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Abstract
Innovation in cyber-physical systems is today largely driven
by embedded software. Thus, appropriate approaches have
to be employed to handle the complexity that results
from the multi-discipline nature of these innovative cyber-
physical systems. Modelica as modeling language specif-
ically targets these multi-discipline systems. The UML
profile ModelicaML combines the graphical notation of
the UML with the sound formal modeling provided by
Modelica. ModelicaML currently does not support mod-
eling asynchronous communication which is increasingly
required when cyber-physical systems have to coordinate
their behavior. In this paper, we present our approach for
Modelica code generation from ModelicaML state ma-
chines which have been extended by asynchronous com-
munication. We illustrate our approach by an extended
two tanks system that contains two distributed controllers
which coordinate themselves by message exchange.

Keywords UML 2.2, State Machine, ModelicaML, Mod-
elica, State Graph2, MechatronicUML

1. Introduction
Today’s cyber-physical systems such as aircrafts, space-
crafts, or automobiles are large and very complex. Engi-
neers can design them virtually using digital computers be-
fore any physical prototypes are built. The development of
virtual models of complex systems requires a close collabo-
ration between engineers from different disciplines. To de-
scribe the integration of mechanical and electronic compo-
nents in consumer products the word mechatronics orig-
inated in Japan around 1970. Mechatronics has come to
mean multidisciplinary systems engineering and is the syn-
ergistic integration of physical systems, electronics, con-
trols, and computers through the design process [5].
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As all elements of a cyber-physical system interact with
each other, engineers cannot engineer them independently.
Instead, a tight integration in mechatronic design is the
key element as complexity has been transferred from me-
chanical domain to electronic and computer software do-
mains. “Mechatronics is the best practice for synthesis by
engineers driven by the needs of industry and human be-
ings" [5].

Modelica is an object-oriented, declarative, multi-domain
modeling language for describing and simulating hybrid
models. Such models can represent physical behavior, the
exchange of energy, signals or other continuous-time in-
teractions between system components as well as reactive,
discrete-time behavior. Modelica uses the hybrid differen-
tial algebraic equation formalism as a sound mathematical
representation. Furthermore, mature compilation and sim-
ulation environments for Modelica exist.

ModelicaML is a UML profile which extends the UML
with concepts of Modelica and enables the modeler to spec-
ify advanced constructs like requirements for Modelica.
The motivation of ModelicaML is to integrate Modelica
and UML. UML’s strength in graphical and descriptive
high-level modeling is combined with Modelica’s formal
executable models for analyses and trade studies. There-
fore, we use Modelica also as an action language for
UML models. ModelicaML does not only target model-
ers who are familiar with UML. Modelica modelers will
also benefit from using ModelicaML/UML for editing and
maintaining Modelica models, because graphical modeling
promises to be more effective and efficient than textual rep-
resentation. The strength and efficiency of UML for system
modeling and simulation has been proven in recent years.
Common understanding of models for parties involved in
development of systems results in high-quality models.
Further, the combination of discrete-time and continuous-
time simulation gives modelers a great benefit. The con-
crete ModelicaML profile documentation can be found in
the technical report [16]. Pop et al. defined earlier versions
of ModelicaML [14, 13].

Modelica and ModelicaML mainly focus on tightly cou-
pled systems. In these systems the components (mechani-
cal, electrical, embedded control, etc.) from different dis-
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ciplines are tightly coupled for an optimal system per-
formance [18]. But today’s systems are increasingly dis-
tributed and form systems of systems. They typically co-
ordinate via message passing. Statecharts respectively state
machines are an appropriate modeling formalism for the
specification of the coordination of these distributed sys-
tems. Currently, ModelicaML does allow state machines
but it does not consider sending and receiving messages at
transitions of the state machines.

In this paper, we present an extension of ModelicaML
state machines for the specification of sending and receiv-
ing messages based on a running example. We present the
syntax as well as the semantics of this extension. Finally,
we explain the translation of these extended state machines
to plain Modelica code.

We present the running example in the following sec-
tion. In section 3, we present the message extensions to the
ModelicaML state machines including the code generation
to plain Modelica. We show the simulation results of our
example in Section 5. After a discussion of related work in
Section 6, we conclude in Section 7 and give an overview
of future work.

2. Example
An example for a hybrid mechatronic system is a rainwater
system with two tanks as shown in Figure 1. The use case
for the example is that water flows into tank 1 when it is
raining. The tank collects all the rain until it is full. If the
tank is full the additive water flows into the rain drainage.
The second tank stands on a lower floor. It is a closed tank
with no drainage. Periodically, water is taken from tank 2.
Therefore, tank 2 needs always a certain amount of water
which it can get from tank 1.

