
A Compositional Semantics
for

Modelica-style Variable-structure Modeling

P. Pepper1 A. Mehlhase2 Ch. Höger3 L. Scholz41Institut für Softwaretechnik, TU Berlin, Germany,{peter.pepper}@tu-berlin.de2Institut für Softwaretechnik, TU Berlin, Germany,{a.mehlhase}@tu-berlin.de3Institut für Softwaretechnik, TU Berlin, Germany,{christoph.hoeger}@tu-berlin.de4Institut für Mathematik, TU Berlin, Germany,{lscholz}@math.tu-berlin.de

Abstract
Modelica traditionally has a non-compositional semantic
definition, based on so-called “flattening”. But in the realm
of programming languages and theoretical computer sci-
ence it is by now an accepted principle that semantics
should be given in a compositional way. Such a semantics
is given in this paper for Modelica-style languages. More-
over, the approach is also used to consider more general
modeling concepts, namely so-called variable-structure
systems. As an outlook we discuss the correspondence
between such an idealized mathematical semantics and a
more pragmatic numeric solver-oriented semantics.

Keywords Modelica, compositional semantics, structure
dynamics, uncertainty.

1. Introduction
A large class of technical multi-physics systems can be
modeled in languages like Matlab/Simulink/Stateflow, As-
cet, Labview, Scicos, Modelica and various others. These
systems are essentially based on the paradigms of con-
trol theory and differential-algebraic equations (DAEs). Of
these systems, Modelica is distinguished by the fact that
it integrates the control theoretical aspects with the soft-
ware engineering principles of object-oriented program-
ming. We consider this a major advantage and therefore
concentrate in this paper on Modelica-style modeling.

However, there are a number of modeling concepts that
are also missing from Modelica, most notably the so-called
structure dynamics, also referred to asvariable-structure
modeling. Roughly speaking this means that during its life-
time the system passes throughmodes, in which it obeys
different sets of (differential) equations. This paradigm is

4th International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. September, 2011, ETH Zürich, Switzerland.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/056/

EOOLT 2011 website:
http://www.eoolt.org/2011/

very helpful in the “natural” specification of many systems,
but unfortunately it adds a number of severe conceptual,
semantic and implementation problems to classical Mod-
elica. Nevertheless, it has already been – at least partly –
addressed in a few systems, notably Mosilab [21] or SOL
[29]. Structure dynamics is also possible in languages like
Hydra [24, 20, 7, 19] or frameworks like CIF (Composi-
tional Interchange Format) [25, 26, 27]. However, we do
not consider such languages or frameworks here, since they
are not Modelica-like languages; rather Hydra is a Haskell-
based functional language that achieves similar effects with
other means (see below); the same is true for MKL [3, 4].
And CIF is a framework that shall integrate all kinds of
languages and language paradigms.

We note in passing that variable-structure systems can
also be treated in tools like Simulink and Dymola, but only
efficiently by way of using scripting techniques and only
for systems consisting of a few different modes [16].

In this paper we consider the core principles of variable-
structure modeling and try to give a rigorous semantics for
them. This semantic treatment bases on ideas taken from
approaches such as Phase Transition Systems [14, 15] and
Hybrid Automata [11, 8], the latter of which in turn are
based on StateCharts [10]. Moreover, we also integrate
ideas taken from ESpec [22, 12] as well as from Lustre
[5], Ptolemy [23] , CIF and comparable systems. However,
since all these approaches and concepts are overlapping, we
will not make any attempt to attribute each of our individual
design decisions to their respective predecessors.

When comparing formal approaches such as Phase
Transition Systems to Modelica-style systems, one can im-
mediately see a fundamental difference in attitude, which
makes any semantic comparison almost vain from the be-
ginning: Whereas the former bases on clean mathematical
concepts of the real numbersR and their function space,
the latter immediately focuses on numeric solvers and all
problems that are coming with them. In order to bridge that
gap, we envision a two-level semantics:

45

1. Ideal semantics. The first semantics that we give lives in
the ideal mathematical world of real numbers, continu-
ous functions, dense time and the like.

2. Simulation semantics. The second semantics is derived
from the first one by taking issues such as discretiza-
tion, approximation, rounding errors and the like into
account. However, we should emphasize that this is still
work in progress.

Through this separation of concerns we do not mix
up different and unrelated kinds of aspects in a single
monolithic description.

In the realm of programming languages and theoretical
computer science it is by now a well established princi-
ple that the semantics of languages should be given in a
compositional way. This means that the global semantics
of the whole can be described by giving local semantics to
the parts, from which the overall semantics is derived by
suitable composition rules. (This is in accordance with the
principle of modularization in software and systems engi-
neering.)

system components

flat system system model

semantic
interpretation

flattening composition

semantic
interpretation

Figure 1. Compositional semantics

Figure 1 illustrates the relationship between compo-
sitional and non-compositional semantic definitions. The
standard definition of Modelica follows the lower left path:
One always considers the system as a whole and flattens
it into one large system of equations, which represents
its semantics. However, in the realm of programming lan-
guages one rather gives individual semantic definitions for
all components and then composes the overall semantics
from these local definitions. This is the approach, which
we will follow in this paper.

