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Abstract

This paper presents techniques for speeding up commonly used algorithms for bounding volume construction using
Intel’s SIMD SSE instructions. A case study is presented, which shows that speed-ups between 7–9 can be reached
in the computation of k-DOPs. For the computation of tight fitting spheres, a speed-up factor of approximately 4
is obtained. In addition, it is shown how multi-core CPUs can be used to speed up the algorithms further.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
techniques—Graphics data structures and data types

1. Introduction

A bounding volume (BV) is a shape that encloses a set of ge-
ometric primitives. Usually, simple convex shapes are used
as BVs, such as spheres and boxes. Ideally, the computa-
tion of the BV dimensions results in a minimum volume (or
area) shape. The purpose of the BV is to provide a simple
approximation of a more complicated shape, which can be
used to speed up geometric queries. In computer graphics,
BVs are used extensively to accelerate, e.g., view frustum
culling, occlusion queries, selection (picking), ray tracing,
path planning, and collision detection.

To speed up the computations, several attractive ar-
chitectural features of modern processors can be ex-
ploited [GBST06]. In particular, single instruction mutli-
ple data (SIMD) computation units offer an efficent mech-
anism to exploit fine-grained parallelism [Bik04, HOM08].
SIMD computations are well-suited to speed-up vari-
ous types of multimedia and geometry processing opera-
tions [YSL98, MY02, LAML07]. In ray tracing, ray packets
and/or groups of BVs can be processed simultaneously using
SIMD [WBS07, DHK07].

Here we present our results from turning various sequen-
tial BV construction algorithms into vectorized methods by
using Intel’s Streaming SIMD Extension (SSE). We focus
on three of the most widely used BV types: the axis-aligned
bounding box (AABB), the discrete orientation polytope (k-
DOP), and the sphere. In particular, these types of volumes
are suitable for dynamic scenes, since they are fast to recom-

pute [MKE03, LAM06]. As Sections 2–4 show, the SIMD
vectorization of the algorithms leads to generous speed-ups,
despite that the SSE registers are only four floats wide. In
addition, the algorithms can be parallelized further by ex-
ploiting multi-core processors, as shown in Section 5.

2. Fast SIMD computation of k-DOPs

A k-DOP is a convex polytope enclosing another object such
as a complex polygon mesh [KHM∗98]. The polytope is
constructed by finding k/2 pairs of parallel planes (slabs)
that tightly surrounds the object. Implicitly, these planes de-
fine a bounding polytope covering the object. If needed, the
enclosing polytope can be extracted by computing the inter-
section of the half-spaces bounded by the planes.

To construct a k-DOP, the minimum and maximum pro-
jection values of the n input points are computed for each
slab direction, which are given by a pre-determined and fixed
normal set N with k/2 normals. An efficient choice is to de-
rive the normals from the unit cube. The three face normals
are used to define an AABB (6-DOP). Then four “corner”
normals can be added to define a 14-DOP, and six more
“edge” normals to define a 26-DOP. Since all these normals
have components in the set {0,±1}, it is possible to reduce
the cost of the projection operation.

The SSE instructions operate on registers containing four
32-bit precision floating point numbers. To utilize the full
width of these registers, the 3D input points are first rear-
ranged, or swizzled, into a set G of m ≈ n/4 vertex groups
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G0 G1 . . . Gm−1
X0 = {x0,x1,x2,x3} X1 = {x4,x5,x6,x7} . . . Xm−1 = {xn−4,xn−3,xn−2,xn−1}
Y0 = {y0,y1,y2,y3} Y1 = {y4,y5,y6,y7} . . . Ym−1 = {yn−4,yn−3,yn−2,yn−1}
Z0 = {z0,z1,z2,z3} Z1 = {z4,z5,z6,z7} . . . Zm−1 = {zn−4,zn−3,zn−2,zn−1}

Figure 1: SoA vertex layout for efficient SIMD processing. The n input vertices are stored in m = n/4 vertex groups. Each group
Gi holds four vertices stored as 3 arrays Xi, Yi, and Zi.

FIND-k-DOP_SSE
input: G = {G0,G1, . . . ,Gm−1}, N = {n0,n1, . . . ,nk/2−1}
output: D = {S,L}= {{s0,s1, . . . ,sk/2−1},{l0, l1, . . . , lk/2−1}}
1. for each n j ∈ N
2. P← PROJECT(G0,n j)
3. S j← P
4. L j← P

5. for i = 1 to m−1
6. for each n j ∈ N
7. P← PROJECT(Gi,n j)
8. S j←minps(S j,P)
9. L j←maxps(L j,P)

10. for j = 0 to k/2−1
11. s j←min(S j)
12. l j←max(L j)
13. s j← s j/∥n j∥
14. l j← l j/∥n j∥

Figure 2: Data-parallel computation of a k-DOP. G is the set
of SoA-arranged vertex groups and N is the set of normals or
slab directions. The output D = {S,L} is the set of intervals
defining the size of the k-DOP along the slab directions.

stored in an array with 16-byte alignment. A single vertex
group Gi = {Xi,Yi,Zi} holds four vertices stored in three ar-
rays, one for each coordinate axis. In Figure 1, this vertex
data structure is shown. Note that this representation is often
referred to as Structure of Arrays (SoA) [GBST06]. Arrays
of four floats are hereafter called 4-tuples.

