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Abstract very helpful in the “natural” specification of many systems,
but unfortunately it adds a number of severe conceptual,
semantic and implementation problems to classical Mod-
elica. Nevertheless, it has already been — at least partly —
addressed in a few systems, notably Mosilab [21] or SOL
[29]. Structure dynamics is also possible in languages like
Hydra [24, 20, 7, 19] or frameworks like CIF (Composi-
ttional Interchange Format) [25, 26, 27]. However, we do
not consider such languages or frameworks here, since they

Modelica traditionally has a non-compositional semantic
definition, based on so-called “flattening”. But in the realm
of programming languages and theoretical computer sci-
ence it is by now an accepted principle that semantics
should be given in a compositional way. Such a semantics
is given in this paper for Modelica-style languages. More-
over, the approach is also used to consider more genera

modeling concepts, namely so-called variable-structure e :
are not Modelica-like languages; rather Hydra is a Haskell-

systems. As an outlook we discuss the correspondence ) ) -y .
between such an idealized mathematical semantics and a?2sed functionallanguage that achieves similar effects with

more pragmatic numeric solver-oriented semantics. other means (see below); the same is true for MKL [3, 4].
And CIF is a framework that shall integrate all kinds of

Keywords Modelica, compositional semantics, structure languages and language paradigms.

dynamics, uncertainty. We note in passing that variable-structure systems can
_ also be treated in tools like Simulink and Dymola, but only
1. Introduction efficiently by way of using scripting techniques and only
A large class of technical multi-physics systems can be for systems consisting of a few different modes [16].
modeled in languages like Matlab/Simulink/Stateflow, As- [N this paper we consider the core principles of variable-

cet, Labview, Scicos, Modelica and various others. These Structure modeling and try to give a rigorous semantics for
systems are essentially based on the paradigms of con-them. This semantic treatment bases on ideas taken from
trol theory and differential-algebraic equations (DAEs). Of approaches such as Phase Transition Systems [14, 15] and
these systems, Modelica is distinguished by the fact that Hybrid Automata [11, 8], the latter of which in turn are
it integrates the control theoretical aspects with the soft- based on StateCharts [10]. Moreover, we also integrate
ware engineering principles of object-oriented program- ideas taken from ESpec [22, 12] as well as from Lustre
ming. We consider this a major advantage and therefore [5], Ptolemy [23], CIF and comparable systems. However,
concentrate in this paper on Modelica-style modeling. since all these approaches and concepts are overlapping, we
However, there are a number of modeling concepts that will not make any attempt to attribute each of our individual
are also missing from Modelica, most notably the so-called design decisions to their respective predecessors.
structure dynamigsalso referred to asariable-structure When comparing formal approaches such as Phase
modeling Roughly speaking this means that during its life-  Transition Systems to Modelica-style systems, one can im-
time the system passes througiodes in which it obeys mediately see a fundamental difference in attitude, which

different sets of (differential) equations. This paradigm is Makes any semantic comparison almost vain from the be-
ginning: Whereas the former bases on clean mathematical

concepts of the real numbeRsand their function space,
the latter immediately focuses on numeric solvers and all
4th International Workshop on Equation-Based Object-Oriented ; : :
Modeling Languages and Tools. September, 2011, ETH Zrich, Switzerland. problems that are coming with them. In order to brldge that
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1. Ideal semanticsThe first semantics that we give livesin  be acceptable for computer scientists, who want to enter
the ideal mathematical world of real numbers, continu- the field of continuous modeling, but it is unacceptable for
ous functions, dense time and the like. engineers, who are familiar with areas like control theory

and possibly can program in C or Fortran. For this audi-
ence, Haskell poses an insurmountable obstacle in prac-
tice. Therefore we prefer to give an independent semantics
to modeling languages such as Modelica, which strives for
simplicity and easy understandability.

2. Simulation semantic§ he second semantics is derived
from the first one by taking issues such as discretiza-
tion, approximation, rounding errors and the like into
account. However, we should emphasize that this is still
work in progress.

Through this separation of concerns we do not mix )
up different and unrelated kinds of aspects in a single Part |: Ideal Semantics
monolithic description.