Every tank has a sensor which measures the current level
of water in the tank. Each tank has one controller. Both
controllers communicate with each other via messages.
Each controller has a message box which stores incoming
messages. Each controller gets the current value of the
level in its tank from the sensor. The controller of tank 1
regulates the position of the valve. This valve blocks the
pipe between the two tanks. When the valve is open, the
water from tank 1 flows into tank 2.

The controller of tank 2 has the master role in the com-
munication protocol when both controllers communicate
with each other. Accordingly, the left controller has the
slave role. The master controller asks the slave controller
via messages to send some water. The slave controller com-
mits or rejects this request. If tank 2 has got enough water,
the master controller asks the slave controller to close the
valve of tank 1 again.

3. State Machines with Message Semantics
In many cases discrete controllers have to interact with
each other to achieve a common goal. Further, they are of-
ten physically separated and arranged in different locations.
Therefore, they cannot access the same memory and com-
municate via shared variables. For this reason they have to
use (parameterized)-messages to interact with each other.

message port

valve

continuous port

tank 1

rain

tank 2

slave controller master controller

sink

legend

pipeconnector

Figure 1. Two Tanks System (cf. [7, p. 391])

The communication needs a protocol as a formal descrip-
tion. We formalize protocols via state machines. Addition-
ally, state machines are a good form to describe discrete
behavior of a system.

Figure 2 shows the state machine which represents the
master role of the communication protocol between the two
controllers and Figure 3 shows the state machine which
represents the slave role of the communication protocol
between the two controllers. Figure 4 shows the state ma-
chines protocolMasterControl and protocolSlaveControl of
both controllers which make the decisions which affect
the further execution of the protocol behavior. A possi-

Figure 2. Protocol Behavior of the Master Controller

Figure 3. Protocol Behavior of the Slave Controller

ble communication scenario and the resulting sequence of
messages are shown in the sequence diagram in Figure 5.
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Figure 4. Protocol Control Behavior of the Controllers

For each message that is sent in this example scenario a di-
rected edge is drawn from the sender to the receiver state
machine. The protocolMasterControl state machine sends
the message startAdjustLevel to the protocolMaster state
machine when the level of water in tank 2 is below a cer-
tain level and a minimum of 15 seconds is over. This mes-
sage starts the protocol behavior. The protocolMaster state
machine sends the message adjustRequest to the slave con-
troller. The slave controller can agree or reject to open
its valve. The slave controller opens the valve of tank 1,
if the state machine protocolSlaveControl agreed by send-
ing the message adjustCommitDecision. Then water flows
from tank 1 to tank 2. The master can ask the slave con-
troller to close the valve if it is in the state levelAdjust. The
slave controller can reject or commit this proposal.

Figure 5. Communication Scenario

To show a more complex state machine with hierarchy
and history we include a domination state to the state ma-
chines. In this state the master controller dominates the
slave controller and forces the slave controller to close
its valve if the amount of water of tank 2 is too high. In
real systems this may not be the best solution to model
such a behavior. To dominate the slave controller the mas-
ter controller changes to the state dominationClosedValve
and forces the slave controller to close the valve of tank
1. Before the state change occurs the history state stores
the most recent active state of the composite state adjust-
Control. The message dominationDeact informs the slave
controller about the state change.

The master controller reactivates the most recent ac-
tive state of the composite state adjustControl when the
amount of water is below a certain level. The slave con-
troller also reactivates its most recent active state of adjust-
Control when it receives the message dominationAct from

the master. The whole coordination protocol represents a
reactive communication between both controllers.

In the next section we give a brief introduction of syntax
and semantics of ModelicaML state machines. Afterwards,
we describe the semantics for messages. Messages are cur-
rently not defined for ModelicaML state machines. After
this, we show a mapping from ModelicaML state machines
extended by messages to Modelica code.

3.1 ModelicaML State Machines
State machines mainly consist of states and transitions be-
tween states. States can contain regions to add hierarchy
or orthogonal behavior. The hierarchy of states and regions
builds a tree structure. A configuration of a state machine
defines all active states at a point in time.

A state is entered and activated when an incoming tran-
sition fires and a state is exited and deactivated when an
outgoing transition fires. A state can have an entry-action,
which is executed when the state is entered, an exit-action,
which is executed when a state is exited, and do-actions,
which are executed as long as a state is active.

