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Advancements of AI in Healthcare 
Intelligent Adherence and Variation Support for 
Customer Life Cycle Management in Healthcare 

Christian Guttmann 
christian.guttmann@med.monash.edu.au 

Summary 

Maintaining contractual relationships and delivering services are key issues in Customer Life 
Cycle Management (CLCM). Current computer systems assist service providers in managing 
basic care for customers. This basic care often involves little more than maintaining customer 
information in a database.  
 
AI technologies can play a valuable role in building advanced systems that monitor, interpret 
and react to key events during the management of a customer's life cycle. We have built a 
system that is an example of such an AI technology -- we refer to it as Intelligent 
Collaborative Care Management (ICCM). ICCM guides a team of providers and customers 
through critical stages in a customer's life cycle.  
 
This system has been applied to the collaborative care of patients with chronic disease. 
Managing patient care is difficult, because health care providers and patients must 
collaboratively achieve goals in a customised care plan. Achieving these goals is strongly 
correlated with better health outcomes of patients. Regrettably, these outcomes are seldom 
attained because of uncertainty, incompleteness and bounded resources in this domain (e.g., 
change of health conditions, change of objectives of providers, unreliable patients and change 
of governance policies).  
 
ICCM specifies intelligent agents that assist health care providers and patients in  

(a) adhering to a care plan and  
(b) varying the care plan itself, if required.  

This adherence and variation support component in ICCM defines a monitoring-recognition-
intervention cycle: monitoring provider and customer behaviour, recognising off-track 
behaviour, and intervening to (a) move processes back on-track or (b) make changes to the 
care plan itself.  
 
This presentation is concluded by outlining challenging future directions in this line of 
research. 
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CPTV - Generating Personalized TV Schedules 

Helmut Simonis 

Summary 

Today's cable and satellite systems provide a multitude of TV viewing 
choices for a user, making it difficult to select the best program to 
watch at any one time. Digital video recording and IPTV add even more 
options, allowing to time- and sometimes place-shift TV watching. CPTV 
is a system which generates a personalized viewing schedule for a 
user, integrated with his current calendar tools. The system is based 
on three main elements:  

• a rule based system to express viewing preferences, 
• a content-based recommender system to suggest films based on past 

viewing selections and information extracted from Wikipedia, and  
• a constraint-based scheduler which plans and schedules recording 

and viewing schedules around existing events and availability time 
periods of a user. 

The application thus combines different AI methods in one Web-based 
application, and is implemented using the constraint logic programming 
system ECLiPSe. 
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Achievements of AI in Linguistics 

Anna Sågvall Hein 
anna.sagvall-hein@convertus.se 

Summary 

AI aims at simulating human intelligence by computer. Language is one of the primary 
expressions of human intelligence. It has been claimed that the acquisition language is the 
greatest intellectual achievement of man. Natural language processing is, naturally so, one of 
the major fields of AI, and to a large extent it overlaps with Computational Linguistics, an 
important and continuously growing field of linguistics. 
 
The fundamental problem of computational linguistics is the modelling of the basic linguistic 
processes – comprehension, production and learning of language. It includes central AI 
problems such as perception, communication, knowledge, planning, reasoning and learning. 
On the application side, information retrieval including text mining and machine translation, 
currently, seem to dominate.  
 
By tradition, the term Computational Linguistics refers to written language, whereas Speech 
Technology is used for the analysis and synthesis of spoken language. In later years, 
Language Technology has emerged as a common denominator of both modes of language. 
The division into Speech Technology and Computational Linguistics was mainly based on 
different scientific traditions and methods. Whereas statistical methods dominated in speech 
technology, so did symbolic processing in computational linguistics. However, the statistical 
methods originally developed for the analysis of speech were found to be more or less directly 
applicable to the fairly new paradigm of data-driven machine translation. Below, machine 
translation will be focused. 
 
Intuitively, translation may be understood as comprehending a source language text and 
producing an equivalent text in the target language. In terms of AI, or CL, it would imply 
modelling the comprehension process and the production process, respectively.  
 
Assuming that the comprehension process would result in a complete, language independent 
meaning representation, an interlingua, this representation might be the starting point of the 
production process, and there would be no need for a specific translation step. In such an 
approach, knowledge becomes a central issue. How to identify it and how to represent it? This 
ideal approach to machine translation, the interlingua approach, has been explored by many 
researchers with interesting findings, but no viable translation system, as a result. The Google 
translation service is as far from the interlingua model that one may get, since it does not use 
any refined knowledge of language at all. 
 
AI researchers in the 70-ies, such as Roger Schank, Terry Winograd and Yorick Wilks, made 
substantial and innovative contributions to the exploration of language comprehension and 
production, illustrating the relevance of knowledge, in particular world knowledge, planning, 
and reasoning in the use of language. Their approaches were exclusively symbolic,  
excluding, basically,. machine learning of language. Currently, the data-driven approach 
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dominates the field of machine translation, and attempts are made to combine or complement 
it with rule-based methods in order to overcome inherent limitations with the approach. 
 
Basic problems of machine translation are due to lexical ambiguity and variation, and 
grammatical differences in morphology and word order. In the rule-based paradigm, the 
problems are approached by linguistic analysis sorting out the different uses, hence translation 
options, of the words. The linguistic analysis also is also the back-bone in creating an 
appropriate word order. The data-driven, or statistical approach, relies on reuse of large 
amounts of previously translated text, parallel data.  
 
A problem with the rule-based approach, RBMT, is the coverage of language resources, 
dictionaries and grammars. Typically, coverage is insufficient and methods have to be found 
to handle text outside dictionaries and grammars. This is where statistical methods may help.  
 
In statistical machine translation, SMT, the choice of translation alternatives is based on a 
comparison of the source text with large amounts of parallel data. The fundamental problem  
is access to sufficiently large amounts of parallel data. The amount needed depends, among 
other things, on the language-pair in focus. Integrating linguistic data aims at reducing the 
amount of parallel data needed for quality translation. 
 
Translation quality is a critical issue in machine translation. However, demands on quality 
vary with the purpose of the translation. Browsing quality, understandability, may be 
sufficient in certain contexts, whereas publishing quality must approach the quality of human 
translation. In addition to human evaluation, costly and time-consuming, different metrics for 
the automatic evaluation of machine translation have been proposed. They assume access to 
reference data in terms of previous translations of high-quality, typically human translations. 
 
Success factors of machine translation in practice concern adaptation and customisation of the 
machine translation system to the needs of the user, pre-processing of the source text 
(language checking, controlled language), and post-processing of the target text. A research 
issue of great concern is automating the post-processing process.  
 
As an example of machine translation in use, the Convertus Syllabus Translator, CST, will be 
presented. CST translates course syllabi from Swedish to English and is in use at six Swedish 
universities. The presentation will include the following aspects:  
 

• Background and development 
• Methodology 
• Translation dictionary 
• Spell-checking 
• Post-processing interface and translation memory function 
• Automatic post-processing 
• Scenarios of use 
• User feed-back 
• Future development and deployment 

 
Finally, further development and prospects of machine translation will brought up for 
discussion. 
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Using AI to interpret BI: machine learning for decoding and

characterization of brain activity patterns

Malin Björnsdotter∗, Simon Beckmann, Erik Ziegler & Johan Wessberg

Abstract

The appealing properties of artificial intelligence
(AI) methods are being increasingly acknowledged
by the neuroimaging community, as evidenced by
the recent surge of brain activity pattern recogni-
tion studies [19]. Supervised learning and classifi-
cation, in particular, are appreciated tools for lo-
calizing and distinguishing intricate brain response
patterns and making predictions about otherwise
undetectable neural states. Our group refines and
applies such methods in order to implement sensi-
tive and dynamic tools for characterization of neu-
rophysiological data. Specifically, we employ sup-
port vector machines (SVMs), particle swarm opti-
mization (PSO), independent component analysis
(ICA), as well as both genetic and memetic algo-
rithms on functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG) data.
This paper provides a brief overview of our recent
advances in the development and utilization of AI-
based analysis, with the particular aspiration to
characterize human brain activation patterns pro-
duced by touch.

1 Introduction

Machine learning approaches for mining neurophys-
iological data are rapidly gaining popularity, and
justifiably so, as they provide a level of analysis
not possible with conventional methods [19]. Com-
monly used systems for acquiring such brain activ-
ity data non-invasively include electroencephalog-
raphy (EEG), which provides an estimate of elec-
trical currents produced by the brain, and func-

∗All authors are with the Department of Phys-
iology, Institute of Neuroscience and Physiology,
University of Gothenburg, Sweden. Email: ma-
lin.bjornsdotter@neuro.gu.se

tional magnetic resonance imaging (fMRI), where
local blood flow changes are quantified. Classically,
the analysis of neurophysiological data relies on de-
scriptive statistical measures where average activity
changes in single data points are related to an ex-
perimental condition and particular data character-
istic of interest (e.g. brain regions in fMRI and fre-
quencies in EEG). Artificial intelligence techniques,
in contrast, are capable of distinguishing complex
and subtle data patterns, distributed across numer-
ous measuring points, on a single-trial basis. The
benefits of AI were acknowledged early for real-time
classification of EEG signals in brain-computer in-
terfaces (see e.g. [4] for a review), and more re-
cently for clinical evaluation (see e.g. [9, 28, 24]),
as well as a wide range of fMRI analyses (see e.g.
[11] and [19]).

Generally, supervised learning techniques are
used: a classifier is trained to recognize and de-
code subtle intrinsic signal patterns correlated to
given brain states, such as the fMRI activity pro-
duced by a single touch stimulus [2]. Supervised
learning methods not only enable real-time single-
trial classification (such as brain state tracking [29]
or intent decoding [30]), but by virtue of consid-
ering information encoded over multiple measuring
points they also provide improved condition differ-
entiation sensitivity [27, 19, 13].

In the following sections, we summarize our re-
cent advances in the development and application
of such AI-based analysis in both fMRI and EEG
studies. In particular, we utilize these methods to
characterize human brain activation patterns pro-
duced by touch.

2 Functional Magnetic Resonance Imaging

fMRI involves the estimation of local blood flow
changes in measuring points, known as voxels,
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which are evenly distributed across the brain vol-
ume. Conventional analysis is limited to localiza-
tion of brain regions which are activated on av-
erage by a specific condition using general linear
model (GLM) methods, where each voxel is treated
independently of any other [16]. Classifier-based
approaches, popularly termed multivoxel pattern
analysis (MVPA), on the other hand, utilize mul-
tiple voxels simultaneously in a multivariate fash-
ion, allowing identification of brain regions con-
taining spatially distributed activity patterns. Nu-
merous studies have demonstrated that by extract-
ing such spatially-encoded information, otherwise
non-discernible pattern differences can be identified
(e.g. in lie detection [12], the decoding of single vi-
sual stimuli – visible [21], as well as invisible [18]
– biofeedback [33], and various types of real-time
fMRI analysis [23, 14]). In addition, the ability of
MVPA to decode single-trial brain states provides
an effective tool for observing brain-state changes
in real time (somewhat equivocally termed ”mind
reading”; see e.g. [29, 30]).

A major challenge in MVPA analysis is to iden-
tify which voxels (out of hundreds of thousands)
are in fact relevant to the classification task. To
this end, we have proposed a number of combina-
torial optimization techniques based on evolution-
ary approaches combined with a classifier for fitness
evaluation [20]. First we implemented a simple ge-
netic algorithm (GA) to show that only a handful of
voxels where sufficient to successfully decode gen-
tle brushing of the forearm (subject mean of 74.3%
correct with a linear support vector machine classi-
fier) and that the performance was significantly im-
proved compared to a univariate GLM-based voxel
selection scheme (see [1]; Figure 1).

While producing high classification rates by iden-
tifying few, representative voxels which were suffi-
ciently informative, the simple GA did, however,
yield spatially sparse and distributed brain maps
which were of limited use for a physiological exam-
ination of underlying neural processes. The algo-
rithm was therefore refined to include elements of
voxel clustering, with the goal of identifying larger
brain regions containing useful voxels [8].

In contrast to the simple GA, the clustering algo-
rithm proved to be highly useful in revealing phys-
iologically relevant brain regions. We could, for ex-
ample, detect which regions of the so-called insular
cortex were differentially activated by gentle touch
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Figure 1: Classification results on fMRI data from
six individuals demonstrating that voxels selected
by a simple genetic algorithm are highly effective
in predicting whether or not the individuals were
sensing a tactile stimulation (soft brush) on their
forearm. Importantly, a significantly higher classi-
fication rate was obtained on the voxels selected by
the genetic algorithm in comparison with the con-
ventional general linear model (GLM) approach.
Chance classification is 50%.

of the forearm and thigh, where conventional GLM
methods failed (see [6]; Figure 2).

The clustering GA proved, however, to be er-
ratic when attempting to identify a more complex
distribution of multiple voxel clusters. This issue
is currently being resolved by incorporating a local
search element according to a memetic algorithm
(MA) framework, and the improved algorithm is
successful in detecting multiple clusters of voxels
distributed across the brain volume. Illustratively,
the memetic algorithm contrasts the simple GA by
being substantially better at detecting all useful
voxels as opposed to those sufficient for good per-
formance (Figure 3). On real data, the memetic
algorithm was highly successful in detecting brain
regions which could decode finger movement brain
patterns learnt from seven subjects and applied to
an eighth individual (Figure 4).

The proposed evolutionary algorithms are rela-
tively complex to implement. As a simpler alter-
native, we are currently exploring particle swarm
optimization (PSO). Our first attempt included an
implementation which was similar to the simple
GA, with no explicit spatial clustering of the vox-
els [26]. Again, this algorithm provided high brain-
state classification results, but yielded maps which
were difficult to interpret (Figure 5).

In a second implementation, clustering was
forced such that each particle, instead of coding
a number of distributed voxels, represented a sin-
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Figure 4: Decoding finger movements from fMRI data in brain regions selected by the memetic algorithm.
A) The brain regions identified by the algorithm. B) A temporal trace of the classification performance
(thick line). The true brain state is indicated by the thin gray line.

A B

Anterior Posterior

C
la

ss
if

ic
at

io
n 

ac
cu

ra
cy

 (
A

U
C

)

0.55

0.75

0.65

Anterior Posterior
Location

Thigh
Forearm

Figure 2: A) Brain regions identified for forearm
(purple) and thigh (blue) gentle brushing by the
clustering genetic algorithm. B) The brain state
decoding accuracies (measured in area under the
receiver operating characteristic curve, AUC) ob-
tained when attempting classification of the fore-
arm data in the forearm brain region and vice
versa for all permutations of data and regions. The
results demonstrate that this patch of the brain,
called the insular cortex, is organized in a somato-
topic fashion with forearm stimulation projecting
anterior to thigh.

gle spherical cluster of voxels [7]. This approach
was inspired by the highly popular ”searchlight”
method, where such search spheres are sequentially
centered on each voxel in the brain [22]. The
proposed PSO method was successful in detecting
brain areas where the sensation of a soft brush stim-
ulus could be accurately decoded (Figure 6), and
was substantially faster than the searchlight (e.g.
6.7 minutes compared to 9 hours to map a whole
brain).
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Figure 3: The memetic algorithm (MA) is sub-
stantially better than the simple genetic algorithm
(GA) in detecting all useful fMRI voxels (A: per-
formance measured in area under the receiver op-
erating characteristic curve, AUC), although both
algorithms detect useful voxels sufficient for good
classification (B). The methods were evaluated on
simulated data of varying contrast-to-noise ratio
(CNR) containing useful voxels of known location.

PS
O

G
LM

Figure 5: Voxel selection frequency using a sim-
ple particle swarm optimization (PSO) algorithm
to identify brain areas which are activated by gen-
tle touch, compared to a standard general linear
model (GLM) map. The values are scaled to reflect
minimum (blue) to maximum (red) map values.
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Figure 6: The average classification score (A) and
corresponding brain areas (B) detected by the
clustering particle swarm optimization algorithm
(PSO).

3 Electroencephalography

EEG involves the registration of electrical brain ac-
tivity at a temporal resolution of milliseconds using
electrodes attached to the scalp [15]. The signals
are believed to mainly reflect post-synaptic cur-
rents in nerve cells, and synchronous activity of
thousands of cells is required to produce a measur-
able potential. With recent advances in the com-
plex problem of localizing signal sources within the
brain, EEG has emerged as an excellent tool for
both characterizing temporal dynamics and local-
izing cognitive processing.

Standard EEG analysis involves averaging over
numerous events to produce event-related poten-
tials (ERPs) which are subsequently analyzed
based on the latency and amplitude of character-
istic deflections. The averaging procedure, how-
ever, may mask or even eliminate relevant informa-
tion potentially concealed in complex signal pat-
terns. We therefore explored an EEG analysis ap-
proach based on independent component analysis
(ICA) combined with supervised learning. ICA
blindly decomposes multi-channel EEG data into
maximally independent component processes (ICs)
that typically express either particularly brain gen-
erated EEG activities or some type of non-brain
artifacts (e.g. line noise or muscle activity [10]).

We used this approach to identify and character-
ize differential temporal patterns in the EEG re-
sponses to stimulation of the fingerpad with sur-
faces of varying roughness. Our classifier (a lin-
ear support vector machine, SVM) was success-
fully trained to differentiate between the tempo-
ral patterns evoked by the two different textures

Rougher
Smoother

Scalp distribution ERP Source

Time (s)
0 0.5 1

Figure 7: Example of a contralateral somatosen-
sory component where the support vector machine
classifier could differentiate two surfaces of differ-
ent textures. The scalp distribution plot indicates
the component’s scalp map projection. The com-
ponent’s event-related potentials (ERPs) are plot-
ted for each of the textures (rough spatial period:
1920 µm, smooth: 520 µm) and a source image was
constructed to indicate the component’s origin.

in some ICs but not in others [3]. For example,
an EEG component generated in the contralateral
somatosensory cortex with activation peaks at 100
ms after onset (P100) of stimulation significantly
differentiated the textures (Figure 7).

4 Concluding remarks

AI-based approaches for analyzing brain activity
provide a highly appealing complement to conven-
tional statistical methods, enable a deeper under-
standing of brain function, and promote the de-
velopment of novel medical techniques. Whereas
we primarily use AI for the characterization of
brain activation patterns, other brain signal de-
coding applications include brain-computer inter-
faces (BCIs), biofeedback [32, 31, 33], real-time
signal analysis [14], disease diagnosis [25, 17], en-
abling prosthesis control, and opening communica-
tion channels with locked-in patients [5]. The ap-
plication of AI concepts in neuroimaging is in its
infancy, and further refinement of these algorithms
will undoubtedly facilitate our understanding of the
human brain.
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Abstract

We address a contrastive study between the well
known Multi-Layer Perceptron (MLP) and Radial
Basis Function (RBF) neural networks and a SOM
based supervised architecture in a number of data
classification tasks. Well known databases like
Breast Cancer, Parkinson and Iris were used to
evaluate the three architectures by constructing
confusion matrices. The results are encouraging
and indicate that the SOM based supervised ar-
chitecture generally achieves results as good as the
MLP and slightly higher on some measures than
the RBF network.

1 Introduction

The use of classifer systems in many areas is in-
creasing gradually. Recent advances in the field
of artificial intelligence have led to the emergence
of expert systems and Decision Support Systems
(DSSs) for economics, linguistics, management sci-
ence, mathematical modelling, psychology, etc. Ar-
tificial Neural Networks (ANNs) have been utilized
for improving the classification tasks because of its
property called black-box learning. In fact, they
are one of the popular methods for classification
problems [13] [12].

Compared to most traditional classification ap-
proaches, ANNs are nonlinear, nonparametric, and
adaptive. They can theoretically approximate any
fundamental relationship with arbitrary accuracy.
They are ideally suitable for problems where obser-
vations are easy to obtain but the data structure or
underlying relationship is unknown.

Although there are different types of learning
techniques, this paper proposes the study of su-
pervised learning. The learning system may label
(classification) a set of vectors choosing one be-
tween several categories (classes). There are sev-
eral types of classifiers that have been used with
different degrees of accuracy [28] [21] [20].

Some of our related work in the field of the di-
agnosis has been developed basically by means of
Artificial Neural Networks (ANNs) [9] [10].

The aim of this paper is to test a SOM based su-
pervised architecture ANN and compare it in clas-
sification tasks with two other ANNs known as the
Multi-Layer Perceptron (MLP) and the Radial Ba-
sis Function (RBF) network.

We have compared the SOM based supervised
architecture with the MLP and the RBF networks
as the MLP and RBF neural networks are the two
most widely used within the field of task classifica-
tion. Moreover, the MLP is purely supervised while
the RBF is also a hybrid network with a part of un-
supervised learning. Certain similar characteristics
of the SOM based supervised architecture and the
RBF will allow allow the acquisition of good mea-
sures of the efficiency of our network.

The remaining part of the paper is organized as
follows: First we give a brief description of the net-
works MLP, RBF and a longer description of the
SOM Based Supervised Architecture; Then we pro-
ceed by describing the design of our proposal and
the training of the ANNs by the available data;
Then we continue by describing the subsequent
testing carried out in order to analyse the results;
Finally we draw the relevant conclusions.
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Figure 1: The architecture of the MLP network (in-
put layer, hidden layer and output layer). The in-
put layer represents the input data (the input data
is described in section 4.1). The usage of a hidden
layer enables the representation of data sets that
are not linearly separable. The output layer rep-
resents the classification result and it contains as
many outputs as the problem has classes, although
here only one neuron is shown. The weights and
the threshold of the MLP are calculated during an
adaptation process.

