
SIGRAD 2010

Interactive Image-Space Volume Visualization for Dynamic
Particle Simulations

M. Falk and S. Grottel and T. Ertl

VISUS – Visualization Research Center, University of Stuttgart, Germany

Abstract
Particle-based simulation plays an important role in many different fields of science and engineering. Two common
visualization approaches for the resulting data are glyph-based rendering and density sampling employing volume
rendering. Fine geometric features are inherently captured by glyph-based methods. However, they might suffer
from aliasing and the global structure is often poorly conveyed. Volume rendering preserves the global structure
but is limited due to the sampling resolution. To avoid aliasing artifacts and large memory footprints, we propose
a direct volume rendering technique with on-demand density sampling of the particle data, as combination of
splatting, texture slicing, and ray casting. We optimized our system with a novel ray cast termination employing
early-z-test culling and hardware occlusion queries utilizing inter-frame coherency.
Our system contains a fully-featured volume renderer and captures all geometric features of the data set repre-
sentable at the available display resolution. Since no pre-computation is required, the proposed method can be
used easily to visualize time-dependent data sets. The effectiveness of our approach is shown with examples from
different application fields.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Raytracing

1. Introduction

There are many particle-based simulation methods from dif-
ferent fields of science, such as molecular dynamics, agent-
based simulations, discrete element method, and smoothed
particle hydrodynamics. These simulations usually comprise
a large number of entities which interact with each other, ei-
ther in a pairwise interaction scheme or by contributing to a
common continuous field which in return affects all entities,
which can be atoms, molecules, or mesoscopic or macro-
scopic particles. From a visualization point of view all these
entities can be handled rather equally as particles.

Particle-based simulations usually generate large data sets
due to their time-dependent nature. Visualizing such data
sets interactively is still a challenge. On commodity work-
stations, the mere data set sizes require highly optimized
software to achieve interactivity. Even the mapping from
the individual particles to visual primitives might not be
clear. Depending on the focus of the simulation different
visualization methods are commonly used, from points or

sprite-based particles, over density or probability volumes,
to highly specialized visualizations like protein secondary
structures. While point- or sprite-based rendering directly
shows the original data, these images often suffer from high
visual complexity due to visual clutter from a high number
of discrete graphical primitives.

To gain a more compact representation, which is usually
easier to understand, the particle data is sampled into a den-
sity volume and an iso-surface is rendered for a significant
iso-value. This approach is also related to metaball render-
ing (also called blobby surfaces). Surface representations are
common for protein data sets, surfaces or layers separat-
ing specific areas of the data sets in molecular dynamics,
and iso-surfaces of electron position probabilities in quan-
tum mechanics simulations. However, this technique has the
drawback of additional memory requirements for storing the
sampled volume data in addition to the particle data sets.

We therefore propose a volume rendering system with on-
demand reconstruction of the volume data to minimize this

35

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

Figure 1: Combining the volumetric visualization with the
rendering of the simulated cell emphasizes the propagation
of the signal. See Sec.4.1 for details.

additional memory consumption. Our contribution is an op-
timized slice-based volume ray casting interleaved with an
on-demand volume data reconstruction. Our method uses
hardware occlusion queries to implement a novel termina-
tion method for the ray casting. We exploit the frame-to-
frame coherency to compensate the additional overhead and
latencies which these queries introduce. To show the effec-
tiveness of our approach, we present examples from different
fields of application, including propagation of the signaling
front inside a cell in the context of systems biology, display-
ing relevant protein surfaces for biochemistry, as well as con-
tinuous material representations for data sets from molecular
dynamics simulations of laser ablation processes. Compared
to particle visualization and object-space volume ray cast-
ing our method results in superior image quality, due to the
evaluation in image-space, has less memory requirements,
since the volume data is only partially created on-demand,
and still reaches comparative rendering performance.

2. Related work

Particle-based simulation Particle-based simulations have
been used and studied for a very long time. The smoothed
particle hydrodynamics introduced by Gingold and Mon-
aghan [GM77] or molecular dynamics introduced by Mc-
Cammon et al. [MGK77] are nowadays among the most
popular simulation methods. In recent years the calcula-
tion power of graphics hardware was harvested for these
techniques. Kipfer et al. [KSW04] presented a GPU-based
system for particle simulations, which was, however, pri-
marily intended for rendering and animation and not scien-
tific simulation. A similar approach was presented by Kolb
et al. [KLR04] in the same year and was extended to simulate
coupled particles, i. e. particles reacting with each other and
not only reacting to an underlying velocity field [KC05], al-
lowing a Lagrangian particle simulation of fluids. Van Meel
et al. [vMAF∗07] used the modern general purpose GPU
API CUDA for a fully functional molecular dynamics sim-
ulation on graphics hardware. A smoothed particle hydro-
dynamics simulation on the GPU was presented by Zhang

et al. [ZSP08] to simulate and render liquids for computer
graphics.