In the realm of programming languages and theoretical 2. Preliminaries: Specifications and Models

computer science it_ is by now a well establisheo! prin_ci- In the realm of programming languages and their seman-
ple that the semantics of languages should be given in a ¢ there is by now a well-established way of proceeding.
compositional way. This means that the global semantics 14 pegin with, one has to clarify what kinds of terms are
of the whole can be described by giving local semantics to gy iactically allowed. To this end we follow the principles
the parts, from which the overall semantics is derived by ¢ have been laid down very precisely in the realm of al-
suitable composition rules. (This is in accordance with the epraic specifications. (For a comprehensive treatment see
pr|nc_|ple of modularization in software and systems engi- [1]; we follow here mainly the approach taken in the Es-
neering.) pec system [22, 12].) But we have to adapt the pertinent
__semantic » components concepts to the new situation of differential-algebraic equa-
interpretation tions.

The starting point is aignatureX that determines the
admitted types and operations. In our case this signature

system

flattening composition essentially consists of the standard operations of real arith-
metic. (At least we focus on that part of the signature.) As
flat system __semantic » system model a special feature the signature contains the differential op-
interpretation erator2) | which we usually denote asor «”.
Figure 1. Compositional semantics Over such a signature and a setX of (typed) vari-

ables one can then build the sB{X; X) of well-typed
terms And over these terms one can then bugidua-

Figure 1 illustrates the relationship between compo- tions Due to the availability of the differential operator,

sitional and non-compositional semantic definitions. The oo equations are actually so-caliéfterential-algebraic
standard definition of Modelica follows the lower left path: . .
equationsshort: DAEs.

One always considers the system as a whole and flattens Such a signatur& together with a seE of equations

It into one large system of equations, which represents overY is called aspecificatior(in formal logics sometimes

Its ;egagr:'gsréﬁ]zvrveyzr’s |rr\](;he drejll?egapgfgairp?t'%?]lsafg} alsotheory presentation As is well-known from algebra
guag gives individu ! it and formal logics, such a specification in general has many

all components and then composes the overall semanncsmodels where the notiormodelrefers to a mathematical

from these local definitions. This is the approach, which structure (usually an algebra) that is conformant to the

we will follow in this paper. : :
. ) __ signature and obeys the equatidns.
Note In the literature one can also find attempts to give 9 y g

semantics to a continuous modeling language by designing Definition 2.1 (Specification, model)Let S = (X, E) be

it as an embedded DSL (domain-specific language) over a specification. The set @hodels of this specification is

some existing host language. For example, Hydra [20, 7, 6] denoted as Mo@b) = { A|AE S }. O

uses Haskell as the encompassing host language. Also the Note that we include in the notatioh = S not only the

approaches taken in CIF, which in turn bases on earlier validity of the equations but also the conformance to the

work on Chi, or Ptolemy [23] can be subsumed under this signature. If the signature is clear from the context, we also

principle. Here the host for the embedding is not a real pro- write A |= E.

gramming language such as Haskell; rather one employs ]

a powerful mathematical framework (such as special au- 3. Fixed-structure Systems

tomata with SOS-based semantic definition) into which the \we first consider fixed-structure systems. This kind of sys-

modeling language is mapped. o _ tem corresponds essentially to the style of models that can
We do not follow this idea here, since it adds consid-

erable complexity to the understandability of the seman- LIt is unfortunate that the word “model” occurs here in two conflicting

tics. One first has to fully comprehend the host lanquage meanings. On the one hand, there is the terminology of “continuous-
o . y P . guag system modeling” and on the other hand there is the formal-logic termi-

— which is not trivial for a language like HaSKG_” or Cl_F —  nology of “models” of theories. We hope that the two usages will always

and then one has to understand the embedding. This maybe clear from the context.
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be formulated in Modelica. These models are given as a hi- compassing system. According to the usual scoping prin-
erarchy of subsystems that are ultimately based on atomic ciples of programming and modeling languages this means
components. Since these subsystems are usually encapsuthat the component has access to the variables of this con-
lated into some suitable context, they look like components text. We refer to these variables@&dernalvariables of the
themselves. component. These variables are usually not mentioned ex-
plicitly in the component but determined implicitly by the
scoping rules. In any case we need to split the set of vari-
ables into the two sets of “external” and “local” variables.