A transition is enabled when the boolean guard expres-
sion is true and, if required, the boolean message variable
is true. If more than one transition is enabled the transitions
are in conflict with each other. Only the transition with the
highest priority of those transitions, which are in conflict
with each other, fires. The transition with the lowest prior-
ity integer value has the highest priority.

3.2 Semantics Definition by Modelica
In this section we address the semantics of state machines
with the target to map this semantics to Modelica language
constructs. A special focus is set on the message seman-
tics. We translate state machines into Modelica algorithmic
codes. The state machine semantics definition is closely
linked to the UML semantics definition. However, there are
some issues in which the state machine semantics differs
from UML. This is based on the target language Modelica.

The state machine semantics does not change the syn-
chronous data flow principle of Modelica. The developer
must explicitly model the real-time characteristics.

The UML defines the behavior of state machines as
follows:

“Behavior is modeled as a traversal of a graph of
state nodes interconnected by one or more joined
transition arcs that are triggered by the dispatching
of series of (event) occurrences.” [19, p.564].

The state machines react immediately to each value change
of a model variable because Modelica evaluates the algo-
rithm section of the code continuously, namely, after hav-
ing finished continuous time integration steps and at Mod-
elica event iterations. For a description of the discrete/ con-
tinuous modeling/simulation in Modelica based on the syn-
chronous data-flow principle see e. g. Otter et al. [10].

Schamai et al. discuss the execution semantics of Mod-
elicaML state machines [17]. A more detailed definition of
ModelicaML state machines syntax and semantics is given
by Pohlmann [12].
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3.3 Message Syntax and Semantics
A message implementation in Modelica exists in the DEVS
approach [15]. We use this approach for sending and re-
ceiving messages between different state machines. We
define messages by modeling them as operations of the
owner class of the state machine. In the two tanks example
the messages are defined as operations in the classes Dis-
creteMasterController and DiscreteSlaveController which
are the model classes of the components masterController
and slaveController as shown in Figure 6. Additionally, the
Figure shows the composite structure of the whole system
modeled with ModelicaML.

Figure 6. Component Structure

A good way to define messages is to model them as
UML operations of the owner class of the state machine.
In the two tanks example the messages are defined as op-
erations in the class BaseController. The class BaseCon-
troller is the abstract parent class of the model classes Dis-
creteMasterCotroller and DiscreteSlaveController. Fig-
ure 7 shows the inheritance relation of the involved classes
and a part of the needed messages. The state machines of
both child classes can use all defined messages. The syntax
is the same as in UML for operations.

Figure 7. Message Definition of the Controller Classes

In the two tanks example messages could be sent from
slaveController to masterController and vice versa. The
destination of a message from slaveController to master-
Controller is the inPort of masterController. The outPort
of slaveController is connected via a connector to the in-
Port of masterController. In a similar way is the outPort
of masterController connected to the inPort of slaveCon-
troller.

In ModelicaML the causality of ports can be specified.
They can be declared as input or output ports. In general, a

port with causality input receives messages and via a port
with causality output messages are sent. The transmission
of messages is instantaneous when no behavior for the con-
nector is defined. The content of a message is independent
from its type. Accordingly, a message can contain parame-
ters. Further, various messages can be received simultane-
ously over an input-port or sent via an output-port.

An output-port can only be connected to an input-port.
An input-port is associated with the destination object.
Each message port has its own message box, also called
message pool. Additionally, each component has a compo-
nent message pool which collects all messages from all of
its message ports. This makes it easier to search for a cer-
tain message, because only the component message pool
has to be searched and not all port message pools.

Figure 8 shows the internal representation of the mes-
sage pools and the message flow via the port between the
two controllers. Each component has the input-port mes-
sage pool inPortMessagePool and the component message
pool (controllerMessagePool).

Figure 8. Internal Message Pool Representation and Mes-
sage Flow

A component monitors the message pools by periodi-
cally sampling the status of the message pool. Before the
system can react on a received message, the message pool
is completely iterated and all received variables are read.
For each message type one boolean variable exists. An
available message is dispatched from the message pool and
the corresponding variable becomes true, if it previously
was false. If the message variable is true, the message is put
back into the message pool. The message queue is ordered
as a FIFO-queue. The execution semantics mostly does not
depend on the order of messages in the message pool. It
depends only on the order of messages in the message pool
if messages from the same type are received via different
ports at the same time. In this case we use an explicit or-
der of the input-ports to get an explicit prioritization. We
do not differ between messages in the message pool which
we received from other components or messages which are
raised within the same component. At one event iteration
at a time instance it is not possible that multiple transitions
react on the same message type. If there are multiple tran-
sitions they have to wait until the next event iteration.