In contrast to such physically motivated simulations,
which usually simulate a high number of particles with
rather simple particle interactions (e. g. pair potentials), there
are simulations following an orthogonal approach. E. g. in
systems biology the movement of molecules and proteins in-
side a cell are simulated, where the internal structure of the
cell – the cell cytoskeleton – is used to direct the movement
of the proteins toward the core of the cell [KLR09], result-
ing in a simulation of less particles but with rather complex
behavior (see Fig. 1).

Particle-based visualization Particle data sets are often
directly visualized using glyphs to represent the individual
particles. Gumhold [Gum03] presented an efficient way of
GPU ray casting for glyphs with polynomial surfaces, el-
lipsoids in his work, to visualize symmetric tensor fields.
A similar approach was used by Klein et al. [KE04] to vi-
sualize magnetic fields. Based on the same method Reina
et al. [RE05] showed how to ray cast complex glyphs, con-
structed from quadratic primitives, like spheres and cylin-
ders. This approach was extended by Grottel et al. [GRE09]
to arbitrarily composed glyphs with optimized data transfer
between CPU and GPU. Tarini et al. [TCM06] used methods
from computer graphics, like ambient occlusion and silhou-
ettes to enhance the depth perception. A recent publication
by Grottel et al. [GRDE10] highly optimizes the rendering of
particle glyphs employing hardware occlusion queries and
hierarchical depth buffers, allowing interactive visualization
up to 100,000,000 particles on commodity workstations.

For some fields of application, like proteins in bio-
chemistry, specialized visual metaphors exist. Krone
et al. [KBE08] showed how to generate the protein sec-
ondary structure representation on the graphics hardware. In
a recent publication they used GPU ray casting of quadratic
and quartic surfaces to render protein surfaces [KBE09].
Falk et al. [FKRE09] used GPU ray casting of spheres and
point splats to visualize the movement of proteins inside a
cell structure with different visual metaphors.

Metaballs rendering Compact representations of particle
data sets, like surfaces or layers between different parts of
the data, are most of the time the structures of interest. Such
surfaces can be defined as iso-surfaces of volumetric data.
Blinn proposed [Bli82] a metaball surface, an iso-surface in
a density volume, defined by radial symmetric density ker-
nel functions based at each particle. These metaballs can be
rendered by ray casting or by extracting a geometric rep-
resentation. Marching Cubes [LC87] is the most prominent
algorithm to extract the geometry of such a surface.

On modern graphics cards the metaballs can be interac-
tively evaluated and rendered. Kooten et al. [vKvdBT07] dis-
tribute points with repulsive forces on the surface and per-
form point-based rendering after the correct iso-surface is
found. Sampling with too few points results in holes and

36

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

Figure 2: Flow chart of our sliced ray casting method. In- and output buffers of the various stages are depicted above.
After initial ray setup, multiple rendering sub-passes of sampling position update, density reconstruction through splatting and
volume ray-casting are performed to generate the final image.

visual artifacts. Müller et al. [MGE07] propose two possi-
ble ways of iterative ray casting metaballs. One approach
– “walking depth plane” – uses multiple rendering passes
and samples the density volume at specific depths in ob-
ject space, which is related to our approach. The other
approach pre-calculates a neighborhood list and evaluates
the density from all neighboring particles in an iterative,
single-pass raycasting. However, both methods only hardly
achieve interactivity for medium-sized data sets. A method
with a similar fundamental idea was presented by Kanamori
et al. [KSN08], which however uses Bézier Clipping to find
the ray-isosurface intersection. Linsen et al. [LvLRR08] ex-
tended this surface approach to multivariate data.

Volume rendering As the metaball surface is an iso-
surface of a density volume, another approach is the com-
plete reconstruction of this density volume and to per-
form volume rendering. The system described by Cha
et al. [CSI09] follows this approach. In biochemistry confor-
mational changes of proteins can be visualized as flexibility
volume in a similar way, as presented by Schmidt-Ehrenberg
et al. [SEBH02].