2 Supervised Architectures

2.1 Multilayer Perceptron

In this study we have used a Multi-Layer Percep-
tron (MLP) network [24] [11][5]. A typical MLP
consists of three layers of neurons: an input layer
that receives external inputs, one hidden layer, and
an output layer which generates the classification
results (see figure 1). Note that unlike other layers,
no computation is involved in the input layer. The
principle of the network is that when data are pre-
sented at the input layer, the network neurons run
calculations in the consecutive layers until an out-
put value is obtained at each of the output neurons.
This output will indicate the appropriate class for
the input data.

Each neuron (see figure 2) in the input and the
hidden layers is connected to all neurons in the next
layer by weighted connections. The neurons of the
hidden layers (see figure 2) compute weighted sums
of their inputs and adds a threshold. The result-
ing sums are used to calculate the activity of the
neurons by applying a sigmoid activation function.

This process is defined as follows:

Transfer 
function

Activation 
 function

Activation

Threshold

ϕS

Neuron  j
Wj1

X1

X2

Wj2

Wjp

Xp

θj

yj

Figure 2: A neuron in the hidden or the output
layer in the MLP. In the experimentation section
the number of hidden neurons of the MLP will be
established.

νj =
p∑

i=1

wjixi + θj , yj = fj(νj) (1)

where νj is the linear combination of inputs
x1, x2, ..., xp, and the threshold θj , wji is the con-
nection weight between the input xi and the neuron
j, and fj is the activation function of the jth neu-
ron, and yj is the output. The sigmoid function is a
common choice of activation function. It is defined
as:

f(t) =
1

1 + e−t
(2)

A single neuron in the MLP is able to linearly
separate its input space into two subspaces by a
hyperplane defined by the weights and the treshold.
The weights define the direction of this hyperplane
whereas the threshold term θj offsets it from origo.

The MLP network uses the backpropagation al-
gorithm [25], which is a gradient descent method,
for the adaptation of the weights (the backpropa-
gation training parameters are showed in Table 1).
This algorithm runs as follows:

All the weight vectors w are initialized with small
random values from a pseudorandom sequence gen-
erator. Then and until the convergence (i.e. when
the error E is below a preset value) we repeat the
three basic steps:

• The weight vectors wi are updated by

w(t + 1) = w(t) + ∆w(t) (3)
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• where

∆w(t) = −h∂E(t)/∂w (4)

• Compute the error E(t+1).

where t is the iteration number, w is the weight
vector, and h is the learning rate.

The backpropagation MLP is a supervised ANN.
This means the network is presented with input ex-
amples as well as the corresponding desired output.
The backpropagation algorithm adapts the weights
and the thresholds of the neurons in a way that
minimizes the error function E

E =
1
2

n∑
p=1

(dp − yp)2 (5)

where yp is the actual output and dp the desired
output for input pattern p.

The minimization of E can be accomplished by
gradient descent, i.e. the weights are adjusted to
change the value of E in the direction of its nega-
tive gradient. The exact updating rules can be cal-
culated by applying derivatives and the chain rule
(for the weights between the input and the hidden
layer).

2.2 Radial Basis Function Network

In this section, the basic concepts of the Radial
Basis Function (RBF) network are described. Ra-
dial Basis Function Networks are a type of ANN
where the hidden layer is composed of radial-basis
functions which are similar to normal distribution
curves.

The RBF neural network [3] is generally com-
posed of three layers: input layer, hidden layer and
output layer. The input layer feeds the input data
to each of the neurons of the hidden layer. The
hidden layer differs greatly from other neural net-
works in that each neuron represents a data cluster
with a given radius and which is centred at a par-
ticular point in the input space. Each neuron in
the hidden layer calculates the distance from the
input vector to its own center. The calculated dis-
tance is transformed via some basis function and
the result is the output from the neuron. The out-
put from the neuron is multiplied by a constant or
weighting value and fed into the output layer. The

output layer consists of as many classes or outputs
as the problem has. It acts to sum the outputs of
the previous layer and to yield a final output value
[18] [7]. A generic architecture of an RBF network
with p input and n hidden neurons is illustrated in
figure 3, where xi are data points, ϕ(||x− xi||) are
the RBFs, xi are the centres of the basis functions,
and wi are the weights. A very common RBF is
the Gaussian RBF:

ϕ(||x− xi||) = exp(−||x− xi||2
2σ2

i

), i = 1, 2, ..., N

(6)
The activity F (X) of the output neuron is given

by:

F (X) =
N∑

j=1

wjϕ(||x− xi||) (7)

The learning process used in the RBF network is
done in two phases thus calculating the parameters
of the hidden layer and output layer (note that the
input layer does not perform calculations at all). In
this way, we can speed up the learning process con-
siderably compared to the MLP backpropagation.
First of all, for the hidden layer, we calculate the
number of centres of the basis functions or centroids
(figure 3 and 4), using the K-means algorithm. The
number of these centroids depend on each case the
problem addressed. Table 2 and the explanation
in the experimental section help to understand this
process. In the second phase we proceed to the
training of the output neurons which is an easy
task since we know the values. The calculation is
then done by simply applying the equation 7.

2.3 SOM Based Supervised Archi-
tecture

This section proposes a ”Supervised SOM Based
Architecture” (see Figure 5). The hidden layer of
an ANN is one of the most complex parts to design
in an artificial neural network. Here we propose
to use a Self-Organizing Map (SOM) as a hidden
layer. Some previous works where similar models
are implemented are [27] [6] [23].

In [23], Piela represents a very exciting research
where a modern approach to imputation is being
discussed. It is said that many traditional methods
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Figure 3: The architecture of the RBF network (in-
put layer, hidden layer and output layer). The in-
put layer represents the input data (the input data
is described in the experiment section). The out-
put neuron activity is reflected by equation 7. As
in the case of the MLP the output layer of the RBF
network consists of as many neurons as the prob-
lem has classes, although here only one neuron is
shown.

of imputation use some kind of classification trying
to get observations with missing values into as ho-
mogenous groups as possible. SOM is an iterative
method for classification and can thus also be used
in finding the imputation classes. Therefore, im-
putations are made within clusters in several ways
which can be based on both traditional and neu-
ral methods. The main emphasis of this approach
is to aid methodological development of knowledge
discovery, data analysis, and modelling in general.

The SOM based architecture discussed in this pa-
per consists of two layers (actually two separate
but connected neural networks), i.e. a hidden layer
and an output layer. The hidden layer consists of
a Self-Organizing Map (SOM) [15] which is fully
connected with forward connections to the output
layer. The output layer consists of a grid of neurons
that are adapted by the delta rule to get an activity
that converges to the provided desired output.

2.3.1 The Hidden Layer

The hidden layer consists of a version of the SOM
that works as follows. It consists of an I × J grid
of a fixed number of neurons and a fixed topology.
Each neuron nij is associated with a weight vector
wij ∈ Rn. All the elements of the weight vectors

Figure 4: The radial basis functions have a local
character since they are functions that reach a level
close to their maximum when the input pattern
X(n) is close to the centre of the neuron. When the
pattern moves away from the centre, the function
value is tending to the minimum value. The out-
puts of the radial basis neural networks are there-
fore a Gaussian linear combination, where each of
the terms in the linear combination is activated for
a particular portion of space defined by the input
patterns.

are initialized by real numbers randomly selected
from a uniform distribution between 0 and 1, after
which all the weight vectors are normalized, i.e.
turned into unit vectors.

At time t each neuron nij receives an input vector
x(t) ∈ Rn.

The net input sij is calculated using the standard
cosine metric

sij(t) =
x(t) · wij(t)

||x(t)||||wij(t)|| , (8)

The activity yij in the neuron nij is calculated by
using the softmax function [4]

yij(t) =
(sij(t))

m

maxuv (suv(t))m (9)

where u and v ranges over the rows and the columns
of the neural network and m is the softmax expo-
nent.
The neuron c associated with the weight vector
wc(t) most similar to the input vector x(t), i.e. the
neuron with the strongest activation, is selected:

c = arg maxc{|x(t) · wc(t)|} (10)
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SOM

Figure 5: Supervised SOM Based Architecture. For
simplicity reasons, the output layer is shown with
only one neuron as in the case of the MLP and
the RBF networks. However, in reality we use as
many neurons in the output layer as the problem
has classes. For example, one of the databases in
our experiments section, the iris database, has 3
classes and in that case the output layer therefore
has three neurons.

The weights wijk are adapted by

wijk(t + 1) = wijk(t) + α(t)Gijc(t) [xk(t)− wijk(t)]
(11)

where 0 ≤ α(t) ≤ 1 is the adaptation strength with
α(t) → 0 when t →∞.

The neighbourhood function is:

Gijc(t) = e
− ||rc−rij ||

2σ2(t) (12)

where rc ∈ R2 and rij ∈ R2 are location vectors
of neurons c and nij , G is a Gaussian function
decreasing with time. σ is the neighbourhood
radius which at time t is updated by multiplying
σ at time t− 1 with 0.99 as it is showed in table 3.

All weights wijk(t) are normalized after each adap-
tation.

2.3.2 The Output Layer

The output layer consists of an I × J grid of a
fixed number of neurons and a fixed topology.
Each neuron nij is associated with a weight vector
wij ∈ Rn. All the elements of the weight vector
are initialized by real numbers randomly selected
from a uniform distribution between 0 and 1, after

which the weight vector is normalized, i.e. turned
into unit vectors.

At time t each neuron nij receives an input vector
x(t) ∈ Rn.

The activity yij in the neuron nij is calculated using
the standard cosine metric

yij(t) =
x(t) · wij(t)

||x(t)||||wij(t)|| , (13)

During the learning phase the weights wijl, are
adapted by

wijl(t + 1) = wijl(t) + βxl(t) [dij(t)− yij(t)] (14)

where β is the adaptation strength and dij(t) is the
desired activity for the neuron nij .

3 Experimentation

3.1 Methods

The databases used in this study are Breast Can-
cer, Parkinson and Iris. These databases are taken
from the University of California at Irvine (UCI)
machine learning repository [1] [17] [16] and are
used for training and testing in the experiments.
The main reason to use these particular datasets is
that they are well known to professionals of artifi-
cial intelligence.

We have used Matlab and in particular the Neu-
ral Network toolbox for our experimentation with
MLP and RBF. The reason for using matlab is due
to the wide scope of problems addressed and the ef-
fectiveness conducted with these [19] [26] [8]. The
SOM Based Supervised Architecture has been im-
plemented under Ikaros [2].

The method to evaluate the three methods is
to obtain some measures as classification accuracy,
sensitivity, specificity, positive predictive value,
negative predictive value and a confusion matrix.
A confusion matrix [14] contains information about
actual and predicted classifications done by a clas-
sification system.

Moreover, we have also evaluated the learning
process regarding how fast every method learns.

For the construction of the MLP architecture we
have proceeded as follows:
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Figure 6: Learning speed in the MLP is slow since
it uses the backpropagation method. Generally the
backpropagation method always provides a very
high precision. The drawbacks are the slowness in
learning as well as the risk of over fitting the data
learned.

a) Layer 1 corresponds directly to the input
vector, that is, all the parameters/fields of the
input record.
b) Layer 2 (the hidden layer). The number of
hidden neurons for this layer is the most elabo-
rated question in the network’s architecture. This
number represents a trade off between performance
and the risk of over fitting. In fact, the number
of neurons in a hidden layer will significantly
influence the ability of the network to generalize
from the training data to unknown examples [22].
By doing some experiments we discovered that:

• With a low number of neurons for this layer
the training and test sets performed badly;

• With a high number of neurons the training
set performed good. However there is a high
risk of over fitting;

• The optimal solution for this layer has been
found to be 24 neurons for Breast Cancer, 12
neurons for Parkinson and 5 neurons for Iris.

c) Layer 3 (the output layer) (Classification). It
has two outputs for Breast Cancer and Parkinson
and three outputs for Iris.

The learning algorithm used is backpropagation
with adaptive learning rate, constant momentum
and an optimized algorithm based on the gradient
descent method. The backpropagation training pa-
rameters are showed in table 1.

Table 1: Backpropagation training parameters.
Parameters Value
Learning rate 0.01
Adaptive learning rate 0.1
Constant momentum 0.2
Epochs 100-1000-10000
Minimum performance gradient 1

e−10

The main parameter we must adjust in order to
get a good accuracy with an RBF network is the
maximum number of centres. This is a parameter
of the center selection algorithm, and is the maxi-
mum number of centers/RBFs that is chosen.

We followed the recommendation to set an up-
per limit between 60% and 70% for the proportion
between the number of RBFs and the number of
neurons in the input layer. The parameter spread,
which is the spread of radial basis functions, helps
to construct the hidden layer. The larger the spread
is, the smoother the function approximation will
be. Spread value represents a compromise between
a low value which means low accuracy and a high
value with over fitting risk and the possibility that
the network may not generalize well.

The RBF network training parameters are shown
in table 2.

Table 2: RBF network training parameters.
Parameters Value
Learning rate 0.01
Adaptive learning rate 0.1
Spread 0.8
Epochs 100-1000-10000
Minimum performance gradient 1

e−10

The SOM Based Supervised Architecture train-
ing parameters are showed in table 3.

Frequently, the complete data set is divided into
two subsets: the training set and the test set. Here,
the training set is used to determine the system
parameters, and the test set is used to evaluate
the diagnosis accuracy and the network general-
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Table 3: SOM Based Supervised Architecture.
Parameters Value
Learning rate 0.1
Learning rate Decay 0.99
Learning rate Minimum 0.01
Neighbourhood Radius (σ) 15
Neighbourhood Decay 0.99
Neighbourhood Minimum 1
Adaptation Strength 0.35
Epochs 100-1000-10000
Minimum performance gradient 1

e−10

0 50 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

S
qu

ar
ed

 E
rr

or

Figure 7: Learning speed in RBF is faster than in
the MLP. This is because the RBF network already
has some centroids defined due to predefined train-
ing which saves time.

ization. Cross-validation has been widely used to
assess the generalization of a network. The cross-
validation estimate of accuracy determining by the
overall number of correct classifications divided by
the total number of examples in the dataset.

Acccv =
1
n

∑

xi∈S

δ(I(Si, xi), yi) (15)

where n is the size of the dataset S, xi is the
example of S, yi is the target of xi, and Si is the
probable target of xi by the classifier. Therefore:

δ(i, j) =
{

1 if i ∈ Nc(t)
0 otherwise

(16)

Specifically, for this study we have applied a
five-fold cross-validation method for the perfor-
mance assessment of every network. The data has
been divided in five sets (S1, S2, S3, S4, S5) and
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Figure 8: Learning speed in the SOM Based Super-
vised Architecture is similar as for the RBF net-
work and it is faster than the learning speed of the
MLP.

the five experiments performed were:
Experiment 1 - Training: S1, S2, S3, S4; Test: S5
Experiment 2 - Training: S1, S2, S3, S5; Test: S4
Experiment 3 - Training: S1, S2, S4, S5; Test: S3
Experiment 4 - Training: S1, S3, S4, S5; Test: S2
Experiment 5 - Training: S2, S3, S4, S5; Test: S1

The sets of data used for the process of construct-
ing the model (the training data) were of 565, 195
and 150 registers for Breast Cancer, Parkinson and
Iris respectively. The other set of data used to vali-
date the model (the test data) was of 113, 39 and 30
registers also for Breast Cancer, Parkinson and Iris
respectively. The test data are chosen randomly
from the initial data and the remaining data form
the training data. The method is called 5-fold cross
validation since this process has been performed
five times. The function approximation fits a func-
tion using the training set only. Then the function
approximation is asked to predict the output values
for the data in the testing set. The errors it makes
are accumulated to provide the mean absolute test
set error, which is used to evaluate the model. The
results are presented using confusion matrices.

3.2 Results

Table 4 shows the confusion matrix for all the
classifiers with a two classes problem: Breast
Cancer database. Classification accuracy, sensi-
tivity, specificity, positive predictive value and
negative predictive value can be defined (all the
equations 17-21 show 5 values for MLP, RBF and
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the SOM based architecture respectively) by using
the elements of the confusion matrix (table 4).

Table 4: Definition of the confusion matrix with
the value for every measure for the MLP, the RBF
and the SOM Based Supervised Architecture clas-
sifiers with the Breast Cancer database. It has two
classes: Possitive (P) and Negative (N). True posi-
tive (TP); False negative (FN); False positive (FP);
True negative (TN)

MLP RBF SOM
Act Predicted Predicted Predicted

P N P N P N
P 184 7 151 56 165 35

(TP) (FN)
N 13 296 46 247 30 268
N (FP) (TN)

Classification accuracy(%) =
TP+TN

TP+FP+FN+TN x100 = 96%, 79.6%, 86.9%
(17)

Sensitivity(%) =
TP

TP+FN x100 = 96.3%, 72.9%, 82.5%
(18)

Specificity(%) =
TN

FP+TN x100 = 95.8%, 84.3%, 89.9%
(19)

Positive predictive value(%) =
TP

TP+FP x100 = 93.4%, 76.6%, 84.6%
(20)

Negative predictive value(%) =
TN

FN+TN x100 = 97.7%, 81.5%, 88.4%
(21)

Table 5 shows the confusion matrix for all the
classifiers with a two classes problem: Parkinson
database. Classification accuracy, sensitivity,
specificity, positive predictive value and negative
predictive value can be defined (all the equations
22-26 show 5 values for MLP, RBF and SOM re-
spectively) by using the elements of the confusion
matrix (table 5).

Classification accuracy(%) =
TP+TN

TP+FP+FN+TN x100 = 84.6%, 82.1%, 81.5%
(22)

Table 5: Definition of the confusion matrix with
the value for every measure for the MLP, RBF and
SOM classifiers with the Parkinson database. It has
two classes: Possitive (P) and Negative (N). True
positive (TP); False negative (FN); False positive
(FP); True negative (TN)

MLP RBF SOM
Actual Predicted Predicted Predicted

P N P N P N
P 132 15 147 35 129 18
N 15 33 0 13 18 30

Sensitivity(%) =
TP

TP+FN x100 = 89.8%, 80.8%, 87.8%
(23)

Specificity(%) =
TN

FP+TN x100 = 68.8%, 100%, 62.5%
(24)

Positive predictive value(%) =
TP

TP+FP x100 = 89.8%, 100%, 87.8%
(25)

Negative predictive value(%) =
TN

FN+TN x100 = 68.8%, 27.1%, 62.5%
(26)

Table 6 shows the confusion matrix for all
the classifiers with a three classes problem: Iris
database. Since it is a different classification
problem from the two previous examples, with
three output, we only show the equation of Clas-
sification accuracy (with 3 values for MLP, RBF
and SOM respectively) by using the elements of
the confusion matrix (table 6).

Classification accuracy(%) =
TP+TN

TP+FP+FN+TN x100 = 91.7%, 73.3%, 87.6%
(27)

4 Conclusion

In this paper we have evaluated the performance of
the SOM based supervised architecture. To evalu-
ate the effectiveness of this ANN architecture, we
compare it with MLP and RBF networks in classifi-
cation tasks. The supervised SOM based architec-
ture has similar characteristics as the RBF network,
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Table 6: Definition of the confusion matrix with
the value for every measure for the MLP, RBF and
SOM classifiers with the Iris database. It has three
classes: Iris-virginica (A), Iris-versicolor (B) and
Iris-setosa (C)

MLP RBF SOM
Predicted Predicted Predicted

A B C A B C A B C
A 41 6 0 37 3 10 41 7 0
B 6 39 0 9 42 9 9 43 0
C 3 0 50 4 5 31 0 0 50

and could indeed be seen as an RBF network that
automatically finds a suitable number of and suit-
able locations of RBFs in its hidden layer. Thus a
fundamental aspect of this ANN architecture is the
use of a SOM as hidden layer. An important aspect
of the SOM based architecture is that it helps the
designer to get rid of the difficulty and cost of the
design of the hidden layers.

The results presented by these three methods
(MLP, RBF and SOM based supervised architec-
ture) achieve a high precision level of the confusion
matrix regarding the different measurement param-
eters (accuracy, sensitivity, specificity, positive pre-
dictive value and negative predictive value).

With the Breast Cancer database the accuracy
of the MLP, RBF and SOM based supervised ar-
chitecture were very good, especially MLP which
showed a high degree of certainty of 96%.

The SOM based architecture accomplish better
results than the RBF network. This can be ob-
served not only in the values of the classification
accuracy but also in the rest of them. In the case
of sensitivity there was a difference of around 10%
between the RBF network and the SOM based su-
pervised architecture.

These results as well as those with the Parkin-
son’s and the iris databases are very encouraging
because the SOM based supervised architecture is
usually better than the RBF and even if its accu-
racy is a bit lower than the MLP, it learns faster
than the latter.

Furthermore, some of the parameters with the
SOM based architecture reach very high accuracy
such as ”Classification accuracy”, ”Sensitivity” and
”Negative predictive value”.