Definition 3.1 A system is built up from interacting com-
ponents. Theseomponents are in turn eithersubsystems
or atomic components)

Modelica follows the approach of object-oriented lan- D€finition 3.2 An atomic-component class is a named
guages and describes components and systems by way offiPle ¢ = (Ve, Vi, E) consisting of two disjoint sefs.
classes Such a class can be seen as a “blueprint’, from andV: of external and local variableend a sett of hy-
which at runtime concrete components (“objects”) are ob- Prid differential-algebraic equations (DAES)

tained by instantiation. In the terminology of algebra (see  As mentioned in Section 2 such a class in general repre-
Section 2) these classes correspond to the specificationssents a whole set of possible models. (This is often referred
and the components to models (in the sense of formal to as “underspecification”.) That is, there are many compo-
logic). In the following we will often just speak of “com-  nents that fulfill the equations of the class.

ponents” or “systems”. It will be clear from the context, In our application of continuous-system modeling the
whether we are talking about the classes or about the in- variables of the class are interpreted as time-dependent
stances. functions. For example, in Figure 2 the variablstands for

We present our semantic definition in a bottom-up fash- a functionz(t) that gives the x-position of the pendulum at
ion. That is, we start from atomic components and then any given point in time.

compose them into larger systems. L ,
Definition 3.3 LetC' = (V,,V}, E) be an atomic-compo-

3.1 Atomic Components nent class. Amodel for this class is a structureVl =
The most elementary kind of system is atomic compo- (Fe, Fy) consisting of two sets of time-dependent functions,
nent As is illustrated by the example in Figure 2 such an Which are in one-to-one correspondence to the $gtand
atomic component consists of parameters and constants,V! of variables. These functions have to fulfill the equations
variables and equations. Parameters and constants are aH! £. We denote this as usual By |= C'. By ModC) we
important and convenient feature in practical applications, denote theet of all model®f the clas'. ¢

but they do not play an important role in the semantics.  Note that the functions are completely general, that is,
Therefore we will ignore them from now on and only con-  they may be continuous or discontinuous or even discrete,
centrate on the variables. that is, only defined at selected time points. In this way
the set of equationd& may also contain equations that
determine the initial values.

In practice the one-to-one correspondence between the
variables and the functions is simply established by using

*
the same names for both, that is, exgfor the variable
"""""" and z(t) for the function. However, as we will see in a
moment, there may be many instances (objects) of the same
class coexisting in one system. Therefore we have many
ClassPendulum different functions that correspond to the same variable,
PARAM Length L parameters namely one for each instance. In order to resolve these

conflicts systematically we assign unique identifiers to the
PARAM Mass m instances of the class (just like in Java every object of a
CONST Acceleration g class is identified by a unique “reference”). The function
Length = variablesy” names are then anotated by these identifiers.

For example, if we have two componerit§s and K,

Lengthy as instances of a clag$ and if z is a variable inC, then
Force f the two instances have functiong, (t) andz k., (t). In this
m-i=-—<.f equations way an equation like: = 2 - x of the class is interpreted

by the two model equalitiesk, (t) = 2 - zk, (t) and
ij2 (t) =2 LK, (t)

3.2 Composition of Components

<

mej=—m-g—4f
w? +y? = L2

Figure 2. An atomic component Systems are usually built by composition of atomic com-

ponents. The most elementary form of such a composition
In general components (more precisely, the classes de-is sketched in Figure 3. We have two clasggsand C,
scribing them) are embedded into the context of some en- describing components with individual variable sétsV,
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and equation set&;, F,. Since they coexist in the same
context, they share the gét of external variables. As men-
tioned earlier, these external variables are usually not de-
clared in the component but derived implicitly by the scop-
ing rules.

ClassCt 5 ClassC;
(V('3 ) cco\nn (V;3 )
V1 Vo
E1 E2

Figure 3. Composition of components

The components are linked to each other by way of
so-calledconnectorsFrom a semantic point of view such
connectors only contribute further equations, typically of
the form

Ci.e e: potential/effort
Cr.f+Cs.f f: flow

For the semantics this means that we have to combine
all models of the two classes, provided that they coincide
on their common external part. This set then needs to be
filtered further by the connection equations.

C2.€
0

Definition 3.4 (Composition) Let a systemS be given,
which consists of the two classé€s = (¢, V3, E) and
Cy = (V, Vs, Es) (sharing the same external variables
V) together with a sett.,,, of connection equations
Then the models of thembined system are derived from
the individual models as follows:

Mod(S) = (Mod(C1) ® Mod(Cs)) | Evonn
©rM UM, | M € Mod(Cy),
M, € MOd(C2),
Ml V., — M2|Vea
Ml U M2 ': Econn }
O

Since we assume that the local variables are suffixed by
the component names, we can form the union of the models
without any danger of name clashes. (The operatis a
pushout in the sense of category theory; that is, we form
the direct product of the two sets of models while sharing
their common global parts.)