Note: In the literature one can also find attempts to give
semantics to a continuous modeling language by designing
it as an embedded DSL (domain-specific language) over
some existing host language. For example, Hydra [20, 7, 6]
uses Haskell as the encompassing host language. Also the
approaches taken in CIF, which in turn bases on earlier
work on Chi, or Ptolemy [23] can be subsumed under this
principle. Here the host for the embedding is not a real pro-
gramming language such as Haskell; rather one employs
a powerful mathematical framework (such as special au-
tomata with SOS-based semantic definition) into which the
modeling language is mapped.

We do not follow this idea here, since it adds consid-
erable complexity to the understandability of the seman-
tics. One first has to fully comprehend the host language
– which is not trivial for a language like Haskell or CIF –
and then one has to understand the embedding. This may

be acceptable for computer scientists, who want to enter
the field of continuous modeling, but it is unacceptable for
engineers, who are familiar with areas like control theory
and possibly can program in C or Fortran. For this audi-
ence, Haskell poses an insurmountable obstacle in prac-
tice. Therefore we prefer to give an independent semantics
to modeling languages such as Modelica, which strives for
simplicity and easy understandability.

Part I: Ideal Semantics

2. Preliminaries: Specifications and Models
In the realm of programming languages and their seman-
tics there is by now a well-established way of proceeding.
To begin with, one has to clarify what kinds of terms are
syntactically allowed. To this end we follow the principles
that have been laid down very precisely in the realm of al-
gebraic specifications. (For a comprehensive treatment see
[1]; we follow here mainly the approach taken in the Es-
pec system [22, 12].) But we have to adapt the pertinent
concepts to the new situation of differential-algebraic equa-
tions.

The starting point is asignature� that determines the
admitted types and operations. In our case this signature
essentially consists of the standard operations of real arith-
metic. (At least we focus on that part of the signature.) As
a special feature the signature contains the differential op-
eratordx(t)dt , which we usually denote as_x or x0.

Over such a signature� and a setX of (typed) vari-
ables one can then build the setT (�;X) of well-typed
terms. And over these terms one can then buildequa-
tions. Due to the availability of the differential operator,
these equations are actually so-calleddifferential-algebraic
equations, short: DAEs.

Such a signature� together with a setE of equations
over� is called aspecification(in formal logics sometimes
also theory presentation). As is well-known from algebra
and formal logics, such a specification in general has many
models, where the notionmodelrefers to a mathematical
structure (usually an algebra) that is conformant to the
signature and obeys the equations.1

Definition 2.1 (Specification, model)Let S = (�; E) be
a specification. The set ofmodels of this specification is
denoted as Mod(S) = f A j A j= S g. �

Note that we include in the notationA j= S not only the
validity of the equations but also the conformance to the
signature. If the signature is clear from the context, we also
writeA j= E.

3. Fixed-structure Systems
We first consider fixed-structure systems. This kind of sys-
tem corresponds essentially to the style of models that can

1 It is unfortunate that the word “model” occurs here in two conflicting
meanings. On the one hand, there is the terminology of “continuous-
system modeling” and on the other hand there is the formal-logic termi-
nology of “models” of theories. We hope that the two usages will always
be clear from the context.

46

be formulated in Modelica. These models are given as a hi-
erarchy of subsystems that are ultimately based on atomic
components. Since these subsystems are usually encapsu-
lated into some suitable context, they look like components
themselves.

Definition 3.1 A system is built up from interacting com-
ponents. Thesecomponents are in turn eithersubsystems
or atomic components.�

Modelica follows the approach of object-oriented lan-
guages and describes components and systems by way of
classes. Such a class can be seen as a “blueprint”, from
which at runtime concrete components (“objects”) are ob-
tained by instantiation. In the terminology of algebra (see
Section 2) these classes correspond to the specifications
and the components to models (in the sense of formal
logic). In the following we will often just speak of “com-
ponents” or “systems”. It will be clear from the context,
whether we are talking about the classes or about the in-
stances.

We present our semantic definition in a bottom-up fash-
ion. That is, we start from atomic components and then
compose them into larger systems.

3.1 Atomic Components

The most elementary kind of system is anatomic compo-
nent. As is illustrated by the example in Figure 2 such an
atomic component consists of parameters and constants,
variables and equations. Parameters and constants are an
important and convenient feature in practical applications,
but they do not play an important role in the semantics.
Therefore we will ignore them from now on and only con-
centrate on the variables.

m � gFy x L
ClassPendulum
PARAM Length L
PARAM Mass m
CONSTAeleration gLength xLength yFore fm � �x = � xL � fm � �y = �m � g � yL � fx2 + y2 = L2

parameters

variablesV
equationsE

Figure 2. An atomic component

In general components (more precisely, the classes de-
scribing them) are embedded into the context of some en-

compassing system. According to the usual scoping prin-
ciples of programming and modeling languages this means
that the component has access to the variables of this con-
text. We refer to these variables asexternalvariables of the
component. These variables are usually not mentioned ex-
plicitly in the component but determined implicitly by the
scoping rules. In any case we need to split the set of vari-
ables into the two sets of “external” and “local” variables.

Definition 3.2 An atomic-component class is a named
triple C = (Ve; Vl; E) consisting of two disjoint setsVe
andVl of external and local variablesand a setE of hy-
brid differential-algebraic equations (DAEs). �

As mentioned in Section 2 such a class in general repre-
sents a whole set of possible models. (This is often referred
to as “underspecification”.) That is, there are many compo-
nents that fulfill the equations of the class.