The advantages of the supervised SOM archi-

tecture are based on both the accuracy, which is
not far behind that of the MLP, and especially
the faster learning. These benefits will be recom-
mended for use either in problems with a lot of data
or with many attributes, where data relationships
may be complex. A future line would be to ap-
ply this method in such problems as an iterative
process leading to features reduction in order to
simplify the dependency relationships.
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For autonomous systems such as unmanned aerial vehicles to successfully perform
complex missions, a great deal of embedded reasoning is required at varying levels of
abstraction. To support the integration and use of diverse reasoning modules we have
developed DyKnow, a stream-based knowledge processing middleware framework. By
using streams, DyKnow captures the incremental nature of sensor data and supports
the continuous reasoning necessary to react to rapid changes in the environment.
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issues which arise in autonomous systems. This includes a systematic stream-based
method for handling the sense-reasoning gap, caused by the wide difference in abstrac-
tion levels between the noisy data generally available from sensors and the symbolic,
semantically meaningful information required by many high-level reasoning modules.
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Abstract

This paper describes an implementation of the occu-
pancy grid algorithm, one of the most popular algo-
rithms for robotic mapping. The algorithm is imple-
mented on a robot setup at Lund University Cogni-
tive Science (LUCS), and a number of experiments are
conducted where the algorithm is exposed to different
kinds of noise. The outcome show that the algorithm
performs well given its parameters are tuned right.
The conclusion is made that, in spite of its limita-
tions, the occupancy grid map algorithm is a robust
algorithm that works well in practice.

1 Introduction

Maps are extremely useful artifacts. A map helps us
relate to places we have never been to and shows us
the way if we decide we want to go there. For an au-
tonomous robot a map is even more useful as it could,
if it is detailed enough, serve as the robot’s internal
representation of the world. The field of robotic map-
ping is quite young and started to receive attention
first in the early 80s. Since then a lot of effort has
gone into constructing robust robotic mapping algo-
rithms, but the challenge is great as the way a human
intuitively would build a map can not be directly ap-
plicable to a robot. Whereas a human possesses supe-
rior vision sensors and can locate herself by identify-
ing landmarks, a robot, most often, only have sensors
that approximates the distance to the closest walls.
The conditions of robotic mapping actually closer re-
sembles the conditions for a 15th century ship map-
ping uncharted water. Similar to the ship the robot
only knows the approximate distance to the closest
obstacles, it could happen that all obstacles are so far
away that the robot senses void and it is often difficult
for the robot to keep track of its position and heading.
As opposed to the ship, a robot using a faulty map
will bump into walls in a disgraceful manner, while

the ship, on the other hand, might discover America.
A long-standing goal of AI and robotics research

has been to construct truly autonomous robot’s, ca-
pable of reasoning about and interacting with their
environment. It is hard to see how this could be re-
alized without general robust mapping algorithms.

1.1 The Approach of this Paper
This paper describes an implementation of a map
building algorithm for a robot setup at LUCS. The
main characteristics of the robot setup are that the
environment is static and that the pose is given, there-
fore it does not induce all the difficulties mentioned
above. The given pose is not without noise but there
will never be the problem with cumulative position
noise. Even if the problem is eased it is still far from
trivial thus interesting in its own right. The setup
will be further described in section 2. Given these
precondition the occupancy grid map algorithm, first
described by Elfes and Moravec [3], was chosen. The
occupancy grid map algorithm was implemented and
a number of experiments were conducted to investi-
gate how it would perform given different types of
sensor noise. The results of the experiments are pre-
sented in section 3.2.

1.2 The Occupancy Grid Map Algo-
rithm

The occupancy grid map algorithm was developed in
the mid 80s by Efes and Moravec and is a recursive
Bayesian estimation algorithm. Here recursive means
that in order integrate an nth sensor reading into a
map no history of sensor readings is necessary. This is
a useful property which implies that sensor readings
can be integrated online and that the space and time
complexity is constant with respect to the number of
sensor readings. The algorithm is Bayesian because
the central update equation is based on Bayes theo-
rem:

27



P (A|B) =
P (B|A)P (A)

P (B)

which answers the question “what is the proba-
bility of A given B”, if we know the probabilities
P (B|A), P (A) and P (B).

The map data structure is a grid, in 2D or 3D, that
represents a region in space. This paper will treat
the 2D case, thus the region is a rectangle. The value
of each cell of the grid is the estimated probability
that the corresponding area in space is occupied. The
region corresponding to a cell is always considered
completely occupied or completely empty. One can
have different definitions regarding whether a region
is free or occupied, but often a region is considered
occupied if any part of it is occupied.

The algorithm consists of two separate parts: the
update equation and a sensor model. The update
equation is the basis of the algorithm and does not
have to change for different robot setups. The sensor
model on the other hand depends on the robot setup
and each robot setup requires a customized sensor
model. One can construct sensor models in many
ways but the basic approach is described in section
1.3.

The computational complexity of the algorithm de-
pends on the implementation of the sensor model.
Apart from that, each update loop have time com-
plexity O(n′m′), where n′ and m′ are the number
of columns and rows of the grid that are affected
by the current sensor reading. The space complex-
ity is O(nm) where n and m are the total number
of columns and rows of the grid. An accessible in-
troduction to occupancy grid maps is given by Elfes
[2].

The original algorithm is limited in several ways. It
requires that the robot’s pose is given, thus it can not
rely solely on the odometry of the robot. It presumes
a static environment or requires sensor readings where
dynamic obstacles have been filtered. Finally the area
to be mapped has to be specified in advance. This
might sound like severe limitations but in many robot
setups one can assume a static environment and that
there is a way to deduce the robot’s pose. The original
algorithm has also been successfully extended to deal
with e.g. unknown robot poses [7].

1.3 The Inverse Sensor Model

A sensor model is a procedure for calculating the
probability P (st|m, pt), that is the probability to get
sensor reading st given map m and pose pt at time t.
Therefore it follows that the procedure for calculating
P (m|st, pt) is called an inverse sensor model, that is

the probability of m given only one sensor reading.
An inverse sensor model can be though of as func-
tion ism(st, pt) that returns a grid the size of g where
the probabilities of P (m|st,pt) are imprinted. There
is not only one correct way to construct ism(st, pt)
for a given sensor, different approaches have different
advantages.

An example of how the output of an inverse sensor
model could look is given in figure 1.

Figure 1: Illustration of an inverse sensor model for a
robot equipped with infra-red proximity sensors.

The picture to the left show what the robot senses.
The picture to the right is the resulting occupational
probabilities. White denotes occupied space,black de-
notes free space and gray denotes unknown space. No-
tice how the black strokes fade with the distance to
the robot. This indicates that the probability that a
sensor detects an obstacle decreases with the distance
to the obstacle.

An inverse sensor model can be built by hand or
learned, for an example of the first see Elfes and
Moravec [3] or the one described in section 2.1.5, for
an example of the latter see Thrun et al. [6].

2 Implementation
In order to understand the design choices made a de-
scription of the robot setup will first be given, then
the implementation will be described. The setup is
currently used in the ongoing research regarding robot
attention and one purpose of the implementation was
that it should be possible to use in this context.

2.1 The Robot Setup
The robot used is the e-puck, a small, muffin sized
robot developed by École Polytechnique Fédérale de
Lausanne (www.e-puck.org). Its a differential wheeled
robot boosting eight infra-red proximity sensors, a
camera, accelerometer and Bluetooth connectivity.
The e-puck also have very precise step motors to con-
trol its wheels. One problem is that no matter how
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precise the e-pucks odometry is it can not solely be
used to determine the robot’s poses. Another prob-
lem is the proximity sensors of the e-puck. They have
very limited range, roughly 10 cm, and are sensitive
with respect to light conditions.

In order to remedy these problems a video camera
has been placed in the ceiling of room where the robot
experiments take place. The robots movements are
restricted to a 2× 2 m2 “sandbox” and objects in this
area have been given color codes. Robots are wearing
bright red plastic cups, the floor, the free space, is
dark gray and obstacles are white. Images from the
camera are processed in order to extract the poses of
the robots and an image where only the obstacles are
visible. Given this image and a robot’s pose a circle
sector is cut out of the image, its center being the
robot’s position and its direction being the robot’s
heading. By using this as the robot’s sensor reading
the robot can be treated as if it had a high resolu-
tion proximity sensor. The robots are controlled over
Bluetooth link.

2.1.1 Ikaros

The whole system is implemented using Ikaros, a
multi-purpose framework developed at LUCS. Ikaros
is written in C++ and is intended for, among other
things, brain modeling and robot control. The cen-
tral concept in Ikaros is the module, and a system
built in Ikaros is a collection of connected module’s.
An Ikaros module is simply put, a collection of in-
puts and an algorithm that works on these, the result
ending up in a number of outputs. A module’s in-
puts and outputs are defined by an Ikaros control file
using an XML based language while the algorithm is
implemented in C++.

A module’s outputs can be connected to other mod-
ule’s inputs and to build a working system in Ikaros
you would specify these connection in a control file. In
this control file you could also give arguments to the

Figure 2: The e-puck.

modules. The data that can be transmitted between
modules can only be in one format, that is arrays and
matrices of floats. An Ikaros system works in discrete
time-steps, so called “ticks”. Each tick every module
receives input and produces output.

Ikaros comes with a number of modules, both sim-
ple utility modules and more advanced such as sev-
eral image feature extraction modules. Ikaros also
includes a web interface that can display outputs in
different ways. For a detailed introduction to Ikaros
see Balkenius et al. [1].

2.1.2 Overview of the System

The core of the map drawing system consists of
five modules: Camera, Tracker, CameraSensor,
SensorModel and OccupancyGridMap. Further mod-
ules could be added to the system, e.g. a path plan-
ning module and a robot controller module. The con-
nections between these modules are given in figure
3.

2.1.3 Camera and Tracker

The Camera and Tracker modules were already avail-
able and will only be described briefly.

The Camera module is basically a network camera
interface and it is used to fetch images from the cam-
era mounted in the ceiling. It outputs three matrices;
RED, GREEN and BLUE, the size of the image, containing
the corresponding color intensities of the image.

These matrices are fed into the Tracker module
that extracts the poses of the robots and the posi-
tions of obstacles in the image. It outputs one array
POSITION with the positions of the robots, one array
HEADING with the headings of the robots and one ma-
trix OBSTACLES with the obstacles extracted from the
picture. POSITION is of the form [r1x, r1y, r2x, r2y . . .]
where rnx and rny is the nth robots x and y coordi-
nate receptively. x and y are in the range 0.0 to 1.0
and the origo is in the upper left corner of the im-
age. HEADING is of the same form as POSITION except
for that rnx and rny define a direction vector for the
nth robot. The POSITION and HEADING will be re-
ferred to as the POSE. OBSTACLES is in the form of an
occupancy grid over the area covered by the camera
image, where 1.0 denotes an obstacle and 0.0 denotes
free space.

2.1.4 CameraSensor

The CameraSensor module simulates a high resolu-
tion proximity sensor. It requires a matrix in the form
of Tracker’s OBSTACLES matrix and an array with
the position of a robot as inputs. More specific we
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Figure 3: The connections between the modules of the map drawing system, with added path planning and
robot control modules.

want to simulate a top mounted stereo camera. The
CameraSensor module takes arguments specifying he
range of the camera and the breadth of the view.
Given the pose of the robot a square is cut out of
the matrix, this square is rotated and projected onto
another matrix representing the SENSOR READING of
the robot. The SENSOR READING shows everything in
the cut out square, even obstacles behind walls. Some
simple ray-casting will solve this. Rays are shot from
the center of the robot to the edge lying on the op-
posite side of the SENSOR READING matrix so that the
cells touched by the rays form a circle sector. If a
ray hits an obstacle the ray stops and all cells not
touched by any ray obtains the value 0.5 indicating
it’s not part of the sensor reading. CameraSensor
then outputs SENSOR READING.

2.1.5 CameraSensorModel

The CameraSensorModel is an inverse sensor
model tailored to work with the output of the
CameraSensor. CameraSensorModel has two out-
puts, both required by OccupancyGridMap: AFFECTED
GRID REGION and OCC PROB GRID. OCC PROB GRID is
a matrix the same size as the final occupancy grid
that contains the probabilities P (m|st, pt). AFFECTED
GRID REGION is an array of length four defining a box
bounding the area of the occupancy grid that is af-
fected by the OCC PROB GRID. The rationale behind
this is that OccupancyGridMap should not have to up-
date the whole occupancy grid when only a small area
of it is affected by the current SENSOR READING.

The SENSOR READING from CameraSensor is al-
ready in the format of an occupancy grid, so trans-
forming this into OCC PROB GRID in the format
the OccupancyGridMap module requires, is pretty
straight forward. First OCC PROB GRID is initialized
with P (m), the prior probability, given as an ar-
gument to CameraSensorModel. Then the SENSOR

READING is rotated and translated, according to the
robot’s pose, so that it covers the corresponding
area of the OCC PROB GRID. The SENSOR READING is
then imprinted on the OCC PROB GRID. The values
of SENSOR READING; 1.0, 0.5 and 0.0, should not be
used directly as they do not correspond to the right
probabilities. Instead 0.5 is substituted by the prior
probability and 1.0 and 0.0 are substituted by two val-
ues free_prob and occ_prob given as arguments to
CameraSensorModel. The values of free_prob and
occ_prob should reflect probability that the informa-
tion in SENSOR READING is correct. As the Camera
and Tracker modules are quite exact good values
seems to be; free_prob= 0.05 and occ_prob = 0.95.
The performance of occupancy grid algorithm de-
pends heavily on these values and they have to be ad-
justed according to the reliability of SENSOR READING.
This will be further discussed in section 3.2.

2.1.6 OccupancyGridMap

The OccupancyGridMap take two inputs in the for-
mats of OCC PROB GRID and AFFECTED GRID REGION.
OccupancyGridMap also contains the state of the oc-
cupancy grid constructed so far; MAP GRID, and the
prior probability; pri_prob, given as an argument.
The MAP GRID is initialized by giving each cell the
value of pri_prob.

The purpose of OccupancyGridMap is to update
MAP GRID using the update equation of the occupancy
grid map algorithm. This is done by applying this on
all cells in MAP GRID that are inside the box defined
by AFFECTED GRID REGION. Here follows the update
equation taken directly from the code:

for(int i = affected_grid_region[2];
i <= affected_grid_region[3]; i++)
{

for(int j = affected_grid_region[0];
j <= affected_grid_region[1]; j++)
{
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Figure 4: The image to the right shows the probabil-
ities of a number of sensor readings and the image to
the left shows the resulting occupancy grid map.

float occ_prob = occ_prob_grid[i][j];
map_grid[i][j] = 1.0 / (

1.0 + (1.0 - occ_prob) / occ_prob *
prior_prob / (1.0 - prior_prob) *
(1.0 - map_grid[i][j]) / map_grid[i][j]);

}
}

An example of an how a MAP GRID could look is given
in figure 4.

3 Evaluation

The implementation of the occupancy grid algorithm
works very well on the robot setup. This is no big
surprise as the conditions are ideal, there is practi-
cally no sensor noise nor pose uncertainty. In order to
investigate how the implementation would handle dif-
ferent conditions a number of experiments were made,
where noise was added to the sensor readings. How
the implementation reacts to noise is highly depen-
dent on the two parameters of CameraSensorModel;
free_prob and occ_prob. Thus for each experiment,
except for № 2, three different values of free_prob
and occ_prob were used to illustrate this. The follow-
ing values were used (using the notation [free_prob,
occ_prob]): [0.01, 0.99], [0.2, 0.8] and [0.45, 0.55].
These values will be referred to as the sensor weights,
as they reflect to what degree the occupancy grid
map algorithm is persuaded by new sensor readings.
All experiments used pri_prob = 0.5. The parame-
ters free_prob and occ_prob might seem to be very
specific for the CameraSensorModel but any sensor
model will have parameters that governs to what de-
gree the sensor readings should be trusted.

3.1 Experiment Setup

The experiments were setup in the following way: A
robot was placed in the middle of the 2×2 m2 “sand-

Figure 5: The experiment setup. The real world
“sandbox” is to the left and the grid showing the ex-
tracted obstacles is to the right.

box” and a number of obstacles were placed around
it, the result is shown in figure 5 . The “camera”
of CameraSensor was given a range of

√
2 m and a

breadth of 32◦. The robot does not move but each
tick the heading of the robot is randomized, in this
way the robot will eventually have “seen” the whole
“sandbox” visible from the center. Four different ex-
periments were then conducted:

1. The ideal case. No noise was added, this is to
get an measure to compare the other experiments
with.

2. Gaussian white noise was added to the OCC PROB
GRID of the CameraSensorModel. The noise had
a variance of 0.1 and was applied to each cell
OPG[x, y] in the following way:

OPG[x, y] =



if OPG[x, y] < pri_prob then
OPG[x, y] + abs(noise)

if OPG[x, y] == pri_prob then
pri_prob

if OPG[x, y] > pri_prob then
OPG[x, y]− abs(noise)

.

This experiment only uses free_prob=0.0 and
occ_prob=1.0.

3. Salt and Pepper noise was added to 40 % of the
OCC PROB GRID that represents the current sen-
sor reading. That is, each cell that does no have
the value pri_prob is given, by the toss of a coin,
one of the values free_prob and occ_prob by a
chance of 40%.

4. Gaussian white noise was added to he robot’s po-
sition given as input to the CameraSensorModel.
The noise had a variance of 0.001.

In order to compare the different experiment setups
the comparison score measure described in Martin
and Moravec [4] was used.
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Let I be the ideal map over the same area as a
constructed occupancy grid map m. I then only con-
tains the values 1.0, 0.5 and 0.0, where 0.5 indicate
that the value of the corresponding cell is unknown.
The probability that a cell mx,y represents the same
thing as Ix,y is Ix,ymx,y + (1 − Ix,y)(1 −mx,y). The
probability that m represents the same as I is then:∏

x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y))

A problem is that this value will be very small for
large maps. In order to remedy this the log2 of this
value is taken and |I| is added. This results in the
following score measure:

|I|+ log2

(∏
x,y

(Ix,ymx,y + (1− Ix,y)(1−mx,y))

)

The maximum score of m is |I| minus the num-
ber of cells of I that are equal to 0.5. The ideal
map was constructed by running experiment № 1 with
free_prob=0.45 and occ_prob=0.55 for 2000 steps.
The probabilities of this map was then rounded to the
closest of the values 1.0, pri_prob and 0.0. Given this
ideal map the possible maximum score is 640.

3.2 Results

Generally the implementation performed well in all
four experiments but what became obvious is that
the choice of sensor weights is important. Each ex-
periment was run for a 1 000 ticks. As all of the
experiments contain a randomized component a sin-
gle run might not produce a characteristic result. To
avoid this, each experiment was run ten times and the
average of each tick was taken. The result of this is
shown in figure 6. When interpretating these charts
one should know that a score above 500 corresponds
to a reasonably good map. Rather than looking for
the sensor weights that eventually results in the best
score one should look for the sensor weights that con-
verge fast to a reasonable score. Most often a robot
has more use for a good enough map now, that for
a perfect map in five minutes. Because of this, the
charts only display up to tick 500, even if the maps
continue to converge after that.

Experiment № 1

This was the ideal case and as shown in figure 6a the
algorithm performs well for both [0.01, 0.99] and [0.2,
0.8]. Even if [0.45, 0.55] surpasses them both eventu-
ally, it converges to slow to be practically useful.

Experiment № 2

The outcome of this experiment, as shown in figure
6b, show the strength of the probabilistic approach
to robotic mapping. The algorithm handles the noisy
sensor readings well and the map converges nearly as
fast as [0.2, 0.8] from № 1.

Experiment № 3

Figure 6c show how to high or to low set sensor weight
impacts the performance of the algorithm. While [0.2,
0.8] converges nicely, [0.45, 0.55] converges steady but
too slow. As [0.01, 0.99] is the most sensible to noise,
it converges slowly and never produces a reliable map.

Experiment № 4

In this last experiment the score measure is a bit mis-
leading. All three choices of sensor weights actually
produces acceptable maps. What happens in the case
of [0.01, 0.99] is that the edges of the obstacles get
slightly displaced, which the score measure penalizes.
Even though [0.01, 0.99] of № 3 and № 4 score the
same, the map from № 3 is practically unusable, while
the map from № 4 is OK.

3.3 Using the Implementation
To show that the map drawing implementation can be
used in practice an Ikaros system was setup to control
an e-puck robot. Basically, this is the system shown in
figure 3, including the dashed lines. The goal of the e-
puck was to find another e-puck wandering randomly
in a maze. The e-puck was not given a path to the
other e-puck, only its position. In order to find a path
to the other e-puck a wavefront algorithm as described
in [5] was used. The e-puck would begin with an
empty map, which it would build up gradually as it
tried different paths to the other e-puck. Eventually,
the map would be complete enough so that the e-puck
would find a safe path to the other e-puck.

4 Discussion
This paper has described an implementation of the
occupancy grid map algorithm. This algorithm was
implemented to be used with the e-puck robot, us-
ing the Ikaros framework. A derivation of the update
equation, the basis of the algorithm, was given, as
well as a measure for comparing maps. The imple-
mentation worked well. This was no surprise as the
sensors and the pose tracking system produced very
exact information. To investigate how noise would
affect the performance of the algorithm a number of

32



(a
)

E
xp

er
im

en
t

№
1,

th
e

id
ea

l
ca

se
.

(b
)

E
xp

er
im

en
t

№
2,

ga
us

si
an

w
hi

te
no

is
e.

(c
)

E
xp

er
im

en
t

№
3,

sa
lt

an
d

pe
pp

er
no

is
e.

(d
)

E
xp

er
im

en
t

№
4,

po
si

ti
on

al
ga

us
si

an
w

hi
te

no
is

e.

F
ig
ur
e
6:

G
ra
ph

s
sh
ow

in
g
ho

w
th
e
es
ti
m
at
ed

m
ap

co
nv

er
ge
s
to

th
e
id
ea
lm

ap
gi
ve
n
di
ffe

re
nt

no
is
e
an

d
di
ffe

re
nt

se
ns
or

w
ei
gh

ts
.