Figure 9 shows an example. Both state machines are cur-
rently located in the marked states A2, B2. In the previous
step the transition A1→ A2 sent message1 and simultane-
ously, the transition B1 → B2 sent message2. The Figure
shows the current state of the component message pools
below the components. However, the relevant information
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for the execution semantics is the priority order of the en-
abled outgoing transitions (A2 → A3 [priority value = 2],
A2 → A5 [priority value = 3]) of state A2. Transition
A2 → A3 has the higher priority and fires. Message2 is
dispatched and state A3 becomes active.

Figure 9. Message Execution Semantics

4. From State Machines to Modelica Code
The translation from ModelicaML models to Modelica
consists of two steps. Firstly, the static semantics of the
model is validated. The validation process automatically
traverses the state machine graph. During this traversing a
template checks the model for certain conditions such as if
each composite state has at least one initial state. For each
found error an error marker is set in the Eclipse problem
view. The modeler can start the validation process at any
time. Secondly, the modeler can start the code generation
process if the model is error free. We use the template-
based model-to-text approach of Acceleo1 for the code
generation2.

4.1 Modelica Code for the State Machine Structure
The code generation of the static part of state machines
generates a Modelica record structure for each state ma-
chine and its regions and states. A Modelica record is a
class for specifying data without behavior. The behavior is
located in an algorithm section of the state machine owner
model class.

The state machine and each state have the variables
active, timeAtActivation, stime, and selfTransitionActi-
vated. The variable active indicates whether a state is
active (active = 1) or inactive (active = 0). The vari-
able timeAtActivation is set to the current simulation time
when the state is activated. The variable stime is a local
timer. The value is calculated by the statement time −

1 http://www.acceleo.org
2 The developed code generator for ModelicaML state machines with-
out messages is a result of the master thesis of Pohlmann [12] which
was done in a cooperation with Schamai from EADS Innovation Works.
It is available at http://www.openmodelica.org/index.php/
developer/tools/134.

timeAtActivation. The variable selfTransitionActivated
is an auxiliary variable, which is needed to identify if a
self-transition has been fired. Listing 1 shows the Modelica
record definition of a simple state.

Listing 1. Simple State Record Definition
record SimpleState
Boolean active;
Real timeAtActivation;
Real stime;
Boolean selfTransitionActivated;

end SimpleState;

The Modelica record definition of a state machine con-
sists of several variables. The variable startBehavior is
used to initialize the state machine behavior. Each region
has the variable numberOfActiveStates. This variable is
used to assert that in a region there is never more than one
state active at the same time. Listing 2 shows the Modelica
structure code for the protocolMasterControl state machine
shown in the left part of Figure 4.

Listing 2. State Machine Record Definition
record masterController_SM_protocolMasterControl
Boolean active;
Real timeAtActivation;
Real stime; // local timer.
Boolean selfTransitionActivated;
Boolean startBehavior;
protocolMasterControl_Region_0 Region_0;
// REGION records
record protocolMasterControl_Region_0
// SIMPLE STATES instantiation
SimpleState protocolControl;
SimpleState wait;
InitialState Initial_0;
Integer numberOfActiveStates;

end protocolMasterControl_Region_0;
...
end masterController_SM_protocolMasterControl;

A special record is required if, instead of an initial-
pseudostate, a shallowHistory-pseudostate is used like in
Figure 2. The record of the composite state adjustControl
must have a type with an enumeration of all states of the
region. Further, the variable lastActive is an instance of this
type. Listing 3 shows an example for such a record.

Listing 3. ShallowHistory Record Definition
record Region_0_HistoryState
Boolean active;
Real timeAtActivation;
Real stime;
Boolean selfTransitionActivated;
type HistoryStateT = enumeration(

deactivateLevelAdjust, requestLevelAdjust,
levelAdjust, requestDeactivation);
HistoryStateT lastActive;

end Region_0_HistoryState;

Besides the generation of the state machine structure,
the structure for messages is implemented. A message is
stored as a record. This record has at least the integer
variable msgType. The msgType value must have a unique

79



value, because it is the identifier of the message type. Fur-
ther, a message can have user defined attributes. Listing 4
shows an example of a message record. It has the inte-
ger variable port which encodes the port-id over which the
message should be sent and the integer variable msgType
which identifies the type of a message. Additionally, at-
tributes which hold parameterisable values could be added.