Based on this definition of the semantic meaning we also
write the composition of two components in the shorthand
form (C; ® C3) | Econn-

This construction generalizes from two stoconnected
components in the obvious way.

3.3 Subsystems
By connecting: components we obtain subsystems. Butin

ClassS
(Ve)
Vs
Eg
Class @
Vi
Ey
>\ Class @
Class G Ve
E,
Va
E3

Figure 4. A subsystem

together with the various connection equatiéis,, , - - - ,
E.,nn, - Note also that the subcomponegts C, andCs
haveV, U Vs as their set of external variables.

Since the equations if’s may refer to variables of
the components by using prefix notations suchcas-
f(z,Cy.y,C>.z), we have to respect this in the semantic
definition. That is, a class reference suclCag, refers on
the model level ta/k, (t), whereK; is the model instance
of C:.

Definition 3.5 Let a system be given as described in Fig-
ure 4. Then the semantics is given by

Mod(S) =
(Mod(C1)®@- - -@Mod(Cy)) | (EsUEconn, U - *UEconny, )

Note thatV, U Vs is part of the global variables of each
of theC; such that these variables are taken care of by the
operator®. ¢

The construction can be applied iteratively to nested hi-
erarchies of systems. Thus we obtain a bottom-up composi-
tional semantics for Modelica-like languages. This seman-
tics is equivalent to the monolithic flattening-based seman-
tics as it has been sketched in the commuting diagram of
Figure 1 in the introduction.

4. Variable-structure Systems

We want to go beyond classical Modelica and also con-
sider variable-structure systems. Such variable-structure
systems generalize the effects that can be achieved in Mod-
elica with a combination of the if- and when-constructs or
in Matlab/Simulink with the enabling blocks. Vice versa,
these constructs can be semantically explained in terms
of variable-structure systems. Non-standard Modelica sys-
tems such as Mosilab [21] or experimental designs such
as SOL [29] already provide principal implementations of

general such a subsystem is embedded into some encomihis idea.

passing component, which contributes both variables and
equations. This is illustrated in Figure 4.
Note that this construction is usually embedded into an

In the fixed-structure systems discussed so far we only
need to consider a single time interval, namely life
spanof (the simulation of) the system. All components are

even larger context. Therefore we have the sets of variablescreated at the beginning of this life span and the functions

Ve, Vs, V1, ..., V, and the equation&s, E1, ..., E,
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CLASS StringPendulum

Mass m
Acceleration g
Length L
Swing
Angle ¢
Force F
¢=—1-sin(p)

F=m-g-cos(p) +m-L-p?

Length z, y, r
Velocity vz, vy

m - vz = 0

m-vy =—g-m

r = sqrt(z® + y?)

Figure 5. A simple dynamic component

However, it will frequently be the case that a component
passes through different modes, in which it exhibits differ-
ent kinds of behaviors. An example is given in Figure 6
and its specification in Figure 5. Here we consider a string
pendulum, which initially starts as a normal pendulum but
changes to a free-falling ball as soon as the fdrds less
than zero.

Figure 6. A simple dynamic component

For specifying such variable-structure systems and com-
ponents we use a notation that is oriented at so-called
brid Automata[11] which in turn can be seen as a combi-
nation ofState Chart4§10] andPhase Transition Systems
[14, 15]. As can be seen in Figure 5 such a component still
has component-external variables and equations. (Actually,
in this simple example there are only parameters and con-
stants.) But now it also has modes with additional mode-
local variables and equations. Moreover, there are guarded

transitions between the modes, which also possess actions

that essentially describe, how the initial values of the next
mode are to be determined.

We will not indulge further into this slight generaliza-
tion, since we want to consider even more general settings
as described — again by an oversimplified example — in Fig-
ure 7. The specification of the two modes is sketched in
Figure 8.

Here our initial system consists of two components, a
car and a ball. The car exhibits the simple physics of a
rolling device on an inclined plane, while the ball only
contributes its mass. After hitting the block, there is only
one interesting component left, namely the ball, which now
follows the physical laws of a bouncing ball.

