
Safe Compositional Equation-based Modeling
of Constrained Flow Networks∗

Nate Soule1 Azer Bestavros1 Assaf Kfoury1 Andrei Lapets1

1Department of Computer Science, Boston University, USA, {nsoule,best,kfoury,lapets}@bu.edu

Abstract
Numerous domains exist in which systems can be mod-
eled as networks with constraints that regulate the flow of
traffic. Smart grids, vehicular road travel, computer net-
works, and cloud-based resource distribution, among oth-
ers all have natural representations in this manner. As these
systems grow in size and complexity, analysis and certifi-
cation of safety invariants becomes increasingly costly. The
NetSketch formalism and toolset introduce a lightweight
framework for constraint-based modeling and analysis of
such flow networks. NetSketch offers a processing method
based on type-theoretic notions that enables large scale
safety verification by allowing for compositional, as op-
posed to whole-system, analysis. Furthermore, by apply-
ing types to the modeled networks, analysis of composite
modules containing incomplete or underspecified compo-
nents can be conducted. The NetSketch tool exposes the
power of this formalism in an intuitive web-based graphical
user interface. We describe the NetSketch formalism and
tool, a translation from an instantiation of the NetSketch
formalism to the equation-based modeling language Mod-
elica, and the development of an accompanying Haskell li-
brary, HModelica, that enables the integration of NetSketch
and the OpenModelica modeling platform.

Keywords Flow networks, Network analysis, Safety veri-
fication, Constraint based modeling

1. Introduction
Many large scale systems can be modeled as assemblies of
subsystems, each of which produces, consumes, or regu-
lates a flow. Such models can contain variables and con-
straints representing the safe operation of the system. Net-
works that may be represented in this manner cross many
domains within software, hardware, electrical, material,
structural and other areas. Electric grids, vehicular road
networks, and computer networks are all modeled cleanly
in this structure; in addition, so are less immediately ob-

∗This work is supported in part by NSF awards CNS-0952145, CCF-0820138,
CSR-0720604, CNS-1012798, and EFRI-0735974.

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

vious examples, such as the governance of service level
agreements (SLAs) in cloud computing environments. In
the case of SLAs, a physical processor may generate a flow
that is regulated by schedulers and consumed by comput-
ing processes. In electric grids, power plants may act as
nodes producing flow, with transmission lines, and trans-
formers routing and regulating flow to commercial and res-
idential customers (who may in turn act not only as sinks,
but as sources when, for example, they have solar panels).
Extended detail and further examples are described in sep-
arate papers [5, 22, 23]. Verification of safety invariants
across such a system is a critical analysis task, but this task
can quickly grow costly as the complexity of a model in-
creases. The NetSketch formalism and accompanying tool
offer a constraint-based modeling solution capable of han-
dling such complexity while providing an efficient analysis
engine.

The nodes in a constrained flow network may contain
arbitrarily complex constraints that serve to connect them
and regulate their operation. Solving for a set of feasible
values for the variables of the system will produce the in-
puts and outputs that constitute “safe” usage. This is a de-
sirable task both from a modeling perspective: ensuring or
discovering the range of safe values, and from a design per-
spective: considering alternative “what if” scenarios and
inspecting their properties in search of optimal values. In
large systems the size and complexity of the set of con-
straints and variables under consideration can limit or even
prohibit whole-system analysis. To allow for an analysis
under these circumstances, NetSketch employs techniques
from type theory to simplify the constraints of the network
at various levels of the system’s composition. A type is
given to various subsets of the network under considera-
tion. Each sub-network of nodes can then, for the purposes
of analysis, be replaced with an opaque container that ex-
poses only the ports at its interfaces. This new component is
then regulated by a type at each of its ports. By considering
only the types, and not the potentially complex set of in-
ternal constraints, it is possible to more efficiently analyze
this new component in the context of the larger network,
and to determine safe ways to connect this component to
others during a design process.

In this paper we describe the NetSketch formalism and
tool, and make connections between this work and the
broader equation-based objected-oriented modeling do-

35

HOLE
(X, In,Out) ∈ Γ

Γ ` (X, In,Out, { })

MODULE
(A, In,Out,Con) module

Γ ` (B, I, O, {C})
(B, I, O,C) = ′(A, In,Out,Con)

CONNECT
Γ ` (M, I1, O1, C1) Γ ` (N , I2, O2, C2)

Γ ` (conn(θ,M,N), I, O, C)
θ ⊆1-1 O1× I2, I = I1 ∪ (I2−range(θ)), O = (O1−domain(θ)) ∪O2,

C = {C1 ∪ C2 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1, C2 ∈ C2}

LOOP
Γ ` (M, I1, O1, C1)

Γ ` (loop(θ,M), I, O, C)
θ ⊆1-1 O1× I1, I = I1−range(θ), O = O1−domain(θ),

C = {C1 ∪ { p = q | (p, q) ∈ θ } |C1 ∈ C1}

LET
Γ ` (Mk, Ik, Ok, Ck) for 1 6 k 6 n Γ ∪ {(X, In,Out)} ` (N , I, O, C)

Γ `
(

let X∈ {M1, . . . ,Mn} in N , I, O, C′
)