Pseudocode for the computation of a general k-DOP is
given in Figure 2. First all 4-tuples S j and L j holding the
potential extremal projection values are initialized (Lines 1–
4). Then the remaining vertex groups are iterated. For each
group and normal, the four projection values P along the nor-
mals are computed (Lines 5–7). By using minps and maxps
instructions, the current extremal values are updated with-
out introducing branches (Lines 8–9). Finally, the extremal
scalar values s j and l j are extracted from the resulting 4-
tuples S j and L j, and they are also scaled to compensate for
the use of non-unit length normals in N (Lines 10-14).

Note that when implementing this algorithm, the inner
loop (Lines 6–9) is unrolled and each projection calcula-
tion is optimized. As an example, given the normal n =

(1,0,−1), and a vertex group Gi, the computation of the
projections reduces to P = Xi−Zi, i.e., four vertices are pro-
jected using only one parallel subtraction.

3. Fast SIMD computation of spheres

To compute tight fitting bounding spheres efficiently, the
EPOS algorithm has been proposed [Lar08]. EPOS is
a two-pass algorithm where, in the first pass, an initial
tentative sphere is computed from a few selected extremal
points of a model. The selection of these points is made by
computing a k-DOP, while also storing the actual points
that give rise to the minimum and maximum projection
values for each slab direction. A simple extension of the
algorithm in Figure 2 accomplishes this. For example, to get
the appropriate indices A and B of the points with current
minimum and maximum projection values, the following
code replaces Lines 8 and 9:

8.1 M = cmpltps(P,S j)
8.2 if movmsk(M)> 0 then
8.3 I = andps(Ci,M)
8.4 A j = maxps(I,A j)
8.5 S j←minps(S j,P)
9.1 M = cmpgtps(P,S j)
9.2 if movmsk(M)> 0 then
9.3 I = andps(Ci,M)
9.4 B j = maxps(I,B j)
9.5 L j←maxps(L j,P)

With the instruction cmpltps a bit-mask M indicating the
smaller projection values in P is created (Line 8.1). Ci con-
tains indices of the vertices in group Gi. A bitwise and op-
eration on the mask M and Ci, and the following maxps op-
eration will give the new indices A j for the current extremal
points. In fact, this method eliminates the need for branch-
ing completely, since the if-statement on Line 8.2 can be re-
moved without altering the results. However, experimental
tests indicated that keeping the if-statement controlling the
mask for changes gave faster execution times. The indices
of the maximum points are found similarily (Lines 9.1–9-5).

After the retrieval of the k extremal points, the initial
tentative sphere is computed using an exact solver which
gives the smallest enclosing sphere of the selected points.
Then in the second pass of the algorithm, all points of the
model are considered again and the sphere is incrementally
grown for each point that compromise the current bounding
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EXPANDSPHERE_SSE
input: G = {G0,G1, . . . ,Gm−1},c,r
output: c,r
1. for each Gi ∈ G
2. D← GETSQUAREDDISTANCES(Gi,c)
3. M← cmpgtps(D,r2)
4. if movmsk(M)> 0 then
5. c,r← UPDATESPHERE(M,D,Gi,c,r)

Figure 3: Data-parallel algorithm that expands the initially
computed sphere when necessary.

sphere, as shown by the pseudocode in Figure 3. In Line 2,
the squared distances D from the current centre to the four
current points Gi are calculated. Line 3 returns the mask M
indicating points outside the current sphere. The branch in
Line 4 handles the case when the sphere has to be updated.
The actual updating has some data dependencies, since four
points are checked against the current sphere in parallel, and
each point in the vertex group that is found to be outside the
current sphere leads to an update of both the centre and the
radius of the current sphere. This is handled by the function
in Line 5.

Triangle Mesh nv nt

Frog 4010 7964
Chair 7260 14372
Tiger 30892 61766
Bunny 32875 65536
Horse 48485 96966
Golfball 100722 201440
Hand 327323 654666

Table 1: The number of vertices nv and triangles nt for the
polygonal meshes used for benchmarking.