As can be seen in this example, each mode can contain
whole subsystems such that the overall topology of the
system under consideration may change dynamically.
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Figure 7. A simple mode-changing system

Mode Roll

slope : Angle, dist : Length, . ..
ClassCar ClassBal

m : Mass
v, v, vy 1 Speed,

—o—]

m: Mass

blocked =
Ball.v, = Car.v,
Ball.vy, = Car.v,

Mode Bounce
height : Length, . ..

m : Mass,
Vr, vy : Speed

Figure 8. A simple changing topology

This principle is illustrated more abstractly in Figure 9,
which shows the general setting.

A system has external variablés, equationsE and
componentg’;, C-, Cs, . ... Moreover, it possesses modes
My, Ms, ..., which in turn have local variables, equations
and subsystems. In order not to overload the pictorial il-
lustration we have refrained in Figure 9 from drawing the
connectors between the mode-local subsystéms and
the component-subsystefh Of course, such connectors
are possible (and they are easily described in textual form).

This hierarchical structuring can be iterated over arbi-
trarily many levels.



ClassC

ClassCy

\O\
)\ ClassCy

TlassCs

Figure 9. Variable-structure systems

Definition 4.1 (Variable-structure component) A variable- Each mode — more precisely: eattstance; of a
structure component is a named tupl€' = (V, E, S, D), mode — is associated to a unique inter¥al= [t%,t¥)

whereV and E are sets of component-external variables of the time line. For reasons that will be discussed in a
and equationsy$ is a subsystem, that is, a set of intercon- moment we use half-open time intervals.
nected subcomponents, afdis the dynamics, that is, a Note In practical technical systems the transition be-
set of modes and transitions. (The modes and transitions tween modes usually takes some time, in which the system
will be defined more rigorously in the next sections.) Each is non-observable. A typical point in case is a diode, for
modeM € D in general comprises mode-local variables which the switching fronon to off is a very short but con-
Var and equationg?y, as well as a mode-local subsystem tinuous process. In the idealized mathematical treatment
Sy of components. The dynamics hasemtry point ¢ such transition periods are often modeled as instantaneous
and anexit point t¥. { transitions (which makes them often discontinuous). It is
In the remainder of this paper we will make this infor- debatable, whether one might even allow whole transition
mal definition more precise by giving rigorous semantics intervals instead of transition points, or whether one should

to its various features. model such situations by transition modes. Both variations
would be mathematically feasible; but for reasons of sim-
5. Modes and Time plicity we opted for the design with left-closed intervals.

d As a final preparatory remark we point out that a fixed-
structure system can be considered as a borderline case of a
variable-structure system with exactly one mode that spans
the whole life time of the system.

The situation in a real-world system can be roughly sketche
as in Figure 10. The modes (more precisely: instances
of modes) follow each other along the time line. The
component-external variables correspond to functions that
live across the modes; an example is illustrated in Figure 10 pefinition 5.1 (Modes)Let a classC' = (V, E, S, D) be

by the thick linef(t). The mode-local variables correspond - given as sketched in Figure 9. The instantiation of this
to functions that live only during their mode; examples are gpecification (at runtime) leads to the creation of a new

given in the figure by the thin linex(t) andh(t). componentk, which is a model ofC. This component
moded, models has a lifetimeTx = [t*,¢¥). The start timet® is the
...... - ~ moment of the creation of the component, the end e
o“ system evouton determined by rules that will be discussed later (e.g. caused
..... i | e by events). We requitg < t*, i.e. we exclude components
| T | T | P Gme) \ith zero life time.

The fixed-structure par€;,, = (V, E,C1,...Cy) of
the class is semantically defined as in Definition 3.5. Note
that the subcomponents also have the life span

Note that we do not put any additional constraints on The semantics of the system duringnade M is de-
the functions; that is, within its realm each of the functions rived from the fixed-part semantics by composing it with
may be continuous, possess discontinuities or may eventhe mode-local systesiy,, that is,Ci; ® Sar| Econn @S
be discrete. In other words, we consider modes to be a specified in Definition 3.4. Her&,,,,, are the additional
design conceptnot a technical feature that shall handle connection equations that link the subsystem of the mode
complications such as discontinuities. to the fixed-part subsystem.