C′ =
{
C ∪ Ĉ ∪ { p = ϕ(p) | p ∈ Ik } ∪ { p = ψ(p) | p ∈ Ok }

∣∣∣ 1 6 k 6 n, C ∈ C, Ĉ ∈ Ck, ϕ : Ik → In, ψ : Ok → Out
}

Figure 1. Rules for Untyped Network Sketches.

main. In Section 2 we describe the domain specific lan-
guage at the heart of NetSketch. In Section 3 we describe
the NetSketch tool and its architecture. We take a deeper
look at the type generation algorithms in Section 4. In Sec-
tion 5 we investigate the relation of NetSketch to current
equation-based object-oriented modeling solutions (Mod-
elica in particular) via two avenues. First, we examine the
use of Modelica to assist various computational tasks re-
quired by NetSketch; here, we introduce a Haskell library
that exposes the power of Modelica to the NetSketch en-
gine. Second, we define a translation from NetSketch mod-
els to Modelica that allows for whole system analysis of
those models via simulation. Finally, we end with a discus-
sion of related and future work in Section 6.

2. NetSketch Formalism
In a constrained flow network each node of the network
or system may impose constraints on its inputs and out-
puts. The network and its entire constraint set form an exact
model1. Any whole-system analysis of the network must
compute the solution space of the constraint set for the
given network. Our compositional approach uses types to
approximate the constraints on the interface of each node
or group of nodes. In this way sub-systems can be analyzed
individually at an exact level, whereas the whole system
can be analyzed based solely on the results of the sub-
system analyses rather than the entire set of constraints.
This method allows for efficient analysis of large systems
even when the cost of a whole system analysis does not
scale linearly with the size of the system. Further, the com-
positional aspect of this method allows for analysis to oc-
cur in cases where it otherwise would require more infor-
mation i.e., in incomplete systems. When a portion of the
overall system has unknown constraints, but a known in-
terface, NetSketch can infer the types that will allow safe
operation of the system using the rest of the network and
its connectivity to the incomplete “hole”.

1 Here by “exact” we mean with respect to those properties under consid-
eration in the model. Any model is by neccessity an approximation of the
system being represented.

The NetSketch formalism defines a domain specific lan-
guage for describing constrained flow networks. In its orig-
inal form [4] the DSL consists of five main constructs:
Module, Hole, Connect, Loop, and Let. These are described
below, and the corresponding rules for constructing net-
work descriptions are depicted in Figure 1.

Module Module defines a new node in the network. This
node is atomic i.e., not composed of other nodes.

Hole A hole in a network describes an area that is incom-
plete (e.g., not yet designed or unknown to the modeler).
It provides the information that is known about this hole
(only the number of inputs and outputs) without the need
to fully specify the constraints. NetSketch enables its users
to infer the minimal requirements to be expected of (or to
be imposed on) such holes. This enables the design of a
system to proceed based only on the promised functional-
ity of missing parts.

Connect Connect allows for two distinct networks to be
combined into a larger network. This construct binds a
subset of the output ports of one network to a subset of
the input ports of another. The result is a new network that
can in turn be connected to others.

Loop Loop allows for the connection of an output port
of a network to be connected to an input port of the same
network.

Let Let is used to specify a set of networks that may be
placed in a given network hole.

3. NetSketch Tool and Architecture
The NetSketch formalism is partially implemented by the
current version of the NetSketch tool.2 The NetSketch tool
offers users the ability to visually create and define mod-
ules, and to create connections among them to form net-
work sketches. Subsets of networks may then be selected
for inclusion in the type generation process. This paper de-
scribes the state of the tool as of its first release, which
captures many of the core features of NetSketch but leaves

2 The tool can be found under Projects → NetSketch at the following
URL: http://www.cs.bu.edu/groups/ibench/.

36

Figure 2. View of a network consisting of 3 connected modules in the NetSketch tool.

others to future implementations. Section 6 discusses some
of the functionality yet to be added.

3.1 Interface and User Experience
Figure 2 shows a screen of the NetSketch tool in action.
Depicted are three modules from the domain of vehicular
traffic: a merge, a fork, and a 2-way cross intersection.
The interface of the tool is divided into two main areas.
The top represents the canvas onto which users will place
modules and create connections between these modules to
create networks. The bottom section presents the details of
the currently selected module, along with any environment
constants.

Creating Modules A user can begin defining a network
by first introducing new modules. This can be accom-
plished by creating a new module from scratch (i.e., with
no ports or constraints defined), or by selecting from a li-
brary of pre-defined modules and network sketches. Mod-
ules from the library come pre-built with a set number of
ports (input or output variables), and a base set of linear
constraints describing their operational requirements. Both
blank and library modules can then be extended by adding,
deleting, and modifying ports and constraints.

Ports are only given meaning when included in the con-
straints of the module containing the port. Thus, port cre-
ation is inferred during constraint definition. As a user cre-
ates a new constraint, x + y = z for example, the system
performs syntactic analysis of the constraint to determine
its variables, and automatically updates the list of ports for
the module. As constraints are created, modified, and re-
moved, the available ports for the given module will be
added or removed as appropriate. Once a port is defined,
it must be classified as either an input or an output port3.
Classifying a port as an input or output causes it to be
drawn on the canvas. Input ports align to the left of a mod-
ule, and output ports to the right.