Early implementations of volume rendering including
shading, like presented by Westermann et al. [WE98] blend
object-space-aligned texture stacks. View-aligned texture
stacks provide higher visual quality but require 3D tex-
tures. Nowadays, volume ray casting is used, as presented
e. g. by Drebin et al. [DCH88]. Krüger et al. [KW03] pre-
sented a view-aligned ray casting approach employing pro-
grammable graphics hardware. These multi-pass rendering
approaches have been superseded by single-pass volume ray
casting, e. g. presented by Stegmaier et al. [SSKE05].

Another approach for volume rendering is splatting, as
proposed by Westover [Wes90]. This approach has also been
optimized to harvest the computational power of modern
GPUs, e. g. by Neophytou et al. [NM05], to perform cor-
rect image-space aligned splatting of rectangular voxels.
Fraedrich et al. [FSW09] presented a system using this tech-

nique in a hierarchical fashion to interactively visualize a
large astronomy data set.

3. Our Approach

Our method of sliced ray casting with on-demand volume re-
construction combines the ideas of texture slicing, ray cast-
ing, and splatting. The reconstruction of the density field
from the particles is performed in screen space at viewport
resolution and at the sampling depths used by the volume ray
casting. The issue of perspective correction is thus moved
from volume rendering to data reconstruction. A tight inter-
leaving between the volume rendering and the data recon-
struction allows to minimize the required memory footprint.
A novel method for termination of the ray casting based on
inter-frame occlusion queries is employed to optimize the
overall performance of our system.

3.1. Overview

We propose to subdivide the viewing volume in viewing
direction in concentric spherical shells centered at the eye
e. The sampling positions on this shells coincide with the
sampling positions of classical ray casting. These shells are
equally separated by the volume sampling distance ∆λ and
are used to reconstruct the density volume. This is done by
perspectively correct splatting of the particles density foot-
prints. The first slice is placed at λmin, the minimal distance
between e and bounding box of the particles to skip the
empty space in front of the camera. This way λ is used as
volume ray casting parameter and controls the density vol-
ume reconstruction, thus avoiding sampling artifacts. The
method, as depicted in Fig. 2, consists of several calcula-
tion steps solely performed on the GPU. Three inner steps
are performed in a loop for #s times and form the iterative
ray casting. The whole process is controlled by the CPU.

Ray setup Ray direction v, maximum ray length λmax
based on the back-side of the particles bounding box, and the
start position at the front face of the bounding box are stored

37

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

P1

P2

P1

P2

Object Space Eye Space

splat

bounding
box

Figure 3: Perspective correction is necessary when project-
ing splats from object space into image space. Otherwise the
splats are not fully represented in image space.

in buffers for each ray, which corresponds to a single im-
age fragment. Additionally, rays might be flagged as initially
inactive, if their starting positions lie outside the bounding
box. Compositing our image with an opaque scene is possi-
ble by adjusting λmax based on scenes depth buffer.

Position update In sub-pass number s we first update the
sampling positions p = e+λv with λ = λmin + s×∆λ. Ini-
tially inactive rays might now become active, if their new
sampling position lies inside the bounding box. Rays which
stepped behind the bounding box are terminated using the
depth buffer. The depth test then will kill any fragments for
inactive rays. After the update, a hardware occlusion query
might be issued to feed-back the number of active rays to the
CPU. See Sec. 3.4 for details.

Splatting To evaluate the density volume at the sampling
positions p we splat perspectively correct footprints of the
particle kernel functions into the buffer used for the current
sub-pass s. Employing multiple render targets, the density
is evaluated for several subsequent depths at once, reducing
the required overall draw calls for the particles. Details are
discussed in Sec. 3.2.

Ray casting We perform direct volume rendering using ray
casting for the reconstructed density slices and composite
the outcome with the result of previous sub-passes to gain
the final image. Additionally, rays may be terminated by set-
ting the depth buffer accordingly, if the accumulated opacity
exceeds a threshold. See Sec. 3.3 for details.

Display result After these steps of our sub-passes are per-
formed smax(f) times, a value determined by the occlusion
queries of the previous frame f − 1, the image of frame f
can be displayed. The results of the occlusion queries can
now be collected to determine smax(f +1) for the following
frame f +1 (see Sec. 3.4).