In our application of continuous-system modeling the
variables of the class are interpreted as time-dependent
functions. For example, in Figure 2 the variablex stands for
a functionx(t) that gives the x-position of the pendulum at
any given point in timet.
Definition 3.3 Let C = (Ve; Vl; E) be an atomic-compo-
nent class. Amodel for this class is a structureM =(Fe; Fl) consisting of two sets of time-dependent functions,
which are in one-to-one correspondence to the setsVe andVl of variables. These functions have to fulfill the equations
in E. We denote this as usual byM j= C. By Mod(C) we
denote theset of all modelsof the classC. �

Note that the functions are completely general, that is,
they may be continuous or discontinuous or even discrete,
that is, only defined at selected time points. In this way
the set of equationsE may also contain equations that
determine the initial values.

In practice the one-to-one correspondence between the
variables and the functions is simply established by using
the same names for both, that is, e.g.x for the variable
andx(t) for the function. However, as we will see in a
moment, there may be many instances (objects) of the same
class coexisting in one system. Therefore we have many
different functions that correspond to the same variable,
namely one for each instance. In order to resolve these
conflicts systematically we assign unique identifiers to the
instances of the class (just like in Java every object of a
class is identified by a unique “reference”). The function
names are then annotated by these identifiers.

For example, if we have two componentsK1 andK2
as instances of a classC, and ifx is a variable inC, then
the two instances have functionsxK1(t) andxK2(t). In this
way an equation like_x = 2 � x of the class is interpreted
by the two model equalities_xK1(t) = 2 � xK1(t) and_xK2(t) = 2 � xK2(t).
3.2 Composition of Components

Systems are usually built by composition of atomic com-
ponents. The most elementary form of such a composition
is sketched in Figure 3. We have two classesC1 andC2
describing components with individual variable setsV1, V2

47

and equation setsE1, E2. Since they coexist in the same
context, they share the setVe of external variables. As men-
tioned earlier, these external variables are usually not de-
clared in the component but derived implicitly by the scop-
ing rules.

ClassC1(Ve)V1E1 ClassC1(Ve)V2E2Eonn
Figure 3. Composition of components

The components are linked to each other by way of
so-calledconnectors. From a semantic point of view such
connectors only contribute further equations, typically of
the form C1:e = C2:e e: potential/effortC1:f + C2:f = 0 f : flow

For the semantics this means that we have to combine
all models of the two classes, provided that they coincide
on their common external part. This set then needs to be
filtered further by the connection equations.

Definition 3.4 (Composition)Let a systemS be given,
which consists of the two classesC1 = (Ve; V1; E1) andC2 = (Ve; V2; E2) (sharing the same external variablesVe) together with a setEonn of connection equations.
Then the models of thecombined system are derived from
the individual models as follows:

Mod(S) = (Mod(C1)
Mod(C2)) jEonndef= fM1 [M2 j M1 2 Mod(C1);M2 2 Mod(C2);M1jVe = M2jVe ;M1 [M2 j= Eonn g�
Since we assume that the local variables are suffixed by

the component names, we can form the union of the models
without any danger of name clashes. (The operator
 is a
pushout in the sense of category theory; that is, we form
the direct product of the two sets of models while sharing
their common global parts.)

Based on this definition of the semantic meaning we also
write the composition of two components in the shorthand
form (C1
 C2) jEonn.

This construction generalizes from two ton connected
components in the obvious way.

3.3 Subsystems

By connectingn components we obtain subsystems. But in
general such a subsystem is embedded into some encom-
passing component, which contributes both variables and
equations. This is illustrated in Figure 4.

Note that this construction is usually embedded into an
even larger context. Therefore we have the sets of variablesVe, VS , V1, . . . , Vn and the equationsES , E1, . . . , En

ClassS (Ve)VSES
Class C1V1E1

Class C2V2E2Class C3V3E3
Figure 4. A subsystem

together with the various connection equationsEonn1 , . . . ,Eonnk . Note also that the subcomponentsC1, C2 andC3
haveVe [VS as their set of external variables.

Since the equations inES may refer to variables of
the components by using prefix notations such as_x =f(x;C1:y; C2:z), we have to respect this in the semantic
definition. That is, a class reference such asC1:y refers on
the model level toyK1(t), whereK1 is the model instance
of C1.
Definition 3.5 Let a system be given as described in Fig-
ure 4. Then the semantics is given by

Mod(S) =�
Mod(C1)
� � �
Mod(Cn)� j (ES[Eonn1[� � �[Eonnk)

Note thatVe [VS is part of the global variables of each
of theCi such that these variables are taken care of by the
operator
. �

The construction can be applied iteratively to nested hi-
erarchies of systems. Thus we obtain a bottom-up composi-
tional semantics for Modelica-like languages. This seman-
tics is equivalent to the monolithic flattening-based seman-
tics as it has been sketched in the commuting diagram of
Figure 1 in the introduction.

4. Variable-structure Systems
We want to go beyond classical Modelica and also con-
sider variable-structure systems. Such variable-structure
systems generalize the effects that can be achieved in Mod-
elica with a combination of the if- and when-constructs or
in Matlab/Simulink with the enabling blocks. Vice versa,
these constructs can be semantically explained in terms
of variable-structure systems. Non-standard Modelica sys-
tems such as Mosilab [21] or experimental designs such
as SOL [29] already provide principal implementations of
this idea.