3 In future implementations the ability to have internal variables that are
neither input or output will be allowed.

Connecting Modules Once constraints are defined, and
ports classified a module is ready for interfacing with
other modules and networks. The modules can be visually
dragged around the canvas to allow for appropriate posi-
tioning in relation to other modules with which potential
connections exist or to indicate logical groupings/relations.
To connect two modules a user creates a line by dragging
from the port of one modules to the port of another (or
among ports on the same module to create a loop). If port
P1 is connected to port P2 then either P1 is an input port,
or P2 is an input port, but not both (i.e., an exclusive-or
relationship).

Once two ports are connected their binding status in the
Variables area of the screen is updated from false to true
and the screen visually indicates this with a line between
the ports; an arrow indicates the direction of flow, and both
ends of the connection are shaded. Though not represented
explicitly in the Constraints area of the screen, an implicit
constraint is created for every port connection: an equality
constraint Pn = Pm is implied for every connection of port
Pn to port Pm.

As only the constraints of a single module are displayed
on the screen at any given time, variable names need not
be unique across a network. Internally, NetSketch performs
variable renaming by prepending the module name to the
variable name. From the user’s perspective only the mod-
ule specific variable name (i.e., x, not fork_1.x) is
displayed. This is possible and safe because the system
guarantees unique module names through a global counter
added to each module name.

Generating Types When a connected set of modules is
in a stable state the user can choose to generate a type
for that set. By selecting an option from the menubar a
type generation window will open. This window, as shown
in Figure 3, allows the user to select among the available
modules. A type can be created for a single module if the
user determines a typed version is easier to manipulate and
use than an untyped one, or a subset of connected modules
may be collectively typed. The decision regarding the level

37

Figure 3. Type generation window with two connected modules selected for type creation.

of granularity in type generation is an important one. This
represents the point where exact analysis is replaced with
compositional analysis.

At some point the constraint sets in a network of un-
typed modules may get sufficiently complex such that
compositional analysis becomes the preferred (if not only)
method for analysis. We define this point as the constraint
threshold. The constraint threshold may be determined in
any number of ways that might be beneficial to the user
(e.g., number of nodes, number of connections, number
of constraints, number of variables within the constraints,
time taken to bound the feasible region of the solution, the
shape of the constraints). Presently, our implementation of
NetSketch leaves the decision regarding the value of this
threshold to the user.

Once typed, a network is replaced visually by a single
container - slightly shaded to differentiate it from untyped
modules on the canvas. This process can be infinitely recru-
sive, in that a network of typed modules can itself be given
a type. The constraints shown in the bottom portion of the
screen are replaced with the intervals inferred for each port.

The types generated for a set of modules are non-empty
intervals over R. For each non-connected port P exposed
within the set of modules being typed, an interval of the
form P : [Pmin, Pmax] will be generated. Optimal typings
of this form can not be guaranteed to be uniquely generated
for the input variables without further guidance from the
user. In this implementation, this guidance takes the form
of a center point and an aspect ratio relating all input vari-
ables. See Section 4 for the reasons behind this requirement
and the details of the center-point/aspect-ratio solution, and
Section 6 for a description of work underway to alleviate
this need.

With types generated, what were formerly potentially
complex and numerous constraints are now simple inter-
vals that can be viewed, composed, and analyzed effi-
ciently. In addition, with this level of typing, unknowns
in the network can easily be left as holes that can have
their typings inferred without further specification simply
by connecting them appropriately to defined modules and
networks. Holes can be created in a fashion similar to that
of modules, with the exception that ports are listed explic-
itly as opposed to being inferred from the constraint set.
The Let construct of the formalism, which describes which
modules may be placed in a hole, is applied in the tool via

the ability to select existing components from the library as
potential hole replacements.

Persistence At any point the user can chose to save their
canvas in a persistent form. The tool will convert the in-
ternal representation of the model into JavaScript Object
Notation (JSON), and prompt the user to open or save the
generated JSON file. Users can then later load their saved
modules from disk to continue their modeling/analysis ef-
fort.

3.2 Architecture
The NetSketch tool architecture comprises a client compo-
nent and a server component as represented by the User
Interface and Core Engine boxes respectively in Figure 4.

Figure 4. Architecture of NetSketch Tool

The client-server paradigm was employed to allow for
a lightweight web deployment, while still retaining a non-
browser-resident server component for the linear program-
ming and other computationally heavy tasks. The client

38

and server communicate over HTTP using AJAX-style re-
quests.

User Interface The user interface was built using pure
JavaScript and HTML. Standalone executables offering
graphical user interface capabilities were considered (Java,
Python), but ultimately a web-based solution was chosen
due to a desire for an easily accessible, easily updatable,
zero-installation solution. While other web-based plat-
forms (JavaFX, Silverlight, Air, Flash) contain more robust
graphical capabilities, it was determined that JavaScript
and HTML alone could provide the required GUI capabili-
ties and would avoid attaching the project to a heavyweight
proprietary framework.