3.2. Splatting

We follow the approach of metaballs as definition for the
density field, with the density ρ̄(p) at position p computed
from neighboring particles j by

ρ̄(p) = ∑
j

m jW
(
|p−p j|,h

)
, (1)

where p j is the particle position and W ∈ C2[0,h] is a ra-
dial symmetric kernel function with support radius h. m j
is the particle’s mass and is used to normalized the overall
result to easier evaluate the iso-value (i. e. ρ̄(p) = 1). For
each particle j we use a symmetric polynomial density ker-
nel function (the smooth step function) with finite support
radius h, but any other function with finite support could be
used. Since we evaluate the density volume in image-space,
the splatting of these kernel functions must be perspectively
correct, as can be seen in Fig. 3. We employ the method of
perspectively correct glyph raycasting, presented by Klein
et al. [KE04]. The image space size of the point-sprite used
to rasterize the splat is determined by h. The overall den-
sity ρ̄(p) is only a sum of the contributions of the individual
particles m jW

(
|p−p j|,h

)
. Additive blending of these con-

tribution yields the correct value. To compute several density
slices at once, multiple render targets are used, with the first
slice placed at λ and the remaining slices being ∆λ apart
from each other.

Using slices with uniform depths the particles not con-
tributing can be efficiently culled, by moving them outside
the viewing frustum. This method would get far more com-
plicated and computational expensive, if the density slices
do not have uniform depth values, like in the approach of
Müller et al. [MGE07], and the speed-up from culling is
completely nullified by this computational load. The culling
can be further optimized by sorting the particles along the
viewing direction. Then the particles contributing to the cur-
rent density slice are within an interval. We use a Radix Sort
in CUDA to sort the indices of the particles according to
their image space depth. Afterward two loops on the CPU
can be used to get all indices of the first and last particles
for all slices in O(n) with n particles. Alternatively, a par-
allel reduction of the indices can be performed on the GPU,
requiring O(log(n)) for each slice, resulting in O(m log(n))
for m slices. Like Sec. 4.5 shows, sorting is only beneficial
for large data sets.

3.3. Volume ray casting

Within a stack of density slices, generated using multiple
render targets, we perform ray casting similar to single-
pass volume rendering. For a continuous iso-surface, inter-
polation between the density slices is necessary, which is
straightforward within a stack of density slices. To interpo-
late between stacks we reuse one slice of the previous sub-
pass. For illuminating the iso-surface, gradients have to be
computed. For a single particle the gradient is given by the
vector from the position of the particle p j to the sampling
position p, due to the radial symmetry of the kernel func-
tions. The overall gradient is computed as summation simi-
lar to Eq. 1 by additive blending of the weighted gradients.
The results of the sub-passes are composited yielding the fi-
nal image. The accumulated opacity along an active ray is

38

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

t = 5 t = 100 t = 140
Figure 4: Cellular signal transduction. Three time steps of
the simulation are shown with the image-space approach.
Signaling proteins are started at the cell membrane and then
moved toward the nucleus.

also tested against a threshold to terminate the ray using the
depth buffer.

3.4. Ray cast termination

Since the sub-passes of our approach are CPU controlled,
but the states of the individual rays exist on the GPU, a
feed-back is required. Using the depth buffer to mask in-
active rays, a single hardware occlusion query can count
the number of active rays using the depth test and deliver
this number to the CPU. We use this information to control
the number of sub-passes smax(f) for frame f . For the ini-
tial frame f = 0 the number is set to the maximum value
required smax(0) = max∀rays

λmax−λmin
∆λ

to sample the whole
bounding box. Additionally, fragments for inactive rays are
automatically rejected by the built-in early-z-test during po-
sition update and splatting.

The hardware occlusion queries however introduce addi-
tional computational overhead and latencies, as the results
are not immediately available. To reduce the overhead, the
number of occlusion queries is minimized. Six queries are
issued during the last few sub-passes of the current frames,
since we expect high frame-to-frame coherency. We issue
them in the sub-passes smax(f)−{50,20,5,2,1,0}, what we
found makes our system quite adaptive.

To hide the latencies, we exploit the frame-to-frame co-
herence and postpone the evaluation of the query result and
the adjustment of the maximum number of sub-passes for
the next frame smax(f + 1) until the current frame f is fin-
ished and displayed. We collect the results of the queries in
the order they have been issued and test the number of ac-
tive rays against a threshold. The sub-pass of the first query
with too few active rays will be set as smax(f + 1). If all
queries show too few active rays, the number of sub-passes
is strongly reduced to smax(f +1) = smax(f)/2. If no query
has few enough active rays, the number of sub-passes is in-
creased by a fix value smax(f + 1) = smax(f)+ 25, limited
by the overall maximum smax(f +1)≤ smax(0).