4. Results

A PC with an Intel Core 2 Quad Q8200 CPU, 2.33 GHz with
4GB of RAM running Windows 7, 32-bit version (x86), was
used to measure the execution times of the presented meth-
ods. The algorithms were implemented in C++ and compiled
under Microsoft Visual Studio 2008 using the default re-
lease mode. All algorithms discussed in this section were
run single-threaded.

For benchmark purposes a test suit executing all algo-
rithms were used. Each algorithm was executed for seven
different polygon meshes. These meshes are visualized in-
side the different types of computed BVs in Figure 4. The
number of points for each model is listed in Table 1. Time
was measured by calculating the average execution time over
20 repetitions, executed after an initial “warm-up run” to
avoid possible start-up artefacts. In this way, each algorithm

has the same potential to benefit from the CPU cache and
models with fewer points are likely to benefit the most. A
real world application will probably not benefit from the
cache to the same extent, but as the cache hierarchies in mod-
ern computers are complex, it seems not trivial to clear the
cache in a comprehensive manner before each algorithm run.

As seen in Table 2, data-parallel computations of k-DOPs
at the instruction level improves the computation time of the
corresponding sequential algorithms significantly by a factor
of 7–9. Clearly, the obtained speedups are better than the
ideal speedup of 4 for 4 floating point wide SIMD registers.
One probable reason is the branch elimination provided by
the minps and maxps instructions in the vectorized solution.

A peculiar exception to the obtained high performance,
however, is the AABB computation of the hand model,
where a speed-up factor of “only” 4.4 is reached. The de-
graded speed-up in this case appears to have a connection to
L2 cache misses on the used test machine.

The computation times of the spheres given in Table 3
show less improvement and reaches a quite consistent
speedup factor of approximately 4. The reasons are due
to data dependencies and the extra computation needed to
retrieve the index of each extremal point spanning the k-
DOP planes. Besides the EPOS algorithm, Ritter’s algo-
rithm [Rit90] and a developed SIMD version of it are also
included for comparison. Ritter’s method is very fast, but
it consistently computes larger spheres. Also, note that the
EPOS-6 method using SSE seems to reach very close to the
high performance of the SSE version of Ritter’s method.

The quality of the computed spheres is given in Table 4.
The radius differences between the corresponding sequen-
tial and SSE methods derive from the fact that several ver-
tices can have identical projections and, therefore, the ver-
tices selected as extremal may vary across different imple-
mentations of the algorithms.

5. Multi-core parallelization

By utilizing multi-core processors in addition to SIMD com-
putation another level of parallelism can be exploited. This is
straightforward when computing AABBs and k-DOPs, since
each thread can compute an optimal sub-volume of a subset
of the input points, and then after all points have been pro-
cessed all the sub-volumes can be merged sequentially into
the final optimal BV. The results of using this strategy for
computing 26-DOPs are given in Table 5.

Multi-threading was implemented by using OpenMP and
the previous mentioned quad-core machine was used. As can
be seen, for the five last input models with more than 30000
points, this gives a further speed-up in the range 1.0-1.8 us-
ing 2 cores and between 2.2–3.5 using 4 cores. However,
since there is a start-up cost for multi-threading, the compu-
tation of the 26-DOP becomes slower for the two simplest
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Figure 4: Visualizations of the polygon meshes used as data sets and the resulting AABBs (row 1), 14-DOPs (row 2), 26-DOPs
(row 3), and spheres (row 4). The spheres were computed using EPOS-26.

FindAABB Find-14-DOP Find-26-DOP
Point set Seq SSE S Seq SSE S Seq SSE S
Frog 0.028 0.003 9.11 0.088 0.010 9.23 0.160 0.018 8.78
Chair 0.048 0.006 8.68 0.142 0.017 8.25 0.257 0.032 7.97
Tiger 0.205 0.024 8.64 0.595 0.073 8.20 1.079 0.138 7.84
Bunny 0.217 0.025 8.62 0.634 0.077 8.27 1.152 0.145 7.95
Horse 0.330 0.038 8.72 0.965 0.114 8.49 1.755 0.214 8.20
Golfball 0.670 0.080 8.34 1.956 0.240 8.17 3.548 0.448 7.93
Hand 2.260 0.514 4.40 6.482 0.910 7.12 11.721 1.588 7.38

Table 2: AABB and k-DOP execution times in ms and speed-ups S.