In order to alleviate some of the burden of ensuring
cross-browser compatibility, and development of a rich
set of widgets, the ExtJS JavaScript Framework [21] was
employed to provide the basic GUI elements. ExtJS is
an open source framework that provides a wide array of
user interface components as well as JavaScript utilities
for DOM (Document Object Model) manipulation, and a
simple AJAX model.

In addition to ExtJS, JSGL (the JavaScript Graphics
Library) [19], a pure JavaScript vector graphics toolkit,
was used. JSGL provided the vector graphics capabilities
needed to draw widgets, their ports, and the connections
between them. JSGL, as with ExtJS, also servers to hide
cross browser incompatibilities.

Core Engine The core of the NetSketch tool is imple-
mented as a server-side component. The server is writ-
ten in Haskell, with much of the heavy mathematical pro-
cessing being delegated to external C-based modules, or
to an implementation of the Modelica platform. The main
executable makes use of the Happstack Web Framework
[10]. NetSketch uses the built in HTTP server function-
ality of Happstack to expose the NetSketch API over the
web. HTTP GET requests can be constructed to provide
the NetSketch server with the description of the network
(including ports, connections, and constraints) in a format
based on the domain specific language defined in the work
outlining the NetSketch formalism [4].

Once the HTTP server component has received a request
it is passed to the untyped language engine for parsing. The
untyped language engine parses the request based on the
NetSketch untyped language DSL, and passes the text rep-
resenting linear constraints to the constraint language en-
gine. The grammars for both the NetSketch untyped DSL,
and the linear constraint language are defined in annotated
BNF. The Haskell parser generator Happy [12] was used
to generate parsers based on these grammars. Beyond the
parsing functionality, each language engine provides func-
tionality related to the manipulation of its respective lan-
guage (e.g., simplifying and removing redundancy from
linear constraints).

After a successful parse, the structure representing the
network described in the request is sent to the type gener-
ation engine. This module first performs input type gener-
ation, followed by output type generation. Input type gen-
eration must first project the constraints onto a subset of

the original dimensions (specifically those corresponding
to the input ports). This projection is done using two ex-
ternal C/C++-based modules: CDD+ [11] and Domcheck
[15]. CDD+ is a C++ implementation of the Double De-
scription Method for vertex and extreme ray enumeration.
Domcheck is a program that computes minimal linear de-
scriptions of projections of polytopes. These modules are
distributed as C/C++ source code. The only modifications
made were to Domcheck in order to allow non-interactive
execution (i.e., to call in batch without a user present).

Both the output type generator, and the input type gen-
erator (after projection) make use of linear programming
techniques to identify boundaries of the generated types.
The linear programming can be accomplished via one
of two mechanisms. The original implementation used a
Haskell wrapper, hmatrix-glpk [20], around the GNU Lin-
ear Programming Kit (GLPK) [9]. The GLPK is a C-based
callable library providing routines for linear programming,
mixed integer programming, and other related problems.
NetSketch makes use of the GLPK’s implementation of the
Simplex method. HMatrix-GLPK provides a pure Haskell
interface to this and a select set of other features from
GLPK. The other mechanism was developed after creat-
ing the HModelica Haskell library (see Section 5). In this
method NetSketch makes calls via HModelica to an in-
stance of the OpenModelica [17] platform. Here Modelica
code is executed to perform the required linear program-
ming tasks. By using OpenModelica 3, external libraries
(hmatrix, hmatrix-glpk, and glpk) were no longer required,
simplifying the code base.

4. Type Generation
Generating types from sets of untyped modules involves
transforming linear constraints into intervals over R. This
process is divided into two high-level steps: input port
type generation, and output port type generation. As the
output type generation can use the results of the input types
to create more accurate results, these sub-processes are
performed in the order listed above.

Input Port Type Generation In order to generate types
for the input ports of a set of modules, it helps to visualize
the set of linear constraints that define the set as a convex
hull. Figure 5 shows such a hull in 2-space (i.e., for a set
of constraints over two input variables). Here we see four
constraints labeled Constraint 1 through Constraint 4. The
convex hull formed by their intersection defines the set of
feasible input values.

To create intervals for the input variables we need to find
a largest enclosed hyper-rectangle4 within the convex hull.
Such an area is not necessarily unique. Various options ex-
ists for techniques to select a single typing from among
these non-unique hyper-rectangles. On the more expressive
and accurate side, options exist such as selecting a subset
of the possible enclosed hyper-rectangles and defining the
type as their union. Work on the use of dynamic adaptive

4 In this paper all hyper-rectangles are axis-aligned. For brevity we use
the term “hyper-rectangle” to ‘refer to “axis-aligned hyper-rectangle”
throughout.

39

Figure 5. Input Type Generation

types is underway as described in Section 6. For this imple-
mentation, a more restrictive process was used that involves
defining a center point for the hyper-rectangle, along with
an aspect ratio relating all input variables. In Figure 5 the
center point (x, y) is displayed along with the aspect ratio
relating x to y.