33



experiments were conducted. Gaussian white noise
was applied to the sensors and the pose tracking sys-
tem, and so called salt and pepper noise was applied
to the sensors only. To show that the implementation
was usable in practice a system was constructed that
made an e-puck draw an occupancy grid map. The
e-puck then used this map to find a path to another
e-puck wandering randomly.

4.1 Evaluation of the Experiments

Experiment № 1 show that the algorithm works well
given ideal preconditions. This is no surprise, but it
is important note how the tuning of sensor weights
impacts the performance. When the sensor weights
are set so that the algorithm put little trust in the
sensors, the map converges steadily but unnecessarily
slow.

Experiment № 2 and 3 show the strength of the al-
gorithm, its capability to handle independent noise.
Both the sensor readings of № 2 and 3 are very noisy,
indeed it is often hard for the human eye to separate
true obstacles from noise. The algorithm manages
this well, given that the sensor weights are set so that
the algorithm does not put to much trust in the sen-
sors.

Experiment № 4 show that the algorithm can pro-
duce an acceptable map when the position is noisy.
The tuning of the sensor weights does not have such
an impact as figure 6d might suggest. This is due
to the fact that the score measure does not reward
correctly identified obstacles that are off by a small
distance. One problem with positional noise is that
it does not lead to sensor noise that is statistically
independent. If the positional noise is to large the
algorithm will not be able to handle it no matter how
the sensor weights are tuned.

The implementation of the e-puck control system
described in section 3.3 worked well in simulation.
The two robots steadily moved towards each other,
drawing the map and avoiding obstacles as they went
along. When trying this with the real robots there
were some problems. The Trackermodule sometimes
confused one of the robots for the other one. Also
there were some problems communicating with two
robots over one Bluetooth connection. Nevertheless,
the occupancy grid map algorithm, in combination
with the wavefront path planner, always produced a
correct path, even if the robot had troubles following
it.

4.2 Conclusion
In spite of its limitation the occupancy grid map al-
gorithm is, as this paper has shown, a robust and
versatile algorithm. When in need for a robotic map-
ping algorithm one should have good reasons not to
consider using it.
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Abstract
This paper presents a case study demonstrat-
ing the integration of the humanoid robotic
platform Nao within a Network Robot System
(NRS) application. The specific scenario of in-
terest takes place in a smart home environment;
the task being that of bringing a can of soda
from a fridge to a human user. We use this con-
crete scenario to evaluate how the performance
of such a robot can be affected by being embed-
ded inside an intelligent domestic environment.
This study points out that, by cooperating with
different components on the network the over-
all performance of the robot is increased.
Keywords: Network Robotics Systems, Do-
mestic Robots, Nao robot, Smart home, PEIS-
Ecology.

1 Introduction
A few years ago, the idea of living with robots,
sharing everyday tasks and harmonically co-
exist in the same environment, seemed to be
a distant scenario. However, the use of such
technologies, aimed to inhabit our houses and
help us with our everyday chores is not a dream
any longer. Ongoing research all over the world
indicates a trend to develop advanced robotic
systems aimed to the service of people in need.
According to the International Federation of

Robotics, 7.1 million service robots for personal
and private use were sold by the end of 2009 and
11.6 million is anticipated to be sold by 2012.1
The rapid growth in the field of robotics during
the last decade provided a strong foundation for
smart homes and sensor networks.

A Smart home is a domestic intelligent en-
vironment where various components such as a
fridge, oven, lights etc., are working together
by exchanging information via the same local
network. The principal idea behind the smart
home concept is to use NRS techniques to in-
tegrate different services within the home in an
effort to control and monitor the entire living
space [1]. NRS can provide robot based ser-
vices to improve care cost and the quality of life
in smart homes. These services are not realized
by a single stand-alone robot but by a combina-
tion of different elements such as environmental
sensors, cameras, laser range scanners and hu-
mans communicating and cooperating through
a network.

In a stand-alone robot, all the sensorial and
computational capabilities are self contained.
In the context of a NRS, a stand-alone robot is
perceived as part of the ecology itself [2], [3].
Moreover, it can be beneficiated by the flux
of information coming from other devices con-
nected to the same network, for example, a

1International Federation of Robotics, Executive
Summary of World Robotics 2009. See http://www.
ifr.org/service-robots/statistics/
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camera mounted to the ceiling can provide a
wider view than its own embedded cameras.
Network robots are divided into three types:
visible robots, unconscious robots, and virtual
robots [4], [5]. In this work we consider Nao
as a visible robot since it has the role of be-
ing the physical interface of the NRS inside the
smart home. Furthermore, according to Scopel-
liti et al., the most preferred robots, are those
which are human-friendly in means of appear-
ance, primarily resembling pets or toys [6].

This paper is organized as follows: First, in
section 2, the problem formulation is presented,
describing the overall tasks and the available
tools that endue this work. Then, in section 3
we analyse some specific problems which arose
in the implementation of our demonstration,
emphasising in particular the contrast between
our NRS approach and an alternative, single
robot approach. The software architecture fol-
lows in section 4. Here, the methodologies and
structure followed in order to handle this work
are described. Finally concluding remarks close
this paper.

2 Problem Formulation
Consider the following scenario:

Neils returns home from a long walk. Soon
he enters the living room he taps on the head
of Tommy, a humanoid robot and rests on the
sofa. Tommy perceives the request, offers to
bring a refreshment to Niels and starts moving
towards the fridge in the kitchen. While
walking, it localizes itself to find its position in
the room. When Tommy enters the kitchen,
it asks the fridge to open its door and use its
gripper to collect a soda can and bring it out.
The robot identifies the requested drink, grasps
it and returns to deliver the refreshment to
Niels.

The above scenario can be decomposed
into the following simpler tasks that has to be
performed by the robot in order to fulfill the
overall goal:

1. Walk towards the fridge

2. Dock the fridge

3. Grasp the drink

4. Carry and hold the drink while walking

5. Deliver the drink to the user

These tasks can be grouped into three mod-
ules which are localization, cooperative grasp-
ing and the mobility module (explained in later
sections of this paper).

The following paragraphs, introduce all the
information needed in order to understand the
components that surround this project. We de-
scribe the NRS infrastructure underlying our
smart home, and other details that constitute
the robotic platform Nao.

2.1 Available Resources
This section describes all the available tools
that can be used in order to successfully ac-
complish the overall task.

2.1.1 Test Environment

PEIS-Ecology:
The concept of PEIS-Ecology, first introduced
by Saffiotti and Broxvall in 2005 [7], is one
of the few existing realizations of the notion
of network robot system. The name PEIS
stands for physically embedded intelligent sys-
tems. PEIS can be defined as a set of inter-
connected components, residing in one physi-
cal entity which generalizes the notion of robot.
Every component that is part of this ecology is
called PEIS-component.

The PEIS Ecology model has been imple-
mented in an open source middleware, called
the PEIS Kernel to which all the PEIS compo-
nents are linked. This PEIS-Kernel allows the
components to communicate and collaborate
with each other in a standardized way. For
communication, this middleware establishes a
peer-to-peer network and performs dynamic
routing of messages between PEIS. All PEIS
can cooperate using a uniform cooperation
model, based on the notion of linking functional
components: each participating PEIS can use
functionalities from other PEIS in the ecology
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in order to compensate or to complement its
own.

PEIS Home:
The PEIS home2 is an experimental envi-
ronment that looks like a typical bachelor
apartment which was built to implement the
PEIS-Ecology [8]. It consists of a living hall,
bedroom and a small kitchen. The PEIS-Home
is equipped with communication and computa-
tional infrastructure. This study is conducted
inside the smart home to make use of various
components of PEIS-ecology. Fig. 1 illustrates
a few basic views of the home.

The PEIS components available for this work
are:

• PEIS-Fridge
The PEIS-Fridge is a small sized refriger-
ator with a motorized door, a camera and
an attached robotic arm with a gripper.
The camera takes images over a shelf in
the fridge and in combination with cluster-
ing algorithms directs the gripper towards
the soda cans. The fridge gripper is able to
collect the soda can from the interior space
and is able to bring the drink outside.

• PEIS-Cam
A PEIS-Cam is a component that can pro-
vide images from common 2D colour cam-
eras. Several cameras are mounted in dis-
crete areas of the house which can provide
a wide view of the living space.

• PEIS-PersonTracking
This component is a tracking system con-
nected to a set of stereo camera and normal
mega pixel camera mounted on the ceiling,
capable of tracking multiple persons.

2.1.2 Nao robot

Nao is a humanoid robot equipped with sonar
sensors, 2 CMOS cameras and three-fingered
robotic hands. It features a multimedia sys-
tem with 4 microphones and 2 hi-fi speakers for

2The PEIS home is developed by the Center for Ap-
plied Autonomous Sensor Systems (AASS). See http:
//aass.oru.se/~peis/

Figure 1: A rough sketch of the PEIS-Home(upper
left). A picture of the control deck (upper right).
A picture of the kitchen with a fridge located un-
der the workbench (lower left). A picture of the
common room(lower right).

voice recognition and text-to-speech synthesis.
The built-in functionalities of this robot such as
logo detection, mark detection using onboard
cameras are loftily adjustable and are used for
robot localization. The robotic hands are used
for grasping and holding small objects. Nao can
carry up to 300g using both hands. 3

Nao Robocup Edition has 21 degrees of free-
dom (DOF) whereas Nao Academics Edition
has 25 DOF since it is built with two hands
with gripping abilities. For this study the aca-
demic version of Nao is used.

The Nao is based on Linux and it is a fully
programmable robot which uses its own frame-
work called NaoQi. NaoQi, allows the devel-
oper to access all the features and functional-
ities of the robot through an Application Pro-
gram Interface (API) which also provides the
flexibility of executing tasks in sequential or-
der, parallel and event based. The Integrated
wireless network card of this robot can be used
to exchange information with other devices in
the network.

3Nao Documentation. Aldebaran Robotics. 2009.
See http://academics.aldebaran-robotics.com
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Figure 2: Software Architecture - Centralized and
NRS approach

3 The Nao robot inside the
PEIS-home

The first attempts to accomplish the sce-
nario explained in section 2 were based on
the robot’s capabilities (centralized approach
shown in Fig. 2), where all the perceptual in-
formation of the environment and the tasks are
performed by one single agent. Considering
that this humanoid platform is quite capable,
it was expected to be able to perform success-
fully the scenario’s tasks (localization, grasp-
ing and navigation) but several drawbacks re-
vealed through testing. These drawbacks were
the main reason for relying on external sources
to fulfill the task. The first drawback has to
do with localisation. The Nao is equipped with
sonars, two cameras and a built-in logo recogni-
tion ( “ALLandMarkDetection”), a vision mod-
ule in which Nao recognizes special landmarks
with specific patterns on them. Our attempts
to leverage these sensory inputs for localisation
failed, due to the following reasons:

1. The unreliability of the internal mark de-
tection algorithm led to missing the check-
point (marks) on the predefined path.

2. Because of the wobbling of Nao while walk-
ing the detection of the marks was unreli-

able.

3. Slight changes in the lighting conditions of
the room, could lead to faulty detection or
not detection at all.

4. State of the art localisation using stereo
vision [12] cannot be implemented using
the two onboard cameras since there is no
overlapping region between the data ac-
quired by them.

The following section, describes the final im-
plementation. The software architecture will
be described and a more detailed illustration of
the basic three modules will ensue.

4 Software Architecture
The software architecture is shown in Fig. 2 and
was built having in mind the NRS approach
which; as explained in [5], has the premise of
combining robotics and information communi-
cation technologies through a network in order
to realize a task or provide services to human
users. The software architecture was developed
using Aldebaran’s NaoQi as a framework and
coded in C++. NaoQi gives access to all the
features of the robot, like sending commands
to the actuators, retrieving information from
the robot memory, and managing Wi-Fi con-
nections. This architecture facilates the inte-
gration of new components without redesigning
the system architecture.

4.1 Control Unit
The control unit is built around a state ma-
chine, which provides the logic to arbitrate the
interaction between the rest of the software
modules and determines the sequence of the ac-
tions that should take place in order to achieve
the goal described in the introduction of this
paper.

Fig. 3 shows the state diagram of the control
unit were each state represents an action to be
executed and the transitions between states are
determined by signals passed to the control unit
by the rest of the modules.
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Figure 3: State diagram for the control unit

Figure 4: Coordinate frame for the mobility mod-
ule

4.2 The Mobility Module

The function of this module is to handle the
navigation of the Nao robot inside the PEIS
home. This module receives as inputs the esti-
mated current pose and the commanded poses
through the controller module.

To represent the robots pose in the PEIS
home, we have opted for the model suggested
in [9], where the degrees of freedom of the joints
of the legs and the feet of the robot are ignored
and the robot is represented as a rigid body
operating in a horizontal plane. The robot

Table 1: PSEUDO-CODE FOR MOBILITY
MODULE

1 Retrieve the current pose from the lo-
calization module.

2 Compute the angle AT between the de-
sired pose and the current pose.

3 Compute the Euclidian distance DS be-
tween the desired pose and the current
pose.

4 if AT > anglethreshold
Command Nao to turn AT degrees.

5 if (DS > Distancethreshold)
Command Nao to move DS meters
forward.

6 When Nao stops moving, repeat steps
1 to 5 to reduce the error in the pose.

7 Wait for the next command from the
control unit.

pose(RP) is represented as follows:

R⃗P = [x, y, θ]T (1)

where x and y are the position in the coordinate
frame shown in Fig. 4, and θ is the orientation
of the robot with respect to the x axis.

The error between the current and the com-
manded pose is decomposed in an orientation
error and a position error, that are later passed
through the Nao API’s to orient the robot to-
wards the target position and then to move it
forward to correct the position error. However,
the built in humanoid walking implementation
of the Nao robot does not consider the external
disturbances that affect the walking schema of
the robot. This lack of feedback causes an error
between the desired pose and the physical pose
of the robot. In order to reduce the impact of
this error, the reported pose from the localiza-
tion module is used to compensate the desired
pose of the robot.

The functionality of the mobility module can
be summarized in Table 1.

39



Figure 5: Robot detection and tracking using
the background subtraction and color slicing algo-
rithms

4.3 The Localization and Coordi-
nation Module

As mentioned before the odometry error be-
tween the desired and the actual pose of the
robot is present due to external disturbances
that affect the robot while walking. In order to
reduce the impact of this error, we use an ad-
hoc odometry algorithm that gives the robot a
feedback about its actual position. Using al-
ready present environmental monitoring cam-
eras placed on the ceiling, background subtrac-
tion [10] and color slicing algorithms [11], we
could efficiently localize the robot by detecting
the blue light on top of its head and provide
the mobility module with the actual pose of
the robot as shown in Fig. 5. We used this
algorithm to calculate the robot position at al-
ready known positions and built a lookup table
that we used later to interpolate the robot po-
sition. The pseudo code in Table 2, presents
the basic steps of the algorithm. We did that
to decrease the effect of the noisy readings of
the robot position due to the robot instability
while walking.

The Localization module can be divided into
three steps:

1. Background subtraction

2. Color slicing

3. Position lookup table

Table 2: PSEUDO-CODE FOR LOCALIZA-
TION AND COORDINATION MODULE

1 Capture background image B”
2 Subtract the new frame from B.
3 for each resulting region:

if area > areathreshold
add this region to ROI

4 for each ROI:
for each pixel in the selected ROI

Calculate the Euclidian distance
between this pixel and the color
threshold C”.

if C > colorthreshold
Set the pixel value to one

else
Set the pixel value to zero

5 The region with highest value will be
the robot pose R”.

6 Calculate the centroid for R and the re-
sult will be single pixel P”.

7 The lookup table calculates the robot
position using P.

4.3.1 Background subtraction

In this step the algorithm subtracts each new
image from the background image and detects
the regions of interest (ROI). ROI area has
to be greater than a certain threshold. The
threshold has to be set manually according to
the ”tolerance” we want to give to our algo-
rithm (a high value of threshold means that
only objects with high area value is considered
interesting, whereas a lower value of threshold
will make the algorithm detect small objects as
ROI).

4.3.2 Color slicing

At this point, we consider only the ROI de-
limited in the previous step. The ROI is pro-
cessed in the RGB color space, where we calcu-
late the Euclidean distance between the pixel
in the ROI and a color of interest. If the dis-
tance is less than a certain threshold, the pixel
is classified as part of the robot.
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4.3.3 Position lookup table

In this final step, we use a lookup table to re-
turn the real robot pose. This lookup table
provides a mapping from the robot’s position
in pixels to the real coordinates.

Although this ad-hoc solution is quite simple,
the results obtained have significantly reduced
the error in the orientation in comparison with
the open loop walking schema.

4.4 The Cooperative Grasping
Module

The robotic grasping is a very difficult problem,
specifically grasping objects that are being seen
for the first time through vision. Solving this
problem could be through using learning algo-
rithm or building a 3-D model of the object of
interests or by using both techniques. In this
work we did not apply any learning or model-
ing approaches, instead we assumed that a spe-
cific object is handed in to the robot in a fixed
pose. That means whenever the robot reaches
the right position for grasping it will start pre-
defined movements in order to grasp with no
feedback. The grasping problem was simplified
in order to tackle the problems of detecting the
presence of the object to be grasped and ap-
proaching it. We installed a light source on top
of the fridge gripper to be detected in the same
way as we detect the Nao robot head. The al-
gorithm detects the robot and the object to be
grasped and calculates the Euclidian distance
between the robot and the object.

The walking module receives the distance
and commands the robot to move. After ap-
proaching the grasping point, the robot does
the following:

1. Command the fridge to open through the
PEIS infrastructure

2. Command the fridge gripper to fetch a cer-
tain drink out of the fridge

3. The robot docks the extended fridge grip-
per to place itself in a position suitable
for grasping. This is done by indirect vi-
sual servoing through the localisation of

Figure 6: Fridge door opening(upper left), fridge
gripper bringing the can out(upper middle), tracked
image from the camera (upper right), Pre-defined
robot arm movements after reaching the desired po-
sition for grasping the object(bottom left, bottom
middle and bottom right)

the gripper as perceived by the environ-
mental camera

4. The robot then follows predefined arm and
hand movements to grasp the object. See
Fig. 6

The algorithm is explained in Table 3.

4.5 HRI Module

The Human Robot Interface (HRI) module acts
as the direct link between the user and the sys-
tem. Through this module the user is able to
request the can of soda by tapping the robots
head.

This module will receive the current posi-
tion (coordinates) of the human user from the
PEIS person tracking system. These coordi-
nates in turn will be passed to the mobility
module through the control unit as a final des-
tination for the Nao robot.

The position of the user is determined by this
module. See Fig. 2. When a centralized ap-
proach is used, the task of finding the user is
performed by the robot itself (i.e. face recog-
nition), while for the NRS approach, this task
is carried out by an external module (i.e. the
PEIS person tracker).
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Table 3: PSEUDO-CODE FOR COOPERATIVE
GRASPING MODULE

1 Capture background image B”
2 Subtract the new frame from B.
3 for each resulting region:

if area > areathreshold
add this region to ROI

4 for each ROI:
for each pixel in the selected ROI
Calculate the Euclidian distance
between this pixel and the color
thresholds C1 and C2.

if C1 > colorthreshold
set the pixel value to 1 for the
robot region RROI

else if C2 > colorthreshold
Set the pixel value to 1 for the
object region OROI

else
Set the pixel value to 0.

5 In RROI the region with highest value
will be the robot pose R.

6 In OROI the region with highest value
will be the object pose O.

7 Calculate the centroid for R and the re-
sult will be single pixel “PR”

8 Calculate the centroid for R and the re-
sult will be single pixel “PO”

9 The lookup table calculates the robot
position and the object position using
PR and PO.

10 Calculate the Euclidian distance and
command the robot to approach this
position.
if (Destinationreached)

Start the predefined movements of
the arms.

5 System Demonstration
The system was evaluated using two different
setups where, inspired by the scenario depicted
in section 2, the robot was commanded by the
user to follow a predefined path (from the living
room to the kitchen) in order to collect and
bring back a known object placed in the fridge
gripper. Twenty rounds for each setup were

performed.
In the first setup, it was required to make

the robot locate itself inside the environment
without being assisted by any other component
inside the PEIS home. We opted for using the
on-board vision capabilities of the robot to de-
tect pre defined marks (i.e. Nao Landmark De-
tection) as shown in Fig. 7 and the marks were
placed along the predefined path from the liv-
ing room to the kitchen and the robot was ex-
pected to use them to correct its position and
orientation in order to complete one test round.
Poor results were obtained due to the noise in-
troduced from embedding the localization mod-
ule inside one single agent (in this case, the
Nao robot), such as the wobbling produced by
the walking or in some cases, when the robot
missed one mark while moving, the error in the
localization was increased in a way that was
almost impossible to find the right path to suc-
cessfully complete the task. This drawbacks
lead to a successful rate of only 20% of the
rounds.

For the second setup, the robot was assisted
by the NRS as described in section 4.3. It
was observed that the performance was sub-
stantially improved since all the rounds were
successfully completed and as a final demon-
stration of the system, a person who is not fa-
miliar with the technical details of this study
was taught how to operate and interact with
the system.4 Once again the task was success-
fully completed. The drawback of this setup
is that the system is heavily dependent on the
network stability. A failure in the connection
or missing information from any of the involved
network components may negatively affect the
final output.

6 Conclusions
In this work we have successfully integrated a
humanoid robot into a NRS to solve a problem
in a common day scenario; bringing a can of
soda to a human user. This problem involves
several tasks such as localization, mobility and

4Integrated Project Work demos. See http://www.
youtube.com/user/loutfiamy
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Figure 7: Robot localization using land marks
and Land mark detected by Nao(in sight).

cooperative grasping which has to be accom-
plished in order to successfully achieve the over-
all goal.