4. Results

Our algorithm is implemented in C++ with OpenGL and
GLSL shaders. For comparison with our image-space ap-

Figure 5: Spatial effects are not covered by the radial con-
centration profile (left), but are visible with the volumetric
visualization (right).

proach, we implemented the object-space method from Kolb
et al. [KC05], where the density field is reconstructed as
uniform grid and stored as 3D texture. The density field
is subsequently visualized with standard ray casting. We
conducted tests on a Windows PC with a Intel Core2 with
2.4 GHz, 2 GB RAM, and a NVIDIA GeForce 280 GTX
with 1 GB. The viewport size was 512× 512 and the res-
olution of the uniform grid was set to 2563. The sampling
distance ∆λ was set to 1/256.

The ray parameters, sampling position, direction and
length, are stored in floating point textures with 32 bit pre-
cision. Density values are stored in 16 bit floats. The ray pa-
rameter textures and the density slices have viewport reso-
lution. For a 512×512 window we therefore need 8 MB for
ray parameters and 12 MB for our image-based slicing with
8 slices compared to 256 MB for a full 5123 volume. The
particle positions are stored on the GPU in a vertex buffer
and are updated once per frame. In the following, we show
the effectiveness of our approach and discuss quality and
performance results.

4.1. Signal transduction

The signal transduction process inside a cell is modeled with
an agent-based Monte Carlo simulation [FKRE09]. The cell
model contains signaling proteins, their reaction partners,
the cytoskeleton, and the nucleus. The signal is initiated at
the cell membrane and transported to the nucleus by signal-
ing proteins.

The initial 25,000 signaling proteins move by diffuse and
motorized transport toward the nucleus. Due to reactions
along the signaling pathway, the number of active signal
proteins decreases. Fig. 4 depicts three time steps visual-
ized with our approach. Compared to the radial protein con-
centration profiles biologists use (Fig. 5 left), the visualiza-
tion of the protein densities includes more details. Spatial
effects, like a higher concentration on one side of the nu-
cleus, are not visible in the concentration profile, but these
effects are clearly visible when visualizing the density field
(Fig. 5 right).

In Fig. 1, the volumetric visualization of signaling pro-

39

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

Figure 6: Visualizations of two proteins. Left: crambin with
∼330 atoms (∼45 amino acids). Right: oxidoreductase with
∼75,000 atoms (∼10,000 amino acids). The lower images
show proteins in stick representation and the proteins sec-
ondary structure, as well as the SES volume rendering. The
upper images show combinations of both.

teins is combined with the rendering of the proteins, the nu-
cleus, and the cytoskeleton from the simulation. The protein
concentration was mapped to colors from blue to red for low
and high densities, respectively. The combination of both vi-
sualizations exposes the signal distribution clearly.

4.2. Protein surfaces

In biochemistry, the visualization of smooth molecular sur-
faces is of great importance for many applications such
as docking or protein-solvent interaction. Solvent Excluded
Surface (SES) and Molecular Skin Surface (MSS) are the
most commonly used analytic models. However, they are
computationally expensive, which makes them unfeasible
for large dynamic data sets. Interactive rendering of large
proteins must therefore often rely on approximations like
metaballs. Our method can be used as such a fast approxima-
tion. The representation can easily be adjusted to resemble
SES or MSS. The result is a smooth surface visually equiva-
lent to ray casted MSS presented in [CLM08]. Fig. 6 shows
a semitransparent SES approximation in combinations with
different molecular models.

4.3. Laser ablation

The data sets shown in Fig. 7 and 8 result from molecular
dynamic simulation which was coupled with finite element
analysis. A pulsed laser beam heats up a solid metal block
and a bulge is build.

The cutaway in Fig. 7, rendered at 1500×900, reveals the
density distribution inside the material and contains roughly
250,000 particles. Glyph-based rendering of the particles
(top left) hardly reveals any structures in static images.

As the bulge builds up, it breaks open at some point.
Droplets of atoms are formed and expelled from the bulge
leaving a crater in the metal. In Fig. 8, semi-transparent iso-
surfaces were visualized from the splash-like structures with

Figure 7: Laser ablation leads to a bulge on a metal block.
Particle rendering with glyphs is not sufficient to grasp the
overall shape in still images (top left). Cutaway of the bulge,
visualized with the image space approach at 1500×900 pix-
els, revealing the density distribution inside.