Given a center point and an aspect ratio, a unique maxi-
mally enclosed hyper-rectangle can be identified given the
set of linear constraints for the modules. Intuitively this
can be visualized (in 2 or 3-space) as enlarging a hyper-
rectangle (that begins as a single point at the given center
point) in increments defined by the given aspect ratio until
the hyper-rectangle intersects with the convex hull defined
by the linear constraints of the module set. Programmati-
cally, this is accomplished by determining the set of diag-
onals defined by the hyper-rectangle (labeled Diagonal 1,
and Diagonal 2 in Figure 5). There exist 2n−1 such diago-
nals for an n-dimensional hyper-rectangle. Given the cen-
ter point and aspect ratio of the desired hyper-rectangle,
expressions describing the diagonals can be created triv-
ially in parametric form (which the system later converts
to the standard linear equation form for use with an exist-
ing linear programming solver). With these diagonals de-
fined, the closest intersection (to the center point) with the
given linear constraints is then located using linear pro-
gramming. Four of the eight potential intersection points
in Figure 5 are highlighted with circles. Once the closest
intersection point Ix,y is identified a hyper-rectangle of di-
mensions |Ix − Cx| by |Iy − Cy| centered at Cx,y can be
defined. The bounds of this hyper-rectangle on any given
axis represent the bounds of the interval for that axis’s vari-
able. This example was given in 2-space for visual clarity,
but the principles extend to n dimensions where n≥ 2 (spe-
cial case coding exists to handle n = 1).

The discussion to this point has assumed that we al-
ready have the set of linear constraints to use when gen-
erating the input type. It must be noted, however, that the
set of linear constraints defined by the user does not equal
the set used for these constraints. This is the case for two
reasons. First, the set of linear constraints defined by the
user does not explicitly contain the equality constraints re-
quiring connected ports between modules to equal each
other. These constraints are implied in the visual connec-
tions drawn between modules, but made explicit in the in-
ner workings of the NetSketch tool. Secondly, when spec-
ifying the set of linear constraints for a given module, the
user may well define constraints relating the input and out-
put ports. The generation of the maximally enclosed hyper-
rectangle as described above requires the constraints to be
restricted to only contain variables from the input ports.
To accommodate this need the NetSketch tool first per-
forms a projection of the given constraints, plus the implicit
connection constraints, onto only those dimensions repre-
senting the input variables. For example, given input ports
I = {a, b, c}, output ports O = {x, y, z}, and a set of lin-
ear constraints C over I∪O, the system will project C onto
the 3-dimensional space of I . The resulting constraint set
is used in the generation of the maximally enclosed hyper-
rectangle.

Output Port Type Generation As with input type genera-
tion, it is helpful to visualize the linear constraints as form-
ing a convex hull as depicted in Figure 6. To determine
the feasible output values, unlike the maximally enclosed
hyper-rectangle needed for input ports, a minimally enclos-
ing hyper-rectangle must be identified. The determination
of this hyper-rectangle is significantly simpler than for that
of its input counterpart: an optimal enclosing is unique, so
a center point and aspect ratios are not required.

40

Figure 6. Output Type Generation

The hyper-rectangle can be computed by using linear
programming to solve the system of equations and inequal-
ities, first with the objective function Maximize(v), then
again with the objective function Minimize(v) for each
output variable v. The solution that maximizes v will be-
come the upper bound for the variable’s type, and the so-
lution that minimizes v will become the lower bound (i.e.,
∀v ∈ I, type(v) = [SolutionMin,SolutionMax]).

As mentioned previously, the constraints used when cal-
culating the output types should include those generated
as the input types. The intervals created during input type
generation are therefore converted into simple linear con-
straints (e.g., x : [0, 100] becomes two constraints: x ≥ 0,
and x ≤ 100). These constraints are then added to the
original constraints for use in determining the output types.
Without these extra constraints, the result would be correct,
but the range of values for the output types would be wider
than they truly need to be: in all but the most pathologi-
cal cases, the valid input values will have been restricted
during conversion to intervals.

5. Harnessing Modelica
Well-established constraint-based modeling systems exist
today. NetSketch shares a variety of similarities with these
tools, but also bears numerous non-trivial differences. No-
tably, NetSketch in its current form does not explicitly con-
sider time. Other constraint-based modeling tools, such as
Modelica [2], are largely centered around time and use sim-
ulation over time as their main form of analysis. Some
work has been done to show that a variation of NetSketch
can be created to more natively incorporate the concept
of time. Here, variables of the constraints are replaced by

functions of the same name that accept a time variable as
an argument. Given the simulation-based nature of Model-
ica and similar systems, other differences from NetSketch
arise, such as the need for balanced systems over equations
(rather than inequalities) [1].

Despite such differences, the overlap that does exist
offers a great opportunity for various forms of integration.
Here, we examine two forms of relation to Modelica: as a
computation platform, and as an environment for working
with translated NetSketch models.

5.1 Modelica as a Computation Platform
Modelica offers a wealth of functionality as well as a robust
library. The extensive library provides both reusable mod-
els and reusable functions spanning many domains. This
library can be of use to both NetSketch modelers (see sec-
tions 5.2 and 6), and to the NetSketch tool implementation
itself.

Modelica and the functions defined in the Modelica li-
brary can be used directly by the NetSketch implementa-
tion as a processing engine. For example, the NetSketch
engine requires frequent use of linear programming tech-
niques, namely the simplex method. A function implement-
ing this has been defined in Modelica code and can there-
fore be used by NetSketch to “farm out” some of the more
mathematically heavy computations.