While the Nao is a capable platform; due to
the complexity of the problem to be solved and
the challenges that home robotics implies, we
conclude that the capabilities of the robot can
be enhanced and the complexity of the problem
can be reduced by decomposing it in simpler
tasks executed in cooperation with specialized
components in the NRS (i.e. the PEIS Ecol-
ogy).

The NRS brings also expandability to the
Nao itself when new components are added to
the network and Nao interacts with them to
solve a novel task. The NRS is also beneficiated
with the incorporation of Nao, since it became
a visible robot that provides different services
and acts as an interface between the user and
the PEIS Ecology.

Future work may include how to exploit the
sensorial capabilities of the Aldebaran’s Nao,
such as voice and face recognition to allow a
more user friendly interface between a smart
home and the human user who is request-
ing different services from the ubiquitous net-
work. This work can also be expanded by using
planning and searching techniques to allow the
robot to move in non predefined paths and the
use of the robot’s internal sonars can be used

to allow obstacle avoidance.
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Abstract
Partially ordered plan structures are highly suitable for cen-
tralized multi-agent planning, where plans should be min-
imally constrained in terms of precedence between actions
performed by different agents. In many cases, however, any
given agent will perform its own actions in strict sequence.
We take advantage of this fact to develop a hybrid of tem-
poral partial order planning and forward-chaining planning.
A sequence of actions is constructed for each agent and
linked to other agents’ actions by a partially ordered prece-
dence relation as required. When agents are not too tightly
coupled, this structure enables the generation of partial but
strong information about the state at the end of each agent’s
action sequence. Such state information can be effectively
exploited during search. A prototype planner within this
framework has been implemented, using precondition con-
trol formulas to guide the search process.

1 Introduction
A major earthquake has struck in the middle of the night,
devastating vast parts of the countryside. Injured people are
requesting medical assistance, but clearing all roadblocks
will take days. There are too few helicopters to immedi-
ately transport medical personnel to all known wounded,
and calling in pilots will take time. Fortunately, we also
have access to a fleet of unmanned aerial vehicles (UAVs)
that can rapidly be deployed to send prepared packages of
medical supplies to those less seriously wounded. Some are
quite small and carry single packages, while others move
carriers containing many packages for subsequent distribu-
tion. In preparation, a set of ground robots can move pack-
ages out of warehouses and possibly onto carriers.

Given the properties of this somewhat dramatic scenario
as well as the robotic agents involved, what types of au-
tomated planning could we use to generate high-quality
plans?

One option would be to rely on distributed cooperative
planning techniques, where each agent is responsible for
its own actions but also coordinates its local plan with other
agents in order to achieve a shared goal.

An alternative is the use of centralized planning, where a

single agent generates a complete plan coordinating activ-
ities at a higher level before distributing subplans to indi-
vidual agents. Plan execution then proceeds in a distributed
manner, with either centralized or distributed synchroniza-
tion between agents. This alternative requires all agents to
be fully cooperative, which appears reasonable to assume
for the application at hand.

Each of these choices has its own advantages. Dis-
tributed planning can for example be more flexible, poten-
tially allowing individual agents to renegotiate parts of the
plan during execution. Furthermore, it does not require full
cooperation between agents. Having a centralized author-
ity can facilitate the generation of high-quality plans and
allows a ground operator to approve or modify a complete
plan before execution, which may be a requirement in some
cases. Thus, each alternative is likely to be better in some
situations and is worth pursuing for its own qualities. For
the purposes of this paper, we will proceed under the as-
sumption that centralized planning has been chosen.

Returning to the scenario, we see that action durations
are not likely to be perfectly predictable, but it is often pos-
sible to specify an approximate expected duration for the
case where no failures occur during execution. This in-
formation should be taken into account during planning by
preferring plans that are expected to require less time to ex-
ecute. We also prefer plans to be minimally constrained in
terms of precedence between actions performed by differ-
ent agents, in order to avoid unnecessary waiting.

To some extent these properties can be treated after
plan generation, for example by inferring less constraining
precedence relations from a sequential plan [3]. However,
this entails hiding important aspects of the domain and of
our concept of plan quality from the planner, which can
decrease the quality of the final plan. For example, a se-
quential planner has no concept of which actions can be
executed in parallel and might therefore assign all actions
to the same agent, as long as this does not lead to using
a greater number of actions. Parallelizing such plans af-
ter the fact is non-trivial: It requires recognizing subplans
that can be assigned to other agents in a meaningful man-
ner, selecting suitable agents for reassignment, and gener-
ally also replanning for the selected agents, which may not
perform tasks in exactly the same manner as the original
agent. Similarly, a non-temporal planner might decide to
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use as few actions as possible even when these actions are
very time-consuming. Treating this after plan generation
also requires changing the actions in the plan, as opposed
to simply adding temporal durations to each action. We
would therefore prefer to work directly with a plan struc-
ture capable of expressing these aspects, such as a temporal
partial-order plan.

Planners generating such plans do not necessarily have
to be explicitly aware of agents, as long as they can express
mutual exclusion conditions between actions that cannot
be executed concurrently. Indeed, the scenario above is
quite similar to the standard logistics benchmark domain,
where agents are typically modeled as arguments to ac-
tions. Therefore it would be possible to generate the re-
quired plans using temporal versions of standard partial or-
der causal link (POCL1) planners, agent-aware or not.

Partial order causal link planning was initially conceived
as a means of increasing the efficiency of plan generation.
Through late commitment, avoiding “premature commit-
ments to a particular [action] order” [10], less backtracking
was required during the search for a plan. Once a solution
was generated, the assumption was that it would be exe-
cuted in sequence by a single agent. Though a number of
POCL planners are also able to generate concurrent plans,
the desire to delay commitments to action precedence for
performance purposes usually remains one of the primary
reasons for the use of partial orders.

However, late commitment is far from the only means
of improving planning performance. For example, many
recent planners build on the use of forward-chaining state-
space search, which generates considerably richer informa-
tion about the state of the world at any given point in a plan
compared to POCL planning. This information can then be
exploited in state-based heuristics [4, 8] or in the evaluation
of domain-specific control formulas [2, 9]. Since the use of
state information has led to a number of very successful
total-order planners, it would be interesting to also investi-
gate to what extent one can generate rich state information
when generating partially ordered plans.

We cannot adopt an unmodified version of forward-
chaining search, since we do desire flexible plan structures.
However, this desire is entirely motivated by the presence
of multiple agents whose capability for concurrent plan ex-
ecution should be utilized to the greatest extent possible.
Therefore, an alternative to POCL planning would be to
retain partial ordering (and temporal flexibility) between
actions executed by different agents, while generating the
actions for each individual agent in sequential temporal or-
der. Each agent-specific action sequence can then be used
to generate partial agent-specific states to be used in heuris-
tics or control formulas.

In this paper, we therefore begin our investigations into
alternative methods for generating partial-order plans by

1We assume a basic familiarity with partial order causal link planning
and refer the reader to Weld [12] for an overview of the associated con-
cepts and terminology.

adopting certain aspects of the standard forward-chaining
paradigm in a hybrid partial order forward-chaining
(POFC) framework that sacrifices some of the positive as-
pects of late commitment in order to gain the benefits of
richer state information.

In Section 2, we discuss the ideas behind the partial order
forward-chaining framework and its applicability to cen-
tralized multi-agent planning. In Section 3, we go on to
present one concrete planner operating within the POFC
framework. We then discuss related work in Section 4 and
present our conclusions in Section 5.

2 Partial Order Forward-Chaining
Our discussion of the fundamental ideas underlying par-
tial order forward-chaining (POFC) begins with an analysis
of common execution constraints for multi-agent plans and
how these constraints affect the desired plan structure. We
then continue by showing how these ideas and structures
allow us to take advantage of richer state information than
is generally available to partial order causal link (POCL)
planners. This results in a hybrid planning framework tak-
ing advantage of certain aspects of forward-chaining in the
generation of partial order plans.

A significant degree of variation is possible in terms
of the exact plan structures and planning algorithms used
within this framework. Consequently, the concepts intro-
duced in this section must be defined at a comparatively
high level of abstraction. In the next section we present
a detailed definition of one concrete POFC planner, which
also provides additional intuitions regarding the high-level
framework.

Plan Structures. As noted in the introduction, our inter-
est in the generation of partial order plans is grounded in
a desire to support the type of concurrency that is inherent
in many execution mechanisms. In particular, centralized
planning for multiple agents yields plans that are naturally
concurrent: Each agent can generally perform its actions
in parallel with other agents, and should not be forced to
wait for other agents unless this is required due to causal
dependencies, resource limitations, or similar constraints.

In Figure 1, for example, the first two actions of uav4
are independent of the actions of the ground robot robot3.
Sequential plans cannot model this fact, since they do not
permit concurrency at all. Temporal plans, where each ac-
tion is assumed to be executed during a specific interval
of time, do allow concurrency but are only guaranteed to
achieve the goal if actions start and end in the predicted or-
der. Partially ordered plans are more complex to handle, as
one must prove during planning that any action order con-
sistent with the partial order will satisfy the goal. On the
other hand, the result is a considerably greater degree of
flexibility during execution.

However, the fact that there exist actions that can be per-
formed concurrently does not mean that arbitrary concur-
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Go to crate 12

Actions for robot3 Actions for uav4

Pick up crate 12

Go to carrier 4

Put crate 12 on carrier 4

Put crate 7 on carrier 4

Go to crate 5

Takeoff

Fly to carrier 4

Pick up carrier 4

Fly to (1500, 1023)

Figure 1: Example POFC plan structure

rency is possible. The actions assigned to any given agent
can often only be performed in sequence, or in some cases,
through a small and fixed number of sequential threads of
execution. For example, a UAV would only be able to per-
form its own flight and package delivery actions in strict se-
quence and not in parallel, as it cannot be in several places
at the same time. Another thread of execution could be used
for camera control actions that are also performed sequen-
tially, but in parallel with the flight actions. It is clear that in
terms of execution flexibility, the greatest gains come from
allowing partial orders across different threads as opposed
to allowing partial orders within a particular thread.

The plan structures used in partial order forward-chain-
ing are directly based on this model of execution. Each ac-
tion is therefore assumed to be explicitly associated with
a specific thread belonging to a specific agent. A plan
structure then corresponds to one totally ordered action se-
quence for each thread, with a partial ordering relation be-
tween actions belonging to different threads.

Figure 1 shows an example for two threads, one for each
of two agents. A UAV flies to a carrier, but is only allowed
to pick it up after a ground robot has loaded a number of
crates. The ground robot can immediately continue to load
another carrier without waiting for the UAV. Depending on
the expressivity of the planner, POFC plan structures may
also include metric temporal relations between actions, mu-
tual exclusion relations, or other similar information. A
concrete plan structure for a specific prototype planner will
be formally defined in Section 3.2.

To simplify the remainder of the presentation, we as-
sume without loss of generality that each agent supports
a single sequential thread of execution. Multiple threads
for each physical agent can be supported either through a
minor extension to these definitions or simply by modeling
each thread as a separate “virtual” agent.

Sequential Search Order. Since actions for any given
agent must be sequentially ordered, it appears natural to
also add these actions in sequential order during search. In
Figure 1, a new action for robot3 would then have to be
added strictly after the action of going to crate 5, while a
new action for uav4 would have to be added after the action

of flying to the position (1500, 1023). Note that this does
not prevent a new action from being added before existing
actions belonging to other agents. For example, the next
action added for robot3 could be constrained to occur be-
fore uav4 picks up carrier 4, or even before it begins flying
to carrier 4.

To some extent this search process results in an earlier
commitment to action orderings than in POCL planning.
However, the precedence between a new action for one
agent and existing actions belonging to other agents only
has to be as strong as is required to ensure that precon-
ditions are satisfied and actions do not interfere. Actions
belonging to distinct agents can therefore be independent
of each other to the same extent as in a standard partial or-
der plan. This allows POFC plans to retain the essential
flexibility that is desired for concurrent execution.

State Generation. The more we know about the execu-
tion order for a plan, the more information we can infer
about the state of the world after any given action in the
plan. For example, standard sequential forward-chaining
yields a completely defined order of execution. In this case,
applying an action in a completely specified world state al-
ways yields a new completely specified state. This is very
useful when determining which actions are applicable in
the next step. Rich state information also facilitates the
use of expressive operator specifications as well as state-
based heuristics or control formulas [2, 9] guiding forward-
chaining search.

Since our plans are partially ordered, we cannot expect
to be able to generate complete state information. For any
given agent, though, actions are generated in sequential or-
der. POFC planning can therefore be seen as performing
a variation of forward-chaining search for each individual
agent. We can take advantage of this to generate consid-
erably more state information than is typically available to
POCL planners, where one typically aims to restrict action
ordering as little as possible and where new actions can be
inserted “between” existing actions.

In particular, many state variables are generally asso-
ciated with a specific agent and are only affected by the
agent itself. For example, this holds for the location of an
agent (unless some agents actively move others) and for
the fact that an ground robot is carrying a particular ob-
ject (unless one agent can place objects in another agent’s
gripper). Similarly, agent-specific resources such as fuel or
energy levels are rarely directly affected by other agents.
Due to the requirement for “local” total ordering, we can
easily generate complete information about such “agent-
specific” state variables at any point along an agent’s ac-
tion sequence. This information is particularly useful for
the agent itself, since actions performed by one agent are
likely to depend largely on its own agent-specific variables:
Whether it is possible for uav1 to fly to a particular location
depends on its own current location, its own fuel level, and
its own altitude.

Not all state variables are completely agent-specific.
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However, agents are in many cases comparatively loosely
coupled [6]: Direct interactions with other agents are rela-
tively few and occur comparatively rarely. For example, a
ground robot would require a long sequence of actions to
load a set of boxes onto a carrier. Only after this sequence
is completed will there be an interaction with the UAV that
picks up the carrier. This means that for extended periods
of time, agents will mostly act upon and depend upon state
variables that are not currently affected or required by other
agents.

As will be shown in Section 3.5, this also provides op-
portunities for generating strong and useful partial states by
carrying state information from one agent to another along
precedence constraints when interactions do occur. In Fig-
ure 1, for example, the takeoff action will have little infor-
mation about the state of the carrier, as one cannot know in
advance which actions robot3 will have the time to perform
before or during takeoff. However, the action of picking up
carrier 4 must occur after the carrier is fully loaded. This
information can therefore be carried over from robot3 to
uav4 along the cross-agent precedence constraint.

Finally, as in any planner, we also have access to state
variables representing static facts such as the locations of
stationary objects and the capabilities of individual agents.

Thus, POFC planning enables us to generate quite exten-
sive agent-specific information about the state that will hold
after any given action is executed. This information gen-
erally will not be total, but is in many cases sufficient to
determine whether a particular agent can add a particular
action to its sequence. We also expect the information to
be useful for the development of new state-based heuristics
for POFC planning.

In some cases, additional information that is currently
local to another agent will be required in order to determine
the executability of an action. Acquiring such information
involves the addition of precedence constraints to the plan.
Returning once more to Figure 1, picking up a carrier might
only be possible if the carrier is fully loaded. We know
that carrier 4 is fully loaded after robot3 loads crate 7 onto
the carrier. Proving this to be true when uav4 picks up the
carrier requires a cross-agent precedence constraint. In the
following section, we will present one potential mechanism
for generating such constraints.

3 A Prototype POFC Planner
A variety of planning algorithms and search spaces can
be realized within the general framework of partial order
forward-chaining, differing along several dimensions.

Partial order causal link planners allow actions to be in-
serted in arbitrary order, without guaranteeing that their
preconditions are satisfied or that their effects are compat-
ible with existing actions. Such “flaws” in a plan must be
corrected at a later time through the introduction of addi-
tional actions and precedence constraints. For example, the

planner could insert the action of picking up a fully loaded
carrier before adding the actions required for actually load-
ing crates onto the carrier, as long as these actions were
then constrained to be executed in the required order.

Similar methods could be used for partial order forward-
chaining, with one limitation. It is by definition impossible
to insert a new action for one agent before another action
belonging to the same agent. However, as mentioned be-
fore, a new action can be inserted before an action belong-
ing to another agent, allowing previously unsatisfied pre-
conditions of the latter action to be satisfied. For example,
the planner could first insert the action of uav4 picking up a
fully loaded carrier, and then the actions required for robot3
to load the carrier.

In our initial investigations, we have instead chosen to
explore a search space where adding a new action to a plan
with a given set of precedence constraints is only permitted
if this results in an executable plan without flaws. The pre-
conditions of the new action must be satisfied at the point
where it is inserted in the current plan structure, its effects
must not interfere with existing actions in the plan, and mu-
tual exclusion relations must be satisfied. In this sense, the
planner is closer to forward-chaining planning.

We also choose to achieve goal-directedness through
the use of domain-specific precondition control formulas
[1, 2, 9] as explained below. This can be very effective
due to the comparatively rich state information afforded by
the POFC plan structure. Thus, we do not currently make
use of means-ends analysis as in standard POCL planning,
or state-based domain-independent heuristics as in many
forward-chaining planners.

3.1 Domains and Problem Instances
For our first partial order forward-chaining planner, we as-
sume a typed finite-domain state-variable representation of
planning domains. State variables will also be called flu-
ents. For example, loc(package) might be a location-valued
fluent taking a package as its only parameter.

An operator has a list of typed parameters, where the
first parameter always specifies the executing agent. For
example, the act of flying between two locations may be
modeled as the operator fly(uav, from, to), where the uav
is the executing agent. An action is a fully instantiated
(grounded) operator. Since finite domains are assumed, any
operator is associated with a finite set of actions.

Each operator is associated with a precondition formula
and a set of precondition control formulas, both of which
may be disjunctive and quantified. We often use “condi-
tions” to refer to both preconditions and control formulas.

Precondition control represents conditions that are not
“physically” required for execution, but should be satisfied
for an action to be meaningful for the given domain [1, 2].
For example, flying a fully loaded carrier to a location far
from where its packages should be delivered is possible but
pointless, and can be prevented using a suitable control for-
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mula. Given the search method used in this planner, pre-
condition control will not introduce new subgoals that the
planner will attempt to satisfy. Instead, the formulas will
be used effectively to prune the search space.

An operator has a strictly positive duration, a temporal
expression specifying the expected amount of time required
to execute the action. The duration may be dependent on
the state in which an action is invoked. We currently as-
sume that the true duration of the action is strictly positive
and cannot be controlled directly by the executing agent.
Apart from this, we assume no knowledge of upper or lower
bounds for execution times, though support for such infor-
mation may be added in the future.

A set of mutexes can be associated with every operator2.
Mutexes are acquired throughout the duration of an action
to prevent concurrent use of resources. For example, an
action loading a crate onto a carrier may acquire a mutex
associated with that crate to ensure that no other agent is
allowed to use the same crate at the same time. Mutexes
must also be used to prevent actions that are associated with
different agents and that have mutually inconsistent effects
from being executed in parallel. Thus, we do not model
mutual exclusion between actions by deliberately introduc-
ing inconsistent effects, as in some planning formalisms.

For simplicity, we initially assume single-step operators,
where all effects take place in a single effect state. Ef-
fects are conjunctive and unconditional, with the expres-
sion f(v) := v stating that the fluent f(v) has been assigned
the value v when execution ends. Both v and all terms in v
must be either value constants or variables from the for-
mal parameters of the operator. For example, the operator
fly(uav, from, to) may have the effect loc(uav) := to.

For any given problem instance, the initial state must
provide a complete definition of the values of all fluents.
The goal is typically conjunctive, but may also be disjunc-
tive. The construct goal(φ) can be used in precondition con-
trol formulas to test whether φ is entailed by the goal. For
example, we should only load boxes that must be moved
according to the goal.

3.2 Plan Structures
We associate each action a in a plan with an invocation
node inv(a) where conditions must hold and where mutexes
are acquired, and an effect node eff(a) where effects take
place and mutexes are released. All mutexes belonging to
the action are considered to be held by the associated agent
in the entire interval of time between its invocation node
and its effect node3. Invocation nodes and effect nodes are
called plan nodes.

2A mutex is an object that can only be acquired by a single thread, or
in this case agent, at any given point in time.

3Thus, the planning algorithm must generate a partial order that is suf-
ficiently strong to ensure that no two actions a, a′ belonging to distinct
agents can hold the same mutex at the same time. This is done at the end
of Section 3.6.

A plan is then a tuple 〈A,N, L,O〉whose components are
defined as follows.

• A is the set of actions occurring in the plan.

• N contains one invocation node and one effect node
for every action in A.

• L is a set of ground causal links ni
f=v
−−→ n j representing

the commitment that the effect node ni will achieve the
condition f = v for the invocation node n j.

• O contains a set of ordering constraints on N whose
transitive closure is a partial order denoted by �,
where we define ni ≺ n j iff ni � n j and ni , n j.

For any action a, we implicitly require that inv(a) ≺ eff(a):
An action is always invoked before it has its effects. Ad-
ditionally, given that there are no upper or lower bounds
on action durations, it is not possible to directly control the
time at which an action finishes by any other means than
by delaying its invocation. Therefore, if a plan requires
eff(a1) ≺ eff(a2), it is implicitly required that eff(a2) ≺
inv(a2). Finally, by the definition of partial order forward-
chaining, the nodes associated with any given agent must
be totally ordered by O.