In the fixed-structure systems discussed so far we only
need to consider a single time interval, namely thelife
spanof (the simulation of) the system. All components are
created at the beginning of this life span and the functionsx(t) are defined (and simulated) over this life span.

48

CLASSStringPendulumMass mAeleration gLength L
SwingAngle 'Fore F�' = � gL � sin(')F = m � g � os(') +m � L � _'2 FallLength x ; y; rVeloity vx ; vym � _vx = 0m � _vy = �g �mr = sqrt(x2 + y2)' = : : : F < 0 V x = : : : y = : : :vx = : : : vy = : : :

r = LV : : :
Figure 5. A simple dynamic component

However, it will frequently be the case that a component
passes through different modes, in which it exhibits differ-
ent kinds of behaviors. An example is given in Figure 6
and its specification in Figure 5. Here we consider a string
pendulum, which initially starts as a normal pendulum but
changes to a free-falling ball as soon as the forceF is less
than zero.

Figure 6. A simple dynamic component

For specifying such variable-structure systems and com-
ponents we use a notation that is oriented at so-calledHy-
brid Automata[11] which in turn can be seen as a combi-
nation ofState Charts[10] andPhase Transition Systems
[14, 15]. As can be seen in Figure 5 such a component still
has component-external variables and equations. (Actually,
in this simple example there are only parameters and con-
stants.) But now it also has modes with additional mode-
local variables and equations. Moreover, there are guarded
transitions between the modes, which also possess actions
that essentially describe, how the initial values of the next
mode are to be determined.

We will not indulge further into this slight generaliza-
tion, since we want to consider even more general settings
as described – again by an oversimplified example – in Fig-
ure 7. The specification of the two modes is sketched in
Figure 8.

Here our initial system consists of two components, a
car and a ball. The car exhibits the simple physics of a
rolling device on an inclined plane, while the ball only
contributes its mass. After hitting the block, there is only
one interesting component left, namely the ball, which now
follows the physical laws of a bouncing ball.

As can be seen in this example, each mode can contain
whole subsystems such that the overall topology of the
system under consideration may change dynamically.

Figure 7. A simple mode-changing system

ModeRollslope : Angle; dist : Length; : : :
ClassCarm : Massv; vx; vy : Speed;: : : ClassBallm : Mass

ModeBouneheight : Length; : : :
ClassBallm : Mass;vx; vy : Speed: : :

bloked VBall:vx = Car:vxBall:vy = Car:vy

Figure 8. A simple changing topology

This principle is illustrated more abstractly in Figure 9,
which shows the general setting.

A system has external variablesV , equationsE and
componentsC1; C2; C3; : : : . Moreover, it possesses modesM1;M2; : : : , which in turn have local variables, equations
and subsystems. In order not to overload the pictorial il-
lustration we have refrained in Figure 9 from drawing the
connectors between the mode-local subsystemsSMi and
the component-subsystemS. Of course, such connectors
are possible (and they are easily described in textual form).

This hierarchical structuring can be iterated over arbi-
trarily many levels.

49

ClassC V , E
ClassC1

ClassC2
ClassC3

ModeM1VM1; EM1
ClassC4 ClassC5

ModeM2VM2; EM2
ClassC6 ClassC7

ClassC8
a0 g1V a1g2V a2

Figure 9. Variable-structure systems

Definition 4.1 (Variable-structure component)A variable-
structure component is a named tupleC = (V;E; S;D),
whereV andE are sets of component-external variables
and equations,S is a subsystem, that is, a set of intercon-
nected subcomponents, andD is thedynamics, that is, a
set of modes and transitions. (The modes and transitions
will be defined more rigorously in the next sections.) Each
modeM 2 D in general comprises mode-local variablesVM and equationsEM as well as a mode-local subsystemSM of components. The dynamics has anentry point t�
and anexit point t!. �

In the remainder of this paper we will make this infor-
mal definition more precise by giving rigorous semantics
to its various features.

5. Modes and Time
The situation in a real-world system can be roughly sketched
as in Figure 10. The modes (more precisely: instances
of modes) follow each other along the time line. The
component-external variables correspond to functions that
live across the modes; an example is illustrated in Figure 10
by the thick linef(t). The mode-local variables correspond
to functions that live only during their mode; examples are
given in the figure by the thin linesg(t) andh(t).

f(t)g(t) h(t)modeM1 modeM2
T1 T2 system evolution

over timet (time)

Figure 10. Real-world semantics

Note that we do not put any additional constraints on
the functions; that is, within its realm each of the functions
may be continuous, possess discontinuities or may even
be discrete. In other words, we consider modes to be a
design concept, not a technical feature that shall handle
complications such as discontinuities.

Each mode – more precisely: eachinstanceMi of a
mode – is associated to a unique intervalTi = [t�i ; t!i)
of the time line. For reasons that will be discussed in a
moment we use half-open time intervals.

Note: In practical technical systems the transition be-
tween modes usually takes some time, in which the system
is non-observable. A typical point in case is a diode, for
which the switching fromon to off is a very short but con-
tinuous process. In the idealized mathematical treatment
such transition periods are often modeled as instantaneous
transitions (which makes them often discontinuous). It is
debatable, whether one might even allow whole transition
intervals instead of transition points, or whether one should
model such situations by transition modes. Both variations
would be mathematically feasible; but for reasons of sim-
plicity we opted for the design with left-closed intervals.