Figure 10. Real-world semantics
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The life span of the mod¥ is determined by rules that  discussion in [18]). However, these are special cases that
will be explained in connection with transitions in the next certainly have to be dealt with by the solvers, but not an
section.{ issue of ideal semantics.

Note that this semantic definition entails a subtle aspect. = Remark 1: The case of the immediate re-firing in the
The fixed partCs;, = (V, E,Ch,...Cy) of the class in case of self-loops can be repaired by introducing the con-
general has a whole sttod(C;,) of models. Since we  cept ofsuperdense timg.5]. (A typical example for such a
allow the individual modes to impose further restrictions self-loop is provided by the “bouncing ball”.) Here the time
on the fixed-part variables v, V1, ..., V,,, the behavior of is not onlyR but the producR x N, where the second com-
the corresponding functions varies from mode to mode. ponent could be interpreted as the number of the “clock”

Example Let x € V be a component variable (with-  that is responsible for the event. Then each occurrence of

out a restricting equation) and let andz, be two local the eventy = 0 in the bouncing-ball example could be
variables of the modes/,; and M5, respectively. Let the associated to another clock. Even though this idea of su-
following equations be given: perdense time may turn out helpful in some situations, we

currently refrain from introducing it and try to work with
our simpler model.
Therefore we would rather consider the immediate re-
Thenz(t) is a function, which is constant but different  firing as a modeling error (analogously to infinite while
in M, and M- and has a discontinuous jump between the loops in programming). For instance, in the bouncing-ball

Mli ZL’1:]. MQ: ;L‘2:2

r =T r = Ty

two modes. example the guard should not only he= 0 buty =
0 A vy < 0. The transition action (see below) has to set
6. Transitions and Events VYnew = —UYoq- When the velocity is zero, the mode

should be exited.

Remark 2: There is the possibility obnflicting guards
That is, two guardg; and g» may fire at the same in-
stantt*. There are several options for treating this situa-
tion. One could let the system choose nondeterministically

Next we consider the actual mode transitions as illustrated
in the examples of Figure 6 and Figure 7 or more schemat-
ically in Figure 9. The principles of such a mode transition
are illustrated in Figure 11.

gquard = action between the transitions. One could avoid this nondetermin-

@ N > @ . ism by enforcing priorities between the transitions (like in

s \ Matlab/Simulink/Stateflow). Or one could require the dis-
/! . / N jointness of the guards and report an error, when two of

. | > them fire simultaneously. This is a topic for language de-
Ty = [t*, %) sign. Since each of these options is compatible with our
semantic concepts, we can ignore the issue here. We note
in passing that there are attempts to utilize the idea of su-
perdense time also for this issue.
During the execution of the model each mode instance  So far we have only considered the guards that fire the
is associated to a time interval. In the situation of Figure 11 transitions and thus determine the transition poftwe

Ty = [t 1)

Figure 11. Semantics of transitions

we have the two intervalg, = [tf,t*) andT> = [t*,5). still need to define the meaning of tiaetion part of the
The start point of/; and the end point o> are of no  transition. The purpose of these actions is to provide the
interest here. The focus of our attention is the paint initial valuesfor the next mode. There are various syntactic
which represents the transition between (the instances of) means for achieving this effect.
the two modes. Example: Consider again the bouncing-ball example.
When the ball hits the ground, the vertical velocity is
Definition 6.1 (Transition point) Let two modes)/; and reversed and deminished by some constant factdhis
M, with a transition (guard = action) be given as  could be written in a Pascal-like programming style as
sketched in Figure 11. During runtime the transition point yy := —¢ % vy. Or we could use an equation-style notation
t* between (instances of) these two modes is defined aslike vy,c., = —c*vyoq, Which would necessitate notations
follows: t* is the smallest time instance greater than the for “old” and “new” (which is implicitly contained in the
entry pointt{ of model; such thatguard(t*) = true program-style notation by the occurrencevgfon the left
andguard(r) = false for all 7 with t§ < 7 < t*. Then, or right side of the assignment). Again, the notation is an
Ty = [t7,t*) and the entry point of mod&/ is given by issue of language design and thus does not concern us here.
g =t*. ¢ But we need to give a semantic meaningaztg,; and

Since modes shall not degenerate to zero length, we g, for all variablesz occurring inM; and/orMs.
have the conditionf < t* < t§.