EPOS-6 EPOS-14 EPOS-26 Ritter
Point set Seq SSE S Seq SSE S Seq SSE S Seq SSE S
Frog 0.071 0.021 3.32 0.132 0.036 3.68 0.207 0.056 3.69 0.053 0.019 2.78
Chair 0.120 0.033 3.67 0.223 0.056 4.00 0.338 0.091 3.73 0.088 0.029 3.02
Tiger 0.491 0.114 4.31 0.889 0.190 4.67 1.384 0.299 4.63 0.365 0.111 3.30
Bunny 0.524 0.123 4.25 0.949 0.203 4.67 1.474 0.317 4.65 0.389 0.119 3.27
Horse 0.786 0.190 4.13 1.428 0.324 4.40 2.227 0.509 4.37 0.595 0.198 3.00
Golfball 1.607 0.367 4.38 2.915 0.616 4.73 4.538 0.958 4.74 1.208 0.365 3.30
Hand 5.383 1.444 3.73 9.668 2.245 4.31 15.047 3.339 4.51 4.055 1.442 2.81

Table 3: Sphere execution times in ms and speed-ups S.

EPOS-6 EPOS-14 EPOS-26 Ritter
Point set Optimal Seq SSE Seq SSE Seq SSE Seq SSE
Frog 0.59903 0.61349 0.61349 0.60019 0.60019 0.59903 0.59903 0.65965 0.65040
Chair 0.63776 0.69474 0.68974 0.64359 0.64359 0.63792 0.63793 0.73014 0.72789
Tiger 0.51397 0.52531 0.52531 0.51507 0.51507 0.51507 0.51507 0.53835 0.53835
Bunny 0.64321 0.65017 0.65017 0.64423 0.64423 0.64415 0.64415 0.67694 0.67694
Horse 0.62897 0.63023 0.63023 0.62899 0.62899 0.62897 0.62897 0.63476 0.63476
Golfball 0.50110 0.50155 0.50154 0.50145 0.50145 0.50114 0.50114 0.51531 0.50350
Hand 0.52948 0.52949 0.52951 0.52949 0.52951 0.52949 0.52950 0.52949 0.52951

Table 4: The optimal radius and the radii computed by the tested bounding sphere algorithms for each point set.

68



M. Karlsson, O. Winberg & T. Larsson / Parallel Construction of Bounding Volumes

Point set 1 core 2 cores 4 cores
Frog 0.018 0.079 0.030
Chair 0.032 0.086 0.037
Tiger 0.138 0.129 0.060
Bunny 0.145 0.143 0.065
Horse 0.214 0.178 0.081
Golfball 0.448 0.297 0.140
Hand 1.588 0.897 0.452

Table 5: Parallel computation of 26-DOPs using both mul-
tiple cores and SSE. Execution times are in ms.

models. Similar results were obtained when multi-threading
was used in the computation of AABBs and 14-DOPs, but
since these algorithms involves less work per iteration in the
main loop, the start-up cost affected the algorithms slightly
more. Therefore, for simple points sets, a scheduling mecha-
nism is needed that can divide the work of computing several
BVs at a time among the available cores.

Creating a multi-threaded version of the EPOS-algorithm
requires some additional thought. The vertices spanning the
slabs of a k-DOP are easily found by a simple extension of
the multi-threaded k-DOP computation algorithm. But it is
not clear how to best grow the sphere in the last phase of the
algorithm efficiently, since it involves updating both the cen-
ter point and radius of the sphere which introduces data de-
pendecies among the threads. The simplest approach seems
to be to keep the initially determined centre point of the
sphere stationary, thereby changing the quality of the com-
puted spheres slightly. In this way, the multi-threaded com-
putation of the required radius in the last pass of the algo-
rithm becomes efficient and straightforward. Another sim-
ple solution would be to search for all points violating the
initially computed sphere using multi-threaded loop paral-
lelization, but instead of updating the center and radius of
the sphere repeatedly during the search, the points are only
stored in a list. Then the necessary updates of the sphere can
proceed afterwards by processing this list sequentially.

6. Conclusions and future work

Clearly, the presented algorithms speed up the BV compu-
tation substantially. Since our BV computation scheme gen-
eralizes trivially to wider SIMD registers, further significant
speed-ups can be expected for future CPUs. For example,
the Intel Advanced Vector Extensions (AVX) is supported
in forthcoming Intel 64 processors. AVX provides support
for 256-bit wide SIMD registers, which means eight 32-bit
precision floating point numbers can be processed in paral-
lel. Similarly, the number of cores per CPU will continue to
increase and this will also benefit the presented algorithms.

There are several areas worth investigating further. For
example, it is expected that parallel BV computation meth-
ods can be utilized to make bounding volume hierarchy

(BVH) construction faster. Many top-down BVH construc-
tion methods repeatedly call a BV computation algorithm
for various subsets of the input points. Interestingly, Wald et
al presents a parallel BVH building method targeting mod-
ern multi-core architectures [WIP08]. As an alternative to
CPU-based approaches, it would also be interesting to de-
velop highly parallel GPU-based algorithms for BV and
BVH computation, since GPUs offer more concurrency and
higher bandwith [LGS∗09].
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