Listing 4. Message Type Record Definition
replaceable record stdMessage

Integer port;
Integer msgType;

end stdEvent;

For the two tanks example the message type values are
encoded as defined in Table 1.

10 = adjustRequest 11= adjustCommit
12 = adjustReject 13 = adjustDeact
14 = deactRequest 15 = deactCommit
16 = deactReject 17 = dominationDeact
18 = dominationAct 19 = startAdjust
20 = startAdjustLevel 21 = adjustRequestDecision
22 = adjustRejectDecision 23 = adjustCommitDecision
24 = deactRequestDecision 25 = deactRejectDecision
26 = deactCommitDecision

Table 1. Message Type Encoding

Because of the limitations that Modelica cannot han-
dle data structures with a dynamic size, such as a linked
list, we implement the message mechanism like Sanz [15]
by using Modelica external functions. The external func-
tion invokes a C-implementation that stores messages in
the dynamic memory. The dynamic memory address of the
component message pool is stored in the variable cmpMsg-
PoolAdr. Additionally, for each message port the variables
inputMsgPoolAdr, outputMsgPoolAdr are used. They store
the dynamic memory location of the port message pools.
The variables numIn, numOut, numreceived are auxiliary
variables. For each message a boolean variable exists which
has the name of the message. Listing 5 shows the code
which is needed for the messages and pools of component1.

Listing 5. Message Representations
//Number of Ports
parameter Integer numIn = 1
parameter Integer numOut = 1
//Memory address of the pools
Integer cmpMsgPoolAdr;
Integer inputMsgPoolAdr[numIn];
Integer outputMsgPoolAdr[numOut];
// Number of received messages
Integer numreceived;
// Message occurrence variables
Boolean adjustCommit;
Boolean adjustReject;
Boolean adjustDeact;
Boolean adjustRequest;
Boolean deactRequest;
Boolean deactCommit;
Boolean deactReject;
...

4.2 Modelica Code for State Machine Behavior
The order of the generated algorithmic code is very impor-
tant for the semantics of the state machines. The order of
the resulting Modelica algorithm code is defined as pseudo-
code by the Algorithms 4.1, 4.2, 4.3, and 4.4.

At the beginning of the Modelica algorithm code, the
initialization of the state machine is stated. Afterwards, the
code for message handling is stated, if required. Accord-
ingly, the region codes are generated in the order of their
execution order which is defined by a priority value.

Algorithm 4.1: STATEMACHINEBEHAVIORCODE(
StateMachine)

initializeStateMachine
messageHandlingStatements
for each Region.sortRegion()

do
{

REGIONBEHAVIORCODE(Region)

Algorithm 4.2 shows the structure of the region behav-
ior code. The region behavior code starts with the local time
management. This local time management sets and calcu-
lates the variables timeAtActivation and sTime. Afterwards,
the history nodes, if present, are set to the currently active
states. Now the transition code is generated for the region.
Accordingly, the code for the do-actions is generated. At
the end of the region behavior code the region behavior
code of composite states and submachine states is stated.
The code generation invokes the Algorithm 4.2 REGION-
BEHAVIORCODE recursively at this point.

Algorithm 4.2: REGIONBEHAVIORCODE(Region)

set local Time Behavior
set History Node to Current Active State
TRANSITIONBEHAVIORCODE(Region)
execute do code
for each CompositeState

do
{

for each Region.sortRegions()
do
{

REGIONBEHAVIORCODE(Region)
for each SubMachineState

do
{

for each Region.sortRegions()
do
{

REGIONBEHAVIORCODE(Region)

Algorithm 4.3 shows the structure of the transition be-
havior code. The code starts with the behavior code for the
initial- and shallowHistory-pseudostates. These states are
auxiliary states and are directly processed in favor. The be-
havior code for each state is nested within an if-clause. This
clause is only processed if the parent state is still active.
Therefore, it is ensured that transitions can never fire if the
parent is not active.

Algorithm 4.3: TRANSITIONBEHAVIORCODE(Region)

initialBehaviorCode
shallowHistoryBehaviorCode
if (parent is still active)

then

for each State

do
{

if (state is pre active)
then

{
TRANSITONCODE(State)
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Algorithm 4.4 shows the structure of a simple transi-
tion code. The concrete execution of a compound transi-
tion depends on the pseudostates involved in the chain of
transitions from one state to another. This example directly
connects two states. The transition with the highest prior-
ity is in the if-clause. Then the other transitions follow in
the order of their priority in the else-if-clauses. If the guard
is empty the condition is set to true. A trigger is optional.
Entry-, and exit-actions are only generated if available.