[18] provides a nice discussion of many aspects of such Definition 6.2 (Transition action) Consider the scenario
transitions from the point of view of physics. The design of Definition 6.1. Theaction part of the transition de-
with half-open intervals ensures a well-defined solution scribes a computation that uses (implicitly or explicitly)
x(t) for all timest¢. Nevertheless, there are cases where valuesz,;; and z,., for certain variablesz. Depend-
the left-closedness may have to be relaxed (see also theing on the application, we can defing;; = =z(t*) or
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Torg = limp_yo z(t* — h). Tpew 1S COmputed as a func-
tion of z,;4. Thenz = z,,., IS Used as the initial-value
equation for the differential-algebraic system in mdde.
O

This completes the compositional definition of the
“ideal” semantics of Modelica-style variable-structure sys-
tems.

Part Il Simulation Semantics

7. Numerical Integration and Solvers

The ideal semantics lives in the realm of the real numbers
R with infinite precision and infinitely accurate computa-
tions. But in reality we have to make do with the limita-
tions of computers, where one struggles with floating-point
arithmetic and its rounding errors, with solver techniques
realized in packages like DASSL [2] or RADAUS [9], with
causalization and index reduction and so forth. This leads
to a different kind of semantics that we baptize “solver se-
mantics” or “simulation semantics”.

The reason for dealing with this question is the current
situation in modeling languages such as Matlab/Simulink
or Modelica. The specification documents of these lan-

guages often switch back and forth between concepts that

we refer to as “ideal semantics” and the difficulties intro-
duced by the computer-related limitations. Hence it is not

always clear, which aspects describe fundamental seman-
tic concepts and which aspects are actually due to short-
comings of certain solver methods. Sometimes one even
gets the impression that certain statements actually addres

specific features of certain compilers or compilation tech-
niques.

7.1 Solver Issues

Solver semantics differs from the ideal semantics primarily
in two respects: discretization and finite precision.

1. Discretization Functions over the continuous time do-
main R are replaced by functions over discrete time
pointst;, wheret;.1 = t; + h; for some discretiza-
tion step sizey;, starting at the initial time poirty; the
step size may be uniform or varying.

It should be noted that the principle of discretization is
still compatible with ideal real-number arithmetic over
R. In the Haskell-oriented literature this is usually mod-
eled bystreamsf sample valueg (¢;). For example, in

[28] it is shown that this approximation is — under cer-
tain constraints — faithful in the limit, as the step size
goes to zero. (This is not really surprising in the light of
century-old work by mathematicians like Cauchy and

others, since their techniques are essentially translated

here into Haskell-speak.)

. Precision The real number® are replaced by ma-
chine numbers of limited size, usuafly oat or at best
doubl e, on some processors even by fixed-point emu-
lations of floating-point numbers. This limited precision
combined with the need for not only finite but actually
efficient computation leads to several kinds of errors:
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e The use of limited machine numbers leads to the
well-knownrounding errors

e The numerical solutiori: obtained by the solver is
only an approximation of the solutian(t) at dis-
crete time points. This leads thiscretization errors

e Computations such as integration or Newton itera-
tion for finding zero values are only executed with
certain (fixed or variable) step sizes and terminated
after a finite number of steps. This also leaddi®
cretization and approximation errors

e Parameters and input values generally come with a
certain error. For example, neithemor the gravity
g have their exact values. This in addition leads to
modeling errors

e Event detection for variable-structure systems usu-
ally comprises interpolation of the discrete solution
Z between mesh pointsandt;;1, and a root finding
procedure. Again, this introduces an error.

We cannot do away with the intrinsic difficulties of
Numerics. In particular when dealing with differential-
algebraic systems there are a number of additional diffi-
culties that have to be dealt with, e.g. the problem of order
reduction of numerical methods and drift-off of the numer-
ical solution due to high index problems or the problem
of inconsistencies of initial values. A number of elaborate
methods, including numerical integration, index reduction
and consistent initialization have been developed over the
last decades to deal with these problems, see [2, 9, 13].
The purpose of (this section of) our paper is not to in-
dulge into these numeric issues. Rather we accept their ef-
fects as a given fact and study the impacts that this obser-
vation has for our semantic considerations.

We should point out quite clearly that this is all work in
progress and that the following is but a sketch of a research
direction.