As a final preparatory remark we point out that a fixed-
structure system can be considered as a borderline case of a
variable-structure system with exactly one mode that spans
the whole life time of the system.

Definition 5.1 (Modes)Let a classC = (V;E; S;D) be
given as sketched in Figure 9. The instantiation of this
specification (at runtime) leads to the creation of a new
componentK, which is a model ofC. This component
has a lifetimeTK = [t�; t!). The start timet� is the
moment of the creation of the component, the end timet! is
determined by rules that will be discussed later (e.g. caused
by events). We requiret� < t!, i.e. we exclude components
with zero life time.

The fixed-structure partCfix = (V;E;C1; : : : Cn) of
the class is semantically defined as in Definition 3.5. Note
that the subcomponents also have the life spanTK .

The semantics of the system during amode M is de-
rived from the fixed-part semantics by composing it with
the mode-local systemSM , that is,Cfix
 SM jEonn as
specified in Definition 3.4. HereEonn are the additional
connection equations that link the subsystem of the mode
to the fixed-part subsystem.

50

The life span of the modeM is determined by rules that
will be explained in connection with transitions in the next
section.�

Note that this semantic definition entails a subtle aspect.
The fixed partCfix = (V;E;C1; : : : Cn) of the class in
general has a whole setMod(Cfix) of models. Since we
allow the individual modes to impose further restrictions
on the fixed-part variables inV; V1; : : : ; Vn, the behavior of
the corresponding functions varies from mode to mode.

Example: Let x 2 V be a component variable (with-
out a restricting equation) and letx1 andx2 be two local
variables of the modesM1 andM2, respectively. Let the
following equations be given:M1 : x1 = 1 M2 : x2 = 2x = x1 x = x2

Thenx(t) is a function, which is constant but different
in M1 andM2 and has a discontinuous jump between the
two modes.

6. Transitions and Events
Next we consider the actual mode transitions as illustrated
in the examples of Figure 6 and Figure 7 or more schemat-
ically in Figure 9. The principles of such a mode transition
are illustrated in Figure 11.

modeM1 modeM2guardV ation
T1 = [t�1 ; t�) T2 = [t�; t!2)
Figure 11. Semantics of transitions

During the execution of the model each mode instance
is associated to a time interval. In the situation of Figure 11
we have the two intervalsT1 = [t�1 ; t�) andT2 = [t�; t!2).
The start point ofT1 and the end point ofT2 are of no
interest here. The focus of our attention is the pointt�,
which represents the transition between (the instances of)
the two modes.

Definition 6.1 (Transition point) Let two modesM1 andM2 with a transition (guard V ation) be given as
sketched in Figure 11. During runtime the transition pointt� between (instances of) these two modes is defined as
follows: t� is the smallest time instance greater than the
entry pointt�1 of modeM1 such thatguard(t�) = true
andguard(�) = false for all � with t�1 < � < t�. Then,T1 = [t�1 ; t�) and the entry point of modeM2 is given byt�2 = t�. �

Since modes shall not degenerate to zero length, we
have the conditiont�1 < t� < t!2 .

[18] provides a nice discussion of many aspects of such
transitions from the point of view of physics. The design
with half-open intervals ensures a well-defined solutionx(t) for all times t. Nevertheless, there are cases where
the left-closedness may have to be relaxed (see also the

discussion in [18]). However, these are special cases that
certainly have to be dealt with by the solvers, but not an
issue of ideal semantics.

Remark 1: The case of the immediate re-firing in the
case of self-loops can be repaired by introducing the con-
cept ofsuperdense time[15]. (A typical example for such a
self-loop is provided by the “bouncing ball”.) Here the time
is not onlyR but the productR�N , where the second com-
ponent could be interpreted as the number of the “clock”
that is responsible for the event. Then each occurrence of
the eventy = 0 in the bouncing-ball example could be
associated to another clock. Even though this idea of su-
perdense time may turn out helpful in some situations, we
currently refrain from introducing it and try to work with
our simpler model.

Therefore we would rather consider the immediate re-
firing as a modeling error (analogously to infinite while
loops in programming). For instance, in the bouncing-ball
example the guard should not only bey = 0 but y =0 ^ vy < 0. The transition action (see below) has to setvynew = �vyold . When the velocity is zero, the mode
should be exited.

Remark 2: There is the possibility ofconflicting guards.
That is, two guardsg1 and g2 may fire at the same in-
stantt�. There are several options for treating this situa-
tion. One could let the system choose nondeterministically
between the transitions. One could avoid this nondetermin-
ism by enforcing priorities between the transitions (like in
Matlab/Simulink/Stateflow). Or one could require the dis-
jointness of the guards and report an error, when two of
them fire simultaneously. This is a topic for language de-
sign. Since each of these options is compatible with our
semantic concepts, we can ignore the issue here. We note
in passing that there are attempts to utilize the idea of su-
perdense time also for this issue.

So far we have only considered the guards that fire the
transitions and thus determine the transition pointt�. We
still need to define the meaning of theaction part of the
transition. The purpose of these actions is to provide the
initial valuesfor the next mode. There are various syntactic
means for achieving this effect.