Similar to standard POCL planning, we assume a spe-
cial initial action a0 ∈ A without conditions or mutexes,
whose expected duration is 0 and whose effects provide a
complete definition of the initial state. For all other actions
ai , a0 ∈ A, we must have eff(a0) ≺ inv(ai). Due to the
use of forward-chaining techniques instead of means-ends
analysis, there is no need for an action whose preconditions
represent the goal, as in standard POCL planning.

Note that this plan structure is defined for the expressiv-
ity supported by our initial POFC planner. Given differ-
ent levels of expressivity, different structures may be ap-
propriate. For example, if upper and lower bounds on ac-
tion durations are supported, a plan may have to include a
temporal network or a similar structure, thereby allowing
the planner to efficiently query the implicit action prece-
dence constraints that follow from these bounds. As our
initial planner has no bounds on durations, precedence can
be completely determined by the constraints in O.

3.3 Executable Plans and Solutions
If a partially ordered plan will always be executed sequen-
tially, it can be considered executable if and only if all ac-
tion sequences satisfying the partial order are executable.

For POFC planners, as well as some POCL planners, the
assumption of concurrent execution is fundamental. This
leads to the possibility of one agent beginning or finishing
executing an action while another agent is in the process of
executing another action. The need to consider such cases
is the reason why our precedence relation is defined relative
to invocation and effect nodes, not relative to entire actions.
A POFC plan should therefore be considered executable if
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Inv: Go to c12

Inv: Initial

Eff: Initial

Eff: Pick up c12

Inv: Takeoff

Eff: Fly to c4

Eff: Go to c12

Inv: Pick up c12

Eff: Takeoff

Inv: Fly to c4

Inv: Go to c12

Inv: Initial

Eff: Initial

Eff: Go to c12

Inv: Pick up c12

Inv: Takeoff

Inv: Takeoff

Eff: Takeoff

Inv: Initial

Eff: Initial

Inv: Pick up c12

Figure 2: Three node sequences

and only if every node sequence satisfying the associated
partial order is executable. Figure 2 shows three node se-
quences compatible with the plan defined in Figure 1, with
the addition of the special initial action used in this partic-
ular POFC planner.

The executability of a single node sequence is defined
in the standard way. Observe that the first node in such a
sequence must be the invocation node of the initial action
a0, which has no preconditions or effects. The second node
is the effect node of a0, whose effects completely define
the initial state. After this prefix, invocation nodes and ef-
fect nodes may alternate, or many nodes of the same type
may occur in sequence, depending on the order in which
actions are assumed to begin and end. Effect nodes update
the current state. For the plan to be executable, an effect
node must not have internally inconsistent effects. For ex-
ample, it must not assign two different values to the same
fluent. Invocation nodes contain preconditions and precon-
dition control formulas that must be satisfied in the “cur-
rent” state. Finally, executability also requires that no mu-
tex is held by more than one agent in the same interval of
time.

An executable plan is a solution iff every compatible
node sequence results in a final state satisfying the goal.

3.4 Search Space
POCL planners add actions first and resolve unsatisfied
conditions later, thereby searching through the space of par-
tially ordered (and not necessarily executable) sets of ac-
tions. In contrast, forward-chaining planners begin with an
empty executable plan, and actions can only be added af-
ter being proven executable. Forward-chaining can thus be
viewed as searching in the space of executable plans, with a
single plan modification step consisting of adding one new
action at the end of the current plan.

Given the plan structure and expressivity defined above,
a similar search space can be used for POFC planning. The
initial search node then corresponds to the “empty” exe-
cutable plan 〈{a0}, {inv(a0), eff(a0)},∅, {inv(a0) ≺ eff(a0)}〉,
where a0 is the initial action whose effects define the initial
state. Each child of a search node adds a single new action
to the end of one agent’s action sequence, together with a
set of precedence constraints and causal links ensuring that

the plan remains executable.
This claim implies that we do not lose completeness by

requiring every intermediate search node to correspond to
an executable plan, as opposed to an arbitrary action set as
in POCL planning. Intuitively, this holds because there can
be no circular dependencies between actions, where adding
several actions at the same time could lead to a new exe-
cutable plan but adding any single action is insufficient.

More formally, let π = 〈A,N, L,O〉 be an arbitrary exe-
cutable plan. Let a ∈ A be an action which is not guaran-
teed to precede any other action in the plan (for example,
the action of going to crate 5 in Figure 1). In other words,
let a ∈ A be an action such that there exists no other action
b ∈ A where eff(a) ≺ inv(b). Such an a must exist, or the
precedence relation would be circular and consequently not
a partial order, and π would not have been executable.

Since a is not the predecessor of any other action, it can-
not have been used to support the preconditions and control
formulas of other actions in π. Removing it from the plan
will therefore have no negative effects in this respect. Sim-
ilarly, a cannot be required for mutual exclusion to be sat-
isfied: Removing a can only lead to fewer mutexes being
allocated, which can only improve executability.

Consequently, removing a and the associated plan nodes,
causal links and precedence constraints from πmust lead to
a new executable plan π′. We see inductively that any finite
executable plan can be reduced to the initial plan through
a sequence of such reduction steps, where each step results
in an executable plan. Conversely, any executable plan can
be constructed from the initial plan through a sequence of
action additions, each step resulting in an executable plan.

Since we assume finite domains, solution plans must be
of finite size and can be constructed from the initial plan
through a finite number of action addition steps.

Given finite domains, the action set must also be finite.
Furthermore, when any particular action is added to a plan,
there must be a finite number of ways to introduce new
precedence constraints and causal links ensuring that the
plan remains executable. Any search node must therefore
have a finite number of children, and the search space can
be searched to any given depth in finite time.

Thus, given a method for generating all valid child nodes
(finding all applicable actions), we can incrementally con-
struct and traverse a search space. Given a method for test-
ing goal satisfaction and a complete search method such
as iterative deepening or depth first search with cycle de-
tection, we have a complete planner. These issues will be
considered in more detail in the following subsections.

3.5 Partial States
Forward-chaining planners find applicable actions by eval-
uating preconditions in the current completely defined
state. For partially ordered plans there is no unique “cur-
rent” state, and we can rarely infer complete information
about the world even for a specific plan node or action.
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Inv: Go to crate 12

Nodes for robot3 Nodes for uav4

Inv: Takeoff

Eff: Fly to carrier 4

Effects: Initial action

Invocation: Initial action

Eff: Go to crate 12 Eff: Takeoff

Inv: Fly to carrier 4

Figure 3: Example POFC plan structure

However, as discussed previously it is possible to infer and
store partial state information for any plan node.

A variety of structures can be used for this purpose, each
having its own strengths and weaknesses. For example, as-
sociating each plan node with a set of possible states would
allow any fact that can be inferred from the current plan
to be represented, including arbitrary disjunctive facts such
as at(uav4, pos1)∨at(uav5, pos1). However, such structures
tend to require considerable space and may take a consider-
able amount of time to update when new actions are added.

Instead, we currently use partial states represented as a
finite set of possible values for each fluent: f ∈ {v1, . . . , vn}.
The evaluation procedure defined below resolves as many
parts of a formula as possible through this partial state for
efficiency. Should this not be sufficient to completely deter-
mine the truth or falsity of the formula, the procedure falls
back on an explicit traversal of the plan structure for those
parts of the formula that remain unknown. This grounds
evaluation in the initial state and the explicit effects in the
plan for completeness.

The Initial State. The initial plan consists of a single ac-
tion a0, whose invocation node is associated with the empty
state and whose effect node directly and completely defines
the initial state of the planning problem at hand.

Updating States. When a new action is added to a plan,
states associated with existing nodes must be incrementally
updated to reflect the changes that this might have caused.
For example, consider the situation in Figure 3 and assume
that robot3 is initially at depot1. Before we add the action
of going to crate12, the plan includes no movement for the
robot, and the invocation node for takeoff will include the
fact that robot3 remains at depot1. When the new action is
added, it is temporally unconstrained relative to the takeoff
action. Then we only know that when takeoff is invoked,
robot3 will be either at depot1 or at crate12.

State updates must generate “sound” states: When a par-
ticular node is reached during execution, each fluent must
be guaranteed to take on a value included in the state of the
node. However, updates do not have to yield the strongest
information that can be represented in the state structure,
since formula evaluation will be able to fall back on ex-
plicit plan traversal. Thus, a tradeoff can be made between
the strength and the efficiency of the update procedure.

For example, a sound state update procedure could
weaken the states of all existing nodes in the plan: If a
state claims that f ∈ V and the new action has the effects
f := v, the state would be modified to claim f ∈ V ∪ {v}. On
the other hand, it is clear that no effect node can interfere
with the states of its own ancestors. In Figure 1, for exam-
ple, the effect node for the action of picking up carrier 4
has ancestor nodes belonging to robot3 as well as uav4 and
cannot interfere with the states of these nodes. Therefore,
weakening the states of all non-ancestors is sufficient.

Generating New States. When a new plan node n is
added, it always has at least one immediate predecessor –
a node p ≺ n such that there exists no intermediate node
where p ≺ n′ ≺ n. In Figure 3, for example, the invocation
node of going to crate12 has a single immediate predeces-
sor: The effect node of the initial action. If an action is
also constrained to start after an action belonging to an-
other agent, it can have multiple immediate predecessors.

Let n be a new node and p one of its immediate predeces-
sors. It is clear that the facts that hold in p will still hold in n
except when there is explicit interference from intervening
effects. Therefore, taking the state associated with p and
“weakening” it with all effects that may occur between p
and n, in the same manner as in the state update procedure,
will result in a new partial state that is valid for n.

For example, let n be the invocation node of going to
crate12 in Figure 3, and let p be the effect node of the initial
action. We can then generate a state for n by taking the
state of p and weakening it with the effects associated with
taking off and flying to carrier 4, since these are the only
effect nodes that might intervene between p and n.

Now suppose that we apply this procedure to two im-
mediate predecessors p1 and p2, resulting in two states
s1 and s2 both describing facts that must hold at the new
node n. If s1 claims that f ∈ V1 and s2 claims that f ∈ V2 for
some fluent f, then both of these claims must be true. We
therefore know that f ∈ V1 ∩ V2. This can be extended to
an arbitrary number of immediate predecessors, resulting
in stronger state information when a new node is created.
Note that given that agents are loosely coupled, a node gen-
erally has very few immediate predecessors, which limits
the time required for state generation.

Conjoining information from multiple predecessors of-
ten results in gaining “new” information that was not pre-
viously available for the current agent. For example, if
robot3 loads boxes onto a carrier, incrementally updating a
total-weight fluent, other agents will only have partial infor-
mation about this fluent. When uav4 picks up the carrier,
this action must have the last load action of robot3 as an
immediate predecessor. The UAV thereby gains complete
information about weight and can use this efficiently in fu-
ture actions.

Finally, if the new node is an effect node, its own effects
must also be applied to the new state.
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Inv: ???

Nodes for robot3 Nodes for uav4

Inv: Takeoff

Effects: Initial action

Invocation: Initial action

Eff: Takeoff

Figure 4: A new invocation node is being created

3.6 Searching for Applicable Actions
When searching for applicable actions, we first determine
which agent to use. Several heuristics can be used, such as
reusing agents to the greatest extent possible or distributing
actions evenly across all available agents. In the latter case,
we can calculate the timepoint at which we expect each
agent to finish executing its actions in the current plan and
test agents in this order. This selection must naturally be a
backtrack point, to which the planner can return in order to
try a different choice of agent. The same applies to many
other choices below.

The intention is then to make use of the previously dis-
cussed procedure for generating state information in order
to quickly detect most inapplicable actions for the selected
agent. For some of the remaining actions, we may have to
introduce precedence constraints in order to actively make
the actions applicable. For example, suppose we are testing
whether uav4 can pick up carrier4. This may only be possi-
ble if the pickup action is constrained to occur after robot3
loaded the carrier.

Satisfying Preconditions. When a specific agent has
been chosen, we create a new invocation node n that is not
yet associated with a particular action. This node is ap-
pended to the end of the selected agent’s node sequence, or
after the initial action a0 if no agent-specific actions have
been added previously. In Figure 4, for example, a new in-
vocation node for robot3 is being created. At this point, n
will always have a single immediate predecessor.

We then generate a “temporary” partial state s for n ac-
cording to the procedure discussed previously. This state
includes many of the facts that must hold when the new
action is invoked, regardless of which action happens to be
selected. Consequently it can be used to efficiently separate
potential new actions for the current agent into three sets,
where preconditions and precondition control formulas are
definitely satisfied (A+), definitely not satisfied (A−), and
potentially satisfied (A?), respectively.

For actions in A?, there is currently insufficient informa-
tion in s to determine whether the required conditions hold.
This may be due to incomplete state updates or because it is
inherently impossible to determine the value of a particular
fluent given the current partial order. For example, robot3
may only be able to move to launchpad1 if uav4 has already
taken off, which requires n to be ordered strictly after the ef-
fect node of takeoff. Thus, new precedence constraints may

be required to ensure that an action is executable, which
may give n additional immediate predecessors. This can
only strengthen the information previously provided in s,
never invalidate it.

Given sufficiently loose coupling, together with the ex-
istence of agent-local and static facts, A? will be compara-
tively small. Nevertheless, actions in this set must also be
handled. For this purpose we define the procedure make-
true(α, n, π), which recursively determines whether a for-
mula α can be made to hold in n, and if so, which prece-
dence constraints need to be added for this to be the case.
Subformulas are evaluated in the partial state of n whenever
possible.

The procedure returns a set of extensions correspond-
ing to the minimally constraining ways in which the prece-
dence order can be constrained to ensure that α holds in n.
Each extension is a tuple 〈P,C〉 where P is a set of prece-
dence constraints to be added to O and C is a set of causal
links to be added to L. Thus, if α is proven false regardless
of which precedence constraints are added, ∅ is returned:
There exists no valid extension. If α is proven true with-
out the addition of new constraints, {〈∅,C〉} is returned for
some suitable set of causal links L. In this case, the state
of n can be updated accordingly, providing better informa-
tion for future formula evaluation.
We will now describe the make-true procedure. Certain
aspects of the procedure have been simplified below to im-
prove readability while retaining correctness. A number
of optimizations to this basic procedure can and have been
applied, several of which will be discussed below the main
procedure description.

Assume that we call make-true(α, n, π), where π =

〈A,N, L,O〉, and let s be the partial state of n.
Let us first consider the base case, where α is the atomic

formula f = v. If this is true according to s, we determine
which node n′ generated the supporting value for f and re-

turn {〈∅, {n′
f=v
−−→ n}〉}. If the formula is false according to s,

we return ∅. Otherwise, s contains insufficient information
to determine whether the formula holds. We then find all ef-
fect nodes E = {e1, . . . , em} in π that assign the value f = v.
This set may be empty, in which case we must return ∅.
If |E| > 0, then for each effect node ei ∈ E, we generate
all sets Pi, j of minimally constraining new precedence con-
straints that we could use to ensure that the relevant effect
cannot be interfered with between ei and n. Each set Pi, j,
together with the associated causal links, forms one valid
extension. The set of all these extensions is returned.

The case where α has the form f , v is handled similarly.
If α is a negated formula ¬β, the negation is pushed

inwards using standard equivalences. For example,
make-true(¬(β ∧ γ), n, π) = make-true(¬β ∨ ¬γ, n, π).

If α is a conjunction β ∧ γ, then both conjuncts must be
satisfied. We first determine how β can be satisfied by re-
cursively calling E1 = make-true(β, n, π). If this returns ∅,
we immediately return ∅: If we cannot satisfy the first con-
junct, we cannot satisfy the conjunction. Otherwise, we
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need to determine how the extensions in E1 can be further
extended so that γ is also satisfied. For every extension
〈Pi,Ci〉 ∈ E1, we let πi = 〈A,N, L ∪ C,O ∪ P〉 and call
make-true(γ, n, πi). We take the union of all results, remove
all extensions that are not minimal in terms of precedence
constraints, and return the remaining extensions.

If α is a disjunction β ∨ γ, then it is sufficient
that one disjunct is satisfied. We therefore calculate
make-true(β, n, π)∪make-true(γ, n, π), corresponding to all
ways of satisfying either disjunct. We then remove all ex-
tensions that are not minimal in terms of precedence con-
straints and return the remaining extensions.

Finally, if α is a quantified formula, we iterate over the
finite set of values in the domain of the quantified variable.
Universal quantification can then essentially be considered
equivalent to conjunction, while existential quantification
is equivalent to disjunction.

This procedure may seem quite complex. However, any
POCL planner must also resolve unsupported conditions in
a similar manner, searching for existing actions that support
the conditions or possibly adding new actions for support.
Apart from the order of commitment, the main differences
are that the POFC planner uses a partial state to quickly
filter out most candidate actions and is restricted to search-
ing for existing actions supporting conditions as opposed to
adding new actions.

Similarly, though the evaluation procedure may seem to
lead to a combinatorial explosion, recall that we are essen-
tially doing forward search. We must therefore find existing
support for all conditions in the current plan, which tends
to yield a reasonably sized set of consistent extensions.

A number of optimizations can also be applied.
For example, instead of calculating all possible exten-

sions in a single call, extensions can be returned incremen-
tally as they are found.

It is possible to store and efficiently update a map asso-
ciating each fluent with the nodes affecting it, for efficiency
when searching for support for an atomic condition.

The evaluation order can be altered so that one always
evaluates those parts of a formula that can be resolved in the
current partial state before those parts that require support
from effect nodes. This is useful in cases such as when
the first conjunct in a conjunction is not determined by the
partial state but the second conjunct is definitely false.

As a final example, we can structure the process of find-
ing all applicable instances of a particular operator so that
large sets of instances can be ruled out in a single evalu-
ation. For example, suppose that flying between two lo-
cations is only possible when a UAV is already in the air,
represented as the fluent flying(uav). Whether this condi-
tion holds depends on the agent but is independent of the
locations in question. If a particular UAV is not in the air,
there is therefore no need to iterate over all combinations
of locations.

Once the evaluation procedure has ensured that precondi-
tions and precondition control formulas will hold, we con-

tinue by adding precedence constraints ensuring that no
mutex is used twice concurrently. We then ensure that
the effects of the new action cannot interfere with existing
causal links in the plan. If this entire procedure proceeds,
the action was applicable and one of the possible sets of
precedence constraints and causal links can be added to the
plan.

Finally, we should note that goal satisfaction can be tested
in a manner equivalent to the make-true procedure. The
goal formula is then evaluated in a new node having all
other nodes as ancestors. Any extension returned by
make-true corresponds to one possible way in which the
current plan can be extended with new precedence con-
straints to ensure that the goal is satisfied after the execution
of all actions.

4 Related work
The ability to create temporal partially ordered plans is far
from new. A variety of such planners exist in the literature
and could potentially be applied in multi-agent settings.
Some of these planners also explicitly focus on multi-agent
planning. For example, Boutilier and Brafman [5] focus
on modeling concurrent interacting actions, in a sense the
opposite of the loosely coupled agents we aim at.

However, the main focus of this paper is to investigate
the possibility of taking advantage of certain aspects of
forward-chaining when generating partially ordered plans
for multiple agents. In this area, very little appears to have
been done. An extensive search through the literature re-
veals two primary examples.

First, a multi-agent planner presented by Brenner [7]
does combine partial order planning with forward search.
However, the planner does not explicitly separate actions
by agent and does not keep track of agent-specific states.
Instead, it evaluates conjunctive preconditions relative to
those value assignments that must hold after all actions in
the current plan have finished. This is significantly weaker
than the evaluation procedure defined in this paper. In fact,
as Brenner’s evaluation procedure cannot introduce new
precedence constraints, the planner is incomplete.

Second, the FLECS planner [11] uses means-ends analy-
sis to add relevant actions. A FLExible Commitment Strat-
egy determines when an action should be moved to the end
of a totally ordered plan prefix, allowing its effects to be
determined and increasing the amount of state information
available to the planner. Actions that have not yet been
added to this prefix remain partially ordered.

Though there is some similarity in the combination of
total and partial orders, FLECS uses a completely differ-
ent search space and method for action selection. Also,
whereas we strive to generate the weakest partial order pos-
sible between actions performed by different actions, any
action that FLECS moves to the plan prefix immediately
becomes totally ordered relative relative to all other actions.
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FLECS therefore does not retain a partial order between ac-
tions belonging to distinct agents.

Thus, we have found no existing planners taking advan-
tage of agent-specific forward-chaining in the manner de-
scribed in this paper.

5 Conclusions
We have presented a hybrid planning framework combin-
ing interesting properties of temporal partial order and
forward-chaining planning. We have also described one of
many possible planners operating within this framework.
We view this as an interesting variation of POCL plan-
ning worthy of further exploration, and believe that future
investigations will show that each framework has its own
strengths and applications.

An early prototype implementation of the suggested
planner has been developed. As we are still in the explo-
ration phase, the current implementation is written for read-
ability and ease of extension rather than for performance.
For example, many data structures can and will be replaced
with considerably more efficient ones. Therefore, standard
benchmark tests would provide no meaningful information
about the strengths of POFC planners as compared to other
temporal partial order planners.

However, the basic structure of this particular POFC
planning method can also be evaluated by observing search
patterns, such as the strength of pruning when precondi-
tion control formulas are used. Though a final judgment
has to await more extensive testing in multiple domains,
initial experiments indicate a pruning strength very simi-
lar to that of standard forward-chaining planners based on
control formulas for pruning, which is very promising.