7.2 Uncertainty

In order to get a grasp on these difficulties we employ the
notion ofuncertainty That is, all values are considered to
be “uncertain”. This applies to all kinds of values that are
computed in the simulation, also including the time points
t*. For example, if we compute the so-called zero crossing
in the bouncing-ball example, we obtain the poihtin
time, at which the guarg = 0 becomes true and fires.
However, this is only so in the ideal semantics. In the solver
semantics we have an uncertain vajuehich leads to an
uncertain time point*.

As mentioned before, we are not interested in the Nu-
merics behind this uncertainty. Uncertain values may be
represented as simple intervals of real numbers or they may
be represented as intervals with a, say, Gaussian distribu-
tion. One may even use ideas of fuzzy logic for such a rep-
resentation. The challenge in Numerical Mathematics is to
come up with algorithms and methods that allow us to in-
fer the uncertainty of the result of a computation from the
inputs of the computation.



In the following we presume the existence of such a no- and on the employed numerical solver. Statements under
tion of uncertainty. Then we can derive the solver semantics which conditions a specific solver semantics converges to
along the same lines as the ideal semantics, but now usingits ideal semantics have to be derived for individual cases.

the uncertain valueg and their computations in the place
of the real valueg, i.e.,# = x + w for a small uncertainty
w.
Then, the solver semantics are defined by the signature
¥ containing float or double types and floating point op-
erations (introducing rounding errors) and the set of vari-
ablesX with corresponding uncertainties contained in the
setlV. Let E be the corresponding set of equations, then for

The most challenging problems occur in variable-struc-
ture systems: besides the problem of robust treatment in the
case of blurring event times one has to ensure that each in-
stance of a mode lives long enough since the event#ime
is determined as zero crossing in the discretization interval
[ti, ti+1]. Concerning DAES, in variable-structure systems
not only the initial values have to be ensured to be consis-
tent with the algebraic constraints, but also consistency of

a specificatior = (I, E) the set of models is denoted by ~ each reinitialization after events has to be guaranteed. We
Mod(S) = { A| A = S } and a component is defined by  will not go further into the details of these problems in this
C = (V,W, E). Composition of components and of sub- paper. For the analysis and numerical treatment of hybrid
systems can be defined in an analogous way as in Section 3DAEs we refer to [17].

The same holds true for the definition of variable-structure ~ These problems do exist and there is no general mech-
components. anism to avoid them. As a matter of fact, most of these ef-
fects need an application-dependent individual treatment.
What we suggest is that in the semantic specification of
If we analyze the definitions in the previous sections, it modeling languages these solver-related effects are clearly
is easily seen that the difference between the ideal and separated from the other semantic concepts. Moreover, it
the solver semantics only plays a role at a few points. To should be discussed what kinds of language constructs
begin with, all composition operators are not affected by could be added such that the modeler has the capability
the differences in the two semantics. What needs to be to describe these uncertainty effects appropriately.
considered are the following issues:

7.3 Semantics and Uncertainty

« The fulfilment of equations, that i1 |= £) in the S CoOnclusion
structureA is influenced by uncertainty. The meaning We have presented a compositional semantics for essential
of an equatiort = § as compared ta = y is uncer- parts of Modelica-style modeling languages. Such a com-
tain again. To analyze such an uncertain equation math- positional semantics is a mandatory prerequisite for a clean
ematically interval arithmetic can be employed. Since design of conceptual ideas such as variable-structure sys-
all our constructions are defined relative to the relation tems or compilation paradigms such as separate compila-
“is-a-model-of” (short: ="), there is no fundamental  tion.
problem here. Moreover, it is important to provide a clean separation
of the basic modeling principles of a language from the ef-
fects that are caused by the limitations of numerics. Clearly,
a deeper analysis of the latter issue is a field for extensive
research in the realm of Numerical Analysis. This separa-
tion is strongly motivated by the following consideration
(as was pointed out explicitly by one of the reviewers): The
possibility to handle structural changes in a model and the
i€ ) ease of doing this depends on the computational framework
all 7 with ¢ < 7 < ¢*. Since both, the guard function  thatis used. By separating the semantics of the model from
g and¢* are blurred, the whole intervdl, = [if,7") that of the computational framework, different frameworks
is blurred. This could have major effects. For example, can be applied to the same model, thus allowing one to re-

in the case of two very close events the uncertainty ajize simulators for a larger set of structural changes in the
could mean that the later event actually fires before fytyre.

the earlier one. Or two events that in reality happen
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