To gain access to the power of Modelica from within
the NetSketch tool, a reusable Haskell library was devel-
oped to expose the functionality of the OpenModelica im-
plementation to Haskell code. This library, HModelica, en-
ables Haskell developers to create, manipulate, and simu-
late Modelica models, in addtion to directly executing func-

41

tions written in the Modelica language. Through the use of
this library the NetSketch simplex code was replaced with
calls to OpenModelica, alleviating the need for a handful of
Haskell- and C-based libraries that previously were tasked
with this work. Having a single platform and access mech-
anism for performing these types of tasks simplifies the
NetSketch code base, and this impact will continue to grow
as the set of tasks handed to Modelica increases.

The library exposes the OpenModelica API in two ways.
The primary mechanism is in place for a subset of the
OpenModelica API calls. These functions are implemented
as type-safe calls with full translation to and from Haskell
types. Second, for any functions not implemented in this
manner (the number continues to decrease as development
continues), a single function is implemented allowing the
caller to send commands to Modelica as a string, and then
to receive the results as a string. This allows for the execu-
tion of any arbitrary Modelica command.

HModelica has the potential to open Modelica up to
the community of Haskell developers. As such, its use can
extend outside of NetSketch. To that end the library is being
added to the Haskell package repository HackageDB [8].
Here, it will be available for public download and use in
the Cabal package format.

5.2 Translation to Modelica
Modelica and NetSketch share enough in common that a
translation between the two can be defined. Here, we con-
centrate on the translation from NetSketch to Modelica;
however, a subset of the models developed in Modelica
(those with linear constraints) could be directly translated
into typed NetSketch networks. This would provide NetS-
ketch users with access to a wider array of pre-built compo-
nents. A translation in this direction would map Modelica
classes and related definitions to NetSketch module defini-
tions with connections between classes and compositions
of modules accomplished via NetSketch Connect and Loop
constructs. A formal definition of such a mapping is being
considered for future work, as discussed in Section 6.

The reverse direction, a translation from NetSketch to
Modelica, generates models that can be used to perform
simulation as a safety analysis tool. This process is outlined
in detail in an accompanying work [22] and is described at
a high level here. To accomplish a translation, two restric-
tions must be placed on the model during the process. First,
any inequalities defined in the NetSketch constraints must
be transformed to a form of validation check, as opposed to
an active regulator of the system (as the equations section
of a Modelica model must contain only that - equations). In
some models this may require a binding of a subset of the
variables involved in the constraints to specific values for a
given simulation of the system (to allow the simulation to
uniquely determine the flow). Second, the system must be
balanced (not over- or underdetermined). This again may
result in the binding of particular variables to concrete val-
ues for a given run of the simulation. In these cases single
simulations can be run to test “what-if” scenarios corre-
sponding to the particular binding given to the variables,
or a set of simulations may be run on the extremes of the

valid range of values for each given variable to determine
a broader notion of safety across those ranges. Only the
extremes of the intervals must be tested because the con-
straints in the current implementation are linear and thus
form a convex hull; no gaps in safe ranges may exist.

Conn

Src0 Conn

Src1 Conn

M0 Sink0

Figure 7. Tree view of the NetSketch network depicted in
Figure 8

To reduce the number of variables that must be bound
to concrete values, the NetSketch model is first analyzed to
construct a minimal covering set. Such an analysis defines
a set of variables SMin ⊆ I ∪ O where I and O represent
the set of inputs and outputs, respectively, of the system.

As an example consider Figure 8. Here 6 variables,
a, b, c, d, e, f , and a constraint set exist to regulate flow
within the system. Since M0 conserves flow via the con-
straint c+ d = e, we need only bind two variables, namely
a, and b, to concrete values in order to determine the en-
tire system. Since c, d, e, and f all depend on a and b to
determine their values, these variables need not be consid-
ered when providing concrete values to drive a Modelica
simulation.

An accompanying report [22] defines two algorithms for
constructing SMin. The first is quite efficient, involving two
passes of the tree representing a NetSketch model (see Fig-
ure 7 for an example), but may not always produce the min-
imal set. It is causal in nature, and thus does not consider
the potential positive impact of variables down the causal
chain of the network. The first pass builds two transition
relations, and the second actually constructs SMin using a
set of formal rules and the transition relations from the first
pass. A Haskell implementation of this process has been
created and will be incorporated directly into the existing
implementation as described in Section 6. The second al-
gorithm described in [22] will always produce a minimal
set, but has a worst-case exponential running time under
a naive implementation. This algorithm transforms a sys-
tem into a set of propositional logic implication statements
representing how knowledge about one variable (or set of
variables) implies knowledge about others. The problem is
thus transformed into a search for the minimal number of
propositional atoms that must be explicitly bound to true
in order to imply the conjunction of atoms representing all

42

variables in the system. A hybrid approach is also described
that allows for the use of the first algorithm to set a max-
imum size of SMin from which the second can start. This
variant allows for significant savings in computation time.

Figure 8. Two source modules, a merge, and a sink.