Algorithm 4.4: TRANSITIONCODE(State)

comment: First Transition (Highest Priority)

if guard [and trigger]

then


execute exit-action
deactivate active state
execute effect
activate transition target state
execute entry-action

comment: Second Transition (Lower Priority)

else if guard [and trigger]

then

execute exit-action
deactivate active state
. . .

In the following sections we describe the Modelica code
for particular elements.

State Machine Initialization State machines are initial-
ized when the simulation is started. The initialization sets
all initial- or history-pseudostates of all regions to true.

Further, the message pools for the component and all
discrete input-ports are created. Listing 6 shows the al-
gorithmic code which creates the needed message pools
initially. Listing 7 shows the invoked Modelica function
which calls the corresponding C-Code <events.c>3 of a
message pool from Sanz.

Listing 6. Initialization of Message Pools
for i in 1:numIn loop

inputMsgPoolAdr[i] := CreatePool();
end for;
cmpMsgPoolAdr := CreatePool();
end if;

Listing 7. Modelica Function which creates a new pool for
messages in the dynamic memory
function CreatePool
output Integer q;
external "C" q = QCreate();

annotation (Include="#include <events.c>");
end CreatePool;

Message and MessageTrigger A message event is the
dispatch of an asynchronous message instance. A boolean
message trigger represents the receipt of this instance. A

3 http://www.euclides.dia.uned.es/DESLib/Files/
DESLib_1.2.zip

message can be created and sent by invoking a special
sendMessage Modelica-function by a transition action. The
message function is similar to the sendEvent-function of
Sanz [15]. The sendMessage function is shown in listing 8.

Listing 8. Sends a message to a pool
function sendMessage
input Integer poolAdr;
input stdMessage e;
output Integer out;

external "C" out =
QAdd(poolAdr,e.port,e.msgType,e.value,0);

annotation (Include="#include <events.c>");
end sendMessage;

At the beginning of the state machine behavior code the
message handling code is stated. This code has the func-
tion to handle incoming messages and to put them from the
different input-ports into the message pool of the compo-
nent. Further, it handles the occurrence of messages in the
message pool. If a message occurs and the corresponding
variable is false, it sets the variable to true.

Listing 9 shows an example of the message handling.
In the first for loop all messages from all input-ports are
collected in the component message pool. The address
of the memory location of the message pool is stored in
the variable cmpMsgPoolAdr. Afterwards, the component
message pool is searched for messages by the statement
message := getMessage(cmpMsgPoolAdr);.
The value of the variable message.msgType is used to check
if a certain message is in the pool. If a message is in the
pool then the corresponding message variable is set to true.
For example if a message of message.msgType=10
is in the pool and the variable adjustRequest is false, then
the variable is set to true. Otherwise the message is put back
into the message pool by the statement
sendMessage(cmpMsgPoolAdr,message).

Listing 9. messageHandlingStatements
for i in 1:numIn loop

numreceived := numMessages(inputMsgPoolAdr[i]);
for j in 1:numreceived loop

message := getMessage(inputMsgPoolAdr[i]);
message.port := i;
sendMessage(cmpMsgPoolAdr,event);

end for;
end for;
numreceived := numMessages(cmpMsgPoolAdr);
for j in 1:numreceived loop

message := getMessage(cmpMsgPoolAdr);
if message.msgType == 10

and adjustRequest == false) then
adjustRequest := true;

...
else

sendMessage(cmpMsgPoolAdr,message);
end if;

...

A transition, which wants to react on the occurrence
of a specific message, uses the boolean message vari-
able as reference in its guard. When the message is avail-
able the guard becomes true and the transition fires and
the transition action is executed. The transition action
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resets the message variable back to false. For example
in Figure 2 the transition from requestLevelAdjust →
deactivateLevelAdjust has as guard the variable
adjustReject and the transition action statement
adjustReject:=false. At the moment when the
message adjustReject arrives from protocolSlave the vari-
able is set to true by the message handling. The transition
fires and resets the variable back to false, so that the next
time when the message is available it could be set to true.

Local Time Behavior Each state has the time variables
timeAtActivation and stime. The variable timeAtActivation
is set to the current time when a state is entered. The vari-
able stime is set in each integration step to the difference
of the current simulation time and the timeAtActivation. If
a state is not active the local timer stime is set to zero.