Figure 8: When the bulge created by laser ablation breaks
open, atoms are expelled and droplets form. The data set
contains 742,141 particles and the image was rendered at
1500×450 at 0.7 fps with our image space method.

our approach. The data set was rendered at a resolution of
1500×450 pixels and contains about 750,000 particles.

4.4. Qualitative results

In the object-space approach, problems can arise because the
uniform grid has a finite resolution as illustrated in Fig. 9(a).
Density splats smaller than a voxel cannot be stored com-
pletely leading to distorted or cube-like appearances of the
original filter kernel. Sharp corners get smoothed out by
trilinear interpolation of the uniform grid. With our ap-
proach all geometric features are conveyed in image space
(Fig. 9(b)). Small features like the ellipsoid in the center of
the close-up are fully captured with the image space method,
whereas being deformed and barely visible in object space.
The image-space technique also yields more distinct high-
lights. Hence, groves and ridges are depicted more clearly.

The hardware clip planes of OpenGL can be used to
cut away parts of the volume. However, when particles are
clipped at the intended cut planes, the final volume will
show no sharp cuts because the kernel is evaluated for the
complete particle footprints (Fig. 10, left). Additionally, the
missing contribution of clipped particles leads to wrong re-
sults. Therefore, we perform the clipping in the fragment

40

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

(a) (b)
Figure 9: Close-ups (800× 800 pixels) of a small region
of Fig. 7 are depicted: (a) object space, (b) image space.
Ridges, grooves, highlights, and small features are more dis-
tinct in image space.

P1 P2 P1 P2

A A

B

B

B

B

Figure 10: If P1 is clipped, its density contribution is ne-
glected leading to a wrong density (left). For correct volu-
metric clipping, P1 has to be considered (right). A denotes
the clip plane, the density profiles are shown for the cross-
sections B.

program during density computation. The hardware clip
planes are positioned in a way that only non-contributing
particles are discarded. The density computed in Eq. 1 is set
to zero if the sampling position p is outside the cut planes.
The final result is a correct volumetric clipping as illustrated
in Fig. 10, right.

4.5. Performance

A synthetic data set was used to demonstrate the scalabil-
ity of our approach to time-dependent data sets with about
100,000 particles. Over 300 time steps, the number of par-
ticles increases linearly from zero. The performance was
measured for this data set, examples of signal transduc-
tion (Cell), and two data sets from laser ablation simulation
(Bulge and Splat). Table 1 shows the rendering performance
for these data sets. The effect of sorting along the viewing
direction becomes apparent for a large number of particles
when the benefit outweighs the additional costs.

As time-dependent, real-world data set, we use the sig-
nal transduction data depicted in Fig. 4. In Fig. 11, the per-
formance over the number of particles is shown as well as
the number of particles over time. Our sliced ray casting in
image space benefits from early-ray termination and outper-
forms the object space techniques when dealing with more
than 6,000 particles. The time spent to rasterize the splats

 0

 10

 20

 30

 40

 50

 60

 70

 0 5000 10000 15000 20000 25000

F
ra

m
e

ra
te

 [f
ps

]

of particles

obj space (vol)
obj space (iso)
img space (vol)
img space (iso)

 0

 5000

 10000

 15000

 20000

 25000

 0 40 80 120

of

 p
ar

tic
le

s

Time steps

Figure 11: Rendering performance of object-space and
image-space methods for the signal transduction data set
(left). Timings for direct volume rendering (vol) and isosur-
face rendering (iso) were measured. The number of particles
is decreasing during the simulation (right).

Data set Particle Object space Image space
number vol iso vol iso

Synthetic 12,276 26.51 34.00 12.58 8.57
(sorted) 23.40 – 12.74 –

Synthetic 101,664 7.28 7.71 3.23 2.62
(sorted) 9.57 – 3.98 –

Cell 25,000 10.90 10.75 14.62 12.28
584 67.36 60.08 35.13 23.05

Bulge 509,423 – 1.16 – 0.83
(cutaway) ∼250,000 – 1.59 – 0.30

Splat 742,141 – 0.97 – 0.7

Table 1: Rendering performance. Timings for direct volume
rendering (vol) and isosurface rendering (iso) are measured
in frames per second.

corresponds with the number of proteins while the time
needed to perform the multiple render passes keeps almost
constant, which may explain the almost constant frame rate
for low particle numbers. The rendering of the isosurface is
affected by higher memory bandwidth. Instead of only one
value for the density, now four values, have to be written and
read for each density slice in our sliced ray casting. In ob-
ject space, the bad performance might be due to the gradient
computation which requires six additional texture lookups in
the density texture.