Once a minimal covering set is constructed, a translation
can occur. This again involves a traversal of the tree repre-
senting the NetSketch model. Here, as each Module, Hole,
Conn, Loop, and Let node is visited, an abstract represen-
tation of a Modelica model is incrementally constructed.
NetSketch modules (and holes) are transformed into enti-
ties representing Modelica class definitions (or a restricted
version thereof) with any equation-based constraints rep-
resented directly in the equation section of the result-
ing class definition. For all variables in SMin the Modelica
parameter modifier is used. Inequality constraints are
moved to a “driver” class created to organize the system
and provide validation checks that the model is safe. Within
the driver class all modules/holes are present as instances of
their respective classes. Appropriate initial value equations
for the variables in SMin are present with user-specified
bindings. Modelica connect statements are used where
NetSketch Connect and Loop constructs existed. The driver
is thus a flat representation of the network. The driver also
contains a single additional boolean variable, not present in
the initial model: isValid. This variable is set to equal the
conjunction of all the inequality constraints that existed in
the individual modules/classes (as these could not be in-
cluded in the equation sections of their owning classes).
In this way a user can examine this variable post-simulation
to determine if the model is safe under the given param-
eters. The resulting abstract representation is then trans-
formed into a string which can be written to a text file, or
sent directly to Modelica via the HModelica interface de-
scribed above.

6. Related and Future Work
This work extends and generalizes our work in TRAFFIC
[3], and complements our earlier work in CHAIN [7]. An
essential functionality of NetSketch is the ability to rea-
son about, and find solution ranges that respect, sets of
constraints. In its general form, this is the widely studied
constraint satisfaction problem. NetSketch types are lin-
ear constraints, and linear constraint satisfaction is a clas-
sic problem for which many documented algorithms ex-

ist. A distinguishing feature of NetSketch and the under-
lying formalism is that it does not treat the set of con-
straints as monolithic. Instead, a tradeoff is made in favor
of providing users a way to manage large constraint sets
through abstraction, encapsulation, and composition. Other
formalisms and methods, such as [16], seek to enable early
detection of problems in a model by applying types to con-
straint sets in a modular way, but are intended for provid-
ing assurances that compilation prior to analysis/simulation
will succeed. In contrast the use of types in NetSketch di-
rectly support the analysis of the model itself.

NetSketch leverages a rigorous formalism for the spec-
ification and verification of desirable global properties
while remaining ultimately lightweight. By “lightweight”
we mean to contrast our work to the heavy-going formal
approaches – accessible to a narrow community of experts
– which are permeating much of current research on formal
methods and the foundations of programming languages
(such as the work on automated proof assistants [18, 13],
or the work on calculi for distributing computing [6]). In
doing so, our goal is to ensure that the formalisms pre-
sented to NetSketch users are the minimum that they would
need to interact with, keeping the more complicated parts
of these formalisms “under the hood”.

A number of planned areas of future work exist related
to extending the functionality of the NetSketch tool to
more closely match the power expressed in the NetSketch
formalism, furthering integration with existing equation-
based modeling tools, and extending the formalism itself.

Tool Enhancements Network Holes can currently be
used with the Let construct to select elements from the
library to act as hole replacements. Future versions of the
tool will allow for selection from additional sources (the
current canvas, persisted models, etc). Currently, variables
within constraints must be classified as input or output vari-
ables. In future implementations, internal variables will be
allowed that do not correspond to ports of the module.

NetSketch models the direction of data flow explicitly
(i.e. ports are marked as either input or output). By default
in Modelica’s acausal system this is not the case. While
NetSketch requires all ports to be causal, bidirectionality
can be modeled through either the use of two connections
- each representing a direction of flow, or by allowing flow
across a single connection to be either positive or negative.
Connecting an output port to an input port in NetSketch
requires the former be a subtype of the latter. This imples
that bidirectional flow over a single connection would re-
quire the participating ports have identical types. The NetS-
ketch formalism allows for both of these methods of mod-
eling bidirectionality, though extensions to the current im-
plementation may make such modeling more accesible and
transparent. Single connection bidirectionality may bene-
fit, for example, from the extension of the current system’s
strictly linear constraints to include constructs such as the
absolute value function.

Tool Integration As described in Section 5, Modelica
offers a wealth of reusable components. Formally defining
a translation from a Modelica model to NetSketch would

43

allow NetSketch users to quickly make use of the breadth
of components developed for the Modelica platform. The
translation is restricted in the current implementation to a
simplified subset of models with linear equations. It should
be noted, however, that the restriction to linear constraints
is an artifact of the implementation, and not the formalism.
The NetSketch formalism is parameterized by the chosen
constraint space, and thus allows for a much more general
set of constraints than the current tool implements.

The algorithms defined in Section 5 will be integrated
into the current tool implementation to allow in-tool ex-
ports of NetSketch models to Modelica models. Direct ex-
ecution of the resulting models will also be implemented as
a function of the tool.