Example: Consider again the bouncing-ball example.
When the ball hits the ground, the vertical velocityvy is
reversed and deminished by some constant factor. This
could be written in a Pascal-like programming style asvy := � � vy. Or we could use an equation-style notation
like vynew = ��vyold, which would necessitate notations
for “old” and “new” (which is implicitly contained in the
program-style notation by the occurrence ofvy on the left
or right side of the assignment). Again, the notation is an
issue of language design and thus does not concern us here.

But we need to give a semantic meaning toxold andxnew for all variablesx occurring inM1 and/orM2.
Definition 6.2 (Transition action) Consider the scenario
of Definition 6.1. Theaction part of the transition de-
scribes a computation that uses (implicitly or explicitly)
valuesxold and xnew for certain variablesx. Depend-
ing on the application, we can definexold = x(t�) or

51

xold = limh!0 x(t� � h). xnew is computed as a func-
tion of xold. Thenx = xnew is used as the initial-value
equation for the differential-algebraic system in modeM2.�

This completes the compositional definition of the
“ideal” semantics of Modelica-style variable-structure sys-
tems.

Part II Simulation Semantics

7. Numerical Integration and Solvers
The ideal semantics lives in the realm of the real numbersR with infinite precision and infinitely accurate computa-
tions. But in reality we have to make do with the limita-
tions of computers, where one struggles with floating-point
arithmetic and its rounding errors, with solver techniques
realized in packages like DASSL [2] or RADAU5 [9], with
causalization and index reduction and so forth. This leads
to a different kind of semantics that we baptize “solver se-
mantics” or “simulation semantics”.

The reason for dealing with this question is the current
situation in modeling languages such as Matlab/Simulink
or Modelica. The specification documents of these lan-
guages often switch back and forth between concepts that
we refer to as “ideal semantics” and the difficulties intro-
duced by the computer-related limitations. Hence it is not
always clear, which aspects describe fundamental seman-
tic concepts and which aspects are actually due to short-
comings of certain solver methods. Sometimes one even
gets the impression that certain statements actually address
specific features of certain compilers or compilation tech-
niques.

7.1 Solver Issues

Solver semantics differs from the ideal semantics primarily
in two respects: discretization and finite precision.

1. Discretization. Functions over the continuous time do-
main R are replaced by functions over discrete time
points ti, whereti+1 = ti + hi for some discretiza-
tion step sizehi, starting at the initial time pointt0; the
step size may be uniform or varying.

It should be noted that the principle of discretization is
still compatible with ideal real-number arithmetic overR. In the Haskell-oriented literature this is usually mod-
eled bystreamsof sample valuesf(ti). For example, in
[28] it is shown that this approximation is – under cer-
tain constraints – faithful in the limit, as the step size
goes to zero. (This is not really surprising in the light of
century-old work by mathematicians like Cauchy and
others, since their techniques are essentially translated
here into Haskell-speak.)

2. Precision. The real numbersR are replaced by ma-
chine numbers of limited size, usuallyfloat or at best
double, on some processors even by fixed-point emu-
lations of floating-point numbers. This limited precision
combined with the need for not only finite but actually
efficient computation leads to several kinds of errors:

� The use of limited machine numbers leads to the
well-knownrounding errors.� The numerical solution~x obtained by the solver is
only an approximation of the solutionx(t) at dis-
crete time points. This leads todiscretization errors.� Computations such as integration or Newton itera-
tion for finding zero values are only executed with
certain (fixed or variable) step sizes and terminated
after a finite number of steps. This also leads todis-
cretization and approximation errors.� Parameters and input values generally come with a
certain error. For example, neither� nor the gravityg have their exact values. This in addition leads to
modeling errors.� Event detection for variable-structure systems usu-
ally comprises interpolation of the discrete solution~x between mesh pointsti andti+1, and a root finding
procedure. Again, this introduces an error.

We cannot do away with the intrinsic difficulties of
Numerics. In particular when dealing with differential-
algebraic systems there are a number of additional diffi-
culties that have to be dealt with, e.g. the problem of order
reduction of numerical methods and drift-off of the numer-
ical solution due to high index problems or the problem
of inconsistencies of initial values. A number of elaborate
methods, including numerical integration, index reduction
and consistent initialization have been developed over the
last decades to deal with these problems, see [2, 9, 13].

The purpose of (this section of) our paper is not to in-
dulge into these numeric issues. Rather we accept their ef-
fects as a given fact and study the impacts that this obser-
vation has for our semantic considerations.

We should point out quite clearly that this is all work in
progress and that the following is but a sketch of a research
direction.

7.2 Uncertainty

In order to get a grasp on these difficulties we employ the
notion ofuncertainty. That is, all values are considered to
be “uncertain”. This applies to all kinds of values that are
computed in the simulation, also including the time pointst�. For example, if we compute the so-called zero crossing
in the bouncing-ball example, we obtain the pointt� in
time, at which the guardy = 0 becomes true and fires.
However, this is only so in the ideal semantics. In the solver
semantics we have an uncertain value~y which leads to an
uncertain time point~t�.

As mentioned before, we are not interested in the Nu-
merics behind this uncertainty. Uncertain values may be
represented as simple intervals of real numbers or they may
be represented as intervals with a, say, Gaussian distribu-
tion. One may even use ideas of fuzzy logic for such a rep-
resentation. The challenge in Numerical Mathematics is to
come up with algorithms and methods that allow us to in-
fer the uncertainty of the result of a computation from the
inputs of the computation.