Several extensions are planned for the near future, in-
cluding support for incompletely specified initial states and
the generation of conformant plans. We are also very
interested in investigating the use of domain-independent
heuristics for the new plan structure. Finally, we may de-
velop alternative search procedures more similar to POCL
planners in the sense that actions with currently unsup-
ported conditions can be added, resulting in flaws that can
be resolved through means-ends analysis.
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Abstract

Patterns for ontology engineering have received an
increased interest during the past few years. Ontol-
ogy patterns facilitate knowledge reuse and aid the
task of engineering application ontologies. Ontol-
ogy patterns provide general solutions, which are
encoded and stored for reuse purposes. This pa-
per first discusses the nature and characteristics of
ontology patterns, and presents a typology of ontol-
ogy patterns that can be used as an informal vocab-
ulary when presenting and reusing patterns. Sec-
ondly, we introduce a catalogue of ontology design
patterns, for the domain of product development,
which were re-engineered from existing knowledge
sources, and we especially list some experiences
from this re-engineering process. As future work
we envision an increased tools support for pattern
development and usage, as well as further experi-
ments using the proposed pattern catalogue.

1 Introduction

Ontology engineering, for the Semantic Web and
other application fields, is a tedious and error prone
process, requiring expertise in knowledge modelling
and logical languages. With the emergence of the
Semantic Web [3], Linked Data [4], and the intro-
duction of semantic technologies in different appli-
cation areas, e.g. Content Management Systems1,

∗The research presented in sections 2 and 3 was financed
by, and conducted at, a previous affiliation of the author;
the Information Engineering research group at Jönköping
University, Sweden.

1See the IKS project at http://www.iks-project.eu/

the usage of (logically) light-weight application on-
tologies has drastically increased. Such ontologies
are not heavily axiomatized, but provide just a bit
of formal semantics to a data set. Thereby web
and system developers in these fields have become
more and more interested in ontology engineering,
e.g. on the Semantic Web it is no longer the case
that most ontologies are carefully constructed by
knowledge engineers, instead they are drafted by
people who have only a brief knowledge of the un-
derlying logical formalisms of ontology languages
(such as the Description Logics-based Web Ontol-
ogy Language, OWL). An example of this trend is
the successful series of VoCamps2 arranged during
the past two years, where researchers and practi-
tioners get together and during one or two days
draft vocabularies, i.e., small ontologies, to be used
for describing some dataset.

To exploit the full benefits of the Semantic Web,
and other semantically-enhanced systems, applica-
tion ontologies therefore need to be easy to con-
struct. Motivated by this development we are fo-
cussing on knowledge reuse through ontology pat-
terns. Patterns are recurrent solutions to design
problems that can be stored and retrieved from
catalogues, and reused when engineering ontologies
and semantic applications. However, so far there
exist no coherent and uniform classification model
for ontology patterns, hence, there is no common
vocabulary for discussing patterns.

Patterns have so far mainly been available for ad-
dressing syntactic representation and logical mod-
elling problems (e.g. the OWL patterns proposed

2http://vocamp.org/wiki/WhatIsVoCamp
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by the W3C3, and logical patterns as in the cat-
alogue maintained by the University of Manch-
ester4), and even when present they are still quite
scarce and often very general, in terms of domain
applicability. General patterns are highly reusable,
but in addition hard to match to the problem at
hand, and reuse in a correct manner. These draw-
backs support the need for pattern catalogues tai-
lored for more specific domains, such as product de-
velopment application ontologies, which is the tar-
get of this paper. The ideal procedure for pattern
development is an organic growth of a pattern cat-
alogue from the joint experiences of a community.
However, this process may take several years. In or-
der to kick-start the usage of patterns we propose
to also re-engineer other patterns (e.g. data model
patterns) into ontology patterns. For data model
patterns domain specific catalogues already exist
and are freely available, although not formalized.

This paper starts by introducing some basic no-
tions of ontology engineering in section 1.1. Section
2 proposes a pattern typology and some general
characteristics for describing patterns. In section 3
we address the problem of developing content on-
tology design patterns (Content ODPs) based on
existing knowledge sources, and their initial evalu-
ation and refinement. Related work is mentioned
in section 4, and as an introduction to ongoing and
future work section 5 briefly presents two tools for
ontology pattern development and reuse, before we
conclude with the discussion in section 6.

1.1 Ontology Engineering

In this paper we focus on the notion of application
ontologies [16], i.e. ontologies built and tailored for
a specific application scenario, as opposed to for
example general domain ontologies or abstract top-
level ontologies. Engineering of application ontolo-
gies is a continuous process incorporating the com-
plete life-cycle of an ontology[14]; everything from
the description of its intended application, require-
ments engineering, ontology construction, ontology
reuse, to deploying the ontology in the application,
maintaining, and evolving it. An important part of
ontology engineering is the actual modelling of the
ontology, which is the main focus of the patterns

3http://www.w3.org/2001/sw/BestPractices/OEP/
4http://www.gong.manchester.ac.uk/odp/html/index.html

in this paper. A set of questions (first proposed by
the author in [5], based on an overview of the field)
can briefly summarize the problem areas on differ-
ent abstraction levels that need to be addressed in
order to build (model) an ontology:

1. What is the purpose of the ontology; how is it
to be applied in a software system?

2. What parts are to form the ontology; how
should the architecture be formed?

3. What should the ontology contain; what con-
cepts, relations, and axioms?

4. How should the ontology be represented syn-
tactically?

The first question pertains to the requirements and
the interface of the ontology. An application on-
tology has a well-defined set of requirements and
should be tailored to the way it will be used in
a software system. The second question concerns
the overall architecture of the ontology, e.g. the
different knowledge domains to include, the differ-
ent views needed etc. The third question addresses
the detailed design and content of the ontology, i.e.,
how the individual requirements will be realized in-
side the overall structure given by the ontology ar-
chitecture. Finally, the fourth question deals with
representation, e.g., the logical language to repre-
sent the ontology, efficiency of reasoning, and us-
ability (in terms of understandability by humans).

2 Pattern Characteristics and
Typology

We generally define ontology pattern as:

Definition 1. An ontology pattern is a set of onto-
logical elements, structures or construction princi-
ples that intend to solve a specific engineering prob-
lem and that recurs, either exactly replicated or in
an adapted form, within some set of ontologies, or
is envisioned to recur within some future set of on-
tologies.

Based on this definition a pattern has to pro-
vide a solution to a specific engineering problem
or category of problems (problem focus), and recur
in existing solutions or envisioned solutions (reuse
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focus). The nature of the ’engineering problem’ is
not important, however, it has to involve ontolo-
gies in some way or another, e.g. it can be any
problem where an ontology is seen as the solution
or the construction and maintenance of that ontol-
ogy. These are considered as necessary and suffi-
cient conditions. A pattern is usually also based
on ’best practices’, but this is not a necessary con-
dition. A pattern that does not follow such best
practices, but instead exhibits a common problem
or mistake is usually denoted an anti-pattern.

2.1 Basic Perspectives on Patterns

Regarding their origin, either patterns are purely
experience-based, i.e., produced bottom-up through
some pattern mining or recognition technique, or
they can be carefully designed and constructed, as
abstract templates, i.e., produced top-down. From
the bottom-up perspective, patterns are recurring
structures in some set of solutions. In contrast,
from the top-down perspective, patterns are tem-
plates that represent a consensus view on a specific
problem. In ontology engineering both perspectives
exist, including hybrid approaches.

2.1.1 Structure or Content Focus

Structural patterns deal with the logical structure
of the ontological elements, but not with the ac-
tual ontology represented by these. A structural
pattern has an empty signature, i.e., on the de-
sign level no actual named classes and properties
are proposed by the pattern. An example of such
a structural pattern (with an empty signature) is
the logical macro ’disjoint union’ (which in OWL 2
has its own language construct but in OWL 1 could
merely be described as an abstract pattern). The
pattern expresses the notion of an exhaustive par-
tition of a class into a set of subclasses, which are
all mutually disjoint. In contrast, content patterns
deal with ontological modelling solutions, hence,
they are domain specific, where the scope of the
domain depends on their level of ontological ab-
straction. An example of a content pattern (with
a non-empty signature) is the Situation5 pattern,
which is a instantiation of the structural n-ary rela-
tion pattern within the domain of situations, i.e. it

5http://ontologydesignpatterns.org/wiki/Submissions:
Situation

contains a class ’Situation’ which is the projection
of the n-ary relation, and two properties ’isSetting-
For’/’hasSetting’ to indicate the things involved in
the situation. Since the pattern contains actual
named classes and properties it has a non-empty
signature, i.e. it proposes a vocabulary for situa-
tions. Structural and content design patterns have
been discussed in detail in [12].

2.1.2 Abstraction and Granularity

Granularity is concerned with the scope of the pat-
tern, e.g. treating some small part of an ontology
in detail or treating a complete ontology. Whatever
level of granularity is chosen, patterns are focused
on solving one specific problem, on that specific
level of granularity. Abstraction is about hiding the
details of some structure in order to describe an-
other aspect of the structure in a more convenient
manner, thereby ’abstracting’ from the details. Ab-
straction is more than a change of granularity how-
ever; a change in abstraction means switching per-
spective to view completely different aspects, e.g.
by using a new form of representation.

2.2 Pattern Typology

We define four levels of abstraction, including ap-
plicable levels of granularity, of ontology patterns.
A very preliminary proposal for granularity levels
was suggested in [7]. In this paper we present a
more elaborate classification where (i) the levels
have only one differentiating notion, while in [7] ab-
straction and granularity were used simultaneously,
and (ii) the levels have been detailed and given in-
tensional definitions. The abstraction levels, and
corresponding levels of granularity, of ontology en-
gineering patterns provide a top-down framework
for classifying and describing ontology engineering
patterns; a pattern typology. The framework can
be illustrated as in Table 1. The levels are described
in detail below and each correspond to one of the
questions in section 1.1.

2.2.1 Abstraction Level:
Application Patterns

To address the first question of ontology engineer-
ing, as listed in section 1.1, application patterns are
intended to address problems concerned with the
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Table 1: Ontology pattern typology.

Abstraction Granularity
Application patterns Overall ontology
Architecture patterns Overall ontology

Ontology module
Design patterns Overall ontology

Ontology module
Logical elements

Syntactic patterns Overall ontology
Ontology module
Logical elements
Element syntax

overall scope and purpose of the ontology. There is
only one level of granularity possible, i.e. viewing
the complete ontology as a unit. In [1] the notion of
ontology application pattern was defined as follows:

Definition 2. An ontology application pattern is a
software architecture pattern describing a software
system that utilises ontologies to create some of its
functionality. The pattern describes properties of
the ontology, or ontologies, in the system, and the
connection between the ontology and the rest of the
system.

Examples of ontology application patterns can be
found in approaches such as by Harmelen et al.[24],
which define common reasoning patterns that can
be realized by ontologies to support some function-
ality of a software system.

2.2.2 Abstraction Level:
Architecture Patterns

To address the second question in section 1.1, ar-
chitecture patterns are concerned with the overall
organisation of the ontology. An ontology architec-
ture pattern is defined as:

Definition 3. An ontology architecture pattern is
a pattern describing the overall structure of the on-
tology, prescribing certain construction principles
and restricting the selection of design patterns that
can be used to implement the ontology.

Note that on this level of abstraction, the de-
tails of the ontology (concepts and relations) are

not considered, nor how to realize the ontology in
some logical language. Ontology architecture pat-
terns can be of two different levels of granularity,
either treating the complete ontology or only part
of the ontology, e.g. one ontology module. To the
best of our knowledge, there are so far no ontology
architecture patterns proposed in literature.

Analogous to software architectures, also ontolo-
gies can benefit from more detailed descriptions of
typical architectures. In software engineering a ref-
erence architecture can be defined as a set of archi-
tecture patterns applied to a specific well-known
problem [2], however, note that this is still not a
concrete software architecture, i.e. it is a problem
decomposition mapped onto abstract components.
We analogously define the notion of ontology refer-
ence architecture as a domain specific instance of
one or more ontology architecture patterns:

Definition 4. An ontology reference architecture is
a domain-specific ontology architecture pattern con-
taining restrictions and requirements on both the
structure and content of the complete ontology.

2.2.3 Abstraction Level:
Design Patterns

The third question in section 1.1 concerns the level
of design patterns, addressing the actual modelling
of the ontology. We define an ontology design pat-
tern as:

Definition 5. An ontology design pattern is a set
of ontological elements, structures or construction
principles that solve a clearly defined particular
modelling problem.

Ontology design patterns describe solutions on
the abstraction level of logical ontology modelling
languages, on three levels of granularity; 1) treating
individual logical elements, e.g. logical axioms or
macros, 2) treating a smaller part of the ontology,
e.g. one module, or 3) treating the complete on-
tology, e.g. restricting the overall structure on the
logical level. The latter is not to be confused with
the architecture patterns previously described. On
the abstraction level of architecture patterns the
overall structure is in focus, without considering
the logical realisation of that structure on the mod-
elling level. While on the design level, an example
on the granularity level dealing with the complete
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ontology could be ’taxonomy’, i.e. restricting the
logical constructs of the complete ontology but on
the abstraction level of logical constructs.

So far, most of the ontology patterns proposed
are on the level of design patterns. For example,
the structural patterns developed by the Univer-
sity of Manchester6 and the W3C7, and the content
patterns collected in the ODP Portal8.

2.2.4 Abstraction Level:
Syntactic Patterns

The final question of section 1.1 concerns represen-
tation; e.g. naming of ontology elements or the
ontology itself, and how the elements and axioms
are represented in some machine processable syn-
tax. We define a syntactic pattern as:

Definition 6. A syntactic ontology pattern is the
realisation of other ontology patterns, or parts or
combinations of ontology patterns, in a specific rep-
resentation syntax.

This definition adds an additional lowest level of
granularity for this type of pattern, where single
strings and character combinations are the core of
the pattern. Most ontology representation syntaxes
have their own common constructs, or in software
engineering terms, their own language idioms. For
example, lexico-syntactic patterns can be consid-
ered as syntactic patterns of ontologies, e.g. Hearst
patterns [18] representing subclass relations. Other
examples are naming conventions [23], e.g. using
the camel convention for naming classes and prop-
erties, or using verbs for property names.

3 Pattern Catalogue

During the course of our research we have de-
veloped a set of content ontology design patterns
(Content ODPs), on the granularity level of solv-
ing small design problems (modules) within an
ontology. This means that the patterns them-
selves are small ontologies, with additional anno-
tations describing them, such as the general re-
quirements that each pattern solves (usually ex-
pressed in the form of Competency Questions [15]).

6http://www.gong.manchester.ac.uk/odp/html/index.html
7http://www.w3.org/2001/sw/BestPractices/OEP/
8http://ontologydesignpatterns.org/wiki/Submissions:

ContentOPs

The patterns have been re-engineered from differ-
ent sources, mainly data model patterns. This sec-
tion describes the re-engineering process, and the
refinement process leading up to the submission of
a set of patterns, i.e. a small product development
pattern language (c.f. pattern languages in soft-
ware engineering), to the ODP Portal9, and the
experiences collected during this process.

3.1 Re-engineering

The initial re-engineering steps have already been
discussed in [5], hence, we only give a brief overview
of the process in this section. The initial set of Con-
tent ODPs developed consisted of 26 patterns. The
sources were, in addition to data model patterns
[17, 21, 20]: software analysis patterns [9], top level
ontologies [11], goal structures [22], and cognitive
patterns [13]. The set of patterns was constructed
with a specific domain in mind, i.e. product devel-
opment application ontologies (hence not a specific
industry domain), intending to create a small pat-
tern language for this domain. Initially a simple
translation approach was applied, defining a one-
to-one mapping between constructs in the original
representation of the sources and ontology element
types, e.g. an entity in a data model pattern was
mapped to a concept in the ontology language.

The initial set of patterns was tested during the
development of a requirements engineering ontol-
ogy in the context of the research project SEMCO,
see [6]. A subset of the patterns (randomly se-
lected) were evaluated together with domain ex-
perts. Based on the initial feedback the patterns
were updated (details in [6]), and some were re-
moved from the catalogue due to their low under-
standability. The remaining patterns were trans-
lated into OWL, since this language had by this
time emerged as the W3C recommendation. This
additionally meant removing a few patterns, since
not all translated well into OWL, i.e. some inher-
ently assumed an information modelling paradigm
not easily translatable into Description Logics.

The remaining patterns were now tested in a re-
run of the SEMCO experiment, as well as two other
research projects, see [5], and compared to a set of
more general patterns from the ODP portal. The
interesting conclusion was that even though the

9http://ontologydesignpatterns.org
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patterns in the domain-specific catalogue were in-
tended for the product development domain, some
patterns (and parts of patterns) were actually ap-
plicable also in new domains (in this case university
education and agriculture).

3.2 OWL ’Best Practices’ and ODPs

Based on experiences from these experiments a sub-
set of the initial catalogue, 19 patterns, were con-
sidered to have been very valuable, hence worth
exposing to the ontology pattern community. This
set was selected to be published in the ODP Por-
tal. Before publishing however, we decided to apply
some of the best practices encoded in other ODPs
already present in the portal, in order to (i) increase
the model quality (i.e. by applying modelling best
practices) of the re-engineered pattern candidates
in our catalogue, and to (ii) align our ODPs to
existing ones, i.e. reuse existing patterns where ap-
plicable instead of redefining constructs.

This process was performed as an ODP-driven
ontology evaluation, taking each candidate ODP
from our catalogue at a time and identifying (1)
modelling issues that did not follow OWL best
practices, and (2) overlap with existing ODPs in
the ODP portal. For each issue (1) we re-modelled
our candidate ODP to apply the existing best prac-
tice. This included changes such as adding inverse
relations, adding comments and labels, as well as
changing the model to remove particularities intro-
duced by the source pattern, e.g. an extra class
representing a many-to-many relation in a database
setting (in an OWL model this class has no added
value). For each issue (2) we replaced the overlap-
ping part of our candidate ODP by importing the
existing ODP and if necessary specializing it, i.e.
introduce the original terminology rather than the
abstract one of the imported ODP.

One major issue we found, related to (1), i.e.
modelling best practices, was the size and overlap of
our candidate ODPs. In accordance with cognitive
principles ODPs should be small enough so that
all aspects can be visualized at the same time, and
the main intent grasped more or less immediately
[12]. Some of our candidate ODPs had between 20
and 40 classes, and covered several aspects, rather
than one specific modelling problem. Additionally,
several candidate ODPs covered common concepts,
hence, we decide to extract these common parts.

Table 2: The pattern candidates.
Pattern name Key terms

Action action, plan
Analysis Modelling analysis approach, modelling
Communication Event event, contact mechanism,

relationship
Employee Department employee, department
Engineering Change change, impact, status,

specification
Information Acquisition elicit, record, documentation
Organisation organisation, informal, legal
Part specification product, part, specfication
Party organisation, person,

classification
Person name, birth date, gender
Planning Scheduling plan, allocate, order
Position party, position, fulfillment
Product product, good, service
Product Association product, complement, substitute
Product Category product, category, classification
Product Feature feature, applicability,

feature interaction
Requirement requirement, product, internal,

customer
Requirement Description requirement, product, feature,

deliverable
Requirements Analysis analysis, modelling, acquisition
Validation Testing criteria, strategy, metric
Work Effort effort, requirement

One such ’new’ pattern was the Product pattern,
representing information about products. This
structure was previously present in several of the
other patterns, but in the final revision the prod-
uct information was collected in a separate pattern,
which is then imported by other patterns where
needed. Similarly, information about requirements
is now represented separately, since it recurred in
several patterns. The final set of 21 patterns are
listed in Table 3.2. Due to space restrictions we
are not able to go into details of all the patterns,
however an example is presented in section 3.4. The
’key terms’ in the table are concept labels, or parts
of labels, from the pattern that can be seen as
example keywords indicating the topic of the pat-
tern. These patterns are now being submitted to
the ODP Portal repository of patterns, to await
scrutiny by the pattern community and the quality
committee of the ODP Portal.

3.3 Experiences

From the re-engineering effort, and the subsequent
evaluations and refinement of the patterns, we have
gained a number of valuable experiences. One ex-
perience is related to the nature of the sources of
re-engineering. Since none of the sources were ex-
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pressed in a formal language, but rather descrip-
tions and example models in a book, the direct
mapping method that we applied created some less
than optimal solutions. For example, the data
model sources commonly contained entities such as
’other x’, indicating a concept that would contain
’the rest’ in an otherwise non-exhaustive partition.
Such entities are relevant when transforming for
example an ER-model into a relational database,
since there needs to be a table storing these ’other
x’. While, when using ontologies, this restriction
is not present, an instance can simply have the
type of the superclass, if this is not defined as an
exhaustive partition, hence such ’other x’ entities
should not be transformed into concepts during re-
engineering, but only be seen as an indication of a
non-exhaustive partition.

When considering data model patterns they are
commonly tailored for a smooth transformation to
a relational database, hence they often contain ’ex-
tra’ entities representing the many-to-many rela-
tions that require an additional table in the rela-
tional model. This is an additional problem that is
not present in OWL/RDF, where data is stored in
triples. Thereby, identifying these superfluous enti-
ties and avoiding to transform them to concepts is
essential for arriving at an appropriate model. Ad-
ditionally, when using ontologies the definition of
certain concepts is more intuitive than when using
a relational model, hence concepts such as gender
should in an ontology be axiomatized while in a
relational model this will most often be a simple
character string programmatically restricted to ac-
cept certain values. Cases where ontologies give
an opportunity to define certain concepts more ex-
plicitly than allowed by other models, e.g. OWL
axioms instead of literals, should be identified.