Formalism A deeper examination of the proper model for
selecting among optimal typings is currently underway and
will likely lead to an alteration of both the tool (in its cur-
rent requirement for a center point and aspect ratio), and
potentially of the formalism. Enhancements to the type sys-
tem to allow for the expression of types as unions of inter-
vals or as function of the state of the network connections is
being explored. In addition, work is currently being under-
taken on a version of the formalism that restricts the con-
straints to a particular subset of linear equations resulting
in a simplified type inference mechanism, and an expanded
set of tractable forms of analysis, while still allowing for an
expressive constraint language with real-world applicabil-
ity. Papers describing the formalism [4], as well as related
papers [5, 14] outline a number of additional ideas for fur-
thering the core concepts behind NetSketch.

References
[1] Modelica Association. Modelica Language Specification

3.2. Technical report, Modelica Association, 2010.
http://www.modelica.org/documents/ModelicaSpec32.pdf.

[2] Modelica Association. Modelica and the Modelica Associ-
ation.
https://www.modelica.org/, May 2011.

[3] Azer Bestavros, Adam Bradley, Assaf Kfoury, and Ibrahim
Matta. Typed Abstraction of Complex Network Compo-
sitions. In Proceedings of the 13th IEEE International
Conference on Network Protocols (ICNP’05), Boston, MA,
November 2005.

[4] Azer Bestavros, Assaf Kfoury, Andrei Lapets, and Michael
Ocean. Safe Compositional Network Sketches: Formalism.
Technical report, Department of Computer Science, Boston
University, Boston, MA, USA, 2009. Tech. Rep. BUCS-
TR-2009-029, October 1, 2009.

[5] Azer Bestavros, Assaf Kfoury, Andrei Lapets, and Michael
Ocean. Safe Compositional Network Sketches: Tool and
Use Cases. Technical report, Department of Computer
Science, Boston University, Boston, MA, USA, 2009. Tech.
Rep. BUCS-TR-2009-028, October 1, 2009.

[6] Gérard Boudol. The π-calculus in direct style. In Conf. Rec.
POPL ’97: 24th ACM Symp. Princ. of Prog. Langs., pages
228–241, 1997.

[7] Adam Bradley, Azer Bestavros, and Assaf Kfoury. System-
atic Verification of Safety Properties of Arbitrary Network

Protocol Compositions Using CHAIN. In Proceedings
of ICNP’03: The 11th IEEE International Conference on
Network Protocols, Atlanta, GA, November 2003.

[8] Hackage Community. Hackagedb.
http://hackage.haskell.org, May 2011.

[9] GNU Project Developers. GLPK GNU Project.
http://www.gnu.org/software/glpk/, January 2011.

[10] Matthew Elder and Jeremy Shaw. Happstack - A Haskell
Web Framework.
http://happstack.com/index.html, January 2011.

[11] Komei Fukuda. cdd and cddplus homepage.
http://www.ifor.math.ethz.ch/∼fukuda/cdd_home/cdd.html,
January 2011. Swiss Federal Institute of Technology.

[12] Andy Gill and Simon Marlow. Happy - The Parser
Generator for Haskell.
http://www.haskell.org/happy/, January 2011.

[13] Hugo Herbelin. A λ-calculus structure isomorphic to
Gentzen-style sequent calculus structure. In "Proc. Conf.
Computer Science Logic", volume 933 of LNCS, pages
61–75. Springer-Verlag, 1994.

[14] Andrei Lapets, Assaf Kfoury, and Azer Bestavros. Safe
Compositional Network Sketches: Reasoning with Auto-
mated Assistance. Technical report, Department of Com-
puter Science, Boston University, Boston, MA, USA, 2010.
Tech. Rep. BUCS-TR-2009-028, January 19, 2010.

[15] Francois Margot. Francois Margot Homepage.
http://wpweb2.tepper.cmu.edu/fmargot/, January 2011.
Carnegie Mellon.

[16] Henrik Nilsson. Type-based structural analysis for modular
systems of equations. In Proceedings of the 2nd Inter-
national Workshop on Equation-Based Object-Oriented
Languages and Tools, July 2008.

[17] Open Source Modelica Consortium (OSMC). Welcome to
OpenModelica.
http://www.openmodelica.org/, May 2011.

[18] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover,
volume LNCS 828. Springer-Verlag, 1994.

[19] Tomas Rehorek. JavaScript Graphics Library (JSGL)
official homepage.
http://www.jsgl.org/doku.php, January 2011.

[20] Alberto Ruiz. HackageDB: hmatrix-glpk-0.2.1.
http://hackage.haskell.org/package/hmatrix-glpk, January
2011.

[21] Sencha. Sencha - Ext JS - Client-side Javascript Framework.
http://www.sencha.com/products/js/, January 2011.

[22] Nate Soule, Azer Bestavros, Assaf Kfoury, and Andrei
Lapets. Safe Compositional Equation-based Modeling of
Constrained Flow Networks. Technical report, Department
of Computer Science, Boston University, Boston, MA,
USA, 2011. Tech. Rep. BUCS-TR-2011-014, June 5, 2011.

[23] Nate Soule, Azer Bestavros, Assaf Kfoury, and Andrei
Lapets. Use Cases for Compositional Modeling and
Analysis of Equation-based Constrained Flow Networks.
Technical report, Department of Computer Science, Boston
University, Boston, MA, USA, 2011. Tech. Rep. BUCS-
TR-2011-019, July 5, 2011.

44