52

In the following we presume the existence of such a no-
tion of uncertainty. Then we can derive the solver semantics
along the same lines as the ideal semantics, but now using
the uncertain values~x and their computations in the place
of the real valuesx, i.e.,~x = x� ! for a small uncertainty!.

Then, the solver semantics are defined by the signature~� containing float or double types and floating point op-
erations (introducing rounding errors) and the set of vari-
ables ~X with corresponding uncertainties contained in the
set ~W . Let ~E be the corresponding set of equations, then for
a specification~S = (~�; ~E) the set of models is denoted by
Mod(~S) = f ~A j ~A j= ~S g and a component is defined by~C = (~V ; ~W; ~E). Composition of components and of sub-
systems can be defined in an analogous way as in Section 3.
The same holds true for the definition of variable-structure
components.

7.3 Semantics and Uncertainty

If we analyze the definitions in the previous sections, it
is easily seen that the difference between the ideal and
the solver semantics only plays a role at a few points. To
begin with, all composition operators are not affected by
the differences in the two semantics. What needs to be
considered are the following issues:� The fulfillment of equations, that is(~A j= ~E) in the

structure ~A is influenced by uncertainty. The meaning
of an equation~x = ~y as compared tox = y is uncer-
tain again. To analyze such an uncertain equation math-
ematically interval arithmetic can be employed. Since
all our constructions are defined relative to the relation
“is-a-model-of” (short: “j=”), there is no fundamental
problem here.� The action parts of the mode transitions are analogous to
the above equations, since we essentially need to solve
an uncertain equation of the form~xnew = f(~xold).� The most severe problem concerns theguards. Here we
run into problems, since our definition of the transition
point t� now has to be interpreted with uncertainty, i.e.,~t� is defined by~g(~t�) = true and ~g(�) = false for
all � with ~t�1 < � < ~t�. Since both, the guard function~g and~t� are blurred, the whole interval~T1 = [~t�1 ; ~t�)
is blurred. This could have major effects. For example,
in the case of two very close events the uncertainty
could mean that the later event actually fires before
the earlier one. Or two events that in reality happen
simultaneously are considered as being separate due to
uncertainty effects. As can be seen in the bouncing-
ball example the events will (towards the end of the
simulation) be so close together that – due to uncertainty
– they can no longer be distinguished. (This leads in
many animated simulations to the funny effect that in
the end the ball breaks through the surface and travels
towards the center of the earth.)

The question, if the solver semantics are faithful, i.e.
converge to the ideal semantics, when the discretization
step size tends to zero, strongly depends on the given model

and on the employed numerical solver. Statements under
which conditions a specific solver semantics converges to
its ideal semantics have to be derived for individual cases.

The most challenging problems occur in variable-struc-
ture systems: besides the problem of robust treatment in the
case of blurring event times one has to ensure that each in-
stance of a mode lives long enough since the event time~t�
is determined as zero crossing in the discretization interval[ti; ti+1℄. Concerning DAEs, in variable-structure systems
not only the initial values have to be ensured to be consis-
tent with the algebraic constraints, but also consistency of
each reinitialization after events has to be guaranteed. We
will not go further into the details of these problems in this
paper. For the analysis and numerical treatment of hybrid
DAEs we refer to [17].

These problems do exist and there is no general mech-
anism to avoid them. As a matter of fact, most of these ef-
fects need an application-dependent individual treatment.
What we suggest is that in the semantic specification of
modeling languages these solver-related effects are clearly
separated from the other semantic concepts. Moreover, it
should be discussed what kinds of language constructs
could be added such that the modeler has the capability
to describe these uncertainty effects appropriately.

8. Conclusion
We have presented a compositional semantics for essential
parts of Modelica-style modeling languages. Such a com-
positional semantics is a mandatory prerequisite for a clean
design of conceptual ideas such as variable-structure sys-
tems or compilation paradigms such as separate compila-
tion.

Moreover, it is important to provide a clean separation
of the basic modeling principles of a language from the ef-
fects that are caused by the limitations of numerics. Clearly,
a deeper analysis of the latter issue is a field for extensive
research in the realm of Numerical Analysis. This separa-
tion is strongly motivated by the following consideration
(as was pointed out explicitly by one of the reviewers): The
possibility to handle structural changes in a model and the
ease of doing this depends on the computational framework
that is used. By separating the semantics of the model from
that of the computational framework, different frameworks
can be applied to the same model, thus allowing one to re-
alize simulators for a larger set of structural changes in the
future.

References
[1] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd

Krieg-Brückner, Peter D. Mosses, Donald Sannella, and An-
drzej Tarlecki. CASL: the common algebraic specification
language.Theor. Comput. Sci., 286(2):153–196, 2002.

[2] Kathryn E. Brenan, Stephen L. Campbell, and Linda R.
Petzold. Numerical Solution of Initial-Value Problems in
Differential Algebraic Equations, volume 14 ofClassics in
Applied Mathematics. SIAM, Philadelphia, PA, 1996.

[3] David Broman. Meta-Languages and Semantics for
Equation-Based Modeling and Simulation. PhD thesis,

53

Linköping University, 2010.

[4] David Broman and Peter Fritzson. Higher-Order Acausal
Models.Simulation News Europe, 19(1):5–16, 2009.