Some pattern candidates were, in the last refine-
ment step, split into several patterns, to decrease
redundancy. To identify what are the natural bor-
ders and relations between patterns is an impor-
tant step. When studying the existing patterns
in the ODP Portal, some reuse opportunities were
also discovered, where general patterns, such as ’se-
quence’10 and ’partOf’11, were reusable by the pat-
terns in the catalogue. In the current version of the

10http://ontologydesignpatterns.org/wiki/Submissions:
Sequence

11http://ontologydesignpatterns.org/wiki/Submissions:
PartOf

pattern catalogue, several patterns reuse more gen-
eral patterns by importing and specializing them.
This is important from two respects; (1) to align
the ODP candidates to existing well-known Con-
tent ODPs, and (2) to reduce redundancy in the
catalogue of proposed ODPs by reusing existing so-
lutions instead of re-defining them.

3.4 Example Pattern

Due to space restrictions we cannot present the
complete catalogue in detail, however we here give a
representative example, i.e. a Content ODP named
Action, in order to illustrate the nature of the pat-
terns. It represents the relations between different
types of actions, the state of the actions, and de-
fines the relation between a plan and a set of pro-
posed actions. Figure 1 shows a diagram of the
Action Content ODP. In addition to the diagram-
matic representation Content ODPs are commonly
described using a number of catalogue entry fields
(c.f. software pattern templates), such as name,
intent, consequences, and building block (linking to
an OWL realization of the pattern).

4 Related Work

In parallel with this work another typology of on-
tology patterns was developed, as described in
[12]. The typologies, and the terminologies, are re-
lated and complementary. They represent two per-
spectives of ontology patterns. The classification
schema proposed in this paper takes a top-down ap-
proach, aiming to cover the complete development
process of an ontology, in terms of the drill-down
from highly abstract requirements to how the ontol-
ogy is represented. In [12] the authors instead take
a bottom-up approach, starting from what activi-
ties during the ontology life-cycle are actually per-
formed using patterns, or following best practices.
Hence, the terminologies are overlapping, and most
of the types of [12] can be classified under one of
the main categories presented in this paper, as long
as the focus is on constructing the actual ontology.
Related (non-design) activities are not covered by
our approach. Our approach focuses on a coherent
classification, where the differentiating notions be-
tween levels and subdivisions are uniform, rather
than solely related to current practice (as in [12]).
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Figure 1: The Action Content ODP’s graphical representation in UML (based on the OWL model).

The main difference in terminology is concerned
with the term ’design’. While [12] denotes all pat-
terns ’ontology design patterns’, referring to the fo-
cus on designing ontologies, our notion of ontology
design patterns has a narrower scope, and refers to
patterns related to the actual logical design of the
ontology, i.e. solving logical modelling problems.
Also, the notion of ontology architecture pattern is
slightly different; in this paper it is used only for
patterns that are focused on the overall structure
of the ontology, disregarding logical representation,
while [12] in addition uses it for logical restrictions
on the design level that concern the complete on-
tology, i.e. mixing two levels of abstraction.

Related work on collecting catalogues of ontol-
ogy patterns include the ODP Portal12 where pat-
terns are collected in a Wiki-based interface, letting
any community member contribute new patterns
and review other users’ patterns. Other pattern
catalogues also exist, such as the logical patterns
collected by the W3C13 and by the University of
Manchester14. A recent pattern re-engineering ef-
fort was described in [10], concerning the transfor-
mation of a component library into ODPs, how-
ever, we are not aware of any other similar efforts
for bootstrapping ODPs.

12http://ontologydesignpatterns.org
13http://www.w3.org/2001/sw/BestPractices/OEP/
14http://www.gong.manchester.ac.uk/odp/html/index.html

5 Current Tool Support

Some ontology patterns are suitable for description
as abstract templates that can be reused as gen-
eral ’ideas’ when engineering ontologies, while other
types of patterns can be more formally represented
and reused as concrete building-blocks. In this sec-
tion we briefly describe two tools for supporting
the development and reuse of ontology patterns;
the ODP Portal15 intending to support the com-
plete range of ontology patterns, and the XD Tools
Eclipse plugin mainly focused on support for Con-
tent ODPs as reusable OWL building blocks.

The ODP Portal is a semantic wiki portal for col-
lecting, distributing and discussing ontology pat-
terns. Technically it is based on the Semantic
Media Wiki16 framework, and plugins such as the
Evaluation Wiki Flow [8]. The portal is divided
into areas devoted to different types of patterns,
where the most prominent so far is the Content
ODP area. Each area contains a catalogue of sub-
missions and a certified catalogue. All members
of the portal community are free to upload pat-
terns in the submissions catalogue, while the certi-
fied catalogue is moderated by the portal’s quality
committee consisting of ontology engineering and
pattern experts. Patterns are certified through a

15http://www.ontologydesignpatterns.org
16http://semantic-mediawiki.org/wiki/

Semantic MediaWiki
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peer review process, following a certification re-
quest from the pattern author. Important features
of the portal also include the possibility to pro-
vide open reviews, i.e. any community member can
spontaneously review any pattern, and the possibil-
ity to post modelling issues and discuss possible so-
lutions and patterns. The portal additionally pro-
vides pattern training opportunities, and has been
used to support events such as the pattern track
at WOP200917 (Workshop on Ontology Patterns
co-located with ISWC2009).

The eXtreme Design Tools18 (XD Tools) is an
Eclipse plugin supporting the XD methodology for
ontology design pattern reuse, as described in [19].
It is compatible with ontology engineering environ-
ments such as the NeOn toolkit19 and TopBraid
Composer20. The XD Tools currently focuses on
supporting the reuse of content ontology design
patterns (Content ODPs). Content ODPs are com-
monly posted as reusable OWL building-blocks (in
the ODP Portal, see above) that can be specialized
into ontology modules realizing particular require-
ments of a concrete application ontology. The XD
Tools supports the specialization process through a
wizard, enforcing best practices such as adding la-
bels and comments to all entities and adding inverse
properties when applicable. Additionally XD Tools
includes functionality for ontology analysis, based
on best practices and ’rules of thumb’ for ontology
design, as well as an annotation wizard for describ-
ing the ontology modules built (based on ontology
annotation patterns imported into the tool).

6 Conclusions and
Future Work

In this paper we have presented a top-down ontol-
ogy pattern typology, based on the notion of on-
tology patterns as a development aid while engi-
neering an application ontology. The main differ-
ence to other proposed typologies is the coherence
of the different levels, i.e. they are uniformly dis-
tinguished. The proposed typology is also consis-
tent with common practice in software engineering

17http://ontologydesignpatterns.org/wiki/WOP2009:Main
18Available from: http://stlab.istc.cnr.it/stlab/XDTools
19http://www.neon-toolkit.org
20http://www.topquadrant.com/products/

TB Composer.html

where the terminology is defined in a similar way,
based on the abstraction level of the patterns. We
believe that having a coherent terminology and a
set of characteristics with which to describe ontol-
ogy patterns is essential, and will facilitate com-
munication between both researchers and ontology
engineers. Future work with respect to the pattern
typology is to further study patterns on the differ-
ent levels, and exemplify them, e.g. patterns are so
far are not present on the architecture level.

We also focused on a specific level, i.e. Con-
tent ODPs, and showed how such patterns can be
re-engineered from sources similar to ontologies,
in order to populate a pattern catalogue. In our
case the catalogue was designed for the product
development application ontology domain. The re-
engineering effort has given us a set of valuable
experiences that can be used as guidelines when
re-enginereing similar knowledge sources. Future
work includes to conduct more evaluation exper-
iments using the patterns in the catalogue. The
patterns will also be scrutinized by the ontology
patterns community through the ODP Portal.

Finally, according to the motivation presented
at the beginning of this paper we need to make
it easier to construct good application ontologies,
even for non-experts and common web developers.
We believe that having patterns on all the levels of
the presented typology will ease the building pro-
cess, however more tool support is still needed. In
this paper we presented two examples of current
tools that particularly support the reuse of Con-
tent ODPs, however in the future ontology patterns
on different levels of abstraction can support the
introduction of ontology engineering environments
more similar to CASE tools in software engineering,
where the developer is guided through a structured
process and best practices are enforced.
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Abstract 
The INFUSIS project is a three-year colla-
boration between industry and academia in 
order to further the development of new 
effective methods for generating predictive 
and interpretable models from machine 
learning and text mining to solve drug 
discovery problems.  

Introduction 

One of the most intensive areas of research 
within the pharmaceutical industry today is 
to collect and analyze data on absorption, 
distribution, metabolism, excretion and 
toxicity (ADMET) [1]. The overall purpose 
is to learn how various compounds interact 
with the human body in order to guide drug 
development projects in the search for 
promising compounds. Specifically, com-
pounds unsuitable as drug candidates, e.g., 
due to toxicity, should be detected as early 
as possible. Hence, a lot of effort is spent on 
front loading the drug development projects, 
i.e., a substantial amount of analysis is in-
vested in the very early phases of the 
projects. 

Currently, a commonly adopted approach is 
to leverage large libraries of chemicals 
(acquired or synthesized to meet stringent 

quality criteria)) and use high-throughput 
screening (HTS) to test for biological 
activity. Promising compounds found in this 
way become the focus for continued 
research, which typically leads to further 
synthesis and screening. Synthesis and 
screening processes are, however, often time 
consuming and costly, making it desirable to 
estimate the biological activity, as well as 
ADMET properties, before synthesis. When 
computer software is used for this initial 
modeling, the procedure is referred to as in 
silico modeling [1]. If successful, in silico 
modeling saves much time and investments 
by excluding non-promising compounds, 
thus allowing earlier focus on drug 
candidates with high potential. 

Several aspects of in silico modeling are 
investigated in the INFUSIS project1 
(INformation FUSion for In Silico modeling 
in pharmaceutical research), which is a 
collaboration of University of Skövde, 
University of Borås, AstraZeneca AB and 
Lexware Labs, running from January 2009 
to December 2011, with funding from the 
Swedish Knowledge Foundation and the 
industrial partners. The research problems 

                                                            
1 www.his.se/infusis 
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addressed by the project include handling of 
uncertainty of measurements or descriptors, 
improve interpretability of predictive models 
as well as advancing ensemble techniques to 
improve predictive performance and 
robustness. The INFUSIS project also tries 
to improve predictive modeling by fusing 
information from various sources such as 
unstructured texts where corpus technology 
is used to uncover relevant information. The 
challenges of the addressed problems and 
some results that have been achieved so far 
are presented in the following sections. 

Handling uncertainty 

This part of the project investigates the 
question:  to what extent can information on 
descriptor value uncertainty be exploited to 
improve in silico modeling. Standard 
decision tree and forest learning algorithms 
have been extended with the ability to build 
models from uncertain data specified by 
probability distributions rather than specific 
values. Empirical investigations on selected 
in silico modeling datasets with uncertain 
data have been undertaken comparing 
different strategies for representing uncert-
ainty and strategies for handling such distri-
butions during tree building. 

Different approaches to handling uncertain 
numerical features have been explored when 
using the random forest algorithm for 
generating predictive models. The two main 
approaches are: i) sampling from probability 
distributions prior to tree generation, which 
does not require any change to the 
underlying tree learning algorithm, and ii) 
adjusting the algorithm to allow for handling 
probability distributions, similar to how 
missing values typically are handled, i.e., 

partitions may include fractions of examples. 
In [2], an experiment with six datasets 
concerning the prediction of various 
chemical properties was presented, where 
95% confidence intervals were included for 
one of the 92 numerical features. In total, 
five approaches to handling uncertain 
numeric features were compared: ignoring 
the uncertainty, sampling from distributions 
that are assumed to be uniform and normal 
respectively and adjusting tree learning to 
handle probability distributions that are 
assumed to be uniform and normal respect-
ively. The experimental results show that all 
approaches that utilize information on uncer-
tainty indeed outperform the single approach 
ignoring this, both with respect to accuracy 
and area under ROC curve. A decomposition 
of the squared error of the constituent classi-
fication trees shows that the highest variance 
is obtained by ignoring the information on 
uncertainty, but that this also results in the 
highest mean squared error of the constituent 
trees. In [3], a similar experiment was pre-
sented on predicting product quality in a 
casting process. 

Future work includes extending the empiri-
cal investigation to a larger number of 
datasets and also to a larger number of un-
certain features. Another direction for future 
work includes investigating the effectiveness 
of the two main approaches (sampling vs. 
distributing fractions of examples) also for 
uncertain categorical features. 

Increasing interpretability 

When interpretable models are required, 
additional demands such as brevity, i.e., 
important relationships are described with as 
few rules as possible, can be placed on 
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models. An important issue is to develop 
algorithms that are able to optimize such 
properties. Furthermore, it is desirable that 
any parameters of such algorithms are easy 
to use and that they affect the results in a 
reasonably predictable way, e.g., allowing 
users to trade various interpretability 
properties against each other and also against 
different accuracy measurements. This 
project studies the use of in silico concept 
description modelling for drug discovery. 
The focus has so far been on techniques 
producing decision trees and ordered rule 
sets, also called decision lists. 

The decision list algorithm Chipper [4], 
specifically aimed at concept description, 
has so far been evaluated in two different 
studies on medicinal chemistry data sets.  In 
[5], three different decision list algorithms 
(JRip, PART and Chipper) were evaluated 
on a data set concerning the interaction of 
molecules with a human gene that regulates 
heart functioning (hERG). The main results 
were that decision list algorithms can obtain 
predictive performance not far from the 
state-of-the-art method random forests, but 
also that algorithms focusing on accuracy 
alone may produce complex decision lists 
that are very hard to interpret. The experi-
ments also showed that by sacrificing 
accuracy only to a limited degree, compre-
hensibility (measured as both model size and 
classification complexity, i.e., the average 
number of tests needed for a classification) 
can be improved remarkably. 

In [6], the task studied was how to obtain 
accurate and comprehensible QSAR models. 
The data sets used were 8 publicly available 
medicinal chemistry datasets, with six differ-

ent feature sets containing up to 1024 
attributes. Three techniques (J48 decision 
trees and JRip and Chipper decision lists) 
were evaluated on predictive performance, 
measured as accuracy, and comprehensi-
bility, measured as model size. The results 
on accuracy showed that J48 obtains 
superior accuracy, followed by Chipper, and 
then JRip. On comprehensibility, the results 
were reversed; JRip obtained the smallest 
models, followed by Chipper, with J48 
producing the largest models. Regarding the 
effect of feature reduction on accuracy, all 
techniques were seen to benefit from feature 
reduction, which almost always resulted in 
increased accuracy. For model size, how-
ever, feature reduction was seen not to be 
universally beneficial; only J48 produced 
smaller models for the reduced datasets, 
while both decision list algorithms actually 
produced larger models on average. The 
overall conclusion is that, for these datasets, 
there exists a definite trade-off between 
accuracy and interpretability.  

Future work consists of a more detailed 
study of the effect of feature reduction on 
decision lists and further development of the 
Chipper algorithm. 

Another way of obtaining interpretable 
models is to generate transparent represen-
tations of opaque models, an activity named 
rule extraction. We have previously develop-
ed a rule extraction algorithm based on 
genetic programming, called G-REX. [7].  

A recent addition to G-REX [8] is the ability 
to explicitly focus on extracting rules for a 
specific set of instances, similar to trans-
ductive learning. Another recent study [9] 
utilizes the inherent inconsistency of genetic 
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search to form an imaginary ensemble, 
which is then used as a guide when selecting 
one specific tree, as the comprehensible 
model. 

Current work includes further development 
of the G-REX framework, but also hybrid 
techniques producing comprehensible mod-
els. More specifically, we intend to explore 
the connection between rule extraction and 
techniques utilizing semi-supervised and 
transductive learning.  

Advancing ensemble techniques 

One major open research problem concerns 
the relationship between ensemble diversity 
and accuracy, which is not completely 
understood, especially for classification 
problems. Furthermore, several different 
studies show that the correlation between 
proposed diversity measures and test set 
accuracy is remarkably low, see e.g., 
[10,11].  Because of this, there is no widely 
accepted diversity measure that can be used 
for ensemble design. Currently, various re-
searchers instead try very different app-
roaches, resulting in a steady stream of 
highly specialized and quite technical en-
semble algorithms.  

Naturally, when presenting a novel algo-
rithm, the implicit claim is that the new 
algorithm, in some aspect, represents the 
state-of-the-art. Obviously, the most import-
ant criterion is predictive performance, 
typically measured using either accuracy or 
AUC. A recent study [12], using 32 publicly 
available data sets from the drug discovery 
domain, however, showed that several 
straightforward techniques producing ANN 
ensembles were more than able to match the 

performance of the widely acknowledged 
ensemble techniques GASEN [13] and 
NegBagg [14]. Especially NegBagg, which 
is a fairly recent algorithm, was constantly 
outperformed by most of the standard bagg-
ing versions included in the study. Never-
theless, the results for GASEN were even 
more striking, showing that it was most often 
detrimental to apply GASEN at all. Or, put 
in another way, creating an ensemble of all 
available ANNs was normally a stronger 
choice than using the subset suggested by 
GASEN.  

This project investigates how diversity 
measures can be utilized for choosing and 
combining models to further improve pre-
dictive performance. The overall goal is to 
develop a robust method that effectively 
incorporates measures of diversity to pro-
duce highly accurate ensemble models. 
Based on the findings in [12], further de-
velopment of straightforward techniques, 
which only implicitly target diversity, is 
prioritized. 

Another current study investigates how 
feature reduction should be applied to ANN 
ensemble training. Naturally, feature reduct-
ion in general has been heavily investigated, 
but studies targeting feature reduction for 
classifiers specifically trained to be part of 
ensembles are quite rare. Our algorithm, 
aimed at producing “optimal” different fea-
ture sets for the base classifiers, is based on 
genetic search and uses fitness functions 
combining accuracy and diversity measures.  

Finally, it could be noted that more accurate 
ensembles would probably be beneficial for 
black-box rule extraction techniques. 
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Fusing information from multiple sources 

Unstructured texts are among the most 
important additional information sources. Of 
particular interest are reports with experi-
mental data involving chemical processes 
important in tracing a certain biochemical 
activity, e.g., toxicity. Two tasks must be 
performed in order to obtain relevant data 
from texts in biochemistry. The first one is a 
special named entity recognition task: com-
pound names and chemical processes need to 
be identified in free text.  The other one is 
mapping of the names identified in texts to 
compounds in some suitable database. In this 
task, name ambiguity and variability consti-
tute the two chief problems to be addressed 
[15].  

We use text corpus technology tools to un-
cover relevant information from texts. Culler 
is an information retrieval system based on 
natural language processing. It allows versa-
tile and precise data extraction from natural 
language processed text collections, called 
corpora. Culler is adapted in the project to 
allow finding names of chemical com-
pounds. The adapted tool may hence be used 
to compile new sets of compounds. At the 
moment there are over 3,000 names of 
chemical substances available as one con-
cept class in queries in Culler corpora, 
available at http://bergelmir.iki.his.se/culler/.  

One corpus, called Diabetes, is a selection of 
about 200,000 abstracts on diabetes from 
PubMed. Patterns of the actual use of chemi-
cal nomenclature in research texts have been 
extracted from this corpus. There are signi-
ficant differences in how terms are registered 
in lexicons and how they are actually used 
[16], making the task of proper identification 

of chemical compounds in texts a non-trivial 
task despite availability of large libraries of 
chemical compounds. Chemlist is the library 
used in the project [17]. The text sources en-
compass a broad selection of PubMed ab-
stracts on obesity. The selection counts 
about 860,000 abstracts and it is currently 
being turned into a Culler corpus. 

Concluding remarks 

The INFUSIS project aims to contribute with 
tools and techniques for data and text 
analysis to support decision making in the 
domain of medicinal chemistry. In parti-
cular, presented and planned contributions 
include handling of uncertain data, gene-
rating interpretable models, utilizing diver-
sity and feature reduction for ensembles, and 
using text analysis to compile compound sets 
related to biochemical activities. 
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Winner of SAIS Best AI Master’s Thesis Award 2010

Roberto is awarded the prize for his excellent thesis that shows how constraint pro-
gramming, a classical AI technique, can be used to allow automated random testing of
a trading system. The thesis combines a strong theoretical foundation with a thorough
empirical evaluation. The developed techniques also lead to the discovery of unknown
faults and specification defects in a widely commercially deployed financial trading
system.

Abstract
Financial markets use complex computer trading systems whose failures can cause
serious economic damage, making reliability a major concern. Automated random
testing has been shown to be useful in finding defects in these systems, but its inherent
test oracle problem (automatic generation of the expected system output) is a drawback
that has typically prevented its application on a larger scale.

Two main tasks have been carried out in this thesis as a solution to the test oracle
problem. First, an independent model of a real trading system based on constraint
programming, a method for solving combinatorial problems, has been created. Then,
the model has been integrated as a true test oracle in automated random tests. The test
oracle maintains the expected state of an order book throughout a sequence of random
trade order actions, and provides the expected output of every auction triggered in the
order book by generating a corresponding constraint program that is solved with the
aid of a constraint programming system.

Constraint programming has allowed the development of an inexpensive, yet re-
liable test oracle. In 500 random test cases, the test oracle has detected two system
failures. These failures correspond to defects that had been present for several years
without being discovered neither by less complete oracles nor by the application of
more systematic testing approaches.

The main contributions of this thesis are: (1) empirical evidence of both the suit-
ability of applying constraint programming to solve the test oracle problem and the
effectiveness of true test oracles in random testing, and (2) a first attempt, as far as the
author is aware, to model a non-theoretical combinatorial double auction using con-
straint programming.
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