Initial/ShallowHistory-Pseudostate Behavior If the ini-
tial-pseudostate is active it is deactivated and the target of
the outgoing transition is activated. If the shallowHistory-
pseudostate is active the most recent active state is acti-
vated. If no most recent active state exists the target of the
outgoing transition is activated.

Simple Transition Behavior A simple transition is a tran-
sition which directly connects two states. It is activated if
the source state is pre-active. The Modelica pre-function is
used to ensure that a state is active at the beginning of the
event iteration. Therefore, it is not possible that a state be-
comes active and not active during the same iteration of an
algorithm section.

For example if the state deactivateLevelAdjust from the
state machine protocolMaster (see Figure 2) is active, the
message startAdjustLevel has already arrived and therefore
the boolean variable startAdjustLevel is true. Then the tran-
sition fires and sends the message adjustRequest to the state
machine protocolSlave (Figure 3) of component slaveCon-
troller. Listing 10 shows the resulting Modelica code.

Listing 10. Simple Transition Behavior
if pre(protocolMaster.Region_0

.adjustControl.active) then
if pre(... .adjustControl.

deactivateLevelAdjust.active) then
if startAdjustLevel then //guard

//...; exit behavior
... .deactivateLevelAdjust.active := false;
//start effect behavior
startAdjustLevel:=false;
message.msgType:=10;
sendMessage(pre(cmpMsgPoolAdr,message);
//end effect behavior
... .requestLevelAdjust.active := true;
// ... ; entry behavior

end if;
end if;
end if;

Highlevel Transition Behavior Highlevel transitions are
outgoing transitions of composite or submachine states.
When a highlevel transition deactivates these hierarchi-
cal states it has to be ensured that all active nested sub-
states are deactivated before the composite-/ submachine

is deactivated. Consider the state machine in Figure 2.
Suppose, the state adjustControl is activate and the guard
cIn.val>=0.6 is true. Then the currently active state
deactivateLevelAdjust, requestLevelAdjust, levelAdjust or
requestDeactivation is deactivated. Afterwards, the state
adjustControl itself is deactivated. Accordingly, the high-
level transition adjustControl→ dominationClosedV alve
is taken and the message dominationDeact with message
type identifier 17 is sent to the protocolSlave state ma-
chine. Finally, state dominationClosedValve is activated.
Listing 11 shows the corresponding Modelica code.

Listing 11. Highlevel Transition Behavior
if pre(protocolMaster.Region_0

.adjustControl.active) then
if(cIn.val>=0.6) then
if (...deactivateLevelAdjust.active) then
...deactivateLevelAdjust.active:=false;

end if;
if (...requestLevelAdjust.active) then
...requestLevelAdjust.active:=false;

end if;
...
...adjustControl.active := false;
message.msgType:=17;
sendMessage(pre(outputMsgPoolAdr[1]),message);
...dominationClosedValve.active := true;

end if;
end if;

5. Evaluation
We modeled the rainwater two tanks system as shown in
Figure 1 with ModelicaML. The resulting composite struc-
ture of the system is shown in Figure 6. We modeled the
sketched state machines of Figures 2, 3, and 4 with Mod-
elicaML state machines and embedded them as behavior
of the model classes DiscreteMasterController and Dis-
creteSlaveController. Further, we extended this model with
our Modelica-Functions, like sendsMessage as shown in
Listing 8. Further, we added Modelica code for the mes-
sage passing and variables for our message types to the
ModelicaML model. We generated from that ModelicaML
model the whole Modelica code. The model and the gen-
erated code is available online at4. We simulated it with
Dymola 7.4.

Figure 10 shows a part of the simulation results. The
variable rain.qOut.lflow in the upper diagram shows the
amount of rain which flows into tank 1. The inflow of tank
1 is not controllable by the slave controller of tank 1. At
simulation time = 16 the rain decreases. The variable
tank1.qOut.lflow shows the amount of water which flows
from tank 1 into tank 2 when the valve is opened. The
valve is opened at simulation time = 15. Then 0.6m3

s
water leave tank 1 for 24.3 seconds. The diagram in the
middle shows the resulting water level in both tanks. When
the valve is opened the water level of tank 1 decreases and
the water level of tank 2 increases. In our example tank

4 http://www.cs.uni-paderborn.de/fileadmin/
Informatik/FG-Schaefer/Personen/upohl/downloads/
TwoTanksSystemExample.zip
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2 is bigger than tank 1 and therefore the amount of wa-
ter in tank 2 increases slower than the decrease of water
in tank 1. The lower diagram shows the state levelAdjust
of the master controller. At time = 15 the state levelAd-
just become active, because the self-transition of state pro-
tocolControl in state machine protocolMasterControl fires
(see Figure 4). This starts the communication between both
controllers to open the valve. At time = 39.3 the state lev-
elAdjust is deactivated and the valve is closed.