[5] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John
Plaice. Lustre: A declarative language for programming
synchronous systems. InPOPL, pages 178–188, 1987.

[6] George Giorgidze and Henrik Nilsson. Embedding a Func-
tional Hybrid Modelling language in Haskell. InRevised
selected papers of the 20th international symposium on
Implementation and Application of Functional Languages,
Hatfield, England, volume 5836 ofLecture Notes in Com-
puter Science. Springer, 2008.

[7] George Giorgidze and Henrik Nilsson. Mixed-level
embedding and JIT compilation for an iteratively staged
DSL. In Proceedings of the 19th Workshop on Functional
and (Constraint) Logic Programming (WFLP’10), pages
19–34, 2010.

[8] Vineet Gupta, Thomas A. Henzinger, and Radha Ja-
gadeesan. Robust timed automata. InProceedings of
the First InternationalWorkshop on Hybrid and Real-time
Systems (HART 97), Lecture Notes in Computer Science
1201, pages 331–345, 1997.

[9] Ernst Hairer and Gerhard Wanner.Solving Ordinary
Differential Equations II: Stiff and Differential-Algebraic
Problems. Springer-Verlag, Berlin, second edition, 1996.

[10] David Harel. Statecharts: A visual formalism for complex
systems.Sci. Comput. Program., 8(3):231–274, 1987.

[11] Thomas A. Henzinger. The theory of hybrid automata. In
LICS, pages 278–292, 1996.

[12] Kestrel Institute, 3260 Hillview Ave., Palo Alto, CA
94304 USA. Specware System and documentation, 2003.
http://www.specware.org/.

[13] Peter Kunkel and Volker Mehrmann.Differential-Algebraic
Equations — Analysis and Numerical Solution. EMS
Publishing House, Zürich, Switzerland, 2006.

[14] Oded Maler, Zohar Manna, and Amir Pnueli. From timed
to hybrid systems. InREX Workshop, pages 447–484, 1991.

[15] Zohar Manna and Amir Pnueli. Verifying hybrid systems.
In Hybrid Systems, pages 4–35, 1992.

[16] Alexandra Mehlhase. Varying the level of detail during
simulation. Into appear in Proc. ASIM 2011, 2011.

[17] Volker Mehrmann and Lena Wunderlich. Hybrid systems
of differential-algebraic equations – analysis and numerical
solution.Journal of Process Control, 19:1218–1228, 2009.

[18] Pieter J. Mosterman. Hybrid dynamic systems: mode
transition behavior in hybrid dynamic systems. In Chick
S, P. J. Sanchez, D. Ferrin, and D. J. Morrice, editors,Proc.
2003 Winter Simulation Conference, pages 623–631, 2003.

[19] Henrik Nilsson and George Giorgidze. Exploiting structural
dynamism in functional hybrid modelling for simulation of
ideal diodes. InProceedings of the 7th EUROSIM Congress
on Modelling and Simulation, Prague, Czech Republic.
Czech Technical University Publishing House, 2010.

[20] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
hybrid modeling. InProceedings of 5th Int. Workshop on
Practical Aspects of Declarative Languages, volume 2562
of Lecture Notes in Computer Science, pages 376–390.

Springer, 2003.

[21] Christoph Nytsch-Geusen, Andre Nordwig, Thilo Ernst,
Peter Schwarz, Matthias Vetter, Christoph Wittwer, Andreas
Holm, Jürgen Leopold, Gerhardt Schmidt, Ulrich Doll, and
Alexander Mattes. MOSILAB: Development of a Modelica
based generic simulation tool supporting model structural
dynamics. InProceedings of the 4th International Modelica
Conference, 2005.

[22] Dusko Pavlovic, Peter Pepper, and Douglas R. Smith.
Evolving specification engineering. InAMAST, pages 299–
314, 2008.

[23] Hridesh Rajan and Gary T. Leavens. Ptolemy: A language
with quantified, typed events. InECOOP, pages 155–179,
2008.

[24] Neil Sculthorpe and Henrik Nilsson. Keeping calm in the
face of change: Towards optimisation of FRP by reasoning
about change.Journal of Higher-Order and Symbolic
Computation (HOSC), 24(1), 2011.

[25] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Foundations of an interchange
format for hybrid systems. In Alberto Bemporad, Antonio
Bicchi, and Giorgio Butazzo, editors,10th International
Workshop on Hybrid Systems: Computation and Control,
volume 4416 ofLecture Notes in Computer Science, pages
587–600. Springer, 2007.

[26] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Revised hybrid system
interchange format. Technical Report HYCON Deliverable
D3.6.3, HYCON NoE, 2007.

[27] Dirk A. van Beek, Michel A. Reniers, Jacobus E. Rooda,
and Ramon R. H. Schiffelers. Concrete syntax and
semantics of the compositional interchange format for
hybrid systems. InProceedings of the 17th IFAC World
Congress (IFAC’08) July 11-16, 2008, Seoul, Korea, 2008.

[28] Zhanyong Wan and Paul Hudak. Functional reactive pro-
gramming from first principles. InPLDI 2000: Symposium
on Programming Language Design and Implementation,
pages 242–252, 2000.

[29] Dirk Zimmer. Equation-Based Modeling of Variable
Structure Systems. PhD thesis, ETH Zürich, 2010.

54