5. Conclusion and future work

We present an interactive image-space ray casting technique
with on-demand reconstruction of the volume data from
point data, following the metaball approach. A novel method
of terminating the ray casting based on hardware occlusion
queries and frame-to-frame coherence is used to optimize
the overall performance. The possibilities for visual cues and
effects of volume rendering are superior to classical particle-
based glyph rendering, and our approach does not signifi-
cantly increase the memory requirements, compared to clas-
sical volume rendering. Since our technique does not require

41

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

any per-computation it is perfectly suited for time-dependent
data. We achieve high image quality and good interactivity
for large particle data sets. The effectiveness of our approach
has been shown on several examples from simulations in
systems biology, biochemistry, and physics.

We plan to further extend our algorithm and to integrate
it into a visualization framework for particle data sets. Em-
ploying an hybrid image-space object-space subdivision we
will implement empty-space-skipping as well as optimiza-
tion of the ray setup. The reconstruction of the density vol-
ume could also be completely implemented with CUDA,
however, preliminary experiments showed that the process-
ing power of the OpenGL rasterization engine cannot be
achieved by a CUDA-only implementation, due to the re-
quirement of random-access to the memory of the density
volume. However, we want to further investigate this ap-
proach, especially because of the cache optimizations of the
upcoming Fermi graphics cards.

Acknowledgments

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project
within the Cluster of Excellence in Simulation Technol-
ogy (EXC 310/1) and the Collaborative Research Centre
SFB 716 at the University of Stuttgart. The laser ablation
data sets were kindly provided by Steffen Sonntag. The au-
thors also want to thank Michael Krone for his rendering of
protein data sets.

References
[Bli82] BLINN J. F.: A generalization of algebraic surface draw-

ing. ACM Transactions on Graphics 1, 3 (1982), 235–256. 2

[CLM08] CHAVENT M., LEVY B., MAIGRET B.: MetaMol:
High-quality visualization of molecular skin surface. Journal of
Molecular Graphics and Modelling 27, 2 (2008), 209–216. 6

[CSI09] CHA D., SON S., IHM I.: GPU-assisted high quality
particle rendering. In Eurographics Symposium on Rendering
(2009), pp. 1247–1255. 3

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Vol-
ume rendering. In ACM SIGGRAPH 1988 (1988), pp. 65–74.
3

[FKRE09] FALK M., KLANN M., REUSS M., ERTL T.: Visu-
alization of signal transduction processes in the crowded envi-
ronment of the cell. In IEEE Pacific Visualization Symposium
(PacificVis ’09) (2009), pp. 169–176. 2, 5

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.:
Exploring the millennium run - scalable rendering of large-scale
cosmological datasets. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1251–1258. 3

[GM77] GINGOLD R., MONAGHAN J.: Smoothed particle hy-
drodynamics: Theory and application to non-spherical stars.
Monthly Notices Royal Astronomical Society 181 (1977), 375–
389. 2

[GRDE10] GROTTEL S., REINA G., DACHSBACHER C., ERTL
T.: Coherent culling and shading for large molecular dynamics
visualization. In Eurographics/IEEE Symposium on Visualization
(2010). to appear. 2

[GRE09] GROTTEL S., REINA G., ERTL T.: Optimized data
transfer for time-dependent, gpu-based glyphs. In IEEE Pacific
Visualization Symposium (PacificVis ’09) (2009), pp. 65–72. 2

[Gum03] GUMHOLD S.: Splatting illuminated ellipsoids with
depth correction. In International Fall Workshop on Vision, Mod-
elling and Visualization (2003), pp. 245–252. 2

[KBE08] KRONE M., BIDMON K., ERTL T.: Gpu-based visu-
alisation of protein secondary structure. In EG UK Theory and
Practice of Computer Graphics (TPCG) (2008), pp. 115–122. 2

[KBE09] KRONE M., BIDMON K., ERTL T.: Interactive visu-
alization of molecular surface dynamics. IEEE Transactions on
Visualization and Computer Graphics 15, 6 (2009), 1391–1398.
2