Figure 10. Simulation Results

The sequence diagram in Figure 11 shows the commu-
nication that appeared within the simulation. The messages
coincide with our predicted scenario (see Figure 5). For
each message that is sent a directed edge is drawn from
the sender to the receiver state machine. Additionally, the
time when the message is sent is annotated below the edge.
When a message is drawn below another message and has
the same time of sending it is sent after the upper message.
Currently, ModelicaML only supports the specification of
timing behavior in a rudimentary way. Therefore, we do
not specify discrete timing behavior in our protocol. As a
result it is difficult to grasp the timing behavior of the dis-
crete controller and the communication protocol. This can
be seen within the sequence diagram, because several mes-
sages that are sent one after another have the same time of
sending.

Figure 11. Communication Simulation with Concrete
Time Annotation

6. Related Work
6.1 MechatronicUML
MechatronicUML [2, 9, 8, 4] is an approach for the model-
driven development and verification of mechatronic real-
time systems. The MechatronicUML refines the UML in
order to make it applicable to mechatronic real-time sys-
tems. The component-based architecture of mechatronic
systems is modeled using discrete and continuous compo-
nents. Their discrete behavior is modeled using real-time
statecharts, an extension of UML state machines with con-
structs from timed automata [1]. Continuous behavior is
modeled with the help of the CAMeL-View [3] tool which
allows the object-oriented modeling of different parts of
mechatronic systems like multi-body system dynamics,
control technology, and hydraulics. The MechatronicUML
focuses on the real-time coordination between mechatronic
systems and supports its formal verification with respect to
safety properties. The presented extension of ModelicaML
with message exchange has been based on the Mecha-
tronicUML. However, it enables the seamless modeling
of mechatronic systems using a single formalism and tool
in contrast to the MechatronicUML.

6.2 StateGraph2
The Modelica StateGraph2 library [11] is a free Modelica
library providing components to model discrete events, re-
active and hybrid systems with deterministic hierarchical
state diagrams. It utilizes Modelica as action language. Via
special blocks actions can be defined in a graphical way de-
pending on the active step. StateGraph does not support a
comprehensive set of state machines as defined in the UML
and reused in ModelicaML. Larger StateGraph models are
not easy to grasp as they are graphically more complex than
UML state machines. Additionally, in contrast to our ap-
proach, StateGraph does not support message exchange.

6.3 SimulationX
The SimulationX modeling and simulation tool does di-
rectly support the specification of a subset of UML state
machines [6]. The subset is rather restricted as they do
not support orthogonal states. Orthogonal states are an im-
portant feature as they enable the modeling of parallel ac-
tivities and, thus, can greatly reduce the model complex-
ity. They also provide no mechanism like submachines to
group a state machine into multiple parts and to reduce the
visual complexity and to reuse once defined state machines.
Furthermore, they do not support asynchronous message
exchange.

7. Conclusion and Future Work
In this paper, we have presented an extension to Modeli-
caML for the specification of message exchange. We have
illustrated our extension by a rainwater two tanks system
using two controllers which exchange messages for their
coordination. Furthermore, we presented how we trans-
late the ModelicaML models to plain Modelica code and
a helper C-function and finally, showed a simulation run.
Our translation to Modelica code has been implemented as
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plugins for the eclipse case tool Papyrus5. We are working
on finishing the code generation with respect to messages.

Currently, we work on a new version of our translation
directly to the StateGraph2 library. We want to combine
StateGraph2 with algorithmic code for constructs which
depend on a particular order of execution. Translating to
StateGraph2 has the advantage that the resulting models
are structured similarly to the ModelicaML state machines
and are, thus, easier to understand by the developer than
the generated Modelica code. Though, we have to extend
the StateGraph2 library to support message sending and
receiving for that translation.

Furthermore, we want to add more syntactical con-
structs to ModelicaML state machines for the better spec-
ification of temporal behavior. Specifically, clocks, time
guards and invariants as used in timed automata will be
added to ModelicaML state machines. Finally, we want to
translate simulation runs done in a Modelica tool back to
ModelicaML. For example, the states and transitions which
are taken during a simulation run can be appropriately vi-
sualized using sequence diagrams.
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