-equations/array-
equations into SAC WITH-loops. As a first step we demon-
strate the feasibility of this approach by manually inserting
calls to SAC array operations in the code generated from
OpenModelica and show how capabilities and runtimes can
be extended. As a second step we demostrate the feasibility
of rewriting parts of the OpenModelica simulation runtime
system in SAC. Finally, we discuss SAC2C’s switchable
target architectures and demonstrate one by harnessing a
CUDA-enabled GPU to improve runtimes. To the best of
our knowledge, compilation of Modelica array operations
for execution on CUDA-enabled GPUs is a new research
area.

Keywords Single Assignment C, Modelica, data parallel
programming, OpenModelica, CUDA, GPU, SAC

1. Introduction
Mathematical models, derived for example from discreti-
sation of partial differential equations, can contain compu-
tationally heavy operations over large arrays. When simu-
lating such models, using some simulation tool, it might be
beneficial to be able to compute data parallel array opera-
tions on SIMD-enabled multicore architectures.
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Copyright is held by the author/owner(s). The proceedings are published by
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One opportunity for data parallel execution is making
use of graphics processing units (GPUs) which have in re-
cent years become increasingly programmable. The theo-
retical processing power of GPUs has far surpassed that of
CPUs due to the highly parallel structure of GPUs. GPUs
are, however, only good at solving certain problems of
data parallel nature. Compute Unified Device Architecture
(CUDA) [12] is a software platform for Nvidia GPUs that
simplifies the programming of their GPUs.

This paper is about unifying three technologies which
will be briefly introduced. These are OpenModelica, SAC2C
and CUDA. OpenModelica [14] is a compiler for the
object-oriented, equation-based mathematical modeling
language Modelica [11, 3]. SAC2C [20] is a compiler for
the Single Assignment C [19] functional array program-
ming language for efficient multi-threaded execution. We
are interested in using SAC2C’s CUDA backend [7] that
will enable Modelica models to benefit from NVidia graph-
ics cards for faster simulation. Even without this backend
SAC2C can generate highly efficient code for array com-
putations, see for instance [17]. We want to investigate
the potential of producing SAC code with OpenModelica
where opportunities for data parallelism exist.

Work has been planned to enhance the OpenModelica
compiler with capabilities to detect and compile arrays of
equations defined in Modelica using for-loops into SAC
code. From now on these for-loops will be referred to as
for-equations. The overall goal of this investigation is to
get a clear overview of the feasibility of this technique be-
fore any further work. In this paper we investigate how the
OpenModelica runtime system and generated code can be
amended to call SAC compiled libraries. This is achieved
by manually inserting calls to SAC in the code generated
from OpenModelica for array based operations. We also
examine the feasibility of rewriting parts of the OpenMod-
elica simulation runtime system in SAC. We perform mea-
surements of this new integrated runtime system with and
without CUDA and perform stand-alone measurements of
CUDA code generated with SAC2C.

Prior work exists on the generation of parallel exe-
cutable code from equation-based (Modelica) models [1,
10]. In these publications a task graph of the entire equation
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system was first generated and then distributed and sched-
uled for execution. Ways to inline the solver and pipeline
computations were also investigated in [10]. However, no
handling of data parallel array operations for the purpose of
parallel execution in the context of Modelica was done in
any of these publications. For work on parallel differential
equation solver implementations in a broader context than
Modelica see [15, 9, 16].

The remaining sections of the paper are organized as
follows. Section 2 introduces the model we wish to simu-
late thus giving a clear overview of the case study we will
use throughout the rest of the paper. In Section 3 we dis-
cuss the OpenModelica compiler and the compilation and
simulation of Modelica code and also briefly discuss the
proposed changes of the OpenModelica compiler needed
for the Modelica to SAC compilation. Section 4 contains
a description of SAC, gives SAC code that OpenModel-
ica could eventually produce and gives results and anal-
ysis from the first experiments of integrating SAC code
with OpenModelica. In Section 5 we give an overview of
CUDA, how the SAC2C compiler generates CUDA code,
results from experiments and an analysis of how this fits in
to the overall goals of this paper. Finally, in Section 6, we
draw some conclusions and discuss future work.

2. Case Study
In this section we introduce the Modelica model we wish to
simulate. The model has a parameter that can be altered to
increase or decrease the default number of state variables.
The model introduced here is compiled by the OpenModel-
ica compiler into C++ code and linked with a runtime sys-
tem. The runtime system will simulate the model in several
time steps and each time step involves some heavy array
computations. Simulation involves, among other things,
computing the values of the time-dependent state variables
for each time step from a specified start to stop time. Time-
independent algorithm sections and functions are also al-
lowed in Modelica.

2.1 One-dimensional Wave Equation PDE Model
The wave equation is an important second-order linear par-
tial differential equation for waves, such as sound waves,
light waves and water waves. Here we study a model of a
duct whose pressure dynamics is given by the wave equa-
tion. This model is taken from [3] (page 584). The present
version of Modelica cannot handle partial differential equa-
tions directly since there is only the notion of differentia-
tion with respect to time built into the language. Here we
instead use a simple discretisation scheme represented us-
ing the array capabilities in Modelica. Research has been
carried out on introducing partial differential equations into
Modelica, see for instance [18].

The one-dimensional wave equation is given by a partial
differential equation of the following form:

∂2p

∂t2
= c2 ∂2p

∂x2
. (1)

where p = p(x, t) is a function of both space and time
and c is a velocity constant. We consider a duct of length

10 and let −5 ≤ x ≤ 5 describe its spatial dimension.
We discretize the problem in the spatial dimension and ap-
proximate the spatial derivatives using difference approxi-
mations with the approximation:

∂2p

∂t2
= c2 pi−1 + pi+1 − 2pi

∆x2
(2)

where pi = p(xi + (i − 1) · ∆x, t) on an equidistant
grid and ∆x is a small change in distance. We assume
an initial pressure of 1. We get the following Modelica
model where the pressure to be computed is represented as
a one-dimensional array p of size n, where the array index
is the discretized space coordinate along the x-coordinate,
and the time dependence is implicit as is common for a
continuous-time Modelica variable.

1 model WaveEquationSample
2 import Modelica.SIunits;
3 parameter SIunits.Length L = 10 "Length of duct";
4 parameter Integer n = 30 "Number of sections";
5 parameter SIunits.Length dl = L/n "Section length";
6 parameter SIunits.Velocity c = 1;
7 SIunits.Pressure[n] p(each start = 1.0);
8 Real[n] dp(start = fill(0,n));
9 equation

10 p[1] = exp(-(-L/2)^2);
11 p[n] = exp(-(L/2)^2);
12 dp = der(p);
13 for i in 2:n-1 loop
14 der(dp[i]) = ĉ 2 * (p[i+1] - 2 * p[i] + p[i-1]) / dL̂ 2;
15 end for;
16 end WaveEquationSample;

On line 1 we declare that our entity should be a model
named ‘WaveEquationSample’. This model basically con-
sists of two sections: a section containing declarations of
parameters and variables (lines 3 to 8) followed by an equa-
tion section (lines 9 to 15). A parameter is constant for each
simulation run but can be changed between different simu-
lation runs. On line 2 we import the package SIunits from
the Modelica standard library.

The two arrays p and dp declared on lines 7 and 8 are
arrays of state variables. We can tell that they are arrays of
state variables since they occur in derivative expressions in
the equation section, thus their values will evolve over time
during the simulation run.

The first two equations on lines 10 and 11 state that the
first and last pressure value should have a constant value,
given by exponent expressions. The third equation on line
12 states that an element in the dp array is equal to the
derivative of the corresponding element in the p array. With
the present OpenModelica version this equation will result
in n scalar equations; we view this kind of equation as an
implicit for-equation. The fourth equation on lines 13 to 15
is a for-equation that will result in n− 2 scalar equations.

3. OpenModelica
OpenModelica is an open source implementation of a Mod-
elica compiler, simulator and development environment
for research as well as for educational and industrial pur-
poses. OpenModelica is developed and supported by an in-
ternational effort, the Open Source Modelica Consortium
(OSMC) [14]. OpenModelica consists of a Modelica com-
piler, OMC, as well as other tools that form an environment
for creating and simulating Modelica models.
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3.1 The OpenModelca Compilation Process
Due to the special nature of Modelica, the compilation pro-
cess of Modelica code differs quite a bit from program-
ming languages such as C, C++ and Java. Here we give
a brief overview of the compilation and simulation process
for generating sequential code. For a more detailed descrip-
tion the interested reader is referred to [2] or [3].

The OpenModelica front-end will first instantiate the
model, which includes among other things the removal
of all object-oriented structure, and type checking of all
equations, statements, and expressions. The output from
the OpenModelica front-end is an internal data structure
with separate lists for variables, equations, functions and
algorithm sections.

For-equations are currently expanded into separate equa-
tions. This means that currently each is analysed indepen-
dently. This is inefficient for large arrays. Thus, for our
purpose it would be better if the structure of for-equations
is kept throughout the compilation process instead of being
expanded into scalar equations.

From the internal data structure executable simulation
code is generated. The mapping of time-invariant parts
(algorithms and functions) into executable code is per-
formed in a relatively straightforward manner: Modelica
assignments and functions are mapped into assignments
and functions respectively in the target language of C++.
The WaveEquationSample model does not contain any al-
gorithm sections or functions and hence the result of in-
stantiating the WaveEquationSample model in section 2 is
one list of parameters, one list of state variables and one list
of equations.

The handling of equations is more complex and in-
volves, among other things, symbolic index reduction,
topological sorting according to the causal dependencies
between the equations and conversion into assignment
form. In many cases, including ours, the result of the equa-
tion processing is an explicit ordinary differential equation
(ODE) system in assignment form. Such a system can be
described mathematically as follows.

ẋ = f(x(t), y(t), p, t) x(t = t0) = x0 . (3)

Here x(t) is a vector of state variables, ẋ is a vector of
the derivatives of the state variables, y(t) is a vector of in-
put variables, p is a vector of time-invariant parameters and
constants, x0 is a vector of initial values, f denotes a sys-
tem of statements, and t is the time variable. Simulation
corresponds to solving this system with respect to time us-
ing a numerical integration method, such as Euler, DASSL
or Runge-Kutta.

The output from the OpenModelica back-end consists of
a source file containing the bulk of the model-specific code,
for instance a function for calculating the right-hand side f
in the equation system 3; a source file that contains code
for compiled Modelica functions; and a file with initial
values of the state variables and of constants/parameters
along with other settings that can be changed at runtime.

The ODE equation system in sorted assignment form
ends up in a C++ function named functionODE. This

function will be called by the solver one or more times in
each time step (depending on the solver). With the current
OpenModelica version, functionODE will simply con-
tain a long list of statements originating from the expanded
for-equations but work is in progress to be able to keep for-
equations throughout the compilation process.

3.1.1 Compilation of WaveEquationSample Model
In this section we illustrate the present OpenModelica com-
pilation process, with the help of the WaveEquationSample
model from section 2. In the next section we will discuss
how OpenModelica has to be altered if we wish to compile
Modelica for-equations into SAC WITH-loops. By instan-
tiating WaveEquationSample we get the following system
of equations. All high-order constructs have been expanded
into scalar equations and array indices start at 0.

p[0] = exp(-(-L / 2.0) ^ 2.0);
p[n-1] = exp(-(L / 2.0) ^ 2.0);
der(p[0]) = p[0];
.
.
.

der(p[n-1]) = p[n-1];
der(dp[0]) = 0;
der(dp[1]) = ĉ 2.0 * ((p[2]+(-2.0*p[1]+p[0])) * dL̂ -2.0);
.
.
.

der(dp[n-2]) = ĉ 2.0 * ((p[n-1]+(-2.0*p[n-2]+p[n-3])) * dL̂ -2.0);
der(dp[n-1]) = 0;

The above equations corresponds to line 10 to 15 in the
original WaveEquationSample model. The rotated ellipsis
denotes lines of code that are not shown. The assignments
to zero are later removed from the system since they are
constant (time independent). From the instantiated code
above we can define the following four expressions (where
0 ≤ Y ≤ n− 1 and 2 ≤ X ≤ n− 3):

EXPRESSION 3.1.
p[Y]

EXPRESSION 3.2.
c^2.0*((p[2] + (-2.0*p[1] + p[0]))*dL^-2.0)

EXPRESSION 3.3.
c^2.0*((p[X+1] + (-2.0*p[X] + p[X-1]))*dL^-2.0)

EXPRESSION 3.4.
c^2.0*((p[n-1]+ (-2.0*p[n-2] + p[n-3]))*dL^-2.0)

These expressions correspond roughly to the different types
of expressions that occur in the right-hand side of the equa-
tion system. The generated code will have the following
structure in pseudo code where . . . denotes ranges.

void functionODE(...) {
// Initial code
tmp0 = exp((-pow((L / 2.0), 2.0)));
tmp1 = exp((-pow(((-L) / 2.0), 2.0)));

stateDers[0 ... (NX/2)-1] = Expression 3.1;

stateDers[NX/2] = Expression 3.2;

stateDers[(NX/2 + 1) ... (NX - 2)] = Expression 3.3;

stateDers[NX-1] = Expression 3.4;
}
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The state variable arrays p and dp in the original model
have been merged into one array named stateV ars. There
is also a corresponding stateDers array for the derivatives
of the state variable arrays. The constant NX defines the
total number of state variables. The actual generated code
(in simplified form) for functionODE will look like this:
void functionODE(...) {
//--- Initial code ---//
//---
tmp0 = exp((-pow((L / 2.0), 2.0)));
tmp1 = exp((-pow(((-L) / 2.0), 2.0)));

stateDers[0]=stateVars[0 + (NX/2)];
.
.
.

stateDers[(NX/2)-1]=stateVars[((NX/2)-1) + (NX/2)];

stateDers[NX/2] = (c*c) * (stateVars[((NX/2)+1)-(NX/2)]+
((-2.0 * stateVars[(NX/2)-(NX/2)])+

tmp1))/(dL*dL);

stateDers[NX/2 + 1]=(c*c)*(stateVars[((NX/2)+2)-(NX/2)]+
((-2.0 * stateVars[((NX/2)+1)-(NX/2)])+

stateVars[(NX/2)-(NX/2)]))/(dL*dL);
.
.
.

stateDers[NX - 2]= (c*c)*(stateVars[(NX - 1)-(NX/2)]+
((-2.0 * stateVars[(NX - 2)-(NX/2)])+

stateVars[(NX - 3)-(NX/2)]))/(dL*dL);

stateDers[NX-1] = (c*c)*(tmp0 + ((-2.0 *
stateVars[(NX-1)-(NX/2)])+

stateVars[(NX-2)-(NX/2)]))/(dL*dL);
//---
//--- Exit code ---//

}

This function obviously grows large as the number of state
variables increases. Our intention is to rewrite this code and
since it is potentially data-parallel we can use the language
SAC for this.

3.1.2 Proposed Compilation Process
Several changes to the compilation process have to be per-
formed in order to compile for-equations into SAC WITH-
loops. A Modelica for-equation should have the same se-
mantic meaning as before. Right now a for-equation is first
expanded into scalar equations. These scalar equations are
merged with all other equations in the model and the to-
tal set of equations are sorted together. So equations inside
the original loop body might end up in different places in
the resulting code. This leads to restrictions on what kind
of for-equations should be possible to compile into WITH-
loops, at least for-equations containing only one equation
inside the body should be safe.

In the front-end of the compiler expansion of for-
equations into scalar equations should be disabled. We
would then get the following code with the WaveEqua-
tionSample model.

1 p[0] = exp(-(-L / 2.0) ^ 2.0);
2 p[n-1] = exp(-(L / 2.0) ^ 2.0);
3 for i in 0:n-1 loop
4 der(p[i]) = dp[i];
5 end for;
6 der(dp[0]) = 0;
7 for i in 1:n-2 loop
8 der(dp[i]) = ĉ 2.0 * ((p[i+1]+(-2.0*p[i]+p[i-1])) * dL̂ -2.0);
9 end for;

10 der(dp[n-1]) = 0;

New internal data structures that represents a for-equation
should be added; one for each internal intermediate form.
In the equation sorting phase it might be possible to han-
dle a for-equation as one equation. The equations inside
the loop body have to be studied for possible dependencies
with other equations outside the loop. The main rule im-
posed on Modelica models is that there are as many equa-
tions as there are unknown variables; a model should be
balanced. Checking whether a model is balanced or not can
be done by counting the number of equations and unknown
variables inside the loop body and adding these numbers
with the count from the rest of the model. In the final code
generation phase of the compilation process a Modelica
for-equation should be mapped into a SAC WITH-loop.
This mapping, as long as all checks have proved success-
ful, is relatively straightforward.

4. Single Assignment C
SAC combines a C-like syntax with Matlab-style program-
ming on n-dimensional arrays. The functional underpin-
nings of SAC enable a highly optimising compiler such
as SAC2C to generate high performance code from such
generic specifications. Over the last few years several auto-
parallelising backends have been researched demonstrating
the strengths of the overall approach. These backends in-
clude POSIX-thread based code for shared memory mul-
ticores [6], CUDA based code for GPGPUs [7] as well as
backends for novel many core architectures such as the Mi-
crogrid architecture from the University of Amsterdam [8].
All these backends demonstrate the strength of the SAC ap-
proach when it comes to auto-parallelisation (see [5, 4, 17]
for performance studies).

4.1 Data Parallelism and SAC

Almost all syntactical constructs from SAC are inherited
from C. The overall policy in the design of SAC is to
enforce that whatever construct looks like C should behave
in the same way as it does in C [6].

The only major difference between SAC and C is the
support of non-scalar data structures: In C all data struc-
tures are explicitly managed by the programmer. It is
the programmers responsibility to allocate and deallocate
memory as needed. Sharing of data structures is explicit
through the existence of pointers which are typically passed
around as arguments or results of functions.

In contrast, SAC provides n-dimensional arrays as state-
less data structures: there is no notion of pointers whatso-
ever. Arrays can be passed to and returned from functions
in the same way as scalar values can. All memory related
issues such as allocations, reuse and deallocations are han-
dled by the compiler and the runtime system. Jointly the
compiler and the runtime system ensure that memory is be-
ing reused as soon as possible and that array updates are
performed in place whenever possible.

The interesting aspect here is that the notion of arrays in
SAC actually matches that of Modelica perfectly. Both lan-
guages are based on the idea of homogeneously nested ar-
rays, i.e., the shape of any n-dimensional array can always
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be described in terms of an n-element shape vector which
denotes the extents of the array with respect to the individ-
ual axes. All array elements are expected to be of the same
element type. Both languages do consider 0-dimensional
arrays scalars. The idea of expressing array operations in a
combinator style is promoted by both languages.

To support such a combinator style, SAC comes with
a very versatile data-parallel programming construct, the
WITH-loop. In the context of this paper, we will concen-
trate our presentation on one variant of the WITH-loop,
the modarray WITH-loop. A more thorough discussion
of SAC is given in [19]. A modarray WITH-looptake the
general form

with {
( lower1 <= idx_vec < upper1) : expr1 ;
...
( lowern <= idx_vec < uppern) : exprn ;

} : modarray( array)

where idx_vec is an identifier and loweri and upperi, de-
note expressions for which for any i loweri and upperi

should evaluate to vectors of identical length. expri denote
arbitrary expressions that should evaluate to arrays of the
same shape and the same element type. Such a WITH-loop
defines an array of the same shape as array is, whose ele-
ments are either computed by one of the expressions expri

or copied from the corresponding position of the array ar-
ray. Which of these values is chosen for an individual el-
ement depends on its location, i.e., it depends on its index
position. If the index is within at least one of the ranges
specified by the lower and upper bounds loweri and upperi,
the expression expri for the highest such i is chosen, other-
wise the corresponding value from array is taken.

As a simple example, consider the WITH-loop

1 with {
2 ([1] <= iv < [4]) : a[iv] + 10;
3 ([2] <= iv < [3]) : 0 * a[iv];
4 } : modarray( a)

It increments all elements from index [1] to [3] by
10. The only exception is the element at index position
[2]. As the index [2] lies in both ranges the expression
associated with the second range is being taken, i.e., it is
replaced by 0. Assuming that a has been defined as [
0, 1, 2, 3, 4], we obtain [0, 11, 0, 13, 4]
as a result.

Note here, that selections into arrays as well as the
WITH-loops themselves are shape-generic, i.e., they can be
applied to arrays of arbitrary rank. Assuming that the same
WITH-loop is computed with a being defined as

1 a = [ [ 0, 1, 2, 3, 4],
2 [ 5, 6, 7, 8, 9],
3 [ 10, 11, 12, 13, 14],
4 [ 15, 16, 17, 18, 19],
5 [ 20, 21, 22, 23, 24]];

this would result in an array of the form

1 [ [ 0, 1, 2, 3, 4],
2 [ 15, 16, 17, 18, 19],

3 [ 0, 0, 0, 0, 0],
4 [ 25, 26, 27, 28, 29],
5 [ 20, 21, 22, 23, 24]]

Note also, that it was crucial to use 0 * a[iv] in the
second range to make a shape-generic application possi-
ble. If we had used 0 instead, the shapes of the expressions
would have been detected as incompatible and the appli-
cation to the array a of rank 2 would have been rendered
impossible.

4.2 SAC2C, a highly optimising compiler for SAC

SAC2C (see [20] for details) is a compiler for SAC which
compiles SAC programs into concurrently executable code
for a wide range of platforms. It radically transforms high
level programs into efficiently executable C code. The
transformations applied do not only frequently eliminate
the need to materialise arrays in memory that hold inter-
mediate values but they also attempt to get rid of redundant
computations and small memory allocated values as well.
Its primary source of concurrency for auto-parallelisation
are the WITH-loops. They are inherently data-parallel and,
thus, constitute a formidable basis for utilising multi- and
many-core architectures. Details of the compilation process
can be found in various papers [19, 6].

In order to hook up compiled SAC code into an existing
C or C++ application, the SAC2C toolkit also supplies an
interface generator named SAC4C. It enables the creation
of a dynamically linked library which contains C functions
that can be called from C directly.

4.3 Writing OpenModelica Generated Code in SAC

Section 3.1 defined four index expressions for defining the
state derivatives array. Their placement into the generated
array, stateDers, can be represented in SAC as WITH-
loop partitions in the following way

1 with {
2 ([0] <= iv < [NX/2]) : Expression 3.1;
3

4 ([NX/2] <= iv <= [NX/2]) : Expression 3.2;
5

6 ([NX/2] < iv < [NX-1]) : Expression 3.3;
7

8 ([NX-1] <= iv <= [NX-1]) : Expression 3.4;
9 } : modarray(stateVars)

In legal SAC syntax this can be written as the following.

1 with {
2 ([0] <= iv < [NX/2]) :
3 stateVars[iv + (NX/2)];
4

5 ([NX/2] <= iv <= [NX/2]) :
6 (c * c) * (stateVars[(iv+1) - (NX/2)] +
7 ((-2d * stateVars[iv - (NX/2)]) + tmp1))
8 / (dL * dL);
9

10 ([NX/2] < iv < [NX-1]) :
11 (c * c) * (stateVars[(iv+1) - (NX/2)] +
12 ((-2d * stateVars[iv - (NX/2)]) +
13 stateVars[iv-1 - (NX/2)]))
14 / (dL * dL);
15

16 ([NX-1] <= iv <= [NX-1]) :
17 (c * c) *
18 (tmp0 + ((-2d * stateVars[iv - (NX/2)]) +
19 stateVars[iv-1 - (NX/2)])) / (dL * dL);
20 } : modarray(stateVars)
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The above code defines two single elements within the
result array and two large sub-arrays. The equivalent code
in OpenModelica-generated C++ and the array the code
populates grows linearly with number of state variables.

We modified the OpenModelica-generated C++ code so
that instead of computing the ODE system in OpenModel-
ica generated C++, a function call is made in functionODE
to a SAC function containing the above WITH-loop. Both
pieces of code are semantically equivalent. The code was
patched so that using a pre-processor macro either the orig-
inal OpenModelica produced code is invoked or a call is
made to a dynamically linked library implemented in SAC
that produces the same result.

In the above strategy we make at least one call to SAC
in each time step. One alternative to the above strategy of
writing this piece of code in SAC is to write the whole
solver, or at least the main solver loop, in SAC. We did this
for the Euler solver where the main loop looks as follows.

1 while (time < stop)
2 {
3 states = states + timestep * derivatives;
4 derivatives = functionODE(states, c, l, dL);
5 time = time + timestep;
6 }

This simple SAC codeblock moves the Euler solver for-
ward in time in steps of timestep. Note here that
states and derivatives are arrays and not scalars.
The arithmetic operations applied to these arrays are ap-
plied to each element with each array. In each time step
state variables and state derivatives are calculated. Within
each step the SAC version of functionODE is invoked.

In the following section we outline experiments where
firstly the WITH-loop and secondly the complete SAC Euler
solver including the WITH-loop are integrated with Open-
Modelica.

4.4 Experiments Using SAC with OpenModelica
Generated Code

All experiments in this paper were run on CentOS Linux
with Intel Xeon 2.27GHz processors and 24Gb of RAM,
32kb of L1 cache, 256Kb of L2 cache per core and 8Mb
of processor level 3 cache. SAC2C measurements were run
with version 16874 and svn revision number 5625 of Open-
Modelica was used. C and C++ compilations were per-
formed with Gcc 4.5. The model we used was the WaveE-
quationSample model introduced in Section 2. The experi-
ments in this section all run sequential code.

Since OpenModelica does not yet have awareness of
data parallel constructs inherent in for-equations in the
equation section of models it was only feasible to run the
compiler for relatively small problem sizes. As mentioned
earlier, equations over arrays are expanded into one equa-
tion for each element. Even when making some modifica-
tions to the OpenModelica code base for the sake of the ex-
periment we were only able to increase the n defined in the
original Modelica model to numbers in the low thousands.
Anything above this size becomes increasingly infeasible
in compile time and resource limits are met at runtime.
These problem sizes are big enough still to demonstrate the
feasibility of linking SAC modules with C++ code. Com-
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Figure 1. The WaveEquationSample run for different
number of sections (n) with functionODE implemented
as pure OpenModelica-generated C++ code and as
OpenModelica-generated C++ code with functionODE im-
plemented in SAC. Start time 0.0, stop time 1.0, step size
0.002 and without CUDA.

putational Fluid Dynamics simulations for instance may
however operate on very large arrays.

4.4.1 Invoking a SAC WITH-loop from OpenModelica
For our first experiment we altered functionODE from
the code produced by the OpenModelica compiler so that
instead of computing the state derivatives in normal se-
quential C++ code, a call to SAC code is made. Our SAC
code consists primarily of the WITH-loop from Section 4.3.
Since in this first experiment only functionODE is modi-
fied the loop from Section 4.3 is inside the OpenModelica-
generated C++ code in this example. The new C++ code
that calls the SAC code includes copying of the states ar-
ray before it is passed to SAC and copying of the array
returned by SAC to the state derivatives array in the C++
code. Some copying is required currently because SAC al-
locates an array with the result. This creates a penalty for
the SAC implementation. In a future OpenModelica com-
piler it is hoped this allocation can be delegated to SAC so
that the copying can be removed.

Whilst OpenModelica does an efficient job of taking
models and writing code that can make use of different run-
time solvers to solve these models, no provisions exist yet
for creating highly data parallel code from obviously data
parallel models. Our first result shows that if the compiler
were to produce SAC code it would be possible to produce
code that can feasibly operate on the large arrays that are
inevitably required. This in itself can broaden the range of
models that OpenModelica could be used to handle.

Figure 1 shows the time taken to simulate the mod-
els by running the OpenModelica programs with the two
above-described setups for increasing values of n. The ex-
periments were run with the default OpenModelica solver
which is the DASSL solver. The simulation was run with
timestep 0.002, start time 0 and stop time 1. The results
show significant improvements in speed of execution of the
SAC implementation already as n raises to values above
1000. For many desired simulations these are relatively
small numbers.
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Figure 2. The WaveEquationSample run for different
number of sections (n) with functionODE and Euler loop
implemented as pure OpenModelica-generated C++ code
and as OpenModelica-generated C++ code with function-
ODE and Euler loop implemented in SAC. Start time 0.0,
stop time 100.0, step size 0.002 and without CUDA.

4.4.2 Linking Euler SAC2C Generated Libraries with
OpenModelica Generated Code

For a second experiment we used the SAC-implemented
Euler solver code consisting primarily of the for-loop in
Section 4.3. This code makes calls to the WITH-loop from
our previous experiment. For this experiment the Open-
Modelica Euler solver was used instead of DASSL since
the code is simpler but the algorithm is well known and
performs a (simple) time step integration, and is hence ap-
propriate for a feasibility study.

This time it was the OpenModelica solver that was
patched rather than OpenModelica-generated code. The
simulation was run from 0 to 100 seconds with steps of
0.002 seconds. We patched the OpenModelica-solver code
so as not to allocate large blocks of memory for the request.
This allowed us to run for larger values of n and more time
steps. In addition the OpenModelica compiler was patched
to not output intermediate time-steps and the SAC code
behaves in the same way. As before the SAC version of the
code includes additional memory allocation and copying of
the data structures passed to and received from the module
that will be removed in the future.

Figure 2 shows the time taken to calculate derivatives by
running two patched versions of the WaveEquationSample
model generated with OpenModelica for increasing values
of n.

When using the SAC libraries the performance benefits
are significant. We attribute this to OpenModelica’s current
implementation. Currently globally defined pointers into
globally defined arrays are referred to in the code. An array
is calculated that is dependent on values in another array
and each element of each array is referenced using the
globally defined pointers. We believe that the C compiler
was unable to efficiently optimise this code where array
sizes were large. Improving this will require some changes
to the OpenModelica compiler and runtime system which
will in themselves certainly have performance benefits.

The model for this experiment operates on a vector of
state values. Some computational fluid dynamics applica-
tions operate on three-dimensional state spaces. In terms of

Figure 3. CUDA-enabled GPU hardware architecture.

OpenModelica models these may manifest as three-level
nested for-equations. These could map perfectly into SAC
where a lot of work [19] has already gone into optimi-
sation for the efficient execution of multi-dimensional ar-
rays taking into account memory access patterns and po-
tential vectorisations. Any future integration of SAC2C into
OpenModelica would inevitably make use of these optimi-
sations.

The patches and command line calls used in the experi-
ments in this section can be found in [20].

5. Compute Unified Device Architecture
In recent years, the processing capability of graphics pro-
cessing units (GPUs) has improved significantly so that
they are used to accelerate both scientific kernels and real-
world computational problems. Two main features of these
architectures render them attractive: large numbers of cores
available and their low cost per MFLOP compared to large-
scale super-computing systems. Their peak performance
figures have already exceeded that of multi core CPUs
while being available at a fraction of the cost. The appear-
ance of programming frameworks such as CUDA (Com-
pute Unified Device Architecture) from Nvidia minimises
the programming effort required to develop high perfor-
mance applications on these platforms. To harness the pro-
cessing power of modern GPUs, the SAC compiler has a
CUDA backend which can automatically parallelise WITH-
loops and generate CUDA executables. We will briefly in-
troduce the CUDA architecture and programming model
before demonstrating the process of compiling the compu-
tational kernel of the case study example into a CUDA pro-
gram.

5.1 Hardware Architecture
Figure 3 shows a high-level block diagram of the architec-
ture of a typical CUDA-enabled GPU. The card consists of
an array of Streaming Multiprocessors (SM). Each of these
SMs typically contains 8 Streaming Processors (SP).
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The organisation of the memory system within CUDA
is hierarchical. Each card has a device memory which
is common to all streaming multiprocessors, connected
through a shared bus, as well as externally. To minimise
the contention at that bus, each streaming multiprocessor
has a relatively small local memory referred to as Shared
Memory shared across all streaming processors. In addition
to this, each streaming processor has a set of registers.

5.2 The CUDA Programming Model
The CUDA programming model assumes that the system
consists of a host, which is a traditional CPU, and one or
more CUDA-enabled GPUs. Programs start running se-
quentially at the host and call CUDA thread functions to
execute parallelisable workloads. The host needs to transfer
all the data that is required for computation by the CUDA
hardware to the device memory via the system bus. The
code that is to be executed by the cores is specified in a
function-like unit referred-to as a kernel. A large number
of threads can be launched to perform the same kernel op-
eration on all available cores at the same time, each operat-
ing on different data. Threads in CUDA are conceptually
organised as a 1D or 2D grid of blocks. Each block within
a grid can itself be arranged as a 1D, 2D or 3D array of
cells with each cell representing a thread. Each thread is
given a unique ID at runtime which can be used to locate
the data upon which they should perform the computation.
After each kernel invocation, blocks are dynamically cre-
ated and scheduled onto multiprocessors efficiently by the
hardware.

5.3 Compiling SAC into CUDA

Most of the high level array operations in SAC are a com-
position of the fundamental language construct - the data
parallel WITH-loop. The CUDA backend of the SAC com-
piler identifies and transforms parallelizable WITH-loops
into code that can be executed on CUDA-enabled graphic
GPUs. Here we demonstrate the process of compiling the
computational kernel of the wave equation PDE model, ex-
pressed as a WITH-loop, into equivalent CUDA program
(See Figure 4). The compilation is a two-staged process:

• Phase I: This phase introduces host-to-device and
device-to-host transfers for data arrays referenced in
and produced from the WITH-loop. In the example
shown, array stateVars introduces host-to-device
transfers. The final result computed within the GPU, the
array stateDersD, introduces a device-to-host transfer.

• Phase II: This phase lifts computations performed in-
side each generator as a separate CUDA kernel. In this
example, four kernels (i.e. k1, k2, k3 and k4) are cre-
ated, each corresponds to one WITH-loop generator.

CUDA kernels are invoked with a special syntax speci-
fying the CUDA grid/block configuration. In the example,
each kernel invocation creates a thread hierarchy composed
of a one-dimensional grid with one-dimensional blocks in
it. Device array variables stateDersD and stateVarsD,
along with scalars(c, dL, tmp0, tmp1), are passed as pa-

stateDers = with {
( [0] <= iv < [256]) :

stateVars[iv+256];
( [256] <= iv < [257]) :

(c*c)*(stateVars[(iv+1)-256]+
((-2f*stateVars[iv-256])+tmp1))/(dL*dL);

( [257] <= iv < [511]) :
(c*c)*(stateVars[(iv+1)-256]+
((-2f*stateVars[iv-256])+
stateVars[(iv-1)-256]))/(dL*dL);

( [511] <= iv <= [512]) :
(c*c)*
(tmp0*((-2f*stateVars[iv-256])+
stateVars[(iv-1)-256]))/(dL*dL);

} : modarray(stateVars);

⇓ ⇓ ⇓

stateVarsD = host2device( stateVars);
stateDersD = with {

( [0] <= iv < [256]) :
stateVarsD[iv+256];

( [256] <= iv < [257]) :
(c*c)*(stateVars

D[(iv+1)-256]+
((-2f*stateVars

D[iv-256])+tmp1))/(dL*dL);
( [257] <= iv < [511]) :

(c*c)*(stateVars
D[(iv+1)-256]+

((-2f*stateVars
D[iv-256])+

stateVarsD[(iv-1)-256]))/(dL*dL);
( [511] <= iv < [512]) :

(c*c)*
(tmp0*((-2f*stateVars

D[iv-256])+
stateVarsD[(iv-1)-256]))/(dL*dL);

} : modarray(stateVarsD);
stateDers = device2host( stateDersD);

⇓ ⇓ ⇓

stateVarsD = host2device( stateVars);
dim3 grid1(16), block1(16);
k1<<<grid1, block1>>>

( stateDersD, stateVarsD);
dim3 grid2(1), block2(16);
k2<<<grid2, block2>>>

( stateDersD, stateVarsD, c, dL, tmp1);
dim3 grid3(16), block3(16);
k3<<<grid3, block3>>>

( stateDersD, stateVarsD, c, dL);
dim3 grid4(1), block4(16);
k4<<<grid4, block4>>>

( stateDersD, stateVarsD, c, dL, tmp0);
stateDers = device2host( stateDersD);

__global__ void k1( float *stateDers
D,

float *stateVars
D) {

int ivs = blockIdx.x*blockDim.x+threadIdx.x;
stateDersD[ivs] = stateVarsD[ivs+256];

}

__global__ void k2( float *stateDers
D,

float *stateVars
D) {

float c, float dL, float tmp1) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+256;
stateDersD[ivs] = (c*c)*(stateVars

D[(ivs+1)-256]+
((-2f*stateVars

D[ivs-256])+tmp1))
/(dL*dL);

}

__global__ void k3( float *stateDers
D,

float *stateVars
D) {

float c, float dL) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+257;
stateDersD[ivs] = (c*c)*(stateVars

D[(ivs+1)-256]+
((-2f*stateVars

D[ivs-256])+
stateVarsD[(ivs-1)-256]))/(dL*dL);

}

__global__ void k4( float *stateDers
D,

float *stateVars
D) {

float c, float dL, float tmp0) {
int ivs = blockIdx.x*blockDim.x+threadIdx.x+511;
stateDersD[ivs] = (c*c)*

(tmp0*((-2f*stateVars
D[ivs-256])+

stateVarsD[(ivs-1)-256]))/(dL*dL);
}

Figure 4. Compiling an example WITH-loop to CUDA.
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rameters to the kernels. Each thread running the kernel cal-
culates the linear memory offset of the data being accessed
using a set of built-in variables blockIdx, blockDim
and threadIdx. This offset is then used to access array
stateVarsD. The final result is written into stateDersD.

5.4 Running SAC modules with CUDA

For experiments with CUDA we used CUDA 3.0 and a
Tesla C1060. C and C++ compilations were performed
with GCC 4.5 except for those invoked by CUDA which
used GCC 4.3 since CUDA currently does not support the
latest GCC compilers.

In the following experiment more SAC code was written
to call the SAC code from Section 4.4.2. When doing this
we were able to increase n to much higher numbers to sim-
ulate future potential of models with very large numbers
of states. Our SAC program simply calls the SAC Euler
code from Section 4.4.2 in the same way that OpenMod-
elica called it in our previous experiment. The values used
to call the function are explicitly hidden from the compiler
so that SAC2C cannot make use of this knowledge when
optimising the function. Due to current limitations in older
Nvidia cards like the Tesla in our experiment we have used
floats not doubles for this experiment. When running on
newer cards this modification is not necessary. All param-
eters used for this experiment match the previous exper-
iment except that we were able to raise n by a factor of
one-thousand. It is currently not feasible to raise n this high
with code generated with the current OpenModelica com-
piler since it tries to generate instructions for each extra
computation required rather than using a loop and because
it allocates large blocks of memory that depend on the size
of n. With the exception of these two changes the SAC code
matches that of the previous experiment.

Two versions of SAC programs were compared. In one
SAC2C was invoked with an option specifying that the
code should be highly optimised by the C compiler. In the
other an option was added to invoke the SAC2C CUDA
backend. The code was linked against both the CUDA li-
braries and libraries for our SAC module. The SAC code
used for the CUDA and non-cuda library versions is iden-
tical. As before the patches and command line calls used in
the experiment can be found at [20].

The results from the experiment are shown in Figure 5.
In both cases time increases linearly as n increases. SAC
with CUDA performs significantly better than SAC with-
out CUDA. This is because in each iteration of derivative
calculation the input array, i.e. the state variables, is a func-
tion of only the timestep and the derivative array com-
puted in the previous iterations. This means both arrays can
be retained on the GPU main memory without the need of
transferring back to the host. The CUDA backend is capa-
ble of recognising this pattern and lifting both transfers be-
fore and after the WITH-loop (see Figure 4) out of the main
stepping loop. With application of this optimisation, each
iteration contains pure computation without the overhead
of host-device data transfers. Moreover, the large problem
sizes provide the CUDA architecture with abundance of
data parallelism to exploit to fully utilise the available re-
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Figure 5. WaveEquationSample state derivative calcula-
tions embedded with an Euler loop, both written entirely
in SAC, run sequentially and with CUDA for varying num-
ber of sections (n). Start time 0.0, stop time 100.0 and step
size 0.002.

sources. Given the stencil-like access pattern in the com-
putational kernel, potential data reuse can be exploited by
utilizing CUDA’s on-chip shared memory. This continued
work will further improve the performance.

All experiments with SAC in this paper produced code
to either run sequentially or with the CUDA target. For
future work we’d like to try the experiments with SAC’s al-
ready mature pthread target which has already shown pos-
itive results [17]. Work is underway to produce a target of
C code with OpenMP directives to make use of paralleli-
sation work in C compilers. All these projects and future
projects provide interesting potential for future work.

Note that the experiments have demonstrated a benefit
when using SAC that materialises for each group of time
steps for which intermediate steps are stored. The storing
of both states and state derivatives between intermediate
time-steps can be a requirement for users of these mod-
els and the effect on performance as the number of save
points is increased is the next obvious study. When inter-
facing with SAC there are two ways of doing this. One is
to call a SAC function for every group of steps for which
a save point is desired. If OpenModelica were to no longer
allocate memory for the entire result and instead write the
result to file periodically then this method would be the
most scalable but it would give SAC2C little opportunity
for optimisation. Alternatively one call to the SAC mod-
ule could be made and SAC could return all desired save
points. This would give SAC2C the best chance for opti-
misation but would have the constraint that the result from
the function call would need to be small enough to fit into
memory. Ideally a hybrid approach might be desired.

6. Conclusions
Modelica code often contains large arrays of variables and
operations on these arrays. In particular it is common to
have large arrays of state variables. As of today the Open-
Modelica compiler has limited support for executing ar-
ray operations efficiently or for exploiting parallel archi-
tectures by, for instance using CUDA-enabled GPU-cards.
This is something we hope will be improved in future ver-
sions of the compiler and runtime system.
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In this work we have investigated ways to make use of
the efficient execution of array computations that SAC and
SAC2C offer, in the context of Modelica and OpenModel-
ica. We have shown the potential of generating C++ code
from OpenModelica that can call compiled SAC binaries
for execution of heavy array computations. We have also
shown that it is possible to rewrite the main simulation loop
of the runtime solver in SAC, thus avoiding expensive calls
to compiled SAC binaries in each iteration.

In doing this we have shown the potential for the use
of SAC as a backend language to manage the efficient ex-
ecution of code fragments that the OpenModelica com-
piler can identify as potentially data parallel. To the best
of our knowledge this has not been done with a Modelica
compiler before. The integration with SAC allowed exper-
iments to be run with a larger number of state variables
than was previously feasible. Moreover, we have shown
that the SAC2C compiler can both produce efficient se-
quential code and produce code targeted for an underlying
architecture supporting parallel execution. In this case we
exploited the potential of a GPGPU. SAC2C can do this
without any changes to the SAC code itself.

Nvidia has recently released the new Fermi architec-
ture [13] which has several improvements which are im-
portant in the area of mathematical simulation, a cache hi-
erarchy, more shared memory on the multiprocessors and
support for running several kernels at a time.

The next planned stage in this on-going project is to
enhance the OpenModelica compiler to pass for-equations
through the compiler and to generate SAC source code and
compile it automatically.
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Abstract
This contribution outlines an XML format for representa-
tion of differential-algebraic equations (DAE) models ob-
tained from continuous time Modelica models and possibly
also from other equation-based modeling languages. The
purpose is to offer a standardized model exchange format
which is based on the DAE formalism and which is neutral
with respect to model usage. Many usages of models go be-
yond what can be obtained from an execution interface of-
fering evaluation of the model equations for simulation pur-
poses. Several such usages arise in the area of control en-
gineering, where dynamic optimization, Linear Fractional
Transformations (LFTs), derivation of robotic controllers,
model order reduction, and real time code generation are
some examples. The choice of XML is motivated by its de
facto standard status and the availability of free and effi-
cient tools. Also, the XSLT language enables a convenient
specification of the transformation of the XML model rep-
resentation into other formats.

Keywords DAE representation, XML design

1. Introduction
Equation-based, object-oriented modeling languages have
become increasingly popular in the last 15 years as a de-
sign tool in many areas of systems engineering. These lan-
guages allow to describe physical systems described by dif-
ferential algebraic equations (DAE) in a convenient way,
promoting re-use of modeling knowledge and a truly mod-
ular approach. The corresponding DAEs can be used for
different purposes: simulation, analysis, model reduction,
optimization, model transformation, control system synthe-
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sis, real-time applications, and so forth. Each one of these
activities involves a specific handling of the correspond-
ing differential algebraic equations, by both numerical and
symbolic algorithms. Moreover, specialized software tools
which implement these algorithms may already exist, and
only require the equations of the model to be input in a
suitable way.

The goal of this paper is to define an XML-based rep-
resentation of DAE systems obtained from object-oriented
models written in Modelica [16], which can then be easily
transformed into the input of such tools, e.g. by means of
XSLT transformations.

The first requirement of this system representation is
to be as close as possible to a set of scalar mathematical
equations. Hierarchical aggregation, inheritance, replace-
able models, and all kinds of complex data structures are a
convenient means for end-users to build and manage mod-
els of complex, heterogeneous physical systems, but they
are inessential for the mathematical description of its be-
havior. They will therefore be eliminated by the Model-
ica compiler in the flattening process before the genera-
tion of the sought-after XML representation. However, the
semantics of many Modelica models is in part defined by
user-defined functions described by algorithms working on
complex data structures. It is therefore necessary to de-
scribe Modelica functions conveniently in this context.

The second requirement of the representation is to be
as general as possible with respect to the possible usage of
the equations, which should not be limited to simulation. A
few representative examples include:

• off-line batch simulation;
• on-line real-time simulation;
• dynamic optimization [3];
• transformation of dynamic model with nonlinearities

and/or uncertain parameters into Linear Fractional Rep-
resentation formalism [7];

• linearization of models and computation of transfer
functions for control design purposes;
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• model order reduction, i.e., obtaining models with a
smaller number of equations and variables, which ap-
proximate the input-output behavior around a set of ref-
erence trajectories [8];

• automatic derivation of direct/inverse kinematics and
advanced computed torque and inverse dynamics con-
trollers in robotic systems [6].

From this point of view, the proposed XML representa-
tion could also be viewed as a standardized interface be-
tween multiple Modelica front-end compilers and multiple
symbolic/numerical back-ends, each specialized for a spe-
cific purpose.

In addition, the XML representation could also be very
useful for treating other information concerning the model,
for example using an XML schema (DTD or XSD) for rep-
resenting the simulation results, or the parameter settings.
In those cases, using a well accepted standard will result in
great benefits in terms of interoperability for a very wide
spectrum of applications.

Previous efforts have been registered to define standard
XML-based representations of Modelica models. One idea,
explored in [14, 11], is to encode the original Modelica
model using an XML-based representation of the abstract
syntax tree, and then process the model through, e.g., XSLT
transformations. Another idea is to use an XML database
for scalable and database-friendly parameterization of li-
braries of Modelica models [17, 15].

The goal of this paper is instead to use XML to represent
the system equations at the lowest possible level for further
processing, leaving the task of handling aggregated models,
reusable libraries etc. to the object-oriented tool that will
eventually generate the XML representation of the system.
In particular, this paper extends and complements ideas and
concepts first presented in [5]. A similar approach has been
followed earlier by [4], but has apparently remained limited
to the area of chemical engineering applications.

The paper is structured as follows: in Section 2, a defini-
tion of the XML schema describing a DAE system is given.
Section 3 briefly describes a test case in which a model is
exported from JModelica.org platform and imported in the
tool ACADO in order to solve an optimization problem.
Section 4 ends the paper with concluding remarks and fu-
ture perspectives.

2. XML schema representation of DAE
systems

The goal of the present work is to define a representation
of a DAE system which can be easily transformed into the
input format of different purpose tools and then reused.
A representation as close as possible to the mathematical
formulation of equations is a solution general enough to
be imported from the most of the tools and neutral with
respect of the possible usage. For this reason concepts
such as aggregation and inheritance proper of equation
based object-oriented models have to be avoided in the
representation.

A DAE system consists of a system of differential al-
gebraic equations and it can be expressed in vector form
as:

F (ẋ, x, u, w, t, p) = 0 (1)

where ẋ are the derivatives of the states, x are the states, u
are the inputs, w are the algebraic variables, t is the time
and p is the set of the parameters.

The schema does not enforce the represented DAEs to
have index-1, but this would be the preferable case, so
that the x variables can have the proper meaning of states,
i.e., it is possible to arbitrarily select their initial values.
Preferring the representation of models having index 1 is
acceptable considering that most of the applications for
DAE models require an index-1 DAE as input. In addition,
in case the equations of the original model have higher
index, usually an index-1 DAE can be obtained by index
reduction, so the representation of index-1 DAEs doesn’t
drastically restrict the possible applications range.

The formulation provided in equation (1) is very gen-
eral and useful for viewing the problem as one could see it
written on the paper, but it is not directly usable for inter-
tools exchange of models. It is then necessary to provide a
standardized mathematical representation of the DAE sys-
tems that relies on a standard technology: this justifies the
choice of the XML standard as a base for our representa-
tion. Hence, a formulation that better suits with our goal is
proposed.

Given the sets of the involved variables

• ẋ ∈ Rn: vector of time-varying state derivative vari-
ables

• x ∈ Rn: vector of time-varying state variables
• u ∈ Rm: vector of time-varying input variables
• w ∈ Rr: vector of time-varying algebraic variables
• p ∈ Rk: vector of bound time invariant variables (pa-

rameters and constants)
• q ∈ Rl: vector of unknown time invariant variables

(unknown parameters)
• t ∈ R: time variable

it is possible to define the three following different subsets
for the equations composing the system. The system of
dynamic equations is given by

F (x, ẋ, u, w, p, q, t) = 0 (2)

where F ∈ Rn+r. These equations determine the values
of all algebraic variables w and state variable derivatives ẋ,
given the states x, the inputs u, the parameters p and q, and
the time t. The parameter binding equations are given by

p = G(p) (3)

where G ∈ Rk. The system of parameter binding equations
is assumed to be acyclic, so that it is possible to compute all
the parameters by suitably re-ordering these equation into a
sequence of assignments, e.g. via topological sorting. The
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DAE initialization equations are given by

H(x, ẋ, u, w, p, q) = 0. (4)

Ideally, for index-1 systems, H ∈ Rn+l, i.e., H provides
n+ q additional equations, yielding a well posed initializa-
tion problem with 2n + r + l unknowns and 2n + r + l
equations. The initialization system is thus obtained by ag-
gregating the dynamic equations (2) and the initialization
equations (4) and determines the values of the states, state
derivatives, algebraic variables and free parameters at some
initial time t0.

2.1 General design issues
The main goal is to have a schema:

• neutral with respect of the model usage;
• easy to use, read and maintain;
• easy to extend.

To achieve the first goal a representation as close as pos-
sible to the mathematical one of the DAE is required, as
discussed in the previous section. To achieve the other re-
quired properties, a design based on modularity yields a
result easier to read and extend. The proposed design pro-
vides one different vocabulary (namespace) for every sec-
tion of the schema. In this way, if a new section will be
required, for example to represent information useful for a
special purpose, and a new module can be added without
modify the base schema.

The Functional Mock-up Interface for Model Exchange
1.0 (FMI 1.0)[12] has been chosen as a starting point for
the schema, with the main advantage of basing the work
on an already accepted standard for model exchange. The
FMI 1.0 specification already provides a schema containing
a representation of the scalar variables involved in the sys-
tem. This schema has been extended according to our goals
by adding a qualified name representation for the variable
identifiers, and by appending a specification of the DAE
system.

The new modules composing the schema with the cor-
responding namespace prefixes are:

• expressions module (exp)
• equations module (equ)
• functions module (fun)
• algorithms module (fun)

All these modules, whose detailed information are given in
the next paragraphs, are imported in the FMI schema, to
construct the composite schema.

2.2 FMI schema and variable definitions
The FMI standard is a result of the ITEA2 project MOD-
ELISAR. The intention is that dynamic system models of
different software systems can be used together for sim-
ulation. The FMI defines an interface to be implemented
by an executable called FMU (Functional Mock-up Unit).
The FMI functions are called by a simulator to create one or
more instances of the FMU, called models, and to run these

models, typically together with other models. An FMU
may either be self-integrating (co-simulation) or require the
simulator to perform numerical integration. Alternatively,
tools may be coupled via co-simulation with network com-
munication. The intention is that a modeling environment
can generate C-code of a dynamic system model that can
be utilized by other modeling and simulation environments.
The model is then distributed in packages containing the
C-code of the dynamic system, an XML-file containing the
definition of all variables in the model, and other model
information. For the present work, the FMI XML schema
for description of model variables has been reused and ex-
tended.

The FMI XML schema already provides elements and
attributes to represent general information about the model,
such as name, author, date, generating tool, vendor annota-
tions, but the core is the representation of the scalar vari-
ables defined in the model. It is important to notice that the
FMI project is developed for the exchange of models for
simulation purpose only, and not all the information present
in the schema should be used in our case. Thus it is neces-
sary to point out how to correctly use it for the purposes
of this work. Firstly, the FMI schema allows the definition
of Real, Integer, Boolean, String and Enumeration scalar
variables. In our case, the equations (2) - (4) are all real-
valued, and all time varying variables are real variables.
The scalar variables definition provided by the FMI XML
schema also includes attributes describing the causality (in-
put, output, internal) and variability (constant, parameter,
discrete, continuous) of the variable. Since our represen-
tation is concerned with continuously time varying DAEs
only, then the definition of discrete variables should not be
allowed. A full documentation of the FMI XML schema is
available in [12].

The proposed representation should be neutral with re-
spect to the application context. This also means that vari-
able identifiers should be represented in a general way. It
may happen that the tool exporting the model accepts iden-
tifiers with special characters that the importing tool does
not allow. Furthermore, in the definition of user-defined
functions (see a detailed discussion in Section 2.4) more
complex types than scalar variables, such as array and
records, are allowed. The index of an array can be a gen-
eral expression, and representing the array’s element by a
string, e.g. "x[3*5]", would require to write an ad-hoc
parsing module in the importing tools. In the same man-
ner the exporting tool can support a notation to describe
array subscripts or record fields that is different from the
one used by the importing tool.

For all these reasons a structured representation for
qualified names, that includes only the necessary infor-
mation and avoid language dependent notations is intro-
duced. A complex type QualifiedName is then de-
fined and it will be used as a standard representation for
names in all the schema. The QualifiedName com-
plex type expects that the identifier is broken in a list of
parts, represented by QualifiedNamePart elements.
QualifiedNamePart holds a string attribute "name"
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and an optional element ArraySubscripts, to repre-
sent the indices of the array element. ArraySubscripts
elements provide a list of elements, one for each index of
the array (e.g. a matrix has an ArraySubscripts ele-
ment with two children). Each index is generally an expres-
sion, represented by IndexExpression, but usually
languages support definition of array variables with unde-
fined dimensions, represented by an UndefinedIndex
element. Conventionally, the first element of an array has
index 1. In the proposed representation, definition of array
variables is allowed only in user-defined functions.

Hence, the original representation of scalar variables
provided by the FMI XML schema is extended in order to
support the definition of variable names as qualified names,
that will be the standard representation of identifiers in the
whole schema.

Figure 1. Scalar variable definition extended from the
original FMI definition

2.3 Expressions
All the expressions are collected in the exp namespace.
The elements in the exp namespace represent all the math-
ematical scalar expressions of the system:

• basic algebraic operators like Add, Mul, Sub, Div and
the factor function Pow.

• Basic logical comparison operators like >, >=, <, <=,
==.

• Basic logical operators like And, Or and Not.
• Built-in trigonometric functions (Sin, Cos, Tan, Asin,
Acos, Atan, Atan2), hyperbolic functions (Sinh,
Cosh, Tanh), the exponential function (Exp), the log-
arithmic functions (Log, Log10), the square root func-
tion (Sqrt), the absolute value function Abs, the sign
function Sign, the Min and the Max function.

• The derivative operator Der.
• Function calls referring to user-defined functions.
• Variable identifiers, including the time variable.
• Real, integer, boolean, string literals.

In addition to the previous basic expressions, some
special non-scalar expressions are included in the exp
namespace: Range, Array, UndefinedDimension
and RecordConstructor.

The Range element defines an interval of values and it
can be used only in for loop definitions, inside algorithms
of user-defined functions or as an argument of array con-
structors.

Array variable definitions and uses are allowed only
within user-defined functions. It is possible to use the el-
ement UndefinedDimension in array variable defi-
nitions when the dimension is not known a priori. The
Array element can be used as a constructor of an array of
scalar variables in the left hand side of user-defined func-
tion call equations. Multidimensional arrays can be built by
iteratively applying the one-dimensional array constructor.

As for arrays, record variables can be defined and used
only in user-defined functions. The RecordConstructor
element can be used in the left hand side of user-defined
function calls, where it should be seen as a collection of
scalar elements. Both record variables used in functions
and record constructors used in the left hand side of equa-
tions should be compatible with a given definition of record
type. The RecordList element, that is referenced in
the main schema, should contains the definition of all the
records used in the XML document, each one stored in
a different Record element. All the elements and com-
plex types relevant to records definition are stored in the
fun namespace, since they are mostly related to the use of
functions.

The detailed explanation of how to use Array and
RecordConstructor in the left hand side of a user-
defined function call equations is given in Section 2.4.

In the design of the schema, whenever a valid element is
supposed to be a general expression, a wildcard element in
the exp namespace is used, in order to simplify the repre-
sentation extensibility. As a result, when a new expression
is needed, it is sufficient to create a new element in the exp
vocabulary and it will be automatically available in all the
rest of the schema.

2.4 Functions
A function is a portion of code which performs a procedural
computation and is relatively independent of the remaining
model. A function is defined by:

• input variables, possibly with default values
• output variables
• protected variables (i.e. variables visible only within the

context of the function)
• an algorithm that computes outputs from the given in-

puts, possibly using protected variables.

The algorithm can operate on structured variables such as
arrays and records, e.g. by means of for loops. Differently
from the variables used in equations, which can always be
expressed as scalars, it is then required that input, output
and protected variables of a function can also be arrays or
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records, so that the algorithm can keep its original struc-
ture.

Whereas in the formulation of the equations (2) - (4)
only scalar variables are involved, a detailed discussion on
the use of calls for any possible cases in which the function
involves non-scalar inputs or outputs is then required.

Function calls with non-scalar inputs
If an input of a function is not a scalar, it will be represented
by keeping its structure, possibly using array or record
constructors, but populating it with its scalar elements. In
this way, it is possible to keep track of the structure of
the arguments, which can then be mapped to efficient data
structures in the target code.

For example, given the following definition of a record
R and a function F1:

Record R
Real X;
Real Y[3];

End R;

Function F1
Input R X;
Output Real Y;

End F1;

A function call to F1 may be used as an expression in this
case, since the function has only one scalar output.

F(R(x,{y[1], y[2], y[3]})) - 3 = 0

where x, y[1], y[2], y[3] are real scalar variables, R(args)
denotes a constructor for the R record type, and {var1,
var2,...,varN} represents an array constructor.

Function calls with a single non-scalar output
Auxiliary variables can be introduced to handle this case,
making it possible to always have scalar equations and at
the same time avoiding unnecessary duplicated function
calls.

Considering the following definition of the function F2:

Function F2
Input Real X;
Output Real Y[3];

End F2;

The equation x + F (y) ∗ F (z) = 0 (a scalar product) can
be mapped to:

({aux1, aux2, aux3}) = F(y);
({aux4, aux5, aux6}) = F(z);
x + aux1*aux4 + aux2*aux5 + aux3*aux6 = 0

where y and z are real scalar variables.
Similarly the equation y+F (x)−F (−3∗x) = 0, where

y is an array of three real elements is mapped to:

({aux1, aux2, aux3}) = F(x);
({aux4, aux5, aux6}) = F(-3*x);
y[1] + aux1 - aux4 = 0;
y[2] + aux2 - aux5 = 0;
y[3] + aux3 - aux6 = 0;

This strategy also applies to arguments using records, or
combinations of arrays and records.

Auxiliary variables are here treated as all the other scalar
variables, including their declaration.

Function calls with multiple outputs
In this case, the function calls can be invoked in the follow-
ing form:

(out1, out2, ..., outN) = f(in1, in2, ...inM) (5)

where out1, out2, ..., outN can be scalar vari-
able identifiers, array or record constructors populated with
scalar variables identifiers, empty arguments, or any possi-
ble combination of these elements. So, it is not possible to
write any expression on the left-hand side, nor to put the
equation in residual form. Rather, this construct is used as
a mechanism dedicated to handle function calls with mul-
tiple outputs while preserving the scalarized structure of
system of equations.

Function with multiple outputs, cannot be used in ex-
pressions.

Given the following definition of a record type R1 and a
function F3:

Record R1
Real X;
Real Y[2,2];

End R1;

Function F3
input Real x;
output Real y;
output R1 r;

End F3;

an example of call to the function F3 is

(var1,R1(var2,{{var3,var4},{var5,var6}}))
= F1(x)

where x, var1, var2, var3, var4, var5, var6, var7
are real scalar variables.

The proposed representation of function calls is prefer-
able to a full scalarization of the arguments,which does not
preserve any structure, and thus would require multiple im-
plementations for the same function, e.g. if it is called in
many places with different array sizes of the inputs. This
solution would lead to less efficient implementations in
most target languages.

Concerning the XML schema implementation, all the el-
ements and complex types regarding user-defined function
are collected in the fun namespace.

The main element of the fun namespace is Function,
which contains the whole definition of the function, in-
cluding the name, three lists of variables (respectively
outputs, inputs and protected variables), the algorithm
and, optionally, the definition of inverse and derivative
functions. OutputVariable, InputVariable and
ProtectedVariable elements are defined by means
of the FunctionVariable complex type.

It is allowed, but not mandatory, to embed the defi-
nition of possible inverse and derivative functions in the
InverseFunction and DerivativeFunction el-
ements of a function definition. The information stored in
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these two elements could be used for optimization purposes
by the importing tool.

The elements and complex types used in the descrip-
tion of algorithms are defined in a different schema mod-
ule than the Function element, but also under the fun
namespace. The allowed statements are:

• assignments
• conditional if statements with elseif and else

branches
• while and for loops
• function calls of user-defined functions

2.5 Equations
Complex types and elements related to the equations of the
DAE system are collected under the equ namespace.

Once the expressions have been defined, mapping the
mathematical formulation of the binding equations (3) to
the XML schema is straightforward. In the equ names-
pace a complex type BindingEquation is defined. It
provides an element Parameter of QualifiedName
type that represents the left hand side of the equation, and a
BindingExp element that represents the right hand side
of the equation. An element BindingEquations rep-
resents the set of all the binding equations and it accepts
a list, possibly empty, of BindingEquation elements
defined as BindingEquation complex type.

Equations in residual form are represented by the com-
plex type AbstractEquation. This type of equations
provide a subtraction node to represent an equation in
exp1− exp2 = 0 form.

The initial equations set (4) is represented by the ele-
ment InitialEquation, that collects a list, possibly
empty, of Equation elements defined as Abstract-
Equation complex type.

The set of dynamic equations (2) is mapped to the
DynamicEquation element. According to the con-
siderations expressed in Section 2.4, equations resulting
from a call to a function with multiple outputs are not
suitable for representation in residual form. Thus a com-
plex type for mapping an equation of the form (5) is
given by the complex type FunctionCallEquation.
The left hand side of the equation (5) is represented by
a set of OutputArgument elements, defined by the
FunctionCallLeft complex type, that can have as
children scalar variable identifiers, array or record con-
structors populated with scalar variables identifiers, empty
arguments, or any combination thereof. The right hand side
is a FunctionCall element. It is important to notice that
this element represents a set of scalar equations, one for
each scalar variable in the left hand side (except for empty
arguments).

Hence, the DynamicEquations elements contain a
list of Equation elements of AbstractEquation
type, which represent equations in residual form, and
FunctionCallEquation elements, which represent
equations on the form (5).

The BindingEquation, DynamicEquations and
InitialEquations elements are directly referenced
and used in the main schema.

2.6 Overall result and extensibility
Having defined the new modules, they are imported in the
FMI XML schema. The elements required to be visible in
the main schema are then directly referenced. The resulting
overall DAE representation is given in Figure 2. In the same
way, the schema could be extended by adding new informa-
tion, possibly according to special purposes, developing a
new separate module and referencing the main element in
the XML schema, without changing the current definitions.
An extension of the schema representing the formulation of
optimization problems has been already developed.

Figure 2. Overall structure of the DAE XML schema

3. Test implementation
As a first implementation, an XML export module has been
implemented in the JModelica.org platform [13, 1], in or-
der to generate XML documents representing DAE systems
derived from Modelica models valid with respect of the
proposed schema. In addition, an extension of the XML
schema for representing optimization problems has been
developed and the XML code export has been implemented
in the Optimica compiler, which is part of the JModel-
ica.org compiler.

The extension for optimization problems provides ele-
ments for the representation of the objective function, the
interval of time on which the optimization is performed and
the constraints. The boundary values of the optimization in-
terval, t0 and tf , can either be fixed or free. The constraints
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Figure 3. XML schema extension for optimization prob-
lems

include inequality and equality path constraints, but also
point constraints are supported. Point constraints are typi-
cally used to express initial or terminal constraints, but can
also be used to specify constraints for time points in the
interior of the interval. An overall view of the extension is
given in Figure 3.

Before exporting a Modelica model in XML format, a
pre-processing phase is necessary. Firstly, the model should
be "flattened" in order to have the system resulting from
both equations of every single component and the connec-
tion equations. In this system the variables should all be
scalarized. Parameters that are used to define array sizes,
sometimes referred to as structural parameters, are evalu-
ated in the scalarization and can not be changed after gen-
eration of the XML code.

Furthermore, the functions should be handled as ex-
plained in section 2.4. If the system is a higher index DAE,
an index reduction operation can be performed, to obtain
the final index-1 DAE.

It is interesting to notice how the XML schema has been
easily implemented in the compiler. In fact, the structured
representation of an XML schema is suitable to be mapped
to the abstract syntax tree of the flattened model. A func-
tion that writes the corresponding XML representation has
been implemented in each node class exploiting the aspect-
oriented design allowed by JastAdd, used for the JMod-
elica.org compiler construction [2]. Hence, traversing the
abstract syntax tree of the flattened model is equivalent
to traversing the XML document representing the same
model. In the same way, importing an XML representa-
tion of the model could be done traversing the XML docu-
ment and building a node of the syntax tree corresponding
to each XML node. This remains to be done.

For the test case, the ACADO toolkit [10] has been cho-
sen as importing tool. ACADO Toolkit is a software en-
vironment, not specifically related to Modelica, that col-
lects algorithms for automatic control and dynamic opti-
mization. It provides a general framework for using a great
variety of algorithms for direct optimal control, including

model predictive control, state and parameter estimation
and robust optimization.

The Van der Pol oscillator model (it can be found with
further explanations in [13]) has been exported from the
JModelica.org platform and imported into ACADO. The
goal is to solve an optimal control problem with respect
to the constraint u <= 0.75 acting on the control signal
while minimizing a quadratic cost function in the interval
t ∈ [0, 20].

The optimal control problem has been parameterized as
an non-linear problem using direct multiple shooting (with
condensing) and solved by an SQP method (sequential
quadratic programming) based on qpOASES [9] as a QP
solver.

The results are given in Figure 4. The same results
can be obtained by solving the problem by means of a
collocation method available in JModelica.org.

Figure 4. Van der Pol optimization problem results from
ACADO

4. Conclusions and future perspectives
In this paper, an XML representation of continuous time
DAEs obtained from continuous-time Modelica models has
been proposed. The test implementation on the JModel-
ica.org platform has shown the possibility to use the XML
representation to export Modelica models and then reuse
them in another non-Modelica tool. In the same manner,
many other possible applications could be considered [6].

A future version of the schema could extend the rep-
resentation to hybrid DAE systems. In this case the con-
cept of discontinuous expressions, discrete variables, dis-
crete equations and events should be introduced.

An interesting perspective could be to explore to which
extent the proposed DAE representation could be used to
describe flattened models written using other equation-
based, object-oriented languages, possibly by introducing
additional features that are not needed to handle models
obtained from Modelica, in the same spirit of the CapeML
initiative [4].

Finally, it would also be interesting to investigate the
possibility to aggregate models represented by different
XML documents. In this case every XML document would
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represent a sub-model and an interface to allow more sub-
models to be connected should be designed.
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Abstract
The Directed Acyclic Graph (DAG), which can be gen-
erated by object oriented modelling languages, is often
the most natural way of representing and manipulating a
dynamic optimization problem. With this representation,
it is possible to step-by-step reformulate an (infinite di-
mensional) dynamic optimization problem into a (finite di-
mensional) non-linear program (NLP) by parametrizing the
state and control trajectories.

We introduce CasADi, a minimalistic computer algebra
system written in completely self-contained C++. The aim
of the tool is to offer the benifits of a computer algebra
to developers of C++ code, without the overhead usually
associated with such systems. In particular, we use the tool
to implement automatic differentiation, AD.

For maximum efficiency, CasADi works with two dif-
ferent graph representations interchangeably: One support-
ing only scalar-valued, built-in unary and binary opera-
tions and no branching, similar to the representation used
by today’s tools for automatic differentiation by operator
overloading. Secondly, a representation supporting matrix-
valued operations, branchings such as if-statements as well
as function calls to arbitrary functions (e.g. ODE/DAE in-
tegrators).

We show that the tool performs favorably compared to
CppAD and ADOL-C, two state-of-the-art tools for AD
by operator overloading. We also show how the tool can
be used to solve a simple optimal control problem, mini-
mal fuel rocket flight, by implementing a simple ODE inte-
grator with sensitivity capabilities and solving the problem
with the NLP solver IPOPT. In the last example, we show
how we can use the tool to couple the modelling tool JMod-
elica with the optimal control software ACADO Toolkit.

Keywords computer algebra system, automatic differen-
tiation, algorithmic differentiation, dynamic optimization,
Modelica
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1. Introduction
Simulation of dynamic systems formulated in languages
for physical modelling in continuous time typically amounts
to solving initial-value problems in ordinary differential
equations. This, in turn, requires the repeated evaluation
of the ODE right-hand-sides, root-finding functions corre-
sponding to hybrid behavior and user output functions.

With the rising interest of employing the developed dy-
namic models not only for simulation purposes, but also for
dynamic optimization (i.e. optimization problems where
the dynamic system enters as a constraint), it becomes crit-
ically important to have efficient ways of accurately evalu-
ating not only the these functions, but also their derivatives.
Gradient information is needed by implicit methods for in-
tegrating ODEs as well as in both simultaneous (e.g. direct
collocation) and sequential methods (single shooting, mul-
tiple shooting) for dynamic optimization, the two families
of methods that have been the most successful in solving
large-scale dynamic optimization problems [4].

While dynamic optimization can certainly be useful for
users of modelling languages, there are also large syner-
gies for developers of optimization routines. The Directed
Acyclic Graph (DAG) representation is used by computer
algebra systems as well as object oriented modelling lan-
guages and is often the most convenient way to represent a
complex non-linear function. The representation provides
more information for the optimization routine than a set
of ”black-box” functions for evaluating nonlinear functions
(objective function, constraints, etc.) and their derivatives
in addition to the sparsity structure of Hessians and Jaco-
bians, which is the representation used in most of today’s
tools for nonlinear optimization.

Optimization routines can benefit from the DAG repre-
sentation since it gives a possibility to manipulate the graph
and replace certain nodes in order to give the (dynamic or
not dynamic) optimization problem a more favorable form.
Examples of this is replacinginternal switchesby exter-
nal switchesto form a mixed-integer optimal control prob-
lem (MIOCP) when dynamic constraints are present or as
a mixed-integer nonlinear problem (MINLP) when this is
not the case. Another example, used by software such as
CVX [8], is the possibility of reformulating a convex op-
timization problem, with an infavorable structure, into an
equivalent convex problem in form required by numerical
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solvers [7]. Finally, we can also easily parametrize the con-
trol and/or statetrajectory, reducing our dynamic optimiza-
tion problem into either a parameter estimation problem or
even a nonlinear program (NLP) [14].

A second way in which optimization routines can use
the DAG representation is throughstructure exploitation.
For example, theLifted Newton method[12] offers a way to
treat the intermediate variables of a nonlinear optimization
problem as degrees of freedom of the problemwithout
increasing the size of the problem. Including intermediate
variables in the problem formulation is known to increase
both the convergence rate and the area of attraction for non-
linear problems. The Lifted Newton method works with a
problem formulation which is easily obtained from a linear
ordering of the nodes of the DAG.

1.1 Automatic differentiation

Automatic differentiation (or, alternatively,algorithmic
differentiation), AD, is a technique for evaluating deriva-
tives of complex functions that has proved very useful in
non-linear optimization.

The technique delivers derivatives, up to machine preci-
sion, of arbitrary differentiable functions for a small mul-
tiple of the cost of evaluating the original function. In the
forward mode, the technique is able to deliver directional
derivatives of an arbitrary vector-valued function with a
cost of the same order as the cost of evaluating the origi-
nal function. In thereverse mode, on the other hand, it is
for the cost of one evaluation possible to get the derivative
in an all directions for a scalar function1.

Efficiently implementing AD, especially in the reverse
mode, is a complex task and it is advisable to use one of the
existing software implementations dedicated for this. These
software tools are typically divided into AD byoperator
overloadingand AD by source code transformation, see
[9] for details.

Since modelling languages such as Modelica typically
involve a step of C-code generation, the natural approach
of using AD has been to apply one of the existing AD tools
to this code.

Automatic differentiation can also be implemented in-
side a computer algebra system (CAS), first demonstrated
by Monagan and Neuenschwander [13].

2. Proposed AD framework for object
oriented modelling tools

The method proposed in this paper follows the CAS/AD
approach, but instead of using an existing computer alge-
bra system, it implements a minimalistic computer algebra
system in C++ using operator overloading. The main differ-
ence from the conventional operator overloading approach
for AD is that we do not attempt to maintain a linear order-
ing of the nodes when the graph is constructed. Instead, we
generate an ordering after the graph has been constructed,

1 when multipledirections(for the forward mode) or multiple outputs (for
the reverse mode) are involved, the process must be repeated for each
direction (output), unless the Jacobian has some special structure

which can be done efficiently using linear time algorithms,
described in Section 2.2.

Also different from conventional AD tools is that we
shall build a graph of sparse, matrix-valued operations, in-
stead of just scalar operations, and allow the graph to con-
tain ”switches” in the form of if-statements, for-loops etc.
This means that there is no need to reconstruct the graph
or its linear ordering when a switch fires. When there are
a lot of switching events relative to the number of function
evaluations, this method promises to be significantly faster.

When calculating the full Hessian or Jacobian (as op-
posed to only a directional derivative), CasADi uses the
Sparse Jacobian/Hessianmethods rather than compression
techniques ([9]). The former methods are more efficient
from a theoretical point of view, but not widely used since
having to keep track of dependencies for each evaluation
node results in significant overhead. CasADi is able to
avoid this overhead by resorting to source code transfor-
mation, whenever multiple derivative directions (forward
or adjoint) are involved.

Given the linear ordering of a graph, it is generally
straightforward to generate source code for evaluation of
functions and derivatives, but in general we will stop short
of doing so and instead evaluate the expressions on avir-
tual machine. This eliminates the need of a C compiler in
the loop, which has large practical consequences, and also
saves us the trouble of working with potentially very large
files. As we shall see, a DAG with millions of nodes can
be constructed and sorted within seconds and evaluated in
milliseconds, but generating a C source file of it may re-
quire hundreds of MB, which have to be written to disk.
With the current approach, the graph representation never
leave RAM.

2.1 Forming the graph

Consider the following recursion describing the horizontal
motion of a ball under the action of friction:

sk+1 = sk + vk, k = 0, . . . , N − 1 (1)
vk+1 = vk − vk ∗ vk (2)

For givens0, v0 andN , this recursion defines a function
f : R2 → R

2:

[sN , vN ] = f(s0, v0;N) (3)

Figure 1 shows the DAG, also referred to as thecompu-
tational graphin automatic differentiation terminology [5],
of this expression whenN = 2.

A DAG like this can easily be constructed in an object-
oriented programming language like C++. The basic build-
ing block can be an object that contains the elementary op-

input

+s0

v0

*
v0

v0
-

v0

+

s1

v1

*v1

v1
-

v1

ou tpu t

s2

v2

Figure 1. The DAG for the ball example (N= 2)
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eration to be performed as well as references to its depen-
dent nodes. Sincea node can have an arbitrary number of
nodes pointing to it, we advocate the use of smart pointers
(or, more preciselyshared pointers) in order to be able to
keep track of the ownerships of the nodes [2].

More complex functions, which similarly to the ball
example arise after parametrization of an optimal control
problem may have millions of nodes and it is important to
find efficient ways to form and manipulate such graphs.

2.2 Topological sorting

Before a function can be evaluated, we have to order the
nodes of the DAG in the order of dependencies, known as
finding a topological sortingin graph theory. This step is
not necessary in AD by operator overloading, since a good
linear ordering can be recorded during the process of con-
structing the graph. In AD by source code transformation,
the compiler is responsible for finding this ordering.

A topological ordering can however also be found
cheaply after the DAG has been formed, which greatly fa-
cilitates the implementation. We propose to use a modified
breadth-first search, described in the following, to obtain
a good topological ordering. Our implementation of this
sorting depends on another sorting, thedepth-first search,
which we will desribe first.

2.2.1 Depth-first search

One way of finding a linear ordering is by so-calleddepth-
first search[6], which can be implemented in the following
way, where top(·) refers to the topmost element of astack2:

• Add the output nodes to a stackS
• Create an empty listA for the linear ordering
• While S is nonempty

If top(S) has not yet been visited
− Mark the top(S) as visited
− Add non-visited nodes toS on which top(S) de-

pends
else
− Add top(S) toA

− Remove top(S) from S

The algorithm visits each node at most one time and has
thus linear complexity in the number of nodes. Figure 2
shows an ordering obtained by this algorithm for the ball
example. The example illustrates two problems with this
sorting. Firstly, one needs to storev1 in memory until we
calculates2. Similarly, for a largeN , we would need to
keepv1, . . . , vN−1 in memory at the time we evaluatevN ,
since they will be needed later.

Secondly, several operations could be done in parallel,
e.g. operation {1} and {5}, in the graph.

2.2.2 Breadth-first search

These problems lead us to look at another ordering, namely
thebreadth-first search[6]. The standard algorithm for this
2 with stackis meant alast in, first outdata structure

ordering cannot readily be applied to the graph, since we
are not able to iterate overthe nodes that depend on a given
node, but only overthe nodes that a given node depends on.
This can, however, be solved with the following algorithm:

• Find a topological sortingA by a depth-first search
• Create a vector of dependency levelsL. An operation

associated with one level depends only on the results
from previous levels and can thus be evaluated indepen-
dently. Constants and inputs have level 0.

• For i = begin(A), . . . ,end(A)

Find lmax,i, the maximum level of any ofi’s depen-
dent nodes
Assign level(i) := 1 + lmax,i

• Sortthe nodes by their level using abucket sort

The result of the sorting, for the ball example, is shown
in Figure 3. Since all nodes of one level can be evaluated
independently of each other, the sorting is suitable for par-
allelization. Like the depth-first search, this algorithm will
run in linear time.

A problem with the breadth-first search is that it tends
to evaluate nodes earlier than they are actually needed. For
example, when the expression is a simple sum of squares,
f(x1, . . . , xN ) = x2

1 + . . . + x2
N , all multiplications will

take place on level 1, creating unnecessary memory over-
head. We can solve this by iterating over the levels in re-
verse order and ”move up” dependent nodes as much as
possible. This operation has also linear complexity.

3. Software implementation
The proposed algorithms have been been implemented in
the open-source C++ tool CasADi, which will be released
under the LGPL licence. A stated goal of the tool has
been to keep the data structures as transparent as possible
to allow a user to easily extend the code with methods
from the field of computer algebra, as well as numerical
optimization.

The focus of the code is to generate highly efficient run-
time code and for this purpose we propose to use a com-
bination of two different DAG representations, one DAG
which is restricted to built-in binary (and unary) scalar
functions and a general one representing a matrix syntax
tree of sparse matrix operations as well as nodes corre-
sponding to switches, loops, function evaluations, element
access and concatenation, similar to the graph representa-
tion used in a modelling language such as Modelica.

input

+  [5 ]
s0

v0

*  [1]
v0

v0
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Figure 2. Linear ordering (in brackets) from a depth-first
search for theball example
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3.1 A scalar DAG representation

The purpose ofthe scalar DAG representation is to rep-
resent and evaluate an algorithm containing a series of
elementary operations (+,-,*,/, *) and built-in functions
from the C’smath.h library (floor, pow, sqrt, etc.).
No branching (if-statements) is allowed. With these restric-
tions, it is possible for the AD algorithm to access memory
in a strictly sequential manner, also for the reverse AD al-
gorithm, which is the reason that existing AD tools usually
onlyallows operations of this form [9].

With these restrictions, the class hierarchy simply be-
comes, with the most important members in brackets:
• Expression class,SX [pointer to anSXNode]
• Abstract base class for all nodes,SXNode [reference

counter]
Symbolic scalar [name of the variable]
Constant [value of the constant]
Binary Node [twoSX instances, indexof a binary
function]

The graph is represented by a smart pointer class, called
SX, and a polymorphic node class consisting of an abstract
base class and three derived classes, a node corresponding
to a constant node, a node corresponding to a variable and
a node corresponding to a binary operation. We have gath-
ered all binary operations in a single node rather than deriv-
ing a class for each binary operation. The binary nodes, in
turn, has members of the classSX, correspond to its depen-
dent nodes. This simple representation is flexible enough to
be able to construct trees of millions of variables in C++.
Using the topological sorting outlined in the previous sec-
tion, we obtain a linear ordering of the nodes equivalent to
thetraceof automatic differentiation tools [9].

3.2 A matrix DAG representation

The scalar DAG representation is designed to be very effi-
cient for code made up entirely by standard unary and bi-
nary operations. In a well-designed code, the lion’s share of
the calculation time should indeed in sections of this type,
so it makes sense to specialize the solver to be efficient in
this case.

To be able to represent more general functions, we pro-
pose to use a second, much more general, DAG repre-
sentation. In this representation, the graph is made up by,
possibly sparse,matrix operationsand we include nodes
for elementwise operations as well as operations such as
matrix products. With this we can also represent a much
wider range of operations such as vertical and horizontal
concatenation, element access, function evaluation, loops

input
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v0
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v1

*  [3b]v1
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Figure 3. Linear ordering (in brackets) from a breadth-first
search for theball example

(for, while) and switches (if-statements, etc.). This is much
more general than is allowed by AD tools, which generally
freezes all the if-statements during thetracing step and in-
lines all loops to create a representation similar to the scalar
DAG in the previous section. With the proposed approach,
we instead leave it to the user to decide which loops and
function calls actually should be inlined. By partially inlin-
ing the code, we arrive with an approach which is equiv-
alent to thecheckpointing schemesused by standard AD
tools [9].

We node that both forward and adjoint AD readily gen-
eralizes to work with graphs of this form. Many opera-
tions, like element access, just translate to linear matrix op-
erations (which are often sparse). Other operations, such
as matrix products and function evaluations, have explicit
chain rules defined for them.

When evaluating a function represented by the Ma-
trix DAG on a multi-core (shared memory) architecture,
independent nodes, as obtained from the breadth-first-
search, can be evaluated in parallel (multiple threads) using
OpenMP.

The implementation of the matrix expression class,MX,
is similar to theSX class above with the following differ-
ences.

• The Binary Node class becomes polymorphic, with one
derived node for each type of operation. This makes it
possible for the binary nodes to contain more informa-
tion, such as pointers to functions or more than two ar-
guments.

• The MX class contains arrays for the evaluation, and
the evaluation takes place by looping over a vector of
pointers to the nodes, rather than in a separate data
structure.

4. Numerical tests
4.1 An AD example: determinant calculation

We first test the algorithm on an AD benchmark, namely
the calculation of the adjoint derivivative of the determi-
nants of matrices of different sizes. The determinant is cal-
culated by expansion along rows, an exponentially expen-
sive calculation.

This example is implemented in the speed benchmark
collection of CppAD. We use this implementation to test
the performance of CasADi against CppAD as well as
ADOL-C, [3]. Figure 4 shows the speed, in number of
solves per second, for the three tools for matrices of sizes
ranging from 1-by-1 to 9-by-9. The tests have been per-
formed on an Dell Latitude E6400 laptop with an Intel Core
Duo processor of 2.4 GHz, 4 GB of RAM, 3072 KB of
L2 Cache and 128 kB if L1 cache. The operator system is
Linux.

We use the latest version of ADOL-C at the time of
writing, version 2-1-5, and the latest version of CppAD,
released 17 June 2010.

For the current test, CasADi outperforms the CppAD
and ADOL-C for sizes up to 8-by-8 (corresponding to some
100.000 elementary operations), but we want to stress that
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the test only covers one single example and we make no
claims that theseresults will hold generally. More tests are
needed to better assess the performance of the solver.

4.2 Dynamic optimization example: minimal fuel
rocket flight

We then study an example from optimal control, namely the
minimal fuel flight of a rocket described by the following
continuous time model:

ṡ = v (4)
v̇ = (u− α v2)/m (5)
ṁ = −β u2 (6)

(7)

We assume that the rocket starts at rest at (s(0) = 0,
v(0) = 0) with massm(0) = 1. We simulate forT = 10
seconds and require that the rocket lands at rest (v(T ) = 0)
ats(T ) = 10. The optimization problem is to minimize the
fuel consumptionm(0)−m(T ).

4.2.1 Solution approach

We discretize the control intoNu = 1000 piecewise
constant controls and solve the problem using asingle-
shooting approach. The single-shooting approach requires
a sensitivity-capable integrator which we can easily con-
struct in CasADi with a few lines of code using anex-
plicit Euler approachwith 1000 steps per control interval
of equal length (we wish to stress that there are certainly
much better ways of solving this optimal control problem,
but our purpose here is only to illustrate our AD approach).

We show two different ways of solving the problem
using CasADi, with scalar graphs and a combination of
scalar and matrix graphs (next section). In both approaches
we arrive at a non-linear programming problem (NLP) [14]
of the form:

minimize:
u0, . . . , u999

∑999

i=0
u2
i

subject to: g(u) = 0,
−10 ≤ u ≤ 10

(8)

whereg(u) : R
1000 → R

2 is a non-linear function
that we shall construct. This NLP is then solved by the
non-linear optimization code Ipopt [16], which requires
not only function evaluation, but also the gradient of the
objective function and the Jacobian of the constraints. We
use CasADi to obtain this information. Since there are 1000
variables but only two constraints, it makes sense to use the
adjoint mode AD to calculate the Jacobian ofg.

4.2.2 Using scalar graphs

In the first approach, we use two nested for loops to cal-
culate one large graph with around 13 million nodes (13
being the number of elementary operations in each step).
This is the approach taken by default by existing AD tools.
In the CasADi notation, we get:

SX s = 0, v = 0, m = 1;
for(int k=0; k<1000; ++k){

for(int j=0; j<1000; ++j){
s += dt*v;
v += dt / m * (u[k] - alpha * v*v);
m += -dt * beta*u[k]*u[k];

}
}

whereSX is the name of the symbolic expression type
used in CasADi, which can be used in the same way as
C/C++ double. We assume that the inputu is stored in
a vector of symbolic variables of length 1000. After this
recursion, the expression forg is then simply obtained as
g(u) = [s− 10; v].

Ipopt requires 11 iterations to solve this problem and
the total solution time was 19.6 seconds out of which 7.8
seconds was needed for the function evaluations (the lion’s
share of the rest being needed to form and sort the graphs).
A single function evaluation, corresponding to around 13
million elementary operations, takes about 0.27 seconds,
or around 20 ns per elementary operation.

4.2.3 Using scalar and matrix graphs

The approach above is basically toinline everythingand
it is clear that the graphs will soon become too large. We
therefore show a second way to represent the same function
based on a two level approach. We first use the above
approach over an interval with a constant control only:

SX s_0("s_0"), v_0("v_0"), m_0("m_0");
SX u("u");
SX s = s_0, v = v_0, m = m_0;
for(int j=0; j<1000; ++j){
s += dt*v;
v += dt / m * (u[k] - alpha * v*v);
m += -dt * beta*u*u;

}

which we use to generate an function (anintegrator)
with some 13 thousand nodes (instead of 13 million). This
function will take as input (s0,v0,m0 andu) and return the
three outputs (s,v,m). We then evaluate this function 1000
times using out matrix graph representation:

MX X = {0,0,1}; // initial value
for(int k=0; k<1000; ++k){
// Integrate
vector<MX> input = {U[k],X};
X = integrator(input);

}

whereMX is the name of CasADi’s matrix expression
class. The second loop will be represented by a graph with
about 2000 nodes, 1000 ”element access” nodes (U[k])
and 1000 ”function evaluation” nodes. For Ipopt, both ap-
proaches are equivalent, they are simply two ways of cal-
culating the same functiong, so the optimization results
are indeed identical. The significantly lower memory need
in the second approach, however, enables us to construct
much larger problems (e.g. taking 100 times more steps)
without running out of memory.

The solution of the problem using the scalar and ma-
trix graph combination took 10.4 seconds, out of which 9.7
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seconds was needed for the function and derivative evalua-
tion. The example clearly shows how this approach makes
forming the graphs significantly faster (less than one sec-
ond instead of 11), but in terms of solution times for a sin-
gle function evaluation, the scalar graph approach is still
significantly quicker, as it requires less operations.

4.3 A Modelica example: Van der Pol oscillator

In the third example, we will use CasADi as an inter-
face between two optimization tools, the Optimal control
package ACADO Toolkit [11] and the Modelica-compiler
JModelica [1]. We wish to solve the following optimal con-
trol problem describing a Van der Pol oscillator:

minimize:
x1(·), x2(·), u(·)

∫ 20

0

ep3 (x2
1 + x2

2 + u2) dt

subject to:

ẋ1 = (1− x2
2)x1 − x2 + u

ẋ2 = p1 x1

x1(0) = 0, x2(0) = 1
u ≤ 0.75

(9)

where thep0, p1, p2 are parameters andx1(·) andx2(·)
are state variables (time dependent) andu(·) is a control.

The example is taken from the JModelica benchmark
collection and has been implemented there in the Optimica
extension of Modelica [2]. We use the newly added XML
export functionality of JModelica to export the optimal
control problem in a fully symbolic form. This XML code
is then parsed in CasADi using the XML parser TinyXML
[15].

We use the optimal control package ACADO Toolkit to
solve the optimal control problem coupled to CasADi for
evaluating the objective function, the ODE right hand side
of their and derivatives. ACADO Toolkit uses a multiple-
shooting methods to discretize the optimal control problem
to a non-linear program (NLP) and then solves the NLP
using an Sequential Quadratic Programming (SQP) method
[14]. Using a limited memory Hessian approximation and
initialized with an zero control, 26 iterations were needed
to solve the problem.

Figure 5 shows the state and control trajectories for
the optimal solution as obtained by the tool coupling. The
results agree with those obtained by JModelica’s built-in
optimal control problem solver, which is based on direct
collocation [2].

5. Conclusions and outlook
The directed graph is a natural way of representing a non-
linear function and this formulation can be used not only
to formulate an optimal control problem, but also to re-
formulate the problem into the canonical form used by
current state-of-the-art solvers for large-scale optimization
problem. Automatic differentiation, both in forward and in
reverse mode, can be implemented efficiently directly on
the graph instead of taking the detour over generating C-
code and then using an existing AD tool for iteratively get-
ting generating linear orderings corresponding to different
branches.

We have presented CasADi, an AD tool using a func-
tion representation borrowed from the field of computer al-
gebra, also found in object oriented modelling languages,
and certainly much richer than that of most existing AD
tools. The tool has been coupled to optimal control soft-
ware ACADO Toolkit, the nonlinear programming solver
Ipopt [16] as well as the CVodes of the Sundials suite [10],
but we want to stress that CasADi isnot intended to be just
an interface between optimization tools and modelling en-
vironments. The idea is instead to actually implement the
optimization algorithms using the graph representation and
exploit the structure as much as possible.

The main scope of the tool thus starts off where current
tools, e.g. JModelica, generate C-code to be used in a nu-
merical solver. Using the graph representation, it is possible
to step-by-step reformulate the infinite dimensional, possi-
bly non-smooth OCP into a nonlinear problem (NLP), even
going as far as to even solve the NLP. The latter is of partic-
ular interest if we wish to generate code for a, say, nonlinear
model predictive control to be used on embedded systems.

Since the graphs after parameterizing states as well
as controls will be significantly larger than the graphs
needed to represent the optimal control problem, it makes
sense to have the graph constructed in a language such as
C++, rather than, say, Java or a scripting language such as
Python. Given the excellent possibilities to interface C++
to other languages, this should not be an issue.
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Abstract
In this study, a system is presented and analyzed that au-
tomatically translates a model described within the Mod-
elica framework into the Discrete Event System Specifica-
tion (DEVS) formalism.

More specifically, this work interfaces the open-source
implementation of Modelica, OpenModelica, and one
particular software tool for DEVS modeling and simula-
tion, the PowerDEVS environment, which implements the
Quantized State Systems (QSS) integration methods intro-
duced by Kofman.

The interface enables the automatic simulation of large-
scale models with both DASSL (using the OpenModelica
run-time environment) and QSS (using PowerDEVS) and
extracts features, such as accuracy and simulation time, that
allow a quantitative comparison of these integration meth-
ods. In this way, meaningful insight can be obtained on
their respective advantages and disadvantages when used
for simulating real-world applications. Furthermore, the
implemented interface allows any user without any knowl-
edge of DEVS and/or QSS methods to simulate their sys-
tems in PowerDEVS by supplying a Modelica model as
input only.

Keywords OpenModelica, DASSL, PowerDEVS, QSS,
sparse system simulation

1. Introduction
Modelica [4, 5] is a an object-oriented, equation-based lan-
guage that enables a standardized way to model complex
physical systems containing, e.g., mechanical, electrical,
electronic, hydraulic, thermal, control, electric power, or
process-oriented subcomponents. The Modelica language

3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. October, 2010, Oslo, Norway.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

allows the representation of continuous and hybrid models
with a set of non-causal equations.

Modelica modeling environments, such as Dymola, Sci-
cos, and the open-source OpenModelica software [3], after
performing a series of preprocessing steps (model flatten-
ing, sorting and optimizing the equations, index reduction),
convert the model to a set of explicit ODEs of the form:

ẋ = f(x, t) (1)

The built-in simulation environments provide routines
(solvers) that invoke the right-hand side evaluation of Eq. 1
at discrete time steps tk, in order to compute the next value
of the state vector xk+1. At least in the case of Dymola
and OpenModelica, efficient C++ code is generated in or-
der to perform the simulation. Both software environments
make use of time slicing, i.e., their underlying simulation
algorithms are based on time discretization rather than state
quantization.

Recently, a new class of algorithms for the numerical
integration of ODEs based on state quantization and the
DEVS formalism introduced by Zeigler [13] was proposed.
A first-order non-stiff Quantized State System (QSS1) al-
gorithm was introduced by Kofman in 2001 [6], followed
by second and third-order accurate non-stiff solvers, called
QSS2 [10] and QSS3 [9], respectively. The family of QSS
methods presented are implemented in PowerDEVS, [11],
a DEVS-based simulation software. In the mean time, also
stiff QSS solvers as well as QSS solvers for dealing with
marginally stable systems were introduced.

QSS methods have been theoretically analyzed to ex-
hibit nice stability, convergence, and error bound proper-
ties, [2, 9, 10], and in general come with the following ben-
efits over classical approaches:

• Most of the classical methods that use discretization
of time, need to have their variables updated in a syn-
chronous way. This means that the variables that show
fast changes are driving the selection of the time steps.
In a stiff system with widely-spread eigenvalues, i.e.,
with mixed slow and fast subsystems, the slowly chang-
ing state variables will have to be updated much more
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frequently than necessary, thus increasing substantially
the computation time of the simulation. On the other
hand, the QSS methods allow for asynchronous vari-
able updates, allowing each state variable to be updated
at its own pace, and specifically when an event triggers
its evaluation. Furthermore as most systems are sparse,
when a state variable xi changes its value, it suffices to
evaluate only those components of f in Eq. 1 that de-
pend on xi, allowing for a significant reduction of the
computational costs.

• Dymola and OpenModelica handle discontinuities us-
ing zero-crossing functions that need to be evaluated
at each step, and when they change their sign, the solver
knows that a discontinuity occurred. Then an iterative
process is initiated in order to detect the exact time of
that event. In contrast, QSS methods provide dense out-
put and do not need to iterate to detect discontinuities,
but rather predict them. This feature, besides improv-
ing on the overall computational performance of these
solvers, enables real-time simulation. Since in a real-
time simulation the computational load per unit of real
time must be controllable, Newton iterations are usually
not admitted for use in real-time simulation.

• Another important advantage of DEVS methods arises
in the context of hybrid systems, where continuous
time, discrete time, and discrete event models can co-
exist as subcomponents of an overall system. DEVS
methods [8] provide a unified simulation framework for
hybrid models, because all of these model types can be
represented as valid DEVS models.

Therefore, state quantization and the QSS methods ap-
pear promising in the context of simulating certain classes
of real-world problems. However in order to simulate sys-
tems in PowerDEVS directly, the user will have to man-
ually convert his or her model to an explicit ODE form.
This is only feasible in the case of very small systems.
PowerDEVS unfortunately is not object oriented. For this
reason, it is much more convenient for a user to formulate
models in the Modelica language than in PowerDEVS.

This works aims to bridge the gap between the powerful
object-oriented modeling platform of Modelica on the one
hand and the equally powerful simulation platform of Pow-
erDEVS on the other. The interface between OpenModel-
ica and PowerDEVS, introduced in this article, allows a
modeler to formulate his or her model in the Modelica lan-
guage, while simulating it in PowerDEVS. The necessary
compilation of the Modelica model to PowerDEVS is fully
automatic, and the user does not need to know anything
about either DEVS or QSS in order to take advantage of it.

1.1 Relevance of Work
The run-time efficiency of the DASSL and QSS solvers,
when used to simulate Modelica models, has so far not
been compared in an automated, large-scale framework. In
earlier publications describing QSS methods, [6, 7, 8, 10],
there can be found examples that demonstrate the superior-
ity of the run-time efficiency of QSS methods, when sim-
ulating sparse and discontinuous systems, but the compar-

ison has invariably been restricted to small-scale models
that could be easily modeled in PowerDEVS directly.

Furthermore, there have been other approaches, [1, 12],
to implement Modelica libraries that allow for DEVS mod-
els inside a Modelica environment, but these approaches
require from the users to understand the DEVS framework,
as they would have to model their system in the DEVS
formalism in order to make use of these libraries. In that
context, the object orientation of continuous-time models
is lost.

In contrast, our approach enables a Modelica user to
simulate a Modelica model using QSS solvers without any
explicit manual transformation. Furthermore, it allows for
the automatic transformations of large-scale models to the
DEVS formalism, which is a difficult if not unfeasible task
even for experts in DEVS modeling.

The article is organized as follows: Section 2 provides a
brief introduction of the QSS methods. Section 3 describes
theoretically what is needed in order to simulate a Model-
ica model without discontinuities employing the QSS algo-
rithms. In Section 4, the actual implementation of the inter-
face between OpenModelica and PowerDEVS is presented.
Section 5 describes the simulation results comparing the
DASSL solver of the OpenModelica run-time environment
with the QSS methods as implemented in PowerDEVS. Fi-
nally, Section 6 concludes this study, lists open problems,
and offers directions for future work.

2. QSS Simulation
Let a time invariant ODE system:

ẋ(t) = f(x(t)) (2)

where x(t) ∈ Rn is the state vector. The QSS1 method
approximates the ODE in Eq. 2 as:

ẋ(t) = f(q(t)) (3)

where q(t) is a vector containing the quantized state vari-
ables. Each quantized state variable qi(t) follows a piece-
wise constant trajectory via the following quantization
function with hysteresis:

qi(t) =

{
xi(t) if |qi(t−)− xi(t)| = ∆Qi,
qi(t

−) otherwise. (4)

where ∆Qi is called quantum. Thus, the quantized state
qi(t) changes if and only if it differs more than the value
of the quantum from the state variable xi(t). In QSS1, the
quantized states q(t) are following piecewise constant tra-
jectories, and since the time derivatives, ẋ(t), are functions
of the quantized states, they are also piecewise constant,
and consequently, the states, x(t), themselves are com-
posed of piecewise linear trajectories.

Unfortunately, QSS1 is a first-order accurate method
only, and therefore, in order to keep the simulation error
small, a large number of short integration steps needs to be
calculated.

To circumvent this problem, higher-order methods have
been proposed. In QSS2 [10], the quantized state variables
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evolve in a piecewise linear way with the state variables
following piecewise parabolic trajectories. In the third-
order accurate extension, QSS3 [9], the quantized states
follow piecewise parabolic trajectories, while the states
themselves exhibit piecewise cubic trajectories.

Eq. 3 reveals one of the key concepts and advantages of
QSS methods. During simulation, steps are only performed
when a quantized variable qi(t) changes substantially, i.e.
when it deviates by more than a quantum from the corre-
sponding state xi(t). Thus, QSS methods inherently focus
on the part of the system that is active at a certain time
point, which is particularly attractive for the simulation of
sparse models of large real-world systems.

3. Modelica Models Simulation with QSS
and DEVS

The Modelica language enables high-level modeling of
complex systems. However, at the core of every Model-
ica model lies an Ordinary Differential Equation (ODE)
system or, in general, a Differential Algebraic Equation
(DAE) system that mathematically represents the system
under consideration. We shall now show how a Modelica
model can be simulated using QSS methods. For simplic-
ity, we shall assume that the model is described by an ODE
system.

Let us write again Eq. 3 expanded to its individual com-
ponent equations:

ẋ1 = f1(q1, . . . , qn, t)

...

ẋn = fn(q1, . . . , qn, t)

(5)

If we consider a single component of Eq. 5, we can split it
into two equations:

qi = Q(xi) = Q(

∫
ẋi dt) (6)

ẋi = fi(q1, . . . , qn, t) (7)

The DEVS formalism [13] allows to describe the above
equations via a coupling of simpler DEVS models. More
specifically:

• The first equation (Eq. 6) can be represented by an
atomic DEVS model, called Quantized Integrator,
with ẋi as input and qi as output.

• The second equation (Eq. 7) can also be represented
as an atomic DEVS model, called Static Function,
that receives the sequence of events, q1, . . . , qn, and
calculates the sequence of state derivative values, ẋi.

Thus in absence of discontinuities, we can simulate Eq.
5 using a coupled DEVS model consisting of the coupling
of n Quantized Integrators and n Static Functions. A block
diagram representing the final DEVS model is shown in
Fig. 1.

The model depicted in Fig. 1 contains all possible con-
nections between the state variables. However, real-world

f1

f2

fn

x1

x2

xn

q1

q2

qn

Figure 1. Coupled DEVS model for QSS simulation of
Eq. 5

systems are sparse as each state normally depends on a
small subset of other states only. Thus, the graphical DEVS
structure is typically sparse for most practical applications.

4. OpenModelica to PowerDEVS (OMPD)
Interface

This section describes the work done to enable the simula-
tion of Modelica models in PowerDEVS using QSS algo-
rithms.

4.1 What is Needed by PowerDEVS
Let us first concentrate on what PowerDEVS requires in or-
der to perform the simulation of a Modelica model. As de-
picted in Fig. 1, an essential component of a PowerDEVS
simulation is the graphical structure. In PowerDEVS, the
structure is provided in the form of a dedicated .pds struc-
ture file that contains information about the blocks (nodes)
of the graph as well as the connections (edges) between
those blocks. More specifically, we need to add in the struc-
ture:

• A Quantized Integrator block for each state variable
with ẋi as input and qi as output.

• A Static Function block for each state variable that
receives as input the sequence of events, q1, . . . , qn, and
calculates ẋi.

• A connection is added between two blocks if and only
if there is a dependence between them.

Having correctly identified the DEVS structure, we need to
specify what needs to be calculated inside each of the static
function blocks. The different blocks need to have access
to different pieces of information.

In the current implementation, a .cpp code file is gener-
ated that contains the code and parameters for all blocks in
the structure. The generated code file contains the follow-
ing information:
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• For each Quantized Integrator block, the initial con-
dition, error tolerance, and integration method (QSS1,
QSS2, QSS3).

• For each Static Function, the equations/expressions
needed in order to calculate the derivative of each state
variable in the system. Furthermore, the desired error
tolerance is provided together with a listing of all input
and output variables of the specific block.

4.2 What is Provided by OpenModelica
In Section 4.1, we described what must be contained in the
files needed to perform simulations in PowerDEVS. The
PowerDEVS simulation files should be generated automat-
ically exploiting the information contained in the Modelica
model supplied as input. Luckily, existing software used to
simulate Modelica models, such as Dymola or OpenModel-
ica, produces simulation code that contains all information
needed by PowerDEVS. Thus, we were able to make use of
an existing simulation environment by modifying the exist-
ing code generation modules to produce the desired simu-
lation files.

This work is based on modifying the OpenModelica
Compiler (OMC), since it is open-source and has a con-
stantly growing contributing community. OMC takes as in-
put a Modelica source file and translates it first to a flat
model. The flattening consists of parsing, type-checking,
performing all object-oriented operations such as inher-
itance, modifications, etc. The flat model includes a set
of equation declarations and functions, with all object-
oriented structure removed. Then the equations are ana-
lyzed, sorted in Block Lower Triangular (BLT) form, and
optimized. Finally, the code generator at the back end of
OMC produces c++ code that is then compiled. The result-
ing executable is used for the simulation of the model.

The information needed to be extracted from the OMC
compiler is contained mainly in the DLOW structure where
the following pieces of information are defined:

• Equations: E = {e1, e2, . . . , eN}
• Variables: V = {v1, v2, . . . , vN} = VS

⋃
VR

where VS is the set of state variables with |VS | = NS ≤
N and VR the set of all other variables in the model.

• BLT blocks: subsets of equations {ei} needed to be
solved together because they are part of an algebraic
loop.

• Incidence matrix: An N×N adjacency matrix denoting,
which variables are contained in each equation.

The OMPD interface utilizes the above information and
implements the following steps:

1. Equation splitting : The interface extracts the indices
of the equations needed in order to compute the deriva-
tive of each state variable. To achieve this, it builds a de-
pendence graph, where the nodes are the equations, and
the edges represent dependences between these equa-
tions. The interface traverses the graph backwards from
each state derivative until it cannot no longer reach any
additional nodes.

2. Mapping split equations to BLT blocks : Having ex-
tracted the indices of the equations that calculate each
state derivative, the equations are mapped back to BLT
blocks of equations. This is needed in order to pass this
information to the part of the OpenModelica compiler
that is responsible for solving linear/non-linear alge-
braic loops.

3. Mapping split equations to DEVS blocks : The split
equations are also mapped onto the static blocks of
the DEVS structure. Since the state variables and the
equations needed to compute them have been identified,
they are assigned sequentially to static blocks in the
DEVS structure. Each static block corresponds then to
a state variable, and the lookup of equations in static
blocks can be performed efficiently if needed in the
future.

4. Generating DEVS structure : In order to correctly
generate the DEVS structure of the model, the depen-
dences between the state variables that are computed in
each static block have to be resolved. This is accom-
plished by employing the incidence matrix and the map-
ping of equations to DEVS blocks from step 3 to find
the corresponding inputs for each block. In Fig. 2, an
example of a DEVS structure automatically generated
for model M1 is depicted.

5. Generating the .pds structure file: Having correctly
produced the DEVS structure for PowerDEVS, out-
putting the respective .pds structure file is straightfor-
ward.

6. Generating static blocks code : In this step, the func-
tionality of each static block is defined via the simula-
tion code provided in the code.cpp file. Each static block
needs to know its inputs and outputs, identified by the
DEVS structure, as well as the BLT blocks needed to
compute the corresponding state derivatives, described
by the mapped split equations. Then, the existing code
generation module of OMC is employed to provide the
actual simulation code for each static block, since it has
already been optimized to solve linear and non-linear
algebraic loops.

7. Generating the .cpp code file: The code for the static
blocks is output in the .cpp code file along with other
needed information.

4.3 Example Model M1

Various tests have been performed in order to ensure that
the implemented OMPD interface is performing the desired
tasks correctly. Here are presented the results of processing
the following second-order non-linear model through the
implemented interface:

model M1
Real x1;
Real x2;
Real u2;

equation
der(x1)=x2-x1/10;
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Figure 3. Simulation results for model M1. In (a), the reference trajectory of state variable x2 is depicted. It was computed
using DASSL by setting the tolerance to 10−12. In (b) and (c), the simulation errors of Dymola and OpenModelica relative
to the reference solution are plotted with the tolerance value now set to 10−3. The achieved accuracy is indeed in the order
of 10−3 with the errors converging to zero in both simulations. In (d), (e), and (f), the simulation errors of QSS1, QSS2,
and QSS3 are depicted. Again we observe that the desired accuracy of 10−3 is approximately attained. In QSS2 and QSS3,
the errors decay also, but a small amplitude high-frequency oscillation around the steady-state remains. In QSS1, the errors
don’t converge to zero, but remain of the order of 10−3, which is still within specs.
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Figure 2. Automatically generated DEVS structure for
M1

der(x2)=u2-x1;
u2=(1-u2-x2)^3;

end M1;

The following information has been extracted from the
OMC compiler:

Variables (3)

=========
1: $u2:VARIABLE sys3, Real type: Real ...
2: $x2:STATE sys3, Real type: Real ...
3: $x1:STATE sys3, Real type: Real ...

Equations (3)
=========
1 : $u2 = (1.0 - $u2 - $x2) ^ 3.0
2 : $DER$x1 = $x2 - $x1 / 10.0
3 : $DER$x2 = $u2 - $x1

BLT blocks
2,
1,
3,

In other words, OMC has identified that model M1 has 2
state variables, x1 and x2, 1 algebraic variable, u2, and 3
equations:

u2 = (1− u2 − x2)3 {1}

ẋ1 = x2 −
x1

10
{2}

ẋ2 = u2 − x1 {3}
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Each of the equations is placed in a BLT block. These are
sorted according to the execution order as follows: {2},
{1}, {3}.

The automatically generated DEVS structure contained
in the .pds file is illustrated in Fig. 2. Since both state vari-
ables are depending on each other, the obtained structure is
full. The BLT blocks needed to calculate each state deriva-
tive are shown inside the static function blocks.

5. Simulation Results
In this section, the simulation results obtained by use of
the OPMD interfaced are presented and discussed. First
in order to provide a simple working example of the im-
plemented interface, model M1 was simulated using all
three currently implemented QSS methods of PowerDEVS
as well as the standard DASSL solvers of OpenModelica
and Dymola. The stand-alone version of PowerDEVS con-
tains additional QSS-based solvers for simulating stiff and
marginally stable systems, but in the OPMD, only QSS1,
QSS2, and QSS3 were included until now.

The article also presents preliminary results regarding
the performance of QSS algorithms in comparison with
DASSL when simulating sparse systems.

5.1 Simulation of a Simple Model (M1)
In Fig. 3, the simulation results obtained for model M1 are
depicted. In Fig. 3(a), the reference trajectory of state vari-
able x2 is plotted. To obtain the reference trajectory, Dy-
mola was employed using the default DASSL solver while
setting the tolerance value to 10−12. In the remaining pan-
els, the simulation errors relative to the reference solution
are shown that were obtained by setting the desired toler-
ance to 10−3. Fig. 3(b) shows the simulation error obtained
by Dymola using DASSL. Fig. 3(c) depicts the simulation
error obtained by OpenModelica using DASSL. Figs. 3(d-
f) graph the simulation error obtained by OpenModelica
with PowerDEVS using QSS1, QSS2, and QSS3, respec-
tively.

We observe that all solvers accomplish the desired
task of keeping the global simulation error approximately
within 10−3. Using DASSL, this is not obvious, because
DASSL only controls the local simulation error of a single
integration step. Errors can in principle accumulate over
time, but this didn’t happen in this simple example. QSS-
based algorithms all control the global simulation error,
and consequently, are expected to perform as desired. In
this simple example, the simulation errors decrease over
time in all solvers except for QSS1. Yet, whereas the errors
approach zero in the case of DASSL, a small-amplitude,
high-frequency oscillation remains in the cases of QSS2
and QSS3.

These steady-state oscillations are bad news, because
they will foce small step sizes upon us in steady state,
if we decide for whatever reason to simulate the system
over a longer time period. Such steady-state oscillations are
observed frequently in the non-stiff QSS solvers. They will
disappear when the OPMD is extended to the stiff LIQSS1,
LIQSS2, and LIQSS3 solvers.

In QSS1, the errors do not decay over time in this exam-
ple. After all, this is only a simple first-order non-stiff ODE
solver. However, the errors remain approximately within
10−3, i.e., the simulation still performs within the desired
specifications.

Based on these results and a number of additional exam-
ple models studied, we conclude that the OMPD interface
is able to simulate arbitrary linear or non-linear Modelica
models without discontinuities.

In the following experiments, only the QSS3 algorithm
is compared to DASSL, since it is a third-order accurate
method and is expected to be more efficient than the other
implemented QSS methods.

5.2 Benchmark Framework
One of the goals of this study was to compare the perfor-
mance of the standard DASSL solver of OpenModelica
with the most efficient among the hitherto implemented
methods of the QSS family, namely QSS3. Since the cur-
rent interface implementation allows only for non-stiff
models without discontinuities, we only focus on studying
the effect of the sparsity of a model on the CPU perfor-
mance of both algorithms. To achieve our goal, we need to
be able to automatically generate models of arbitrary size
and sparsity.

For the benchmark, we chose to generate linear models
of the form:

ẋ = A · x (8)

where x ∈ Rn is the vector of state variables. Matrix A
controls the dynamics of the generated system. Since we
needed to control the eigenvalues of the system and avoid
producing stiff systems, we constructed A as follows:

1. Generate real-valued random eigenvalues drawn from a
Gaussian distribution : eig ∼ −N (5, 2).

2. Create a diagonal matrix D = diag(eig).

3. Create a random orthogonal matrix M.

4. Then matrix A = M ·D ·MT has the desired eigenval-
ues eig.

The constructed matrix A is a full matrix. Sparsity s is de-
fined as the number of connections to every state variable.
To achieve a certain sparsity level s, we set the n− s abso-
lute smallest elements of each row of A to zero. The abso-
lute smallest elements were eliminated in order to minimize
the impact on the eigenvalue locations of the resulting ma-
trix Ã. Having constructed a matrix Ã of given size n and
sparsity s, it is straightforward to generate an equivalent
Modelica model.

For the comparison simulations, the OpenModelica
1.5.0 environment was used with DASSL as the standard
solver. The tolerance was set to 10−3, and the simulation
end time was set to 3 sec for both OpenModelica and Pow-
erDEVS. Furthermore, the output file generation was dis-
abled for both environments in order to measure the pure
simulation time.

For each parameter configuration (n, s), 100 Modelica
models were randomly generated and given as input to the
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Figure 4. Simulation results for automatically generated models with n = 30 state variables and varying sparsity. In (a), the
mean CPU time needed for simulating these systems using QSS3 and OpenModelica is plotted (red squares and black crosses,
respectively).In (b), the logarithm of the ratio between the CPU time of OpenModelica and QSS3 is shown. Observing both
plots, we conclude that QSS3 is more efficient than DASSL when simulating sparse systems (s < 13) Most real-world
large-scale systems belong to that category.

standard OpenModelica compiler and via the OMPD inter-
face to PowerDEVS. The CPU time needed for the simu-
lation was measured for each generated executable. In or-
der to obtain more reliable results, each simulation was re-
peated 10 times, and the median over all 10 repetitions was
considered as the CPU time needed for each simulation.
For each parameter setting (n, s) the mean of the CPU time
measurements is reported along with ± 1 standard devia-
tion.

Two types of experiments were conducted. First, the
number of states n was kept constant with the sparsity s be-
ing varied, and then the reverse procedure was performed
by fixing the sparsity s while varying the number of states.
For each experiment, the CPU time was measured for sim-
ulations performed with DASSL and QSS3, respectively.
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Figure 5. The stiffness ratio of the generated models in
Sec. 5.3 is depicted. We observe that the resulting models
exhibit approximately the same stiffness for different spar-
sity values.

5.3 Fixed Number of States - Varying Sparsity
In the first experiment, the number of states n in the gen-
erated models was fixed to n = 30 states. Then start-
ing from a sparsity of s = 1, meaning that only one
non-zero connection was preserved for the computation
of each state derivative, the number of connections was
gradually increased until we reached the full model with
s = 30 connections. In Fig. 4(a), the obtained average CPU
time is plotted against s for QSS3 (red squares) and for
DASSL (black crosses). We observe that QSS3 is consid-
erably faster than DASSL for sparse models (low values
of s), whereas DASSL gets more efficient than QSS3 for
approximately s ≥ 13 connections.

This result is not overly surprising. In fact, it was ex-
pected. Whereas QSS3 benefits from sparsity as it only
updates states and state derivatives asynchronously if and
when there is a need for it, DASSL benefits in a fully con-
nected model from the fact that it calls the right-hand equa-
tions only once per iteration, i.e., maybe thrice per step,
whereas QSS3 updates each state derivative separately. In
a non-sparse model, there is nothing that QSS3 can exploit.

However, real-world large-scale systems are always
sparse. It simply doesn’t happen in real life that a state
derivative in a 30-th order model depends on all 30 state
variable. Usually each state equation depends on two or
three state variables only. Hence the case with s = 3 is
probably the most relevant for all practical purposes.

The areas where each algorithm is superior in terms of
CPU performance are more clearly visible in Fig. 4(b),
where the logarithm of the ratio between the CPU times
of DASSL and QSS3 is plotted against s. A positive log-
ratio value means that QSS3 is more efficient than DASSL,
whereas a negative value indicates the opposite.
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In Fig. 5, the stiffness ratio of the generated models is
plotted. The stiffness ratio is defined as the ratio of the
largest to the smallest eigenvalue of matrix Ã and is used
as an indicator of a model being stiff or not. The resulting
stiffness ratio of the models used is kept smaller than 10
and does not vary much with s. Therefore, we can conclude
that the differences in the measured execution times are not
a result of a significant difference in the stiffness ratios of
the models used.

5.4 Fixed Sparsity - Varying Number of States
Next, we studied how the simulation performance is af-
fected when the number of connections per state variable
is kept constant, whereas the number of states is modified.
In Fig. 6, the sparsity s is set to 2 inputs per state, and
the number of states is increased from 10 to 150. We ob-
serve that up to n = 130 states, QSS3 is more efficient in
terms of needed CPU time. On the other hand, if we in-
crease the sparsity s to 5 connections per state variable,
the range where QSS3 is superior to DASSL is reduced to
about n = 70 states, as depicted in Fig. 7.
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Figure 6. Sparsity s is set to 2 connections per state, and
the number of states is increased from 10 to 150. We ob-
serve that up to 130 states, QSS3 is more efficient in terms
of required CPU time. However, the computational cost of
QSS3 increases with the model size much faster for QSS3
than for DASSL due to inefficiency in the current Pow-
erDEVS implementation.

In both cases, the CPU time needed by QSS3 is increas-
ing much faster than the CPU time that DASSL needs as the
complexity of the model increases. This means bad news
for PowerDEVS. PowerDEVS evidently does not handle
large systems very well.

On the other hand, it can been shown that the computa-
tional load of the QSS3 algorithm grows only linearly with
the number of states. Thus, the measurement results are in
contradiction with theory.

The reason is that we measure not only the time needed
by the QSS3 algorithm for integration, but also the time
needed by PowerDEVS for administrating the simulation.

PowerDEVS was not designed to simulate large DEVS
models. After all, the PowerDEVS users were expected

to construct their models manually, which clearly limits
the size of the models that users may want to simulate in
PowerDEVS. For this reason, the designers of PowerDEVS
did not spend much thought on an efficient implementation
of the underlying simulation engine. In particular, block
are implemented as a linearly linked list, and PowerDEVS
traverses that list in a linear fashion when looking for the
next model to be executed. This kills the overall efficiency
of the implementation, and what we measured in Fig. 6 for
larger numbers of states is primarily not simulation time,
but rather the quadratic growth pattern of a linear search
algorithm. Re-implementing the blocks as an equilibrated
binary tree, a trivial programming exercise, will reduce the
growth pattern of the search time to n · log n and will
make PowerDEVS perform considerably better for larger
models.
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Figure 7. Sparsity s is set to 5 connections per state, and
the number of states is increased from 10 to 150. Now,
QSS3 is more efficient for up to 70 states.

6. Discussion
6.1 Conclusions
In this article, an interface between the OpenModelica en-
vironment and PowerDEVS is presented and analyzed. The
OPMD interface implemented until now does not handle
discontinuities yet, but it represents the first effort to auto-
matically bridge the gap from the powerful Modelica mod-
eling language standard to the also very powerful state-
quantization based (QSS) simulation methods. The cur-
rently available interface allows a Modelica user to simu-
late arbitrarily complex non-stiff Modelica models without
discontinuities using the PowerDEVS simulation software.
Future extensions of the interface shall handle stiff and dis-
continuous models as well.

Preliminary results exhibit the superiority of QSS3 over
the standard DASSL solver when simulating sparse mod-
els. More rigorous experiments will need to be performed
in order to reach concrete conclusions about the perfor-
mance of each algorithm. An inefficiency in the current
implementation of PowerDEVS when simulating large sys-
tems was observed and will be addressed in the next distri-
bution of PowerDEVS.
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6.2 Future Work
We have shown that the implemented OMPD interface
successfully allows a user to simulate an arbitrary Modelica
model without discontinuities using PowerDEVS and the
QSS methods. However there are open problems that need
to be addressed in the future.

The OMPD interface should be extended to cover mod-
els with discontinuities. QSS methods are intrinsically well
suited for simulating discontinuous models. Therefore, it is
of great importance to add this functionality to the OMPD
interface. Most importantly, we shall then be able to per-
form large-scale comparisons between DASSL and QSS
algorithms for a variety of real-world models that are in-
herently discontinuous.

On the other hand, as discussed in Section 5.4, Pow-
erDEVS needs to be implemented more efficiently in or-
der to take advantage of all theoretical properties of the
QSS methods. In particular, the current simulation engine
is quite inefficient in the way it searches through the blocks
to find the one that produces the next event in the simula-
tion. This issue can be addressed by employing a more ef-
ficient search strategy, e.g. by organizing the atomic mod-
els in an equilibrated binary tree structure. These modifi-
cations are already being implemented, and we are look-
ing forward to incorporating these modifications in the next
PowerDEVS distribution.
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Abstract
Equation-based object-oriented modeling approach signifi-
cantly reduced effort needed for model implementation by
releasing modeler of performing many error-prone tasks.
An increasingly more complex models can be built, prefer-
ably from components of different model libraries. How-
ever, complexity of the models complicate the process of
verification – assuring that the model was implemented cor-
rectly and behaves as expected – and possible subsequent
debugging. A cause of error in a model with over 1000
different equations can be often hard to find by the desk-
checking method. This requires the development of new
modeling environment tools for model understanding and
automated discovery of the fault causes.

The difficulty of designing such tools in EOO modeling
environments is linked to the difficulty of mapping simula-
tion form to the model sources. Furthermore, debugging of
complex models consisting of over thousand equations by
traversing each equation may be very ineffective, especially
when the fault has multiple and not very evident causes.

A model reduction methods is proposed and discussed
as a method of verification. With model reduction meth-
ods it is possible to identify the most important parts of the
model which have contributed to the specific model behav-
ior. Because model reduction can be performed on original
model representation, the difficulty of mapping simulation
form back to model source is avoided.

Keywords verification, debugging of EOO models, veri-
fication by model reduction

1. Introduction
Important step in process of modeling and simulation
is verification of the model. With verification we assure
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matching of our conceptual model with the implementa-
tion of the model.

Traditionally models were implemented in imperative
programming languages and verification of the models
could rely heavily to the established software debugging
practices and techniques . However, declarative equation-
based object-oriented modeling languages, like Modelica,
introduced a new abstraction layer in implementation of the
model to improve modeling process. Differential algebraic
equations by which model is described can be entered di-
rectly and further such models can be combined into more
complex models according to the rules defined by their
interfaces. Such implementations of the models preserve
topology of the modeled system and models are thus more
evident and clear, but for simulation purposes such model
must be preprocessed – translated into the simulation form.
Translation is performed automatically.

Since the modeler is no longer acquainted with the sim-
ulation form of the model, the paradigm of the model
verification and debugging has changed and we can no
longer effectively use software debugging tools developed
for imperative programming languages. However, verifica-
tion and debugging of declarative modeling languages is
still not solved adequately and it remains a challenging re-
search topic.

2. Overview of verification techniques
A number of verification techniques have been developed,
spanning from very informal approaches to formal mathe-
matical proofs of correctness. Whitner and Balci [13] cate-
gorized verification methods into six distinct perspectives
based on increasing level of mathematical formality: in-
formal, static, dynamic, symbolic, constraint and formal
analysis. Effectiveness of verification usually increases as
method becomes more formal, but on behalf of increased
complexity.

2.1 Informal analysis
Informal analysis techniques, such as desk checking, are
most commonly used verification strategies where model
is evaluated using the human mind. The evaluations can
be made by mentally exercising the model, reviewing the
logic behind the equations, algorithms and decisions, and
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examining the effects that the various implementations will
have on the overall outcome of the model.

Declarative modeling languages specifically improve ef-
ficiency of the informal analysis of the model, since imple-
mentation of the model is close to the form of conceptual
model with preserved topology of the modeled system.

However, informal analysis is very time consuming and
its success depends on the level of knowledge and expertise
of the individual, which comes into concern when very
complex models are built with an aid of pre-prepared model
libraries with implementation of the components that may
not be completely known to the user.

2.2 Static analysis
Static analysis is a verification method where only the
source code of the model is analyzed without actually per-
forming simulation.

It is the best supported verification method by EOO
modeling tools. The most important aspect of it is struc-
tural analysis – checking that number of variables match
the number of equations in the model (resulting system of
equations derived from model is well-constrained) and in
case if over- or under-constrained system of equations was
detected, a tool (debugger) must be able to report the loca-
tion of the error consistently with the user’s perception of
the simulation model and possibly suggest the right error-
fixing solution [1]. In Modelica language standard 3.0, re-
strictions have been introduced into the language in order
to force matching of a number of unknowns and equations
on every hierarchical level (in each submodel) [8]. This
has improved efficiency of the debugging over- and under-
constrained models since it is possible to easily determine
a submodel with too many or too few equations.

Object-oriented modeling where variables are also ob-
jects with many additional properties besides value enables
also other kind of static analysis, for example, unit check-
ing [6].

The advantage of static analysis in EOO modeling is that
costly translation and simulation of the model is avoided,
but it can not fully verify that intentions of the modeler are
being met or determine the model’s behavior.

2.3 Dynamic analysis
Verification by dynamic analysis is accomplished by evalu-
ating model’s simulation results. In general this a complex
task since it is not easy to determine what to test and how
to test it. Furthermore, it can be complicated to interpret the
analysis’ results.

The EOO modeling introduce additional difficulties into
verification by dynamic analysis due to optimization per-
formed during translation of the model when a lot of in-
formation about the original model’s structure is lost. Map-
ping the simulation form back to original model is thus a
very challenging task.

Currently, no modeling tool supporting Modelica pro-
vides even the simplest run-time debugging capabilities
that could be used for inspecting of failed tests. However,
there were some prototypes of automated debuggers for
EOO languages developed [1, 9]. They are based on the

principles of debugging of the programming languages.
The debugging strategy is interactive and based on the
user’s choice of the variables which trajectories are wrong
and according to these variables the simulation form of
the model is sliced so that only parts (equations and algo-
rithms) having influence on selected-variables’ calculation
are shown to the user. A dependency graph is built where
nodes represent equations that contributed to the result con-
nected by directed edges labeled by variables or parameters
which are inputs or outputs from or to the equation rep-
resented by the node. Then the user is able to classify a
variable as variable with wrong value or classify an equa-
tion as correct (which results in rebuilding the dependency
graph) and modify some of equations and variables’ values
interactively. Each equation in dependency graph is also
mapped to model source.

Although debugging methods [1, 9] provide significant
advantage over no debugging tools at all, they have some
serious deficiencies. The user is basically still operating on
the level of model’s simulation form, even if mapping to
model code positions is provided. Also scalability, when
dealing with large models with many equations, is prob-
lematic while considering each equation one by one is very
impractical.

A special topic of dynamic analysis is resolving numer-
ical problems that might arise during simulation. However,
this is very advanced topic, while user must posses a good
knowledge of the simulation form to which model was
translated and properties of the numerical solver.

2.4 Symbolic analysis
Verification by symbolic analysis addresses some draw-
backs of the dynamic analysis, namely the inability to ver-
ify all possible test cases. Verification by symbolic analysis
seeks to determine the behavior of the model during simu-
lation by providing symbolic inputs to the model.

2.5 Constraint analysis
Constraint analysis verifies on the basis of comparison be-
tween model assumptions and actual conditions arising
during simulation of the model. The model assumptions
are made already during the development of the concep-
tual model. In Modelica they can be checked by means of
assert statement provided by language standard [7] and are
extensively used in Modelica Standard Library, for exam-
ple, in Modelica.Media it is in that way assured that the
medium equations are never used outside the valid temper-
ature range.

The disadvantage of constraint analysis is reliance on
formal model specifications which is needed to effectively
state and place the assertions. Creating a formal specifica-
tion is a difficult task.

2.6 Formal analysis
Formal analysis is based on formal mathematical proof of
correctness. It usually can not be applied even on the most
simple models and basically it has no practical value so far.
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3. Problematics of verifying EOO models
Modeling is a process of extraction, organization and rep-
resentation of the knowledge about physical system [2].

The contribution that equation-based object-oriented
modeling approach brought to the process of modeling
is implementation of the model close to the conceptual
model, i.e., model is stated in acausal form and topology
of the system is preserved. In contrast to traditional pro-
cedures where model was implemented in imperative lan-
guages, automatic translation of the model relives the user
of tedious and error-prone task of manual manipulation of
the model’s equations.

EOO modeling approach also enabled truly reusable
models and consequently many model libraries have been
developed. Rich selection of already prepared components
allows building relatively complicated and “error-free”
models with a little effort. However, although once com-
mon errors due to implementation in imperative languages
are no longer an issue, there can be identified three types
of faults emerging in EOO models which can be exposed
in simulation results [1]:

• when parameter values for the model simulation are
incorrect

• when the equations that specify the model behavior are
incorrect (violate physical laws)

• when submodels are used inappropriately (assumptions
about the system are violated)

These faults can be found by either failed assert statement
or by inspection of the simulation results (failed test).

When a fault is found in a model, the cause or several
of them (if the fault have multiple causes) have to be found
and corrected in the model implementation. For example,
if certain quantity in the model increased unbounded, al-
though stable system with bounded input signal have been
simulated, it is a plausible assumption that some equation
is wrong or some parameter has been assigned an unphys-
ical value. A strategy of traversing the equations related
to this quantity will certainly lead to the solution of the
problem, although in a large-size model this procedure is
somehow laborious. A debugger based on interactive de-
pendency graph proposed by [9] may be very useful in such
case.

However, a case when, for example, model’s response
exposes unexpected initial undershoot is much more com-
plicated to resolve. Initial undershoot may be a property
of the system (a nonminimal phase), only property of the
model (introduced by some modeling assumptions and
simplifications) or an error in the implementation. A simple
traversal of the equations related to the trajectory exposing
initial undershoot may not provide a proper insight, espe-
cially if a large-size model built from complicated com-
ponents is under consideration (e.g., component Dynam-
icPipe from the library Modelica.Fluid can consist of over
100 equations distributed to 10 models from which original
component is extended).

Verification of complex EOO models should be sup-
ported by a tool that directs the modeler towards the im-

portant parts of the model regarding a certain behavior of
the model (exposed by trajectories obtained by simulation).

3.1 Model reduction techniques
For some modeling purposes, most notably structural and
control design, large size models that include detailed dy-
namics are undesired, since determining the major design
parameters and their relationship to the system perfor-
mance is difficult [5].

Model reduction techniques represent also an important
aspect of the systems analysis, when a low-dimensional
model can provide qualitative understanding of the phe-
nomena under consideration [4]. An important property of
the model reduction methods when used in system anal-
ysis or for structural design is that it generates a proper
model, i.e. reduced model with the minimum complexity
required to meet the performance specifications and pos-
sessing physically meaningful parameters and states [5].

In attempt to reduce the complexity of the model (and
number of its parameters), a number of mixed numerical-
symbolic model reduction techniques have been developed
and successfully applied [11, 12, 4, 5].

Model order reduction techniques consists of running a
series of simulations, ranking the individual coordinates or
elements by the appropriate metric and removing those that
fall below a certain threshold [3].

The most straightforward metrics for reduction of the
proper models is related to energy or power. Method of
Rosenberg and Zhou [10] removes bonds with low power
from a bond graph model, Luca [5] introduces activity – the
time integral of the absolute value – and Ye and Youcef-
Youmi [14] reduces bond graph models by eliminating
bonds with smallest associated energy in comparison to
its neighbors. Chang et al. [3] eliminate system’s states
with low associated energy in the model comprised of La-
grangian subsystems with force interconnections based on
Lyapunov stability. Metrics related to energy or power re-
quires modeling formalism with clearly defined compo-
nents’ energy and power respectively. Method of Sommer
at al. [12] consists of term substitution and deletion (as
well as on some other simplification) in the equations of the
DAE system derived from the model. The term are ranked
according to their influence on the output error which is de-
fined as a difference of original and reduced model’s out-
put. The resulting simplified system of equations can be
interpreted again in the form of component equations and
can be mapped to a reduced model scheme.

For the simulations that are performed to obtain the error
estimates, excitation of the model must be selected in such
way that a valid model is obtained in a desired frequency
range.

3.2 Verification aided by model reduction techniques
Verification by dynamic analysis as well as subsequent de-
bugging in equation-based object-oriented approach could
be improved substantially by using model reduction tech-
niques.
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When a behavior of the model obtained by simulation is
not as expected or even erroneous, an explanation is sought.
It is sensible to first look at that components or (terms of)
equations and parameters of the model that have the most
influence on the dominant system dynamics and trajectory
of the model’s variable of interest respectively.

In a large-size models made up of components from var-
ious model libraries which implementation is not precisely
known to the user, it is not apparent which components or
equations of the model have the greatest impact on the re-
sponse of the model, i.e. on selected variable’s trajectory
(or part of it). Determination of the most influential com-
ponents can be automatized by using ranking algorithm
known from the model-reduction methods. The user could
focus only on the few components contributing most sig-
nificantly to the simulation results and potentially extend
his/her search to lower ranked components. Because the
ranking is affected by selected time-window, components
can be separated also according to the impact they have
during different time of simulation. For example, in the
steady-state, dynamic terms (those that include time deriva-
tives) are totally irrelevant, while at the beginning of the
transient, terms of equations describing the fast dynamics
of the system are those which are worth of the most atten-
tion.

Furthermore, on behalf of the user, proper reduced
model could be generated and the user could further ex-
periment on the reduced model which can be much more
easily understand. Because all the parameters and states of
the reduced model are physically meaningful, the changes
of the reduced model could be easily merged with original
model.

An important advantage of the model reduction of EOO
models is also that user never needs to consider the trans-
lated form of the model, while model reduction is per-
formed on the original representation of the model.

However, in general modeling language such as Mod-
elica, models can be implemented in various ways, for ex-
ample, entirely in textual form as a set of equations or by
connecting basic components from the Standard Library in
the graphical interface. That implies using different model
reduction strategies and possibly also different metrics.

4. Conclusions
Use of model reduction techniques for verification and
debugging have been proposed. Methods originated from
model reduction techniques can be used to rank the com-
ponents (equation terms) of the model with greatest impact
on the model behavior (selected trajectory) and proper re-
duced models can be generated on behalf of the user. Re-
duced models are easily to comprehend by the user and
while proper reduced models have physical meaningful pa-
rameters, changes done to the reduced model can be easily
merged to the original model.

The advantage of debugging aided by model reduction
methods over traditional software debugging methods is
that since the user does not need to consider the simula-

tion form of the model anymore, the difficult mapping of
translated equations to model source is not needed.

However, most model reduction methods requires spe-
cific modeling formalism (e.g., bond graphs) and can be
restricted to specific physical domains. The usefulness of
verification and debugging tools based on model reduction
techniques is therefore limited in a general EOO modeling
languages such as Modelica.
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