[KC05] KOLB A., CUNTZ N.: Dynamic particle coupling for
GPU-based fluid simulation. In Symposium on Simulation Tech-
nique (ASIM) (2005), pp. 722–727. 2, 5

[KE04] KLEIN T., ERTL T.: Illustrating magnetic field lines using
a discrete particle model. In Vision, Modelling and Visualization
(VMV ’04) (2004), pp. 387–394. 2, 4

[KLR04] KOLB A., LATTA L., REZK-SALAMA C.: Hardware-
based simulation and collision detection for large particle sys-
tems. In ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware (2004), pp. 123–131. 2

[KLR09] KLANN M. T., LAPIN A., REUSS M.: Stochastic sim-
ulation of signal transduction: Impact of the cellular architecture
on diffusion. Biophysical Journal 96, 12 (2009), 5122–5129. 2

[KSN08] KANAMORI Y., SZEGO Z., NISHITA T.: GPU-based
fast ray casting for a large number of metaballs. Computer
Graphics Forum 27, 2 (2008), 351–360. 3

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: a GPU-based particle engine. In ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware
(2004), pp. 115–122. 2

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. In IEEE Visualization
2003 (2003), pp. 287–292. 3

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3D surface construction algorithm. In ACM SIG-
GRAPH Computer Graphics and Interactive Techniques (1987),
pp. 163–169. 2

[LvLRR08] LINSEN L., VAN LONG T., ROSENTHAL P., ROSS-
WOG S.: Surface extraction from multi-field particle volume
data using multi-dimensional cluster visualization. IEEE Trans-
actions on Visualization and Computer Graphics 14, 6 (2008),
1483–1490. 3

[MGE07] MÜLLER C., GROTTEL S., ERTL T.: Image-space
GPU metaballs for time-dependent particle data sets. In Vision,
Modelling and Visualization (VMV ’07) (2007), pp. 31–40. 3, 4

[MGK77] MCCAMMON J. A., GELIN B. R., KARPLUS M.: Dy-
namics of folded proteins. Nature 267, 5612 (1977), 585–590.
2

[NM05] NEOPHYTOU N., MUELLER K.: GPU accelerated image
aligned splatting. In International Workshop on Volume Graphics
(2005). 3

[RE05] REINA G., ERTL T.: Hardware-accelerated glyphs for
mono-and dipoles in molecular dynamics visualization. In
Eurographics/IEEE VGTC Symposium on Visualization (2005),
pp. 177–182. 2

[SEBH02] SCHMIDT-EHRENBERG J., BAUM D., HEGE H. C.:
Visualizing dynamic molecular conformations. In IEEE Visual-
ization 2002 (2002), pp. 235–242. 3

42

M. Falk & S. Grottel & T. Ertl / Volume Visualization for Particle Simulations

[SSKE05] STEGMAIER S., STRENGERT M., KLEIN T., ERTL T.:
A simple and flexible volume rendering framework for graphics-
hardware–based raycasting. In International Workshop on Vol-
ume Graphics 2005 (2005), pp. 187–195. 3

[TCM06] TARINI M., CIGNONI P., MONTANI C.: Ambient oc-
clusion and edge cueing to enhance real time molecular visualiza-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 12, 5 (2006), 1237–884. 2

[vKvdBT07] VAN KOOTEN K., VAN DEN BERGEN G., TELEA
A.: Point-based visualization of metaballs on a GPU. In GPU
Gems 3, Nguyen H., (Ed.). Addison-Wesley Professional, 2007,
ch. 7, pp. 123–148. 2

[vMAF∗07] VAN MEEL J. A., ARNOLD A., FRENKEL D.,
ZWART S. F. P., BELLEMAN R. G.: Harvesting graphics power
for MD simulations. Molecular Simulation 34, 3 (2007), 259–
266. 2

[WE98] WESTERMANN R., ERTL T.: Efficiently using graphics
hardware in volume rendering applications. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer graph-
ics and interactive techniques (1998), pp. 169–177. 3

[Wes90] WESTOVER L.: Footprint evaluation for volume render-
ing. Computer Graphics (Proceedings of SIGGRAPH 1990) 24,
4 (1990), 367–376. 3

[ZSP08] ZHANG Y., SOLENTHALER B., PAJAROLA R.: Adap-
tive sampling and rendering of fluids on the GPU. In Eurograph-
ics/IEEE VGTC Symposium on Volume and Point-Based Graph-
ics (2008), pp. 137–146. 